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Abstract  Apolipoprotein E (APOE) is associated with increased oxidative stress, 

which is caused by reactive oxygen species (ROS).  Enhanced cytochrome P450 2E1 

(CYP2E1) activity may also increase formation of neurotoxins such as ROS.  As 

Parkinson's disease (PD) is a neurodegenerative disorder, both the APOE and CYP2E1 

genes that are involved in neurodegeneration by oxidative stress may be associated with 

PD risk.  We investigated the relationship of the APOE and CYP2E1 rs2864987 

polymorphisms and PD risk with special attention to the interaction with alcohol 

consumption among 238 patients with PD and 296 controls in a Japanese population.  

The frequencies of the ɛ 2, ɛ 3and ɛ 4 alleles of the APOE polymorphism among 

controls were 3.72, 86.7 and 9.63%, respectively.  As compared with the APOE 

ε3/ε3genotype, the 2/ε4 genotype was associated with an increased risk of PD (adjusted 

odds ratio (OR) = 9.50, 95% (confidence interval) CI = 1.12 - 80.6).  The presence of 

the ε3 allele was associated with a decreased risk of PD.  Meanwhile, CYP2E1 

rs2864987 was not associated with PD risk.  Although CYP2E1 is involved in the 

metabolism of alcohol, there was no evidence of interaction between alcohol 

consumption and CYP2E1 rs2864987.  Our results suggested that the APOE 

polymorphism might play an important role in PD susceptibility in our Japanese 

population.  Future studies involving larger control and case populations and better 

alcohol consumption histories will undoubtedly lead to a more thorough understanding 

of the role of polymorphisms of genes related to the generation of ROS in PD 

development. 

Keywords  apolipoprotein E; cytochrome P450 2E1; interaction; Parkinson’s disease; 

case-control study; Japanese population 
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Introduction 

 Oxidative and nitrosative stress caused by accumulation of reactive oxygen 

(ROS) and nitrogen species can affect different pathways and contribute to the 

pathogenesis of Parkinson's disease (PD) (Jenner 2003; Tsang and Chung 2009; Seet et 

al. 2010)  Generation of ROS is an inevitable outcome of oxygen dependent 

respiration.  Cytochrome P450 2E1 (CYP2E1) is hypothesized to be important for the 

pathophysiology of PD, either by its production of ROS or by its ability to detoxify 

putative neurotoxins (Fahn and Cohen 1992; Jimenez-Lopez and Cederbaum 2005).  

Similarly, apolipoprotein E (APOE) is also associated with increased oxidative stress 

(Jofre-Monseny et al. 2008) caused by generation of ROS.   

 Genetic susceptibility, which is associated with production or metabolism of 

endogenous and exogenous neurotoxins, is implicated in the pathophysiology of PD 

(Riedl et al. 1998).  APOE is responsible for clearance of the β-amyloid plaques that 

impair the nervous system (Bales et al. 2002).  The APOE gene has three common 

alleles, ɛ 2, ɛ 3 and ɛ 4, which determine the protein isoforms E2, E3 and E4, 

respectively, and yield six possible genotypes, ɛ 2/ɛ 2, ɛ 2/ɛ 3, ɛ 2/ɛ 4, ɛ 3/ɛ 3, ɛ 3/ɛ 4 

and ɛ 4/ɛ 4.  E2 and E3 clear plaques 20 times more efficiently than E4 (Mahley and 

Rall 2000).  E3 seems to be the normal isoform in all known functions, while E4 and 

E2 can each be dysfunctional (Mahley and Rall 2000).  The ɛ 4 allele is widely 

accepted to be a risk factor for Alzheimer's disease (Corder et al. 1993; Welsh-Bohmer 

et al. 1997).  Because PD and Alzheimer's disease share common features, some of 

their genetic determinants may be the same or similar.  The ɛ 4 allele may play a 

harmful role in PD development.  However, associations between the APOE 
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polymorphism and PD have yielded mixed results.  Several studies and a meta-analysis 

showed that the ɛ 2 allele is associated with an increased risk of PD (The French 

Parkinson's Disease Genetics Study Group 1997; Harhangi et al. 2000; Huang et al. 

2004), while other studies and another meta-analysis showed that the ɛ 4 allele is 

associated with an increased risk of PD (Arai et al. 1994; Harhangi et al. 2000; Li et al. 

