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Abstract 

The paper is about a statistical analysis aiming at quantitative characterization in the 

frequency domain the strength of partial causality of one series effecting on another in the 

presence of a third series. The paper provides an estimation procedure of the proposed 

partial measures based on a direct factorization method of spectral densities and also 

proposes a Monte Carlo Wald tests for allied causal measures. 
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1 Introduction 

The paper presents a numerically feasible method of constructing partial causal measures 

between a pair of time series in the presence of a third series, providing an estimation and 

testing procedure of such measures, which quantitatively characterize the causal aspects 

in the presence of a third series. The presented estimation method is relied on the direct 

factorization of the spectral density matrix developed by Hosoya and Takimoto (2010) . 
Also the paper proposes Monte Carlo Wald tests for the purposes of testing the strength 
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and direction of the partial causality and allied statistical inference. 

Detecting such properties between a pair of time series as causal directions and the 

extent of their effects and also testing non-existence of feedback relation between them 

constitute major focal points in multivariate time-series analysis since Granger (1963, 69) 

introduced the celebrated definition of causality in view of prediction improvement. The 

Granger non-causality test in the time-domain is originally introduced for stationary pro­

cesses, but the recent literature is rich in respect to the extension to non-stationary vector 

autoregressive system; see, for example, by Sims, Stock and Watson (1990), Mosconi and 

Giannini (1992), Liitkepohl and Reimers (1992), Toda and Phillips (1993) Yamamoto and 

Kurozumi (2006). 

As regards causal analysis in the frequency domain there are studies by Gel'fand and 

Yaglom (1959), Granger (1969) and Geweke (1982, 1984). Also Hosoya (1991) proposed 

a system of causal measures which are decomposable in the frequency domain, improving 

on the Gel'fand-Yaglom and the Geweke measures, whereas Granger and Lin (1995) ex­

tended the one-way effect measure to bivariate cointegrated processes. Hosoya's one-way 

effect measure from a series {y(t)} to another {x(t)} is basically defined in terms of pre­

diction improvement of {x(t)} due to the addition of the past values of the one-way effect 

component of {y(t)}, in contrast to Geweke's feedback measure which is defined in terms 

of the improvement due to addition of the past values of {y(t)} as a whole. Hosoya's 

decomposition has the merit that the equivalence relationship is established between the 

overall causal measure of {y(t)} to {x(t)} and the integral of its associating frequency­

wise causal measure, whereas Geweke obtained only the inequality relation between them 

and, for the equality to hold, certain additional conditions are required. 

The frequency-domain approach seems more informative than time-domain counter­

parts, since it enables us not only to conduct significance testing of the Granger non­

causality, but also to measure frequency-wise as well as overall causal strength and to 

construct a variety of confidence intervals of those measures; see Hosoya (1997a), Yao and 

Hosoya (2000) and Hosoya, Yao and Takimoto (2005) for large-sample Wald tests of those 

measures and the allied confidence set construction. A related approach is provided by 

Breitung and Candelon (2006) who propose an F-test to test the frequency-wise Granger 

non-causality for the bivariate VAR model, in which the null hypothesis is shown repre­

sentable as a set of linear hypotheses on the autoregressive parameters; see also Gronwald 
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(2009) for a related analysis. 

Canonical factorization of spectral density matrix constitutes a crucial step in the 

construction of predictors and the evaluation of the prediction errors, which have a variety 

of applications in time series analysis and control. Consequently, it also constitutes an 

essential step in constructing causal measures, since the Granger concept is framed on the 

basis of the prediction error evaluation. Rational spectrum estimation based on a set of 

finite observations has a wide application in time-series analysis and it is often conducted 

based on a time-domain representation of the data generating process; see for typical 

examples Hannan-Rissanen (1982) and Hannan-Kavalieris (1984). The ARMA models 

fitting in the time domain automatically estimates the transfer function (and desirably a 

canonical response function) of the data generating process. In case the spectral density 

to be used does not correspond to the direct observation process but to a derived one, 

however, a certain factorization algorithm for rational spectra is required. In particular, 

the construction of measures introduced by Hosoya (1991, 97a) requires factorization of 

spectrum which is not necessarily obtained directly from the observation process. Another 

use of canonical factorization algorithm is the modification of MA coefficients with the MA 

spectrum kept invariant so that the resulting MA representation is canonical. This paper 

derives the partial causal measures by means of the second method of two methods to 

evaluate the frequency-wise measure of one-way effect suggested by Hosoya (1991, p.434). 

This approach is motivated by Breitung and Candelon (2006)'s paper. 

Section 2.1 of the paper describes how third-series effect elimination is carried out 

and introduces such partial causality concepts as partial one-way effect measures and 

reciprocal measures. Although those causal measures are primarily defined for vector 

second-order stationary processes, they are extensible to non-stationary cointegrated pro­

cesses with the aid of the reproducibility assumption as shown in Hosoya (1997a, 2001). 

Furthermore, Section 2.2 discusses in detail the partial spectral density construction and 

estimation of the partial one-way effect measure for the vector ARMA processes. Also the 

subsection shows that the canonical factorization of the general ARMA model for con­

struction of the partial measures is reducible to that of a vector finite-order MA spectrum. 

Section 3 provides inferential procedure for several types of the partial causal measures 

for stationary ARMA processes and allied confidence set construction. In particular, the 

section proposes Monte Carlo Wald tests to detect the causal strength and direction. 
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Appendix A.l is for proofs of the theorems, Appendix A.2 provides an explicit rep­

resentation of the spectral density of the reciprocal components of a pair of series in 

interest. 

