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Abstract 35 

Our purpose in this study was to develop an automated method for segmentation of white matter 36 

(WM) and gray matter (GM) regions with multiple sclerosis (MS) lesions in magnetic resonance 37 

(MR) images. The brain parenchymal (BP) region was derived from a histogram analysis for a 38 

T1-weighted image. The WM regions were segmented by use of addition of MS candidate 39 

regions, which were detected by our computer-aided detection system for the MS lesions, and 40 

subtraction of a basal ganglia and thalamus template from “tentative” WM regions. The GM 41 

regions were obtained by subtraction of the WM regions from the BP region. We applied our 42 

proposed method to T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery 43 

(FLAIR) images acquired from 7 MS patients and 7 control subjects on a 3.0 T MRI system. 44 

The average similarity indices between the specific regions obtained by our method and by 45 

neuroradiologists for the BP and WM regions were 95.5 ± 1.2% and 85.2 ± 4.3%, respectively, 46 

for MS patients. Moreover, they were 95.0 ± 2.0% and 85.9 ± 3.4%, respectively, for the control 47 

subjects. The proposed method might be feasible for segmentation of WM and GM regions in 48 

MS patients. 49 

 50 
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1 Introduction 53 

 54 

Multiple sclerosis (MS) is a neurological disorder in the central nervous system. The 55 

progressive development of brain atrophy is a well-known characteristic of MS and is viewed as 56 

a potential marker of brain damage [1-7]. Therefore, the quantitative evaluation of brain atrophy 57 

is important for diagnosis or follow-up of MS by use of magnetic resonance (MR) imaging. 58 

Previous MR studies have shown that white matter atrophy in patients with primary progressive 59 

MS was closely related to clinical outcome [8], and gray matter atrophy in relapsing-remitting 60 

MS (RRMS) was related to the Expanded Disability Status Scale [9]. In such studies, 61 

neuroradiologists need to segment the brain parenchyma into the white matter and gray matter 62 

regions. However, it is laborious for neuroradiologists to determine the atrophies of the white 63 

matter and gray matter regions in MR images on a slice-by-slice basis. Therefore, a number of 64 

semi-automated and automated methods for segmentation of the white matter and gray matter 65 

regions have been developed for assisting radiologists in evaluating the atrophies of these 66 

regions in clinical practice [10-19]. However, these methods were developed for MR images 67 

without MS lesions. Ge et al. [2] proposed a semi-automated method based on fuzzy 68 

connectedness [10] for segmentation of white matter and gray matter regions with MS lesions. 69 

Stefano et al. [5] developed a semi-automated method by using the SIENA (structural imaging 70 

evaluation of normalized atrophy) X software [20] for segmentation of cortical gray matter 71 

regions with MS lesions. 72 

In general, semi-automated methods are time-consuming, and the results depend on 73 

how the methods are used. Alfano et al. [11,21] developed an automated method for extraction 74 

of the white matter and gray matter regions in MS patients for estimation of their atrophy, 75 

although they did not evaluate the accuracy of their segmentation method. Many researchers 76 

employed statistical parametric mapping (SPM99) [12] as an automated segmentation tool for 77 



 4 

the white matter and gray matter regions [3,6-9]. However, a majority of MS lesions in the 78 

white matter regions were misclassified as gray matter or cerebrospinal fluid (CSF) by SPM99. 79 

Therefore, further studies are still required for automatically segmenting the white matter and 80 

gray matter regions including MS lesions for more accurate evaluation of the atrophies in both 81 

regions in MS patients. That is because the atrophy in the white matter regions cannot be 82 

correctly evaluated if the MS lesions in the white matter regions are not included. Our purpose 83 

in this study was to develop an automated method for segmentation of the white matter and gray 84 

matter regions including MS lesions in MR images. 85 

 86 

2 Materials and methods  87 

 88 

2.1 Clinical cases 89 

 90 

 The MR images of seven patients with RRMS and seven normal controls were used 91 

for this study. Patients who were diagnosed as having MS and had MR examinations from 92 