2004; Huang et al. 2006).  Therefore, both the ɛ 2 and the ɛ 4 alleles are hypothesized 

to play a deleterious role in PD development. 

 CYP2E1 is distributed heterogenously among the brain areas (Hansson et al. 

1990).  A number of polymorphisms in the coding and non-coding regions of CYP2E1 

have been reported.  No significant associations between these polymorphisms and PD 

risk have been reported (Bandmann et al. 1997; Wang et al. 2000; Wu et al. 2002; Singh 

et al. 2008).  However, it is hypothesized that the genotype involved in a higher 

catalytic activity may be associated with an increased risk of PD. 

 Studying gene-environment interactions in relation to PD risk may be valuable 

because positive findings would clearly implicate disease-causing exposures, clarify PD 

etiology, and point to environmental modifications for disease prevention.  As it is not 

clear at present whether the CYP2E1 rs2864987 (adjacent to rs6413432) polymorphism 

can change CYP2E1 activity, no studies have been undertaken regarding the rs2864987 

polymorphism and PD.  However, the possibility that this polymorphism is associated 

with PD risk cannot be ruled out.  This study aimed to determine the main effect of 

polymorphisms of genes related to the generation of ROS (APOE and CYP2E1 

rs2864987) and interaction between the CYP2E1 rs2864987 polymorphism and alcohol 

consumption on PD risk in a Japanese population. 
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Materials and Methods 

Study subjects 

 PD patients were recruited at three university hospitals and one national hospital 

in Fukuoka Prefecture, a metropolitan area of Kyushu Island in southern Japan, and at 

three university hospitals, three national hospitals and one municipal hospital in Osaka, 

Kyoto, and Wakayama Prefectures.  Eligible (prevalent) cases were patients who were 

within six years of the onset of PD and who presented at one of the 11 collaborating 

hospitals between April 1, 2006 and March 31, 2008.  The mean duration (± SD) of PD 

was 38.8 (16.7) months.  During the same period, hospital controls, without a previous 

diagnosis of a neurodegenerative disease, were recruited from other departments of 

three of the 11 collaborating hospitals because hospital controls are more motivated and 

are more easily accessible for obtaining DNA samples.  It is unlikely that our hospital 

controls had a genetic predisposition for PD.  Controls were not, individually or in 

larger groups, matched to cases.  Details of the study subjects have been documented 

elsewhere (Miyake et al. 2010).   

 Subjects (611 total; 240 PD patients and 371 controls) agreed to donate buccal 

samples.  Data on smoking and pesticide use were insufficient for two cases and one 

control.  In total, 238 cases and 370 controls were enrolled in this study.  The research 

protocol was approved by the ethics committees of the 11 collaborating 

universities/hospitals, and all subjects signed informed consent. 

 

Genetic analysis 
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 Genomic DNA was extracted from buccal samples.  Genetic determinations 

were made blinded to PD status.  TaqMan® SNP Genotyping Assays purchased from 

Applied Biosystems (Foster City, CA, USA) were used for the following (gene, SNP, 

assay ID): APOE, rs7412, C_904973_10; APOE, rs429358, and C_3084793_20.  The 

genetic variants of CYP2E1 rs2864987 were assayed using the Custom TaqMan® SNP 

Genotyping Assay purchased from Applied Biosystems. 

 

Statistical analysis 

 Degree of freedom (df) for Hardy-Weinberg equilibrium (HWE) was calculated 

as the difference between the number of genotypes and the number of alleles.  Each 

SNP APOE rs7412, APOE rs429358 (on 3 df) and CYP2E1 rs2864987 (on 1 df), as 

expected, demonstrated HWE according to chi-square tests among controls only.  We 

hypothesized that the less active allele of CYP2E1 and the common allele ɛ 3 of APOE 

would be associated with decreased risk of PD.  To test this hypothesis, an 

unconditional logistic model constructed for each polymorphism was used to predict PD 

status.  Then, corresponding models were constructed to adjust for the following 

possible confounding factors: age (years), sex, region of residence, smoking status (ever 

vs. never), alcohol consumption [long-term consumption of alcoholic beverages 

(continuing consuming for ≥50 years, which is a cutoff point at the 90th percentile of 

the distribution among the control and case groups combined) vs. short-term 

consumption of alcoholic beverages (continuing consuming for <50 years)], pesticide 

exposure at work (ever used any insecticide, herbicide, or fungicide vs. never used).  