The paper uses the following notations and terminology: The sets of all integers and 

nonnegative integers are denoted respectively by Z, ZO+. For {Zi' i E A} a set of real­

valued random variables possessing finite second-order moment, H {Zi' i E A} indicates 

the closure in mean-square of the linear hull of {Zi' i E A} in the Hilbert space, defined 

over the real-number field, of random variables of finite second-order moment. Suppose 

that a p-vector stochastic process x(t) has finite covariance matrix and that § denotes a 

set of certain integers, then H{x(t), t E §} implies in the sequel the subspace H{Xi(t), t E 
§,i = 1, ··· ,p}. For brevity, H{x(tl - j),y(t2 - j),z(t3 - j); j E Zo+} is written as 

H{x(tl),y(t2),Z(t3)} and H{x(j);j E Z} is written as H{x(oo)}. For a random vector 

x(t) indexed by t, {x(t)} denotes the process {x(t);t E Z} unless otherwise specified. The 

identity matrix of order p is written as Ip. Given a matrix A, A* denote the transpose if 

A is a real matrix and conjugate transpose if A is a complex matrix. For a random-vector 

x or a pair of random vectors x and y, Cov(x) and Cov(x, y) denote respectively the 

covariance matrices of x and vee(x, y).The determinant of a square matrix C is written 

as det C. Definition is indicated by _. Suppose that a real sequence e[j], j = -a, ... ,a 

satisfies the condition e[j] = e[ -j], e[O] > 0 and e( z) = 2:;=-a e[j] zj is nonnegative 

for Z = e-iA ( -7[" � A < 7[") . Then there exists a real sequence b[j] (j = 0, ··· ,a) 
such that b(z) = 2:;=0 b[j]zj does not have zeros inside the unit circle and the relation 

e(z) = 2�b(z)b(z-l) holds. Such a factorization is said to be canonical and b(z) is said to 

be a canonical factor of e( z). If bo > 0 , the factorization is unique. 

2 Partial causality 

2.1 Elimination of a third-series effect 

This section describes elimination of a third series effect and the construction of the 

overall as well as frequency-wise partial causal measures in a general set-up. Suppose that 

{x(t), y(t), z(t); t E Z} is a real vector-valued second-order stationary process. Denote by 

H the Hilbert space defined over the real-number field which is the closure of the linear 

hull of the union {Xj(t); t E Z, j = 1, ··· ,PI} U {Yk(t); t E Z, k = 1, ··· ,P2} U 
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{Zl(t); t E Z, I = 1,··· ,P3}, where Xj(t) denotes the j-th element of the vector x (t) . 
The projection of a random vector W = {Wj; j = 1,··· ,s} to a closed subspace H(.) 
of H implies the element-wise orthogonal projection. Namely, if Wj is the orthogonal 

projection of Wj onto H(·), the projection implies W whose j-th element is Wj. In the 

three series system {x (t), y (t), z (t)}, the one-way effect component of z (t) implies the 

projection residual (the perpendicular) of z (t) when it is projected onto the closed linear 

subspace H { x (t), y (t), z (t - I)} which is spanned by the set of the vector components 

{x(s),y(s),z(s - 1), - 00 < s :::; t} and the residual (the perpendicular) is denoted by 

ZO,O,-l(t). 

Although interpretation of the Granger causality concept does not accompany diffi­

culty as long as it is focused on a pair of series, it incurs certain difficulty in the presence of 

a third confounding series, since the third series may produce such anomalous phenomena 

as spurious or indirect causality; see Granger ( 1980) and Hsiao ( 198 2). 
It is a standard method in time-series analysis to characterize the dependency be­

tween a pair {x (t), y(t)} of series in the presence of a third series {z(t)} by means of 

the partial serial correlation coefficient and the partial cospectrum. They are the kind of 

dependencies defined between {x.,. ,00 ( t)} and {y.,. ,00 ( t)} , where x.,. ,00 (t) is the projection 

of x (t) onto H{z(oo)}, the closed linear space generated by {z (t), t E Z}, and Y.,.,oo (t) is 

defined similarly. Such total-effect elimination of a third variable is essentially the direct 

extension of the partial concepts in multivariate statistical analysis where temporal order 

of observations is not taken into account, but it may possibly distort the temporal depen­

dence relation between {x(t)} and {y(t)} due to their feedback relation with {z (t)}. To 

deal with the difficulty, Hosoya ( 200 1) proposed to define the partial relations between 

{x(t)} and {y(t)} in the presence of a third series by the corresponding simple relations 

between {u(t)} and {v(t)} which are respectively defined as the projection residuals of 

x (t) and y (t) onto H {ZO,O,-l (X))} which is equivalent to the projection residuals onto 

H{ZO,O,-l(t - I)}. For example, the partial measure of one-way effect of {x(t)} to {y(t)} 

is defined to be the simple one-way effect of {u(t)} to {v(t)}. To distinguish the ordinary 

Granger causality which focuses on a pair of processes alone from the partial version which 

takes account of a third series, the former causality is said simple in the paper. 