January 2007 to April 2008 were sequentially selected. Non-MS subjects, who were matched 93 

with the MS patients in terms of age and gender, were chosen as control cases from all non-MS 94 

patients who had MR examinations from January 2007 to March 2007. The MS group (5 95 

females and 2 males) had a mean age of 31 years (range: 24-51 years), and the control group (5 96 

females and 2 males) had a mean age of 30 years (range: 15-56 years). This study was 97 

performed under a protocol approved by the institutional review board of the university 98 

hospital. 99 

 All brain MR images were acquired with a 3.0 Tesla MR system (Signa Excite; GE 100 

Medical systems, Milwaukee, Wis, USA). The following three imaging parameters were used: 101 

2500/9.1/1000/224!320/2/1 minute 30 seconds [repetition time msec/echo time msec/inversion 102 
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time/matrix size/number of excitations (NEX)/imaging time] for each two-dimensional (2D) 103 

T1-weighted spin-echo imaging, 4000/85/512!312/3/10.9/3 minutes 20 seconds (repetition time 104 

msec/echo time msec/matrix size/NEX/echo-spacing/imaging time) for each 2D T2-weighted 105 

fast spin-echo imaging, and 12000/140/2600/224!256/2/9.1/3 minutes 20 seconds (repetition 106 

time msec/echo time msec/inversion time/matrix size/NEX/echo-spacing/imaging time) for each 107 

2D fluid-attenuated inversion-recovery (FLAIR) imaging. All images were acquired with a 108 

section thickness of 5 mm, an intersection gap of 1 mm, a field of view of 22 cm, and 16-bit 109 

gray levels. Zero-fill interpolation processing was used for reconstruction of 2D images with 110 

512 ! 512 pixels and a pixel size of 0.4297 mm, which result in apparent high resolution 111 

images. 112 

 Three slices, which were located at the basal ganglia or at more superior levels, were 113 

selected per case, because Carone et al. [7] had reported that the basal ganglia, thalamus, and 114 

superior cortex were atrophied in MS patients. 115 

 116 

2.2 Segmentation of brain parenchymal regions 117 

 118 

 The brain parenchymal region was segmented from a T1-weighted image based on an 119 

analysis of a gray-level histogram [22]. Figure 1 shows an example of a histogram of an original 120 

T1-weighted image. The histogram of a T1-weighted image can be divided into four parts, i.e., 121 

background, CSF, brain parenchymal, and fat regions. First, the head region was extracted from 122 

the original T1-weighted image by use of the threshold value TBG given by 123 

  

! 

TBG = M BG + kBG SDBG ,   (1) 124 

where MBG and SDBG are the mean value and the standard deviation (SD), respectively, 125 

determined from the first largest peak (the first left peak) with more than a certain number of 126 

pixels in the histogram as shown in Fig. 1, which was empirically set as 10,000 pixels in this 127 



 6 

study. kBG is a constant. Second, the CSF regions were removed from the head region with the 128 

threshold value TCSF obtained by an automated thresholding technique based on linear 129 

discriminant analysis [23] for the histogram of the T1-weighted image. Third, the brain 130 

parenchymal region was extracted by reduction of the fat regions in a manner similar to that for 131 

the background. The threshold value for the fat region TFAT was determined by 132 

  

! 

TFAT = M BP + kBPSDBP ,   (2) 133 

where MBP and SDBP are the mean value and the standard deviation, respectively, obtained from 134 

the second largest peak (the first right peak) with more than a certain number of pixels in the 135 

histogram of the brain parenchymal and fat regions as shown in Fig. 1, which was empirically 136 

set as 700 pixels in this study. kBP is a constant. Note that some small holes could occur within 137 

the brain parenchymal region, because a number of pixels in the brain parenchymal region are 138 

similar to those in the fat regions. Therefore, the holes were filled in by the addition of a rough 139 