Other models were constructed that collapsed genotype into both copies of the more 
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common active version vs. carrying one or two copies of the less active allele.  If 

alcohol consumption increased risk for the more active allele of CYP2E1, interaction 

terms were included in subsequent logistic models (multiplicative scale).  Three 

measures for biologic interaction (additive scale), namely the relative excess risk due to 

interaction (RERI), attributable proportion (AP) and synergy index (SI), were also 

calculated.  The additive interaction measures were calculated in the Excel sheet 

provided by Andersson et al. (Andersson et al. 2005) using regression coefficients and 

covariances.  If there was no interaction, RERI and AP are equal to zero, and SI and 

the multiplicative interaction term are equal to one. 

 All statistical analyses were implemented in STATA Version 10.1.  Statistical 

significance was declared for P < 0.05 (two-sided).   

 

Results 

 As controls were not selected to match PD patients on age, there was a 

significant difference in age between 238 PD patients and 370 controls (P = 0.008, data 

not shown).  Age is a potential risk factor for the development of PD.  To avoid a 

significant difference in age affecting a big part of the results, subjects under 60 years of 

age (n= 74) were excluded from this study.  Finally, 238 patients with PD and 296 

controls were enrolled in the study.  The distributions of selected characteristics among 

the study subjects are summarized in Table 1.  Age, sex ratio, pesticide use, status of 

alcohol drinking and region of residence did not differ significantly between cases and 

controls.  The PD patients were less likely to report a history of smoking compared to 

the control subjects (P< 0.0001).   
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 The distributions of APOE and CYP2E1 rs2864987 polymorphisms among cases 

and controls are shown in Table 2.  The frequencies of the ɛ 2/ɛ 2, ɛ 2/ɛ 3, ɛ 2/ɛ 4, 

ɛ 3/ɛ 3, ɛ 3/ɛ 4 and ɛ 4/ɛ 4 genotypes of the APOE polymorphism among controls were 

0, 7.09, 0.34, 73.6, 18.9, 0%, respectively.  There was a statistical difference in 

genotypic distribution (P = 0.042) and the ɛ 3 carrier status (P = 0.007) between the PD 

cases and controls.  No significant differences in allele frequency or specific allele 

carrier status were observed in any other comparisons.  The APOE polymorphism did 

not deviate from HWE in controls (PHWE = 0.177, data not shown). 

 As for the CYP2E1 rs2864987 polymorphism, the frequencies of the TT, TC and 

CC genotypes among controls were 45.3, 45.6, and 9.12, respectively (Table 2).  No 

significant differences in genotype distribution or allele frequency were observed.  The 

genotype distribution of CYP2E1 rs2864987 was also consistent with HWE in controls 

( PHWE = 0.471, data not shown).   

 As shown in Table 3, the ɛ 2/ɛ 4 genotype was associated with an increased risk 

of PD compared with the common ɛ 3/ɛ 3 genotype (adjusted OR = 9.50, 95% CI = 

1.12 - 80.6).  To elucidate the role of each allele, stratified analyses by allele status 

were performed.  For the ɛ 3 allele carriers, subjects with at least one ɛ 3 allele had a 

decreased risk of PD.  In other words, subjects with either ɛ 2/ɛ 2, ɛ 2/ɛ 4 or ɛ 4/ɛ 4 

had an increased risk of PD.  The ɛ 3 allele appeared to act in a dominant mode in this 

study.  Generally, the reference category is the absence of exposure (risk factor).  As 

the ɛ 3-containing genotypes were included in both the reference and exposure 

categories, the impact of ɛ 2 and ɛ 4 allele statuses on PD risk was attenuated in the 

analysis of specific allele carrier status.   
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 There was no clear evidence of association between CYP2E1 rs2864987 and PD 

risk (Table 3).  There was no difference in OR between the TC and CC genotypes.  

The C allele appeared to act in a dominant fashion in this study.  Based on the 

associations between CYP2E1 rs2864987 and PD, we designated the allele presumed to 

increase the risk of PD as the "at-risk" allele (T allele).  The "at-risk" allele can be 

assumed to be a higher catalytic activity (more ROS production). 