Suppose that x (t), y (t), z (t) are respectively Pl,P2,P3-vectors and let f(>..) be the joint 

spectral density of the second-order process w (t) = (x(t)*, y(t)*, z(t)*)*, t E Z. Suppose 

5 



that f (A) satisfies the Szego condition 

I: log det f(A)dA > - 00 , (2.1) 

then the density has the factorization 

(2. 2) 

by means of a (PI + P2 + P3) X (PI + P2 + P3) matrix A(z) which is analytic and of full 

rank inside the unit disc. Namely, in (2. 2) A(e-iA) is the boundary value of the analytic 

function 

00 

A(z) = L A[j]zj 
j=O 

with the real matrix coefficients A[j]. Such a factorization is said to be canonical in 

the sequel; see Rozanov (1967, pp.71-77) and Hannan (1970, pp.157-163). Let c(t) -
(CI(t)*, C2(t)*, C3(t)*)* W-I(t) (X-I,-l,-l (t)*, Y-I,-l,-l (t)*, Z-l,-l,-l(t)*)* be the one­

step ahead prediction-error of the process w(t). Denote the covariance matrix of c(t) by 

�t and denote the partition matrix as 

Then the residual of the projection of C3(t) on the linear space spanned by c.(t) 
(CI(t)*,C2(t)*)* is given by c1(t) = C3(t) - �1.�!.-lc.(t) and it constitutes the one-way 

effect component of z(t). Define 

and define II a (PI + P2 + P3) X (PI + P2 + P3) matrix by 

where �L:. �L - �1.�!.-1��3' so that II is a lower triangular block matrix 

II = [ II.. 0 ] 
II3. II33 . 
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Set A.(L) = A(L)A(0)-lrr-1 and set its partition as 

A.(Z) = [ � .. (z) �'3(Z) ] 

A3'(Z) A33(Z) . 

Then it follows from the relationships 

that 

[ x(t) ] - t - t y(t) = A .. (L)c. (t) + A.3(L)C3(t). ( 2.5) 

Since then {d ( t )} subordinates to the one-way effect process from {z ( t)} to {x ( t) , y (t)}, 
the spectral density of {x(t),y(t)} is given in view of (2.5) by 

Denote by {u(t), v(t)} the residuals of the projection of x(t) and y(t) onto H {ZO,O,-l (oo)} = 
H{c�(oo)}; then it is given in view of (2.5) by 

[ u(t) ] _ - t v(t) - A .. c. (t), 

whence the spectral density of {u(t), v(t)} is represented by 

(2.6) 

( 2.7) 

Note that although A.(z) is a canonical factor if A(z) is canonical, its square diagonal 

block A. .. (z) in (2.7) is not warranted to be so. When the factorization given in (2.7) is 

not canonical, a certain factorization procedure must be implemented to construct partial 

causal measures between {x(t)} and {y(t)}, since all the partial casusal measures are 

based on the knowledge of a canonical factor of h(>') . 
Breitung and Candelon (2006) proposes, for the simple non-causality test of {z(t)} 

not causing {x(t), y(t)}, for instance, testing the null hypothesis which is given in terms 

of (2.5) by 

-
-i>.. A.3(e ) = o. 

7 

(2.8) 



Although an F-test might be applied at least to the case Breitung and Candelon deal with, 

the hypothesis (2.8) generally imposes non-linear restrictions on the model parameters so 

that a kind of either the likelihood ratio test or the Wald test rather than the F-test would 

be pertinent. 

Remark 2.1. Suppose that a matrix 1\(z) = {1\ij(Z), i, j = 1, 2, 3} is given by 

1\(z) = [� � � 1 [�� 
0 0 1 0 3  � 1 z; 

1/2 

then all the zeros of 11\(z)1 are either on or outside of the unit circle. On the other hand, 

11\ .. (z)1 = 1( 1 - z)( l - 2z)1 has one zero inside the unit circle, where 1\ .. (z) denotes the 

upper 2 x 2 diagonal block of 1\(z). Consequently, when a partial spectral density is 

derived as in (2.7), the factor 1\ .. (e-iA) on the right-hand side is not guaranteed to be 

canonical. D 

Remark 2.2. To deal with the third-series presence problem, Breitung and Candelon 

(2006, p.369) propose a way to eliminate a third series effect by a time-domain regression 

which is to use the estimated relation between a pair of series in interest to construct the 

partial causal measures. Specifically in the case of a three-variate AR model, they fit 
p p p 

Xt = L CXjXt-j + L {3jYt-j + L /jVt-j + Ct 
j=1 j=1 j=1 

and test the null hypothesis {31 = . . .  = {3p = 0 by F -statistic, where Vt is the residual 

obtained by regressing Zt on Xt, Yt and Wt-l,'" , Wt-p where w = (x, y, z)*. While the 

method suggests a way to avoid the spectral canonical factorization problem, it may not 

produce the exactly same partial measures this paper proposes. By contrast, the approach 

we propose have the following merits: 

• The MA part can be included in the basic model so that the partial causal analysis 

can be extended to the ARMA model as shown in this paper. 

• The dimensions Pl, P2, P3 can be more than 1. 

• Without assuming such a specific parametric model as the ARMA model, causal 

measures are able to be constructed as long as a canonical factorization of partial 

spectral density is available. 

• Partial measures of reciprocity and association can be dealt with. D 
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2.2 Defining the partial measures 

The partial causal measures between {x(t)} and {y(t)} in the presence of {z(t)} is defined 

in terms of {u(t)} and {v(t)} as given in (2.6). 

Dl. The partial OMO (overall measure of one-way effect) from {y(t)} to {x(t)} is 

defined by 

_ det Cov{ U_l,.(t)} PMy---+x:z = Mv---+u = log detCov{u�l,_l(t)}' 

where U-l,. (t) and U�l,-l (t) are the projection residuals of u(t) onto H {u(t - 1)} and onto 

H {u(t - 1), VO,l(t - 1)} respectively. 

Suppose that the spectral density h(A) satisfies the Szeg6 condition (2.1) so that h(A) 
has a canonical factorization 

(2.9) 

The equality implies the following MA representation of the series {u(t), v(t)} in terms of 

the one-step ahead prediction error E(t) - (El(t)*,E2(t)*)* - (U-l,-l(t)*,V-l,-l(t)*)* holds 

in the time domain: 

[ u(t) ] = r(L)r(O)-l [ El(t) ] 
v(t) E2(t) , 

where E{ E(t)} = 0 and E{ E(t)E(t)*} = r(O)r(O)* = �. Set, as in (2.3), 

[ Et (t) ] 
4(t) 

[ �-1/2 
11 
o 

3E(t), 

[ u(t) ] 
v(t) r(L )r(0)-13-

1
3E(t) 

rt(L)Et(t) 
[ rL(L) rt2(L) ] [ Et(t) ] 

r�l(L) r�2(L) 4(t) ' 

where {4(t)} is the normalized one-way effect component of v(t) to u(t). 