brain parenchymal region without holes to the brain parenchymal region after reduction of the 140 

fat region. The rough brain parenchymal region without holes was obtained by application of a 141 

circular morphological erosion kernel to the head region. In this study, the constant values kBG 142 

and kBP were set as 10 and 4, respectively. The parameters were determined empirically by use 143 

of nine clinical cases in the study of Kawata et al. [22], which are different from cases used in 144 

this study. 145 

 146 

2.3 Segmentation of white matter regions 147 

 148 

 Figure 2 shows the overall scheme for segmentation of the white matter regions. First, 149 

a brain parenchymal region was segmented by use of the method mentioned above. Second, a 150 

T2-T1 subtraction image was obtained by subtraction of a T1-weighted image from a 151 

T2-weighted image. Third, the “tentative” white matter regions were segmented on the 152 
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subtraction image by use of a level set method [24] in the brain parenchymal region. Fourth, MS 153 

candidate regions detected by our computer-aided detection (CAD) system [25] were added 154 

onto the “tentative” white matter regions. Fifth, the white matter regions were determined by 155 

removal of a basal ganglia and thalamus (BGT) template from the white matter regions. 156 

 157 

2.3.1 Subtraction image between T2-weighted and T1-weighted images 158 

 159 

 A T1-weighted image was subtracted from a T2-weighted image for increasing the 160 

contrast between the white matter and gray matter regions. Figure 3 shows the three pixel value 161 

histograms of the brain parenchymal region in T2-weighted, T1-weighted, and subtraction 162 

images, whose pixel values were normalized from 0 to 1023. In the T2-weighted image, the 163 

white matter regions have lower pixel values compared with the gray matter regions, whereas 164 

there is an inverse relationship in the T1-weighted image. On the other hand, the contrast could 165 

not be detected in the T1-weighted images, because the peaks of the white matter and gray 166 

matter regions were overlapped. The average contrast between the peak pixel values of the 167 

white matter and gray matter regions for 14 slices selected from 14 cases was 174 ± 53.7 pixel 168 

values for the subtraction images, and 119 ± 21.3 pixel values for the T2-weighted images. As a 169 

result, the white-matter-gray-matter contrast in the subtraction image was higher than that in the 170 

T2-weighted image with a statistically significant difference (P < 0.01). Therefore, the contrast 171 

between the white matter and gray matter regions was increased by subtraction of the 172 

T1-weighted image from the T2-weighted image. Figure 4 shows the brain parenchymal regions 173 

in three images, i.e., T2- weighted, T1-weighted, and the T2-T1 subtraction image. The T2-T1 174 

subtraction image seems to have the highest contrast. 175 

 176 

2.3.2 Segmentation of initial white matter regions 177 
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 178 

 The initial white matter candidate regions were segmented from the T2-T1 subtraction 179 

image by use of an automated thresholding technique based on a linear discriminant analysis 180 

[23] for a pixel value histogram in the brain parenchymal region. However, a number of thin 181 

and long fat regions as well as the small white matter regions were still remained. Therefore, 182 

two types of candidate regions were selected as the white matter regions. One type was the 183 

candidate region of the largest size, and the other type was a region whose mean pixel value was 184 

within the range between the mean pixel value ± a SD of the largest region. Finally, a 185 

morphological erosion operation with a 3!3 kernel was applied three times to the binary image 186 

with white matter candidate regions on the assumption that the eroded regions could be inside 187 

the “true” white matter regions. The resulting white matter candidate regions were considered as 188 

initial white matter regions. 189 

 190 

2.3.3 Segmentation of “tentative” white matter regions based on a level set method 191 

 192 

 The “tentative” white matter regions were segmented based on a level set method, 193 

where a new speed function was developed in this study for accurate segmentation of white 194 

matter regions. The level set method is an active contour model, which has been widely used for 195 

segmentation of some anatomical regions in medical images such as brain regions in MR 196 

images [24,26,27]. In our research, the level set method was performed by means of a fast 197 

narrow band method [28,29] for reducing the calculation time. First, a level set function 

! 