 As CYP2E1 enzyme is important in ethanol metabolism, the effects of CYP2E1 

rs2864987 may be modified by alcohol consumption.  We assessed interactions 

between CYP2E1 rs2864987 and alcohol consumption (Table 4).  As the C allele of 

CYP2E1 rs2864987 behaves in a dominant fashion, subjects with at least one C allele 

were bundled in one group for subsequent analysis.  Long-term alcohol consumption 

was nonsignificantly associated with increased risk of PD (adjusted OR = 1.43, 95% CI 

= 0.82 - 2.50; data not shown).  Long-term alcohol consumers with the TT ("at-risk") 

genotype (adjusted OR = 2.24, 95% CI = 1.01 - 4.95) had a significantly higher risk of 

PD than short-term alcohol consumers with at least one C allele (reference).  

Long-term alcohol consumers with at least one C allele and short-term alcohol 

consumers with the TT genotype faced approximately 1.3-fold increased risk of lung 

cancer.    However, no multiplicative interaction of alcohol consumption and the 

CYP2E1 rs2864987 polymorphism with PD was observed.  Assessment of additive 

(biologic) interaction measures was also carried out.  Three additive interaction 

measures between the CYP2E1 rs2864987 genotypes and alcohol consumption did not 

reach statistical significance.   Four interaction measures (multiplicative interaction, 

RERI, AP and S) were also far from statistically significant.   
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 There was no interaction between the APOE polymorphism and CYP2E1 

rs2864987 (data not shown). 

 

Discussion 

 The APOE and CYP2E1 rs2864987 polymorphisms were determined in 238 PD 

cases and 296 controls.  In this study, the frequencies of the ɛ 2, ɛ 3and ɛ 4 alleles of 

the APOE polymorphism among controls were 3.72, 86.7 and 9.63%, respectively.  

These values were similar to those reported in Japanese populations (Eto et al. 1986; 

Kobori et al. 1988; Ou et al. 1998; Yoshida et al. 2009).  It has been reported that the 

prevalences of the ε2, ε3 and ε4 alleles are similar between Caucasians and Asians 

(Thakkinstian et al. 2006).  In most populations, at least 50% of the population has two 

copies of the ε3 allele (ε3/ε3 genotype) and at least 20% carry at least one copy of the 

ε4 allele (ε2/ε4, ε3/ε4, or ε4/ε4).  The ε2 allele appears to be absent in some 

populations living in arctic regions, but, in most populations, at least 5% carry one or 

two copies (ε2/ε2, ε2/ε3, or ε2/ε4) (Gerdes et al. 1996).  Conversely, little data is 

available related to the allelic (genotypic) distribution of the CYP2E1 rs2864987 

polymorphism.  

 In the present study, the ɛ 2/ɛ 4 genotype of the APOE polymorphism was also 

significantly related to PD risk (OR = 9.50, 95% CI = 1.12 - 80.6).   APOE is 

localized to the cytoplasm of cortical neurons (Han et al. 1994).   Oxidative stress 

results from excess ROS overwhelming any endogenous antioxidant protection.  

Oxidative damage markers are systemically elevated in PD (Seet et al. 2010), which 

may give clues about the relation of oxidative damage to the onset and progression of 



Kiyohara et al. -12- 

 

PD, as the APOE gene may be involved in the generation of ROS (Fahn and Cohen 

1992; Jofre-Monseny et al. 2008).  One Chinese study (Tang et al. 2002) found a 

significant association between the ɛ 2/ɛ 4 genotype and PD risk (OR= 6.35, 95% CI = 

1.08 - 37.22).    However, our result should be interpreted with caution because it 

might be a false positive association because the number of subjects with the ɛ 2/ɛ 4 

genotype was small.  A family-based association analysis found that the ɛ 4 allele 

significantly increased PD risk (OR = 1.8, 95% CI = 1.1 - 3.38) (Li et al. 2004).  

Recently, a genome-wide linkage study concluded that the ɛ 4 allele is responsible for 

the linkage peak in this region, and that this allele is a modest risk factor for PD 

(Martinez et al. 2005).  A meta-analysis by Huang et al. also showed that the ɛ 4 allele 

is associated with dementia in PD (OR = 1.7, 95% CI = 1.0 - 2.8).  Unlike the 

protective role of the ɛ 2 allele in Alzheimer’s disease (Farrer et al. 1997), one French 

study reported a significantly higher frequency of the ɛ 2 allele in PD cases than 

controls (OR = 2.45, 95% CI = 1.15 - 5.21) (The French Parkinson's Disease Genetics 