(2.10) 

(2.11) 

(2.12) 

D2. The partial FMO (frequency-wise measure of one-way effect) in terms of the fre-
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quency response function rt (e-iA) is defined by 

P My--+x:z (A) 

whereas P Mx--+y:z(A) is given in a similar way; see for another representation Hosoya 

(2001). Theorem 2.1 below asserts that the partial overall measure is equal to the inte­

gration of the partial FMO over the whole frequency domain. Since the proof proceeds 

in a manner paralleling to Hosoya (1991, p.433), it is omitted. 

Theorem 2.1. The following equality holds between the partial OMO and FMO: 

1 j7r 
P My--+x:z = 

27r 
-7r P My--+x:z(A)dA. 

To define the partial measures of association and reciprocity, denote by u.,oo(t) and 

voo,. (t) the projection residuals of u(t) onto H{VO,-l(OO)} and v(t) onto H{UO,-l(OO)} 

respectively, and set their joint spectral density matrix as 

Appendix A.2 exhibits a representation of h(A). 

D3. The partial measure of reciprocity at frequency A and the corresponding overall 

measure between x (t) and y (t) are defined by: 

and 

PM . (A) = M (A) = 10 [det hl1(A)
.
�et h22(A)] 

x.y.z U.v g 
det h(A) 

, 

1 j7r 
PMx.y:z = -

2 
PMx.y:x(A)dA. 

7r -7r 

Theorem 2.2. The partial frequency-wise measure of reciprocity (FMR) is a constant 

over the whole frequency domain. Namely, set 0-2 
= det �11 det �22/ det�; then we have 

(2.14) 
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Evidently 0-2 is a constant not less than 1 which Geweke (1982) calls the measure of 

instantaneous feedback. 

The partial measure of association at frequency >.. and the corresponding overall mea­

sure between x(t) and y(t) are defined respectively by: 

PM . (>..) _ M (>..) = 10 [det hl1 (>..)
.
�et h22 (>") ] x,y.z u,v g 

det h(>") 
, 

1 j
7r 

P Mx,y:z = 
27r 

-7r 
P Mx,y:z(>")d>" .  

The following relationships are straightforward consequences of the definitions of the 

respective terms; see Hosoya (1991). 

Theorem 2.3. 

PMx,y:z PMx-+y:z + PMx.y:z + PMy-+x:z . 

There is an important case for application in which the spectral density matrix k(>") 
of the process {u ( t), v ( t)} is expressed as 

(2.15) 

Suppose that h(>") = r(e-iA)r(e-iA)* for a canonical factor r(z), so that 

(2.16) 

Moreover suppose that ,(z) is a scalar-valued function defined on the complex plane such 

that c(O) = 1 and that it is a analytic function with real coefficients and has no zeros 

inside the unit circle. In this specific circumstance, we have the following theorem: 

Theorem 2.4. Suppose {u(t), v(t)} has the spectral density k(>") given in (2.15) , for 

which the canonical factorization (2.16) holds. Then the Mv-+u(>"), Mu-+v(>") and Mu.v(>") 
are the same as the corresponding measures which are given if the spectral density is 

h (>"). 

Remark 2.3. Breitung and Candelon (2006, p.364) directly derive Et(t) in (2.11) by 

multiplying the Cholesky factor matrix of the inverse of the covariance matrix of c(t). 
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Although the procedure makes c1(t) and E�(t) orthogonal, it does not necessarily produce 

the one-way effect component of v(t), namely, E�(t). In the case of their bivariate model 

where u(t) and v(t) are scalar-valued and the orthogonalization is done by the lower 

triangle Cholesky matrix, the one-way effect component is automatically derived, since 

then orthogonalization is conducted by eliminating the effect of cl(t) from c2(t) via the 

projection. In general, however, when u(t) and v(t) are vector-valued, arbitrary orthog­

onalization of cl(t) and c2(t) does not necessarily produce the one-way effect measure. 

D 

Remark 2.4. The Sims' version of non-causality in the presence of a third series {z(t)} 
is described as this: A necessary and sufficient condition for {y(t)} not to cause partially 

{x(t)} is that y(t) is expressed as 

where y(1)(t) is the projection of y(t) onto H{x(t),ZO,O,-l(t)} and y(2)(t) is orthogonal to 

H {x( 00 ) , ZO,O,-l (oo)}. Moreover, a necessary and sufficient condition for {y(t)} not to 

cause partially {x(t)} is P My-tx:z = 0; see for allied studies Sims (1972), Hosoya (1977) 

and Hosoya (2001). D 

3 Inference based on the ARMA model 

Focused specifically on the stationary vector ARMA process, Section 3.1 shows how the 

partial causal measures defined in Section 2 are evaluated. Section 3.2 discusses statistical 

inference on those measures. 

3.1 The stationary ARMA model 

Suppose that the process {x(t), y(t), z(t)} is a stationary multivariate ARMA process 

which is generated by 

A(L) [ ��:� ] = B(L)c(t), 
z(t) 

t E Z, (3.1) 

where x(t), y(t), z(t) are respectively Pl,P2,P3-vectors, A(L) and B(L) are a-th and b-th 

order polynomials of the lag operator Land A[O] = B[O] = Ipl+P2+P3; namely, we have 

A(L) = 2:;=oA[j]£l and B (L) = 2:�=oB[j]£l. 
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Moreover suppose that the zeros of det A(z) are all outside of the unit circle, det B(z) 
has the zeros either on or outside of the unit circle and does not share any common zeros. 