"  was 198 

determined as a signed distance function from the contour of the initial white matter regions, 199 

which was the zero level in the level set function. Second, the level set function 

! 

"  was updated 200 

according to the following partial differential equation: 201 
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! 

"#
"t

+ F$# = 0,     (3) 202 

where t is the time, F is the speed function, and 

! 

"  is the gradient operator. While the level set 203 

function is updated, the zero level set (  

! 

" = 0) moves according to the speed function in the 204 

three-dimensional (3D) level set function. Here, the zero level set is called a “moving front”. 205 

Finally, the update of the level set function was stopped if a certain ratio of pixels rt on the zero 206 

level did not move within a certain number of iterations it. The zero level (  

! 

" = 0 ) of the function 207 

is considered as the final contour of the object. In this study, we developed a speed function F 208 

given by 209 

  

! 

F = b " + #$( ),     (4) 210 

where b is the edge indicator function, ! and " are constants, and # is the mean curvature. The 211 

term of "# gives the smoothness of the front propagation. The edge indicator function b is 212 

defined as 213 

    

! 

b =
1

1+ "I (x, y)
,    (5) 214 

where     

! 

I (x, y) is the image processed with an adaptive partial median (APM) filter [30]. The 215 

edge indicator function b plays an important role for stopping the moving front propagation at 216 

the desired boundary of the object, because the function b approaches zero when the moving 217 

front arrives at the object boundary. However, if the object boundary includes noise, the 218 

segmentation result would be inaccurate and unstable. Therefore, some smoothing filter such as 219 

a Gaussian filter should be applied to the original image for reduction of noise prior to 220 

application of the level set method. However, an edge-preserving smoothing (EPS) filter would 221 

be preferred as a smoothing filter, because the general smoothing filters blur the edge of an 222 

object. In this study, we chose an APM filter developed by Lee et al. [30] as an EPS filter, 223 

because the APM filter can reduce noise with preserving edges owing to their adaptive filter 224 

size and shape in each pixel. Figure 5 shows an original T2-weighted image and resulting 225 
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images obtained by three smoothing filters, i.e., the Gaussian filter, an EPS filter [31], and the 226 

APM filter. The image processed with the APM filter seems to be the best among the three 227 

images in terms of reducing noise and preserving edges. In this study, the parameter values rt, it, 228 

!, and " were set as 0.999, 500, 1.0, and -0.6, respectively, which were optimized so that the 229 

maximum similarity index (Eq. (6) in Subsection 2.5) could be obtained. The time interval for 230 

the partial differential equation was set as 0.1. 231 

 232 

2.3.4 Addition of MS regions detected by a CAD system onto “tentative” white matter regions 233 

 234 

 MS candidate regions, which were automatically detected in the FLAIR image by a 235 

CAD system for MS developed by Yamamoto et al. [25], were added onto the “tentative” white 236 

matter regions, because several high-contrast MS lesions were not included in the white matter 237 

regions. Figure 6 shows an illustration of addition of MS regions detected by a CAD system for 238 

MS. As shown in this figure, the holes corresponding to MS regions in the “tentative” white 239 

matter regions were filled in by adding of the MS regions detected by a CAD system for MS. 240 

 Prior to the addition of MS regions, a morphological dilation operation with a 241 

3!3-square kernel was applied to the MS candidate regions. At the end of this processing, a 242 

morphological closing operation with a 3!3-square kernel was applied three times to white 243 

matter candidate regions with MS candidate regions for smoothing of candidate regions. 244 