Study Group 1997).  Another meta-analysis by Huang et al. also showed that the ɛ 2 

allele is associated with an increased risk of sporadic PD (OR = 1.20, 95% CI = 1.02 - 

1.42) (Huang et al. 2004).  Both the ɛ 2 (OR = 5.6, 95% CI =2.0 - 15.2) and the ɛ 4 

(OR = 3.6, 95% CI = 1.3 - 9.9) alleles increased the risk of PD with dementia (Harhangi 

et al. 2000).  Although many studies on the association between the APOE 

polymorphism and PD showed null results (Egensperger et al. 1996; Bon et al. 1999; 

Oliveri et al. 1999; Maraganore et al. 2000; Eerola et al. 2002; Parsian et al. 2002; Tang 

et al. 2002; Blazquez et al. 2006; Papapetropoulos et al. 2007), it is biologically 

plausible that the ɛ 4 allele is associated with an increased risk of PD because 
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β-amyloid plaques and tau protein-associated tangles are increased in the brains of 

individuals with the ɛ 4 allele (Schmechel et al. 1993).  The mechanism by which the 

presence of the ɛ 2 allele increases PD risk is not clear.  The number of subjects 

without the ɛ 3 allele was small in this study, due to the extremely high frequency of the 

ɛ 3 allele.  There was not a significant association between the ɛ 4/ɛ 4 or ɛ 2/ɛ 2 

genotype and PD risk, which may be due to the small sample of patients with the 

ɛ 4/ɛ 4 or ɛ 2/ɛ 2 genotype.  At present, we could not determine whether the ɛ 2 or ɛ 4 

allele may increase PD risk.  The possibility that the absence of the ɛ 3 allele increased 

PD risk cannot be ruled out.  In fact, the absence of the ɛ 3 allele was significantly 

associated with increased risk of PD (adjusted OR =13.0, 95% CI = 1.61- 104.1).  

Regardless, the association between the ɛ 2/ɛ 4 genotype and PD risk was suggested 

among Asian populations but not among Caucasian populations.  Similarly, the impact 

of the ɛ 4 allele on risk for Alzheimer's disease was stronger in Japanese than in 

Caucasians (Farrer et al. 1997).  These ethnic differences may reflect different 

gene-environment interactions, gene-gene interactions, or different linkages to the 

polymorphisms determining PD risk. 

 We did not detect an association between the CYP2E1 rs2864987 polymorphism 

and PD.  CYP2E1 is localized in neurons in the substantia nigra but not in glial cells 

(Watts et al. 1998).  Like with the APOE gene, the CYP2E1 gene may be involved in 

the generation of ROS (Fahn and Cohen 1992; Jimenez-Lopez and Cederbaum 2005).   

Two polymorphisms [Pst I (rs3813867) and Rsa I (rs2031920)], which are located in the 

5'-flanking region in a putative binding region for transcription factor HNF-1 (Hayashi 

et al. 1991), are in complete linkage disequilibrium (Stephens et al. 1994).  The minor 
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allele (c2 allele) that lacks the Rsa I restriction site is associated with higher 

transcriptional activity, protein levels, and enzyme activity of the CYP2E1 protein than 

the more common wild-type allele (c1 allele) (Hayashi et al. 1991; Watanabe et al. 

1994).  Carriers of the c2/c2 genotype might have an increased ability to activate 

endogenous or exogenous neurotoxins and may therefore develop an increased risk of 

PD.  The Dra I polymorphism (rs6413432) is caused by a base pair change in intron 6 

of the CYP2E1 gene.  The Dra I polymorphism is classified into the following three 

genotypes: heterozygotes (CD) and two forms of homozygotes (CC and DD).  

Recently, a significant association between the Dra I polymorphism and peripheral 

nerve injuries was found (Zhang et al. 2006).  Individuals with the CC genotype had a 

significantly higher risk of peripheral nerve damage compared with those with the DD 

genotype (OR  =  5.58, 95% CI  =  1.32 - 23.65) after n-hexane exposure.  The CC 

genotype may be linked to a higher CYP2E1 activity.  The 96-bp insertion 

polymorphism is associated with transcriptional activity (Nomura et al. 2003).  The 

Rsa I and 96-bp insertion polymorphisms were in almost complete linkage 

disequilibrium in a Japanese population (Morita et al. 2009).  These CYP2E1 

polymorphisms, with the exception of the rs2070676 (intron 7) polymorphism (Shahabi 

et al. 2009), were also not associated with PD (Bandmann et al. 1997; Wang et al. 2000; 

Wu et al. 2002; Singh et al. 2008; Shahabi et al. 2009).   