We assume that the innovation {E(t)} is a white noise process with mean 0 and covariance 

matrix �t. Because of the zero conditions of A(z) and B(z), the joint spectral density 

j (A) of the process satisfies the Szego condition 

I: log det j(A)dA > -00 , 

whence it has a canonical factorization 

(3.2) 

In view of the zero conditions of A(z) and B(z), a version of the canonical factor A(z) is 

given by 

where �t� is the Cholesky factor of �t satisfying �t = �t� (�t�)*; A�(z) denotes the trans­

posed cofactor matrix of A(z) and C(z)( A�(z)B(z)�t�) is a finite-order real matrix­

coefficient polynomial such that 

a 

C(z) = L C[jjzj, 0::; a ::; (PI + P2 + P3 - 1)a + b. 
j=O 

As in the previous section, denote the projection residuals of x(t) and y(t) onto H {ZO,O,-I (oo)} 
respectively by u(t) and v(t), and denote the joint spectral density matrix of {u(t), v(t)} 
by h(A) . Now set 

(3.3) 

and let A..(z) be the (PI + P2) X (PI + P2) upper diagonal block of A(z). It follows from 

(2.7) that the spectral density h(A) of {u(t), v(t)} is given by 

h(A) = �I detA(e-iA)I-2A..(e-iA)A..(e-iA)*. 
27r 

In view of Theorem 2.4 the causal measures between {u(t)} and {v(t)} are derived as­

suming that the joint spectral density is given as k(A) = 2�A..(e-iA)A..(e-iA)*. Although 

13 



A..(e-iA) is not necessarily canonical, since k(A) is a MA spectrum, Hosoya and Takimoto 

(201O)'s algorithm is exploited to derive a canonical factor f(e-iA) such that 

(3.4) 

Consequently, the causal measures introduced in Section 2 are able to be computed ac­

cording to the definitions D.2 through D.4 using the factor f(z) given in (3.4). 

3.2 Inferential procedures 

Based on a finite set of observations {x(t), y(t), z(t); t = 1, ··· ,T} and the VARMA 

modeling (3.1) of the data generating process, we are able to conduct statistical inference 

on the partial causal measures introduced in Section 2. Denote the whole model parameter 

by 0 ; namely, set 

o _ vec{A[ l], ... ,A[a], B[ l]' ... ,B[b], v(�t)} 

where v(�t) denotes the (PI + P2) X (PI + P2 + 1)/2 vector obtained from vec(�t) by 

eliminating all the supradiagonal elements of the (PI + P2) X (PI + P2) matrix �t. Let 

G(O) be an m-vector whose components are respectively certain quantities allied to the 

partial causal measures. Then the estimator G(fJ) enable not only testing the Granger 

non-causality but also making confidence statements on G (0). 
Takimoto and Hosoya (2004, 2006) provide a relevant parameter estimation procedure, 

in contrast to conventional nonrestrictive estimation procedures for the VARMA model 

parameter which do not necessarily produce estimates satisfying the zero conditions of 

det A(z) and det B(z). Modifying the maximum Whittle likelihood estimation, Takimoto 

and Hosoya's forgoing papers provide a three-step root-modification procedure which 

produces coefficient estimates warranting the stationarity and invertibility conditions. 

The procedure is essentially carried out as follows: 

Step 1. By fitting a sufficiently higher order VAR process and applying the ordinary 

least-square method, obtain an estimate of the unobservable disturbance terms as the 

regression residual series. In the case the DGP is VAR process, this step is skipped. 

Step 2. Substituting the disturbances in the MA part by the corresponding residuals 

obtained in Step 1, estimate VARMA model by the least square method, selecting the 

lag-orders of the model by means of an information criterion. 
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Step 3. Determine the estimate () of the model parameter by maximizing the Whittle 

likelihood endowed with a penalty function of zero conditions by means of a quasi-Newton 

iteration method, using the parameter values obtained in Step 2 as the initial value of the 

iteration. 

To deal with inferential issues, consider first the case in which the null hypothesis 

does not involve the Granger non-causality hypothesis. Since the partial measures Mv---+u 
and Mv---+u(>") are non negative, testing them being equal to zero constitutes a boundary 

value test. For such tests, the direct use of the stochastic expansion of the estimates 

is not pertinent since the Jacobian matrix is not of full rank. Suppose specifically that 

Gi(()), i = 1, · .. ,m, are different kinds of scalar-valued measures and let G(()) be a m­

vector such that G(()) = (G1(()), . . .  , Gm(()))*. By the stochastic expansion, we have 

JT{ G(O) - G(())} = (DoG)JT(O - ()) + op( l), 

where DoG is the m x no Jacobian matrix of G(()) where no denotes the size of the vector 

(). Suppose that v!f'(O - ()) is asymptotically normally distributed with mean 0 and 

covariance matrix W (()) . Then v!f' {G (0 - G (())} is asymptotically normally distributed 

with mean 0 and the m x m asymptotic covariance matrix 

H(()) = DoG(())W(())DoG(())*. (3.5) 

Assume that the vector G of causal measures is chosen so that rank H (()) = m III a 

neighborhood of the true (); then the Wald statistic 

(3.6) 

is asymptotically X2-distributed with m degrees of freedom if () is the true value. Let Go 
be a given m vector, then the null hypothesis G(()) = Go is tested by the test statistic 