 The overall scheme for segmentation of MS regions is shown in Fig. 7. In the CAD 245 

system [25], MS candidate regions were detected through the following steps: 246 

(1) MS lesions were enhanced by subtraction of a background image, which was approximated 247 

by the first order polynomial in the brain parenchymal region from the FLAIR image. (2) The 248 

initial candidates were identified by use of a multiple gray-level thresholding technique on the 249 

subtraction image as the points with local maximum pixel values [32,33]. MS candidate regions 250 
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were segmented by use of a region-growing technique from the location of the initial candidates 251 

based on monitoring of large changes in five image features, i.e., effective diameter, area, 252 

circularity, slenderness, and the difference in the mean pixel value within the inner and outer 253 

regions of a candidate region. (3) The large number of false positive regions was reduced based 254 

on a rule-based method. (4) Final regions in MS candidates were determined by use of a level 255 

set method, which was used for reduction of false positives as well as more accurate 256 

segmentation. (5) All candidate regions were classified into true positive and false positive 257 

candidate regions by use of a support vector machine, which is a classifier based on a statistical 258 

learning theory. 259 

 260 

2.3.5 Removing of basal ganglia and thalamus from white matter candidate regions 261 

 262 

 Final white matter regions were determined by removal of a basal ganglia and 263 

thalamus template of the gray matter from the white matter regions, because it was difficult to 264 

remove the basal ganglia and thalamus regions of the gray matter from the white matter regions 265 

due to the very low contrast. The basal ganglia and thalamus template shown in Fig. 8 was 266 

produced manually from a T2-weighted image of one patient out of the 14 cases used in this 267 

study. The slices including the basal ganglia and thalamus were selected manually, and then the 268 

basal ganglia and thalamus template was adjusted to each brain parenchyma by use of a 2D 269 

affine transformation [34]. Finally, the white matter regions were determined after removal of 270 

the adjusted template from the tentative white matter regions. The nine feature points for the 271 

affine transformation were selected automatically on two straight lines that ran at right angles to 272 

one another, in the circumscribed rectangle of the brain parenchyma. 273 

 The internal capsules of the white matter were included in the basal ganglia and 274 

thalamus template, because it seems impossible even for neuroradiologists to extract the internal 275 
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capsules in the T1-weighted, T2-weighted, and FLAIR images. Therefore, the internal capsule 276 

was included in the gold standard regions of gray matter in this study. 277 

 278 

2.4 Segmentation of gray matter regions 279 

 280 

 The gray matter regions were obtained by subtraction of the white matter regions from 281 

the brain parenchymal region. 282 

 283 

2.5 Evaluation of segmentation accuracy 284 

 285 

 The segmentation accuracy of our method was evaluated by use of a similarity index 286 

[35], which means the degree of similarity between the candidate region C obtained by our 287 

method and the gold standard region G obtained by a manual method. The similarity index was 288 

obtained by the following equation: 289 

    

! 

Similarity index (%) =
2n G"C( )
n G( )+ n C( )

#100 , (6) 290 

where 

! 

n(G) was the number of gold standard pixels,     

! 

n(C) was the number of segmented 291 

pixels automatically determined by use of our method, and 

! 

n(G"C) was the number of 292 

logical AND pixels between G and C. We defined the gold standard regions based on manual 293 

contouring by an experienced neuroradiologist, following verification by a senior experienced 294 

neuroradiologist. The gold standard regions of the brain parenchyma and white matter were 295 

determined by the neuroradiologist’s delineating their contours on the T1-weighted image and 296 

T2-weighted image, respectively. Moreover, the gold standard regions of gray matter were 297 

obtained by subtraction of the white matter regions from brain parenchymal regions. Therefore, 298 

we evaluated the segmentation accuracy of the brain parenchymal and white matter regions by 299 
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using the similarity index. However, the variability of the gold standard was not investigated in 300 

this study, but is clarified in the Discussion Section. 301 

 302 

3 Results 303 

 304 

 We investigated the computational impact of the CAD step on the proposed method. 305 

Results were obtained by use of a personal computer with two 2.66 GHz Intel Dual-Core Xeon 306 

CPUs and 5 GB memory. It took about 20 seconds and 150 seconds on average for the 307 

segmentation step and the CAD step to deal with each MR image, respectively. Therefore, the 308 

computational impact of the CAD step on the proposed method was 88% on average. 309 