 In this study, long-term drinking nonsignificantly increased risk for PD.  

CYP2E1 metabolizes and activates many toxicological substrates, including ethanol, to 

more reactive products.  As acetaldehyde, the primary metabolite of ethanol, is known 

to be a neurotoxin, it is biologically plausible that alcohol consumption may increase 
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PD risk.  However, no clear link between total alcohol consumption and PD has been 

observed in most studies.  Furthermore, a protective effect on PD risk has been 

suggested for alcohol consumption.  A meta-analysis showed that alcohol consumption 

was significantly associated with a decreased risk of PD (summary OR among 13 

case-control studies = 0.81, 95% CI = 0.70 - 0.92; summary OR among 4 cohorts 

studies = 0.73, 95% CI = 0.57 - 0.92) (Ishihara and Brayne 2005).  These results may 

be biased due to residual confounding by cigarette smoking because there is a strong 

relationship between cigarette smoking and alcohol consumption and between cigarette 

smoking and PD risk.  Or, the effects of alcohol on PD risk may vary by race/ethnicity.   

 We evaluated the interaction between the CYP2E1 rs2864987 polymorphism and 

alcohol consumption (Table 4).  It is widely accepted that PD develops based on the 

interaction of environmental factors in a genetically predisposed individual.  Studying 

gene-environment interactions in relation to risk for PD may be valuable because 

positive findings would clearly implicate substrates with which the gene interacts as 

disease-causing exposures, clarify PD etiology, and point to environmental 

modifications for disease prevention.  Alcohol consumers (suspected high risk 

population in this study) with the "at-risk" genotype TT may be more susceptible to PD 

than expected from the independent effects of the two (alcohol drinking and genetic) 

separate factors.  A gene-environment interaction was suggested, with the combined 

"at-risk" genotype and long-term alcohol consumption conferring significantly higher 

risk (OR = 2.24, 95% CI = 1.01 - 4.95), compared with at least one C allele and 

short-term alcohol consumption in the present study.  However, all interaction 

measures (multiplicative interaction, RERI, AP and SI) were far from statistically 
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significant.  A mechanistic study of the neurotoxic compounds in our 

environment/lifestyle habits that serve as a substrate for the CYP2E1 enzyme may lead 

to better understanding of the role of the CYP2E1 polymorphisms in PD development.  

Additional epidemiological studies are also warranted to determine the alcohol-CYP2E1 

polymorphism interactions, although our results suggest that the CYP2E1 

polymorphism may not modify the association of alcohol consumption with PD risk.  

 A strength of this study is that cases were identified using strict diagnostic 

criteria, thus minimizing disease misclassification.  We also designed this study with 

extensive data collection based on comprehensive literature review, allowing us to 

adjust for several potential confounders.  Adjustment was made for extensive 

information on potential non-dietary and dietary confounding factors.  

 Several limitations of this study also warrant mention.  First, this study may 

have included a bias due to the self-reporting of alcohol consumption.  Consequently, 

the possibility of inaccurate exposure data and resulting misclassification bias should be 

considered when interpreting our findings.  Second, recall bias is a potential limitation 

of case-control studies.  As risk factors for PD are poorly characterized, study subjects 

have few systematic preconceived ideas regarding their disease etiology.  Any recall 

bias was likely to be non-differential, given the many pesticides reported, the complex 

temporal pattern of their use, and the fact that subjects were not informed of the study 

hypotheses.  Third, as the general Japanese population has a high prevalence of minor 

*2 allele of aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism (Yin et al. 2007) 

resulting in an inactive form that reduces the metabolism of acetaldehyde formed from 

ethanol, there is a possibility that the ALDH2 rs671 polymorphism may modify the 
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association between the CYP2E1 polymorphism and PD risk.  It is possible that 

individuals with a combination of the TT genotype of CYP2E1 rs2864987 and the *2 

allele of ALDH2 rs671 polymorphisms may have a higher risk for ethanol induced 

damage leading to the development of PD.  Further research on interactions between 

alcohol and genes involved in alcohol metabolism is warranted. 