Also a confidence set for G(()) is able to constructed by means of the statistic w(m). 
There are several alternative procedures available to estimate the asymptotic covari­

ance matrix H (()). For example, we might use the asymptotic covariance matrix formula 

given by Yao and Hosoya (2000) which is based on the numerical differentiation for DoG 
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and evaluation of 'lJ(O) in the case of the cointegrated VAR model, but the formula be­

comes much more complex computationally in the ARMA model set-up. An alternative 

simpler approach is to use the Monte Carlo Wald test procedure which is conducted as 

follows: 

Step 1. Estimate e, all the parameter involved in the model (3.1) , and evaluate the 

vector G ( 0) . 
Step 2. Generate the data series {x(t)t,y(t)t,z(t)t;t = 1"" ,T} by the model (3.1) 
using the parameter estimate 0 obtained in Step 1 and simulated independently normally 

distributed random vectors {c(t)} with mean 0 and the estimated variance-covariance 

matrix f;t in Step 1. 

Step 3. Estimate G(e) from the simulated series {x(t)t, y(t)t, z(t)t; t = 1, ... ,T}, where 

the estimate is denoted by G(et). 
Step 4. Iterate Steps 2 and 3 N times, and produce G(e�); n = 1, ... ,N, and estimate 

the covariance matrix H(e), denoted as iI(O), as the Monte Carlo sample covariance 

matrix of G (e�); namely, 
N 

iI(O) = � L (G(e�) - G(et)) (G(e�) - G(et))* , (3.7) 
n=l 

where 
N 

G(et) = �L G(e�). 
n=l 

As we have alluded above, the foregoing approach is not used for testing the frequency­

wise non-causality, and so we must look for other statistics. For that purpose, Bre­

itung and Candelon (2006), based on the stationary bivariate VAR model, propose an 

F-test for a set of linear hypotheses on the autoregressive parameters. To deal with a 

wider class of stationary models, however, we need a somewhat more general approach. 

Since the measure PMy--+x:AA) is not determined by rt2(e-iA) alone, but by the ratio 

rL(e-iA)-lrt2(e-iA) in view of the formula (2.13), we may appropriately conduct the test 

of the null hypothesis of v not causing u by testing 

rather than testing the hypothesis rt2(e-iA) = 0, where r!j(e-iA) - 2:�=o rL[j]e-ijA 
and rL[j] is the j-th coefficient matrix of the polynomial r!j(z), where i, j = 1, 2 and 
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a a (pl + P2 + P3 - 1) + b. Define 

and let the stochastic expansion of 'ljJ(iJ, >.) be 

Vr('ljJ(iJ, >.) - 'ljJ((), >.)) = (De'ljJ((), >'))Vr(iJ - ()) + op( l), 

where De'ljJ((), >.) is the Jacobian matrix of 'ljJ((), >.); then we have asymptotically 

Vr('ljJ(iJ, >.) - 'ljJ((), >.)) � N(O, H((), >')), 

where H((), >.) = De'ljJ((), >')*W(())De'ljJ((), >.). The Wald statistic for the null hypothesis 

that y(t) does not cause x(t) in the presence of z(t) is given by 

where w(n) is, under the null hypothesis, asymptotically distribution as X2 distribution 

with degrees of freedom which is equal to the dimension of the vector 'ljJ. Another approach 

of evaluating the Wald statistics is to estimate the covariance matrix H(iJ, >.) by applying 

the four-step Monte Carlo procedure presented above, in particular the formula (3.7). 

Lastly consider the test of the overall OMO Mv--+u = O . The component rt2(Z) in (2.12) 

has a finite-order MA expression such that rL(z) = ���o rt2[j]zj where the coefficients 

rt2[j] are in general nonlinear functions of (); namely, ri2[j] = ri2[j, ()J, j = 0"" ,h. 

One way of testing the hypothesis Mv--+u = 0, namely {v(t)} not causing {u(t)}, is to test 

vec(ri2[j, ()J,j = 0"" , ll) = 0, which does not constitute a boundary-value test. Another 

method to test the null overall OMO is to test rL (Z)�ri2(Z) - ��2=O �[j]zj = 0, where 

rL (z)� denotes the transposed cofactor matrix of rL (z). The test is reduced to the test 

of vec(�[j, ()J, j = 0, ... ,l2) = O . For those tests, we can apply the Wald test approach, 

using the Whittle estimator () and its pertinent covariance matrix estimate. 

4 Concluding remarks 

By means of the cointegrated VAR model fitted to Japanese macroeconomic data, Hosoya 

(1997), Yao and Hosoya (2000) and Hosoya, Yao and Takimoto (2005) investigated the 

empirical one-way effect structure for a variety of pairs of variables. But the studies were 
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limited to the simple one-way effects, whereas this paper presented a numerically practi­

cable method which enables estimating and testing the partial causal measures introduced 

in Hosoya (2001) which explicitly takes confounding third series into account. In contrast 

to the simple causal measures, the numerical construction of the partial causal measures 

needs an explicit knowledge of canonical factor of a spectral density matrix involved. 

By implementing the numerical factorization procedure of Hosoya and Takimoto (2010), 

which is an improved version of the Rozanov (1967) 's factorization method, this paper 

provided a numerical procedure to evaluate the partial causal measures for stationary 

VARMA model. The paper shows that the evaluation of the measures is reducible to the 

one for a finite-order MA spectral density matrix. The paper presented a parametric sta­

tistical inference approach which consists of estimation based on the Whittle likelihood 

asymptotic theory, and testing and confidence-set construction relied on the standard 

limiting theory of the Wald statistics. 