 Table 1 shows the average similarity indices of all steps for the white matter regions. 310 

The average similarity indices for white matter regions without and with addition of MS 311 

candidate regions to the “tentative” white matter regions were 80.3 ± 10.3% and 80.5 ± 10.5%, 312 

respectively, in MS patients. According to these average results, the addition of MS candidate 313 

regions does not seem to be effective for accurate segmentation of the white matter regions. 314 

However, Fig. 9 shows a good example of the effect of adding MS candidate regions, i.e., 315 

segmented white matter regions of an MS patient without and with adding of MS candidate 316 

regions. The similarity index for the white matter regions increased from 84.7% to 89.3% by 317 

use of the proposed CAD system. The average similarity index for white matter regions 318 

increased from 80.5 ± 10.5% to 85.2 ± 4.3% in MS patients by removal of the basal ganglia and 319 

thalamus template region from the “tentative” white matter regions. Figure 10 shows two 320 

images, which are the white matter regions of an MS patient without and with removal of the 321 

basal ganglia and thalamus template region, respectively. The similarity index for the white 322 

matter regions increased from 68.2% to 84.0%. Furthermore, the average similarity index for 323 

white matter regions increased from 81.0 ± 9.8% to 85.9 ± 3.4% in the control subjects, and 324 
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increased from 80.7 ± 9.9% to 85.5 ± 3.8% in all cases by removal of the basal ganglia and 325 

thalamus template region. 326 

 As a final result, Fig. 11 shows the similarity indices for white matter and gray matter 327 

regions of all slices, and Table 2 shows the average similarity indices for the brain parenchymal 328 

and white matter regions. The average similarity indices of brain parenchymal and white matter 329 

regions were 95.5 ± 1.2% and 85.2 ± 4.3%, respectively, for MS patients. Moreover, they were 330 

95.0 ± 2.0% and 85.9 ± 3.4%, respectively, for the control subjects. Here, there were no 331 

significant differences in the segmentation accuracy of any regions between MS patients and 332 

controls (P > 0.35). In all cases, the average similarity index was 95.2 ± 1.6% for brain 333 

parenchymal regions and 85.5 ± 3.8% for white matter regions. Examples of regions segmented 334 

by the proposed method are shown in Fig. 12. The similarity index was 95.9% for the brain 335 

parenchymal region and 85.7% for white matter regions. 336 

 337 

4 Discussion 338 

 339 

 The proposed method is based on three kinds of 2D MR images, because (1) the 340 

T2-weighted and/or FLAIR 2D images have been established as routine sequences for diagnosis 341 

of MS lesions [36-38], (2) the data acquisition time of a 2D MR image is shorter than that of a 342 

3D image, and (3) the in-plane spatial resolution and contrast in a 2D MR image can be higher 343 

than those of a 3D image, respectively. Nevertheless, there are a number of advantages of 3D 344 

imaging for accurate diagnosis of MS, such as identification of 3D locations of MS lesions and 345 

more accurate segmentation. The 3D locations of MS lesions are associated with visual, motor, 346 

and sensory impairments. Therefore, we plan to modify the proposed method from the 2D-based 347 

method to a 3D-based one. 348 

 The segmentation accuracy depends on the strength of the magnetic field. In this study, 349 
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all MR images were acquired on a 3.0 Tesla MR system. In general, lower magnetic field 350 

strength increases the image noise, which could lead to inaccurate segmentation results. 351 

Therefore, we should investigate the robustness of the proposed method by applying it to MR 352 

images acquired on 1.5 Tesla or lower field MR systems in future work. 353 

 There is a chance that false positive candidates were included in initial white matter 354 

regions as well as final white matter regions. As a result, however, there were 47 false positive 355 

regions in all 42 slices used in this study, and thus the area ratio of the false positive regions to 356 

the gold standard white matter regions was 0.17 ± 0.44% on average for each slice. Although 357 

the number of false positive regions should be reduced as much as possible, there is little impact 358 

of false positives on the segmentation accuracy in the proposed method. 359 

 It would be important to evaluate MS candidate regions that were underestimated and 360 

overestimated by the proposed method at each step of the segmentation of white matter regions. 361 

For that purpose, we calculated an overlap fraction (OF) and extra fraction (EF) [39], which can 362 

evaluate underestimated and overestimated regions, respectively. The OF and EF are defined as 363 

    

! 

