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Abstract 

Anomalous behaviors of the diffusion and mixing of chaotic orbits due to the intermit-

tent sticking to the islands of normal tori and accelerator-mode tori in a widespread chaotic 

sea are studied numerically and theoretically for Hamiltonian systems with two degrees 

of freedom. The probability distribution functions for the coarse-grained velocity ( charac-

terizing the diffusion ) and the coarse-grained expansion rate (characterizing the mixing) 

turn out to obey an anomalous scaling law which is quite different from the Gaussian. The 

scaling law is confirmed for both diffusion and mixing by numerical experiments on the 

standard map and the heating map. Its scaling exponents for the diffusion and mixing, 

however, are found to be different from each other, indicating that different islands give 

different scaling exponents. 
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§1. Introduction - reconsider classical mechanics by chaos 

One of the purposes of this thesis is to understand the motion of a frictionless pen

dulum. It may be said that "That needs no explanation at this time". To be sure, the 

frictionless pendulum continues to oscillate in constant rhythm as regular as clockwork. 

As soon as a periodic external force acts on the pendulum, however, the motion becomes 

complex. In a particular case, the motion becomes very complex, and the future of the 

motion is not able to predict. It is common sense that we can not predict the future, when 

the many factors are generally involved in it. But in this case, we can not predict the 

future though rule is clear, and the degrees-of freedom