There remain some open problems. First of all, the paper has left it untouched to 

scrutinize numerically the performance of the proposed theory; the authors' research is in 

progress on these issues. To improve the performance of the Wald test in small-sample 

circumstances and the feasibility in application, employment of a certain time-series boot­

strap method for probability evaluation and/or introduction of nonlinear transformation 

as proposed by Hosoya and Terasaka (2009) might be useful. Although Section 3 deals 

only with the stationary ARMA process mainly for the sake of expositional simplicity, 

extension to a wider class of processes is necessary for applications to empirical economic 

analyses. By utilizing the asymptotic covariance-matrix formula provided by Hosoya 

(1997), our statistical inference procedure can be extended to more general time-series 

models in which the disturbance series is possibly non-Gaussian. Hosoya, Yao and Taki­

moto (2005) took trend-breaks explicitly into account for testing the simple one-way effect 

measures in a cointegrated VAR set-up. The extension of the partial causal measures in 

that direction as well as the extension to nonlinear processes might be also important. 

But the most important open issue above all would be to develop a testing theory of the 

Granger causality which is more conformable to out-sample prediction, and thus to find 

a way to identify predictors endowed with substantial out-sample prediction ability; see 

Granger (1999) who emphasized the importance of this kind of research. 

An enormous amount of empirical economic studies has dealt with predictive ability 
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of the term structure and other asset-price characteristics for the future growth rate of 

economic activities and inflation rates. Stock and Watson (2003) and Wheelock and 

Wohar (2009) respectively give wide-ranging reviews of the literature; see also Hamilton 

and Kim (2002) and Assenmacher-Wesche, Gerlach and Sekine (2008) for example. A 

common understanding seems to be that the prediction ability of the term structure has 

fallen since the middle of 1980's in the U.S. economy and also that the predictive content 

of the original as well as the Freedman version of the Phillips curve is rather meager; see 

Staiger, Stock and Watson (1997) for the latter aspect. 

Stock and Watson (2003) assert that in- sample tests of significance for Granger causal­

ity are, in general, poor guides for identification of potent predictors, providing little as­

surance that the identified predictive relations are stable. Although focusing not on the 

causality issue itself but on predictability, Wheelock and Wohar (2009) also note consid­

erable variation of prediction ability of the term spread across countries and over time as 

far as prediction of a variety of economic-activity changes is concerned. 

To be specific, Stock and Watson (2003) argue the problem of prediction ability, relying 

mainly on the single equation autoregressive-distributive lag model of the form 

a b 
Xt = L CtjXt-j + L {3jYt-j + Ct· 

j=l k=l 
(4.1) 

The Granger test result in itself does not bring into question how much the prediction is 

improved by inclusion of the sum L�=l {3jYt-j in case the null hypothesis ({31, ... ,(3b) = 0 

is rejected. The problem is not indigenous to the Granger non-causality test. If a relation 

changes over time, it is natural to expect that in-sample observation is not extrapolated for 

out-sample prediction. Characteristically, while giving negative assessment to the Granger 

causality test in respect of prediction ability, Stock and Watson does not question directly 

the use of the Granger test when the stability of the relation (4.1) extends over a certain 

out-sample range; namely, they do not ask whether the rejection of non-causality indicates 

the usefulness of the corresponding variable over such a time interval of relative stability. 

In case causal relation is stable over time, the relation between statistical and practical 

significance is reduced to the general dictum that a significant test result does not measure 

the practical significance. Even if the estimates of the {3j , s are small in magnitude, they 

can be well significant when the corresponding standard errors are small and the Granger 
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non-causality hypothesis is rejected, but it does not necessarily imply the notable predic­

tion improvement by inclusion of those predictors. In contrast to statistical significance, 

confidence statements seem fit to represent the strength of effects. The one-way effect 

measures proposed in the paper are a way of quantifying prediction improvement and 

the suggested confidence sets would provide information the Granger causality test does 

not cover; see also Yao and Hosoya (2000) who suggested an approach of confidence-set 

construction of the 0 MO. 
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A Appendix 

A.I Proofs of Theorems 

Proof of Theorem 2.2. It follows from the representation (2.12), the reciprocal component 

u.,oo(t) of u(t) is given by 

Similarly, setting 

we have 

[ u(t) ] 
v(t) 

and e(t) = WE(t), 

f(L )r(0)-lW-1WE(t) 

f(L)e(t) 
[ � 11 (L ) � 12 (L) ] [ 6  (t) ] 

f21 (L) f22(L) 6(t) ' 
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In view of the construction, {6 (t)} is the one-way effect componet process of {u(t)} to 

{v(t)}. It follows from the representations ( A. l) and ( A. 2), the reciprocal components of 

u(t) and v(t) are respectively given by 

Consequently, the joint spectral density matrix h(A) of the process {u.,oo(t), voo,(t)} is 

given by 

h(A) = [ �11 �12 ] 
�21 �22 

rt ( -iA)",-1/2", ",-1/2rv ( -iA)* ] 11 e L.J11 L.J12L.J22 22 e 
r 22 ( e -iA ) r 22 ( e -iA ) * 

",-1/2", ",-1/2 ] L.J11 L.J12L.J22 
Ip2 

( A. 3) 

Then it follows from ( A. 3) and the definition of (j2 that 

Proof of Theorem 2.4. Let E!(t) and r!j(L), i,j = 1,2, be defined as in (2. 1 2) based on the 

factorization h(A) = (27f)-lr(e-iA)r(e-iA)*. If the spectral density k(A) has the canonical 

factorization (2. 16), we have the time domain representation, in parallel to (2. 10), 

[ u(t) ] _ 
v(t) -

( A. 4) 

where 
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Hence we have 

det{rtt (e-iA)rtt (e-iA)* + rtt (e-iA)rtt (e-iA)*} 
log 11 11 12 12 

det{rH (e-iA )rH (e-iA)*} 
det{rt (e-iA)rt (e-iA)* + rt (e-iA)rt (e-iA)*} 

log 11 11 12 12 
det{rL (e-iA)rL (e-iA)*} 

(A.5) 

Namely the right-hand side member of (A.5) implies that the FMO base on k()") is the 

same one for the spectral density h()") = 2�r(e-iA)r(e-iA)*. In the same way, for the 

process given by (AA), the joint spectral density matrix k()") of the reciprocal-component 

process {u.,oo(t), voo,.(t)} is equal to 1,(e-iA)12h()") where h()") the density given by (A.3). 