Overlap fraction(%) =
TP

TP + FN
"100

,  (7) 364 

    

! 

Extra fraction(%) =
FP

TP + FN
"100

,  (8) 365 

where TP, FP, and FN are true positive, false positive, and false negative pixels, respectively. 366 

The OF approaches unity with decreasing underestimated regions, whereas the EF approaches 367 

zero with decreasing overestimated regions. For MS patients, the average OFs for white matter 368 

regions without and with addition of CAD outputs were 89.2 ± 6.1% and 90.5 ± 5.1%, 369 

respectively, and the average EFs were 35.7 ± 27.8% and 37.6 ± 29.1%, respectively. In this 370 

step, some MS regions were removed as FNs, but also some FP regions were added onto the 371 

white matter regions. Furthermore, for MS patients, the average OFs for white matter regions 372 

without and with removal of the basal ganglia and thalamus regions were 90.5 ± 5.1% and 89.8 373 
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± 5.4%, respectively, and the average EF decreased from 37.6 ± 29.1% to 21.1 ± 8.7% (P < 374 

0.05). On the other hand, for control subjects, the average OFs without and with removal of the 375 

basal ganglia and thalamus regions were 88.7 ± 3.7% and 88.2 ± 4.3%, respectively, and the 376 

average EF decreased from 33.0 ± 26.2% to 17.4 ± 7.1% (P < 0.05). Consequently, the average 377 

OF and EF in all cases were 89.0 ± 4.9% and 19.2 ± 8.1%, respectively, in the final step of the 378 

segmentation of white matter regions. 379 

 Although the gold standard regions for the brain parenchyma, white matter, and gray 380 

matter regions were based on manual contouring with the consensus of two experienced 381 

neuroradiologists in this study, it is important to consider inter- and intra-observer variability 382 

when the gold standard regions are determined by manual segmentation. Gao et al. [40] reported 383 

that there was intra-observer variability (maximum SD ranging from 2% to 8% of the mean) and 384 

inter-observer variability (SD of the observers’ means being 18.8% of the mean volume) in the 385 

manual delineation of prostate volume on a computed tomography (CT) image for radiation 386 

therapy. The variability in the delineation of the white matter and gray matter could be larger 387 

than that of the prostate due to their complicated shapes. Therefore, we should investigate the 388 

variability of manual segmentation for white matter and gray matter regions by several 389 

observers, and then calculate the similarity index by considering the variability of the gold 390 

standards in future work. 391 

 Other limitations of this study need to be described. First, the CAD system for 392 

detection of MS regions [25] produced a few false positives, and it was not able to detect a 393 

number of MS regions. According to a report by Yamamoto et al. [25], the sensitivity and the 394 

number of false positives were 81.5% and 2.9, respectively, for 3 MS cases including 168 MS 395 

lesions, two cases of which were used for this study. The false positives and false negatives 396 

could lead to the overestimation and underestimation of white matter regions, respectively. 397 

Therefore, the CAD system should be improved in terms of the detection accuracy. Second, we 398 
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did not deal with cases where MS lesions were developed in the gray matter regions which were 399 

reported by Kidd et al. [41] and Peterson et al. [42]. However, the current proposed method 400 

considers all MS lesions as a part of the white matter regions [1-8], because the majority of MS 401 

lesions develop in the white matter regions. Nonetheless, we should improve the proposed 402 

method so that MS lesions detected by the CAD system can be classified correctly in the white 403 

matter and gray matter regions. 404 

 405 

5 Conclusions 406 

 407 

 We have developed an automated method for segmentation of the white matter and 408 

gray matter regions including the MS lesions. As a result, the white matter and gray matter 409 

regions are segmented automatically even if patients have MS lesions. Therefore, our proposed 410 

method might be feasible as a diagnostic tool for MS patients in clinical practice. 411 