 In conclusion, our results suggest that the APOE polymorphism plays an 

important role in PD susceptibility in our Japanese population.  To the best of our 

knowledge, this is the first report on the main effect of the CYP2E1 rs2864987 

polymorphism and the interaction between the CYP2E1 rs2864987 polymorphism and 

alcohol consumption.  Long-term alcohol consumers with the TT genotype had a 

significantly higher risk of PD than short-term alcohol consumers with at least one C 

allele although our study does not provide evidence of interaction between the CYP2E1 

rs2864987 polymorphism and alcohol consumption.  Future mechanistic studies are 

needed to verify the functional significance of the CYP2E1 rs2864987 polymorphism.  

Also, additional epidemiological studies are warranted to determine the alcohol 

drinking-CYP2E1 rs2864987 polymorphism.  In order to confirm our findings, future 

studies involving larger control and case populations and better alcohol consumption 

histories will undoubtedly lead to a more thorough understanding of the role of 

ROS-generating polymorphisms in PD development. 
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University); Tameko Kihira and Tomoyoshi Kondo (Department of Neurology, 
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Table 1. Selected characteristics of patients with Parkinson’s disease and controls 

Characteristics 

Cases  

(n = 238) 

Controls 

(n = 296) P-value 

Age (year), mean (SD) 68.5 (8.68) 69.7 (5.63) 0.06 

Sex, n (%) 

  Male 

  Female 

 

91 (38.2) 

147 (61.8) 

 

114 (38.5) 

182 (61.5) 

 

 

0.95 

Smoking status, n (%) 

  Current-smoker 

  Former-smoker 

  Non-smoker 

 

7 (2.94) 

57 (23.9) 

174 (73.1) 

 

34 (11.49) 

80 (27.03) 

182 (61.5) 

 

 

 

<0.0001 

Either home or  

  occupational pesticide use, n (%) 

  Positive 

  Negative 

 

 

122 (51.3) 

116 (48.7) 

 

 

162 (54.7) 

134 (45.3) 

 

 

 

0.43 

Consumption of alcoholic beverages, n (%) 

  Long-term 

  Short-term 

 

35 (14.7) 

203 (85.3) 

 

36 (12.4) 

255 (87.6) 

 

 

0.43 

Region of residence, n (%) 

  Fukuoka 

  Kinki 

 

89 (37.4) 

149 (62.6) 

 

116 (39.2) 

180 (60.8) 

 

 

0.67 

Five controls were missing drinking status data. 
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Table 2. Frequencies of APOE and CYP2E1 rs2864987 polymorphisms in patients with 

Parkinson's disease and controls 

 Cases 

(n=238),  

n (%) 

Controls* 

(n=296),  

n (%) 

P-value 

APOE    

  Genotypes    

    ε2/ε2 1 (0.42) 0 (0.00)  

    ε2/ε3 21 (8.82) 21 (7.09)  

    ε2/ε4 7 (2.94) 1 (0.34)  

    ε3/ε3 164 (68.9) 218 (73.6)  

    ε3/ε4 43 (18.1) 56 (18.9)  

    ε4/ε4 2 (0.84) 0 (0.00) 0.042 

    

  Alleles    

    ε2 30 (6.30) 22 (3.72)  

    ε3 392 (82.4) 513 (86.7)  

    ε4 54 (11.3) 57 (9.63) 0.084 

    

  ε3 allele status    

    None (ε2/ε2, ε2/ε4, ε4/ε4) 10 (4.20) 1 (0.34)  

    One (ε2/ε3, ε3/ε4) 64 (26.9) 77 (26.0)  

    Two (ε3/ε3) 164 (68.9) 218 (73.6) 0.007 

    

  ε2 allele status    

    None (ε3/ε3, ε3/ε4, ε4/ε4) 209 (87.8) 274 (92.6)  

    At least one allele (ε2/ε2, ε2/ε3, ε2/ε4) 29 (12.2) 22 (7.43) 0.063 

    

  ε4 allele status    

    None (ε2/ε2, ε2/ε3, ε3/ε3) 186 (78.2) 239 (80.7)  

    At least one allele (ε2/ε4, ε3/ε4, ε4/ε4) 52 (21.8) 57 (19.3) 0.460 

    

CYP2E1 rs2864987    

  Genotypes    

    TT 118 (49.6) 134 (45.3)  

    TC 100 (42.0) 135 (45.6)  
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    CC 20 (8.40) 27 (9.12) 0.612 

    

  Alleles    

    T 336 (70.6) 403 (68.1)  

    C 140 (29.4) 189 (31.9) 0.376 

Five controls were missing drinking status data. 

