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SELECTION OF ARX MODELS ESTIMATED BY
THE PENALIZED WEIGHTED LEAST SQUARES

METHOD

By

Pan Qin∗ and Ryuei Nishii†

Abstract

We consider the selection problem of auto-regressive time-series models with eX-
ogeneous variables (ARX) estimated by Penalized Weighted Least Squares (PWLS)
method. AIC and BIC are developed based on the maximum likelihood estima-
tion. Therefore, in this research, we evaluate GIC for the ARX models estimated by
PWLS. In a numerical experiment, the model selected by GIC shows an excellent
performance, especially, in a target region.

Key Words and Phrases: AIC, auto-regressive time-series models with exogeneous variables,

BIC, GIC, MLE, Model selection, System identification.

1. Introduction

Auto-Regressive time-series models with eXogeneous variables (ARX) is useful to
describe dynamic behavior of a system or process in the discrete time domain. Selecting
an appropriate model structure is most crucial for a successful modeling application.
Akaike’s Information Criterion (AIC) (Akaike (1974)) and Bayesian Information Crite-
rion (BIC) (Schwarz (1978)) can be used for the ARX model evaluation and selection
when the models are obtained by the Maximum Likelihood Estimation (MLE).

However, various estimation procedures other than MLE may also be utilized for
ARX models in practical applications. In this paper, the ARX models estimated by
Penalized Weighted Least Squares (PWLS) method are taken into consideration. The
reason for using PWLS is two-fold: In many modeling applications, the different mea-
surements should be assigned different weights (Ljung (1996)). For example, if we want
to construct an ARX model which has good prediction performance on some specified
regions, then the measurements in such regions should be put on more weight. On the
other hand, regularization techniques are often used in the estimation procedures to
control the trade-off between the smoothness of the model and the goodness of fitting to
the data (Konishi and Kitagawa (2008)). Especially for the estimation of ARX models,
Ljung (1996, Sect. 7.4) pointed out the importance of regularization techniques in the
cases that the Hessian is an ill-conditioned matrix and/or the model is specified by too
many parameters in comparison with the sample size. Therefore, the selection of ARX
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models estimated by PWLS is not only to find the proper auto-regressive order and
variable subsets but to find an appropriate regularization parameter.

Because the ARX models obtained by PWLS are different from the ones obtained
by MLE, AIC and BIC are not applicable. Nevertheless, this situation may be remedied
by the Generalized Information Criterion (GIC) (Konishi and Kitagawa (1996)). GIC
is a general framework for constructing information criteria in the context of functional
statistics and can be applied to evaluate statistical models constructed by various types
of estimation procedures other than MLE. In this research, we investigate what GIC can
offer for evaluating and selecting the ARX model estimated by PWLS.

The rest of the paper is organized as follows. Section 2 describes the ARX models
estimated by PWLS. GIC for selecting the ARX models estimated PWLS will be spec-
ified in Section 3. In Section 4, numerical results are given. Finally, the discussion is
stated in Section 5.

2. ARX Models estimated by PWLS

Let t denote the present time, then an ARX model for ∆-step-ahead prediction can
be formulated as the following:

y(t+∆) =
m∑
i=1

αiy(t− i+ 1) +
n∑

j=1

β′
ju(t− j + 1) + e(t), e(t) ∼ N(0, σ2), (1)

for t = 1, · · · , N , where y(t) ∈ R is the output (target variable), u(t) ∈ Rp denotes p
external inputs (explanatory variables), αi ∈ R and βj ∈ Rp are coefficients, ∆ is a
natural number, m and n are the ARX model orders satisfying m ≥ n.