 412 
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Table 1 Average similarity indices of all steps for white matter regions. 529 
 530 

 MS patients (%) Controls (%) All cases (%) 

Initial white matter 80.3 ± 10.3 81.0 ± 9.8 80.7 ± 9.9 

Level set method 80.3 ± 10.3 81.0 ± 9.8 80.7 ± 9.9 

Addition of MS regions 80.5 ± 10.5 - - 

Removal of BGT template 85.2 ± 4.3 85.9 ± 3.4 85.5 ± 3.8 

 531 

 532 

533 
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Table 2 Average similarity indices between regions obtained by the proposed method and 534 

neuroradiologists for brain parenchymal, white matter, and gray matter regions. 535 

 536 

 MS patients (%) Controls (%) P value All cases (%) 

Brain parenchyma 95.5 ± 1.2 95.0 ± 2.0 0.359 95.2 ± 1.6 

White matter 85.2 ± 4.3 85.9 ± 3.4 0.572 85.5 ± 3.8 

 537 

538 
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Figure legends 539 

Fig. 1 Pixel value histogram of an original T1-weighted image, which has four parts 540 

corresponding to the background, CSF, brain parenchymal, and fat regions, respectively. TBG, 541 

TCSF and TFAT are the threshold values for reducing the background, CSF, and fat regions, 542 

respectively. 543 

 544 

Fig. 2 Overall scheme for segmentation of white matter (WM) regions. 545 

 546 

Fig. 3 Pixel value histograms of a T2-weighted image (T2WI), a T1-weighted image (T1WI), 547 

and a T2-T1 subtraction image in the brain parenchymal region. 548 

 549 

Fig. 4 Brain parenchymal regions in a T2-weighted image, b T1-weighted image, and c T2-T1 550 

subtraction image. 551 

 552 

Fig. 5 Comparison of results obtained by three smoothing filters: a an original image, b with a 553 

Gaussian filter, c with an edge-preserving smoothing filter, and d with an adaptive partial 554 

median filter. 555 

 556 
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Fig. 6 Illustration of addition of MS regions detected by a CAD system for MS onto “tentative” 557 

white matter regions: a MS candidate regions detected by a CAD system, b “tentative” white 558 

matter regions, where there were holes corresponding to MS regions, c “tentative” white matter 559 

regions, where the holes were filled in by adding of the MS regions. 560 

 561 

Fig. 7 Overall scheme for segmentation of MS regions. 562 

 563 

Fig. 8 A template with basal ganglia and thalamus. 564 

 565 

Fig. 9 Effect of adding MS candidate regions obtained by a CAD system on segmentation of the 566 

white matter regions indicated by white lines: a without and b with addition of MS candidate 567 

regions obtained by the CAD system, and c corresponding gold standard regions. The similarity 568 

index for the white matter regions increased from 84.7% to 89.3% by use of the CAD system. 569 

 570 

Fig. 10 Effect of removing basal ganglia and thalamus from the white matter regions indicated 571 

by white lines: a without and b with removal of the basal ganglia and thalamus regions, and c 572 

corresponding gold standard regions. The similarity index for the white matter regions increased 573 

from 68.2% to 84.0%. 574 
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 575 

Fig. 11 Relationship between the average similarity indices for white matter and gray matter 576 

regions. 577 

 578 

Fig. 12 Illustrations of brain parenchymal region (a, d), white matter regions (b, e), and gray 579 

matter regions (c, f). White lines indicate output regions by the proposed method (a, b, c) and 580 

corresponding gold standard regions (d, e, f). The similarity index was 95.9% for brain 581 

parenchymal region and 85.7% for white matter regions. 582 

 583 
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