Therefore the frequency-wise measure of reciprocity is given by 

A.2 The joint spectral density of the reciprocal components 

A representation of the joint spectral density of the reciprocal components is given in 

(A.3), whereas this subsection presents another representation and some errata contained 

in Hosoya (1991) are corrected. Suppose that the joint process {u(t), v(t)} introduced in 

Section 2 has the spectral representation with respect to a random spectral measure: 

r(t) = [ u(t) ] = j
1f 

eiAt [ <I>u(d)") ] = j
1f 

eiAt<I> (d)") t E Z - v(t) -1f <I>v(d)") - -1f r . 

Denote by h()") the spectral density matrix of the process {r(t)}. Let hand h be respec­

tively the spectral densities of the reciprocal-component processes {u(t),VO,-l(t)} and 

{ U-1,0 (t), v ( t)} and let the partitions of them be given by 

h()") = ( �11()..) �12()..) ) and h()") = ( �11()..) �12()..) ) . h21()..) h22()..) h21()..) h22()..) 
Also denote the partition of the spectral density matrix h()") of the joint process {u.,oo(t), voo,.(t)} 
by 

h()") = [ �11()..) �12()..) ] . h21()..) h22()..) 
Set A = (-I:21I:il ,IP2); B = (IPll -I:12I:;-l), where 

I: = [ I:11 I:12 ] 
I:21 I:22 
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is the covariance of the one-step ahead prediction error of the process {u (t) , v (t) } . 
Theorem A. The spectral density hP..) is represented as follows: 

(A.6) hU(A) 
h22 (A) 
h12(A) 

h22(A) - 2nhdA)r(e-iA)-hr(O)* B*�li�2Br(O)r(e-iA)-lh.2(A), (A.7) 

h12(A) - 2nht-(A)r( e-iA) -hr(O)* (A *�22\ A + B*�ll2B)r(O)r( e-iA) -1 h.2(A) 
(A.8) 

where �11:2 = �11 - �12�221�21 and �22:1 = �22 - �21�111�12 . 
Proof. Since the proofs of the three components proceed in parallel ways, only the proof 

for (A.8) is given below. It follows from the definition of u.,oo(t) and Voo,.(t) which proceeds 

to D .2 of Section 2 that 

(A.9) 

whereas it follows from the definition of the one-way effect components that 

(A.I0) 

Now in view of (A.9) the submatrix h12(A) is given by 

h12 (A) E{ <I>u (dA) - h12 (A )h221 (A ) <I>vO,_l (dA)}{ <I>� (dA) - <I>�_l,O (dA) hl/ (A )h12 (A)} 
E{ <I>u (dA) <I>� (dA)} - h12 (A) h221 (A )E{ <I>vo -1 (A )<I>� (dA)} 
-E { <I>u (dA )<I>�_1 0 (dA) }hl/ (A )h12 (A) 
+h12(A)h2l(A)E{ <I>vO,_l (A)<I>�_l 0 (dA) }hl/(A)h12(A) 
h12(A) - h12(A)h221 (A)Ar(O)r( e-iA )-1 h.2 (A) 
-ht-(A)r( e-iA)-hr(O)* B* hl/(A)h12(A) 
+h12 (A)h2l (A)Ar(O)r( e-iA )-1 h(A)r( e-iA )-hr(O)* B* hIll (A)h12 (A) 
Cl - C2 - C3 + C 4. (A.11) 
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Since h(A) has the canonical factorization 

the last member C4 on the right hand side of (A.11) is equal to 

On the other hand, since 

A�B* (-�21�ll ,IP2) [��� ���] [ -��i�21 ] 
[0, -�21�ll�12 + �22] [ -��i�21 ] 
�21�ll�12�2l�21 - �21' 

the last member in (A.12) is expressed as 

1- - 1 1 1 v 1 v -hI2(A)h22 (A)( -�21 + �21�11 �12�22 �2dhll (A)hI2(A) 
27r 

= 27rhI2(A)�2l1 (-�21 + �21�111�12�2l�21)�11�2hI2(A) . 

It follows from (A.10) that 

E[<I>u( dA)<I>�o -1 (A)] = h1.r( e-iA )-hf(O)* A*, 
E[ <I>u_1 0 (dA)<I>� (A) 1 = Bf(O )f( e-iA) -1 h.2 (A) . 

(A.12) 

(A.13) 

Also, it follows from (A.13) that the second member C2 on the right-hand side of (A.11) 

is expressed as 

h12 (A)h221 (A)Af(O)f( e-iA )-1 h.2(A) 
= 27rhdA)f( e-iA)-hf(O)* A*�2l1 Af(O)r( e-iA)-1 h.2(A) (A.14) 

whereas the third member C3 is given by 

hI. (A)f( e-iA )-hf(O)* B* hll (A)hI2(A) 
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Therefore the sum of the second and third members C2, C3 is equal to 

(A.15) 

Hence (A.8) follows from (A.14) and (A.15). It provides a representation of the (1, 2)-th 

block of the joint spectral density of {u.,oo(t), Voo,.(t)}. By means of parallel arguments, 

we have (A.6) and (A.7). D 
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