In this paper, we estimate the ARX models by minimizing the following function:

JPWLS =

N∑
t=1

wt

[
y(t+∆)− h′

tξ
]2

+ λξ′Kξ (2)

where

ht = [y(t) y(t− 1) · · · y(t−m+ 1) u(t)′ u(t− 1)′

· · · u(t− n+ 1)′]
′
: (m+ np)× 1,

ξ =
[
α1 α2 · · · αm β′

1 β′
2 · · · β′

n

]′
: (m+ np)× 1

and wt > 0 are weights, K is an (m + pn) × (m + pn) positive-semi definite matrix,
and λ > 0 is a regularization parameter. The function (2) can be also reformulated as
follows:

JPWLS = (y −Hξ)
′
W (y −Hξ) + λξ′Kξ (3)

where

y =
(
y(1 + ∆) y(2 + ∆) · · · y(N +∆)

)′
: N × 1,

H =
(
h1 h2 · · · hN

)′
: N × (m+ pn),

W =


w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · wN

 : N ×N.
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By solving the equation ∂JPWLS/∂ξ = 0, the PWLS estimator ξ̂PWLS which minimizes
JPWLS is given as the following:

ξ̂PWLS = (H ′WH + λK)
−1

H ′Wy. (4)

The selection problem of the ARX models achieved by ξ̂PWLS is to find the proper
regularization parameter λ and the orders m and n. Note that MLE for ARX models is
obtained by ξ̂MLE = (H ′H)−1Hy (Ljung (1996)). It is obvious that ξ̂PWLS is different

from ξ̂MLE . Thus AIC and BIC cannot be applied to the selection of ARX models

estimated by ξ̂PWLS . In the following section, GIC will be derived for the ARX models

estimated by ξ̂PWLS .

3. GIC for the ARX models estimated by PWLS

In this section, we will calculate GIC for the ARX models estimated by PWLS.
Define θ = (ξ′, σ)′ and let f(y(t+∆) | θ̂PWLS) denote an estimated ARX model,

in which θ̂PWLS is an M-estimator obtained by the solution of the following implicit
equation:

N∑
t=1

ψ(y(t+∆), θ̂PWLS) = 0 (5)

with ψ being referred to as ψ−function (Huber (2004)). Then GIC for the models ob-

tained by θ̂PWLS is given by the following theorem in the context of functional statistics.

Theorem 3.1. GIC for f(y(t+∆) | θ̂PWLS) can be calculated as follows:

GIC = −2
N∑
t=1

log f(y(t+∆) | θ̂PWLS) + 2tr
(
R−1Q

)
, (6)

where matrices R and Q given by

R = − 1

N

N∑
t=1

∂ψ(y(t+∆),θ)′

∂θ

∣∣∣∣∣
θ=ˆθPWLS

, (7)

Q =
1

N

N∑
t=1

ψ(y(t+∆), θ̂PWLS)
∂ log f(y(t+∆) | θ)

∂θ′

∣∣∣∣∣
θ=ˆθPWLS

. (8)

⊓⊔

For the proof, the readers are referred to Konishi and Kitagawa (1996).

An ARX model means that a conditional distribution of y(t + ∆) can be given
by the normal distribution having mean h′

tξ and variance σ2. Based on this fact, we
construct a ψ−function as follows:

N∑
t=1

ψ(y(t+∆),θ) =
N∑
t=1

wt
∂

∂θ

{
log f(y(t+∆) | θ)− 1

2
λ∗ξ′Kξ

}
(9)



38 P. Qin and R. Nishii

=


1

σ2
H ′W (y −Hξ)− tr(W )λ∗Kξ

−tr(W )

σ
+

1

σ3
(y −Hξ)′W (y −Hξ)

 = 0 (10)

where λ∗ = λ
/(

tr(W )σ2
)
. By solving the equation (10), the estimator θ̂PWLS for ARX

models are obtained as

θ̂PWLS =

(
ξ̂PWLS

σ̂PWLS

)
=


ΞH ′Wy√√√√(y −H ξ̂PWLS

)′
W
(
y −H ξ̂PWLS

)
tr(W )


where

Ξ =
(
H ′WH + tr(W )σ̂2

PWLSλ
∗K
)−1

.

Then, the GIC for the ARX models obtained by θ̂PWLS is given as the following propo-
sition.