*Adjusted for age, sex, region, smoking status, drinking status and pesticide exposure. 
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Table 3. Associations of APOE and CYP2E1 rs2864987 polymorphisms, and 

Parkinson’s disease 

Polymorphism 

OR (95% CI) 

Crude Adjusted* 

APOE   

  Genotype   

    ε2/ε2 - - 

    ε2/ε3 1.33 (0.70 - 2.52) 1.26 (0.65 - 2.41) 

    ε2/ε4 9.30 (1.13 - 76.4) 9.50 (1.12 - 80.6) 

    ε3/ε3 1.0 (ref.) 1.0 (ref.) 

    ε3/ε4 1.02 (0.65 - 1.59) 0.98 (0.62 - 1.55) 

    ε4/ε4 - - 

   

  ε3 allele status   

    None (ε2/ε2, ε2/ε4, ε4/ε4) 1.0 (ref.) 1.0 (ref.) 

    One (ε2/ε3, ε3/ε4) 0.08 (0.01 - 0.67) 0.08 (0.01 - 0.66) 

    Two (ε3/ε3) 0.08 (0.01 - 0.59) 0.08 (0.01 - 0.61) 

    At least one allele (2/ε3, ε3/ε3, ε3/ε4) 0.08 (0.01 - 0.61) 0.08 (0.01- 0.62) 

   

  ε2 allele status   

    None (ε3/ε3, ε3/ε4, ε4/ε4) 1.0 (ref.) 1.0 (ref.) 

    At least one allele (ε2/ε2, ε2/ε3, ε2/ε4) 1.73 (0.97 - 3.09) 1.66 (0.91 - 3.00) 

   

  ε4 allele status   

    None (ε2/ε2, ε2/ε3, ε3/ε3) 1.0 (ref.) 1.0 (ref) 

    At least one allele (ε2/ε4, ε3/ε4, ε4/ε4) 1.17 (0.77 - 1.79) 1.14 (0.74 - 1.78)  

   

CYP2E1 rs2864987   

  Genotype   

    TT 1.0 (ref.) 1.0 (ref.) 

    TC 0.84 (0.59 - 1.20) 0.77 (0.53 - 1.11) 

    CC 0.84 (0.45 - 1.58) 0.79 (0.41 - 1.51) 

    At least one C allele (TC, CC) 0.84 (0.60 - 1.18) 0.77 (0.54 - 1.10) 

OR, odds ratio; 95% CI, 95% confidence interval 

Five controls were missing drinking status data. 

*Adjusted for age, sex, region, smoking status, drinking status and pesticide exposure. 



Kiyohara et al. -32- 

 

Table 4. Interaction between alcohol consumption and CYP2E1 rs2864987 genotypes   

 

Genotype  

 

Drinking status* 

Number of  

cases/controls** 

OR (95% CI) 

Crude P-value Adjusted† P-value 

TC + CC Short-term 103/139 1.0   1.0  

TT Short-term 100/116 1.04 (0.53 - 2.06) 0.904 1.25 (0.85 -1.82) 0.256 

TC + CC Long-term 17/22 1.16 (0.80 - 1.68) 0.422 1.36 (0.64 - 2.88) 0.421 

TT Long-term 18/14 1.74 (0.82 - 3.65) 0.146 2.24 (1.01 - 4.95) 0.046 

Multiplicative interaction measure 1.43 (0.52 - 3.94) 0.488 1.32 (0.47 - 3.74) 0.600 

Additive interaction measure     

    Relative excess due to interaction 0.51 (-0.96 - 1.99) 0.498 0.63 (-1.31 - 2.57) 0.524 

    Attributable proportion due to interaction 0.29 (-0.38 - 0.95) 0.393 0.27 (-0.41 - 0.95) 0.436 

    Synergy index 2.79 (0.09 - 84.2) 0.557 1.90 (0.26 - 13.8) 0.526 

OR, odds ratio; 95% CI, 95% confidence interval 

* Long-term, continuing drinking for ≥50 years; short-term, continuing drinking for <50 years 

** Five controls were missing drinking status data. 

†Adjusted for age sex, region, smoking status and pesticide exposure. 