Proposition 3.2. GIC for the ARX models achieved by θ̂PWLS are calculated as
follows:

GIC = −2
N∑
t=1

{
log f(y(t+∆) | θ̂PWLS)

−σ̂2
PWLSwttr

[(
Ξ−1 a
a′ 2tr(W )

)−1(
bt − λ∗Kξ̂PWLS

ct

)(
bt
ct

)′
]}

, (11)

where

a = 2tr(W )σ̂PWLSλ
∗Kξ̂PWLS , (12)

bt =
1

σ̂2
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)
ht, (13)

ct = − 1

σ̂PWLS
+

1

σ̂3
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)2
. (14)

⊓⊔

Proof. Based on (10), R in (7) can be derived as follows:

R = − 1

N

N∑
t=1

∂ψ(y(t+∆),θ)′

∂θ

∣∣∣∣∣
θ=ˆθPWLS

= − 1

N


− 1

σ̂2
PWLS

H ′WH − 2tr(W )λ∗K

− 2

σ̂3
PWLS

(y −H ξ̂PWLS)
′WH
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− 2

σ̂3
PWLS

H ′W (y −H ξ̂PWLS)

tr(W )

σ̂2
PWLS

− 3

σ̂4
PWLS

(y −H ξ̂PWLS)
′W (y −H ξ̂PWLS)



=
1

Nσ̂2
PWLS

 Ξ−1 2tr(W )σ̂PWLSλ
∗Kξ̂PWLS

2tr(W )σ̂PWLSλ
∗ξ̂

′
PWLSK 2tr(W )


=

1

Nσ̂2
PWLS

(
Ξ−1 a

a′ 2tr(W )

)
. (15)

with a defined by the formula (12). Q in (6) can be derived as follows

Q =
1

N

N∑
t=1

ψ(y(t+∆), θ̂PWLS)
∂ log f(y(t+∆) | θ)

∂θ′

∣∣∣∣∣
θ=ˆθPWLS

=
1

N

N∑
t=1

wt

∂

{
log f(y(t+∆) | θ)− 1

2
λ∗ξ′Kξ

}
∂θ


(
∂ log f(y(t+∆) | θ)

∂θ

)′
∣∣∣∣∣
θ=ˆθPWLS

=
1

N

N∑
t=1

wt


1

σ̂2
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)
ht − λ∗Kξ̂PWLS

− 1

σ̂PWLS
+

1

σ̂3
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)2



1

σ̂2
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)
ht

− 1

σ̂PWLS
+

1

σ̂3
PWLS

(
y(t+∆)− h′

tξ̂PWLS

)2


′

=
1

N

N∑
t=1

wt

(
bt − λ∗Kξ̂PWLS

ct

)(
bt
ct

)′

(16)

where bt and ct are defined by the formulas (13) and (14) respectively. Then, substitute
R and Q in (6) by (15) and (16), the conclusion in Proposition 3.2. can be proved.

⊓⊔

Finally, we can select the ARX models estimated by PWLS through choosing the
regularization parameter λ and ARX model orders m and n which minimize GIC in
Proposition 3.2..
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4. Numerical example

The dataset acquired from a winding process (Moor (1997)) are used in the nu-
merical study. Figure 1 shows a scheme of the winding process. The main part of the
plant is composed of a plastic web that is unwinded from first reel r1(unwinding reel),
goes over the traction reel r2 and is finally rewinded on the rewinding reel r3. The reel
r1 is driven by the motor M1 and the reel r3 is driven by the motor M3. The motors
are controlled by the input currents I1 and I3 (A) respectively. S1, S2 and S3 (rad/s)
denote the angular speeds of the three reels and are measured by dynamo tachometers
respectively. T1 (kg) is the tension between r1 and r2 and is measured by a tension
meter. The inputs S1, S2, S3, I1 and I3 and the output T1 are shown in Figure 2.

l ��
�� l

d dd d
d dT1

R s
w

��
�� S2

M1

r2
r3r1

6

S1

6

I1

��
��
M3

S3

6

I3
6

Figure 1: A winding system.

Large tension will lead to the damage on the plastic web. Therefore, we want
to construct ARX models which have good performance on prediction of large tension
(|T1(t)| ≥ 1.5kg in this study). Figure 3 depicts the samples of tension satisfy |T1(t)| ≥
1.5kg. In the numerical study, we select two ARX models obtained by MLE based
on AIC and BIC respectively. Let wt = 1, an ARX model estimated by Penalized
Least Squares (PLS) is selected by GIC. Two ARX models estimated by PWLS with
wt =

√
|T1(t)| and |T1(t)| are selected by GIC. Let λ = (0.1)δtr(W ) for δ = 1, · · · , 10,

then λ can be selected by selecting δ based on GIC. The order m of ARX models is
selected from m = 1, · · · , 5∆ and n is selected from n = 1, · · · ,m. We used the identity
matrix as matrix K in PLS and PWLS. There are 2500 samples which are sampled by
10Hz in the dataset. The samples are divided into two parts. The first 1250 samples
are used for estimating the ARX models and the rest samples are used for testing the
prediction performance of the estimated models. The numerical results are listed in
Table 1. Numerals in bold face denote the maximum coefficients of determination in
each setting.

In the numerical results, the coefficient of determination R2
f is calculated from all

the 1250 test samples of tension and their predictions. R2
l is calculated from the 145

test samples of tension which satisfy |T1(t)| ≥ 1.5kg and their predictions. R2
f shows



Selection of ARX Models Estimated by the Penalized Weighted Least Squares Method 41

0 50 100 150 200 250
−5

0
5

T
1(k

g)

 

Output

0 50 100 150 200 250
−10

0
10

S 1(r
ad

/s
)

 

Input1

0 50 100 150 200 250
−10

0
10

S 2(r
ad

/s
)

 

Input2

0 50 100 150 200 250
−10

0
10

S 3(r
ad

/s
)

 

Input3

0 50 100 150 200 250
−5

0
5

I 1(A
)

 

Input4

0 50 100 150 200 250
−2

0
2

I 3(A
)

Time(sec)

Input5

Figure 2: Inputs and output data
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Figure 3: The samples of tension in the test data (starts indicate the samples satisfying
|T1(t)| ≥ 1.5kg)
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Table 1: The selected ARX models and the coefficients of determination for ∆ = 1, 2, 3

∆ IC wi Estimator m n δ λ

R2
f

All test data

(N=1250)

R2
l

|T1(t)|≥1.5kg

(N=145)

AIC 1 MLE 5 5 - 0 0.9801 0.7650
BIC 1 MLE 3 3 - 0 0.9786 0.7392

1 GIC 1 PLS 5 3 7 1.25× 10−4 0.9791 0.7404

GIC
√

|T1(t)| PWLS 3 3 7 1.11× 10−4 0.9813 0.7907
GIC |T1(t)| PWLS 3 3 7 1.08× 10−4 0.9825 0.8229
AIC 1 MLE 10 10 - 0 0.9572 0.6318
BIC 1 MLE 7 2 - 0 0.9549 0.5871

2 GIC 1 PLS 10 10 7 1.25× 10−4 0.9575 0.6321

GIC
√

|T1(t)| PWLS 10 10 8 1.11× 10−5 0.9588 0.6835
GIC |T1(t)| PWLS 7 3 7 1.08× 10−4 0.9600 0.6900
AIC 1 MLE 11 11 - 0 0.9315 0.4605
BIC 1 MLE 7 2 - 0 0.9310 0.4478

3 GIC 1 PLS 11 11 7 1.25× 10−4 0.9318 0.4592

GIC
√

|T1(t)| PWLS 11 11 8 1.11× 10−5 0.9328 0.5258
GIC |T1(t)| PWLS 11 11 8 1.08× 10−5 0.9322 0.5845

the prediction performance for all testing samples and R2
l shows the performance of

predicting the large tension in the test samples.
Table 1 indicates that the ARX models estimated PLS shows the similar perfor-

mance of models estimated by MLE. However, the models estimated by PWLS with
wt = |T1(t)| work well on predicting large tension than other selected models.

5. Discussion

In this paper, we addressed the selection of the ARX models estimated by PWLS.
Because Akaike’s AIC and Schwarz’s BIC cover only models obtained by MLE, they
cannot be applied to the ARX models estimated by PWLS. However, GIC is applicable
to models achieved by various estimation methods in the context of functional statistics.
Therefore we specified GIC for the ARX models estimated by PWLS. Based on the
specified GIC, the proper regularization parameters λ and the orders m and n can be
selected for the ARX models estimated by PWLS. It is worth noting that the specified
GIC can be extended to the ARX models estimated by PLS naturally. The numerical
experiments were conducted to examine the performance of the specified GIC, and GIC
selected excellent models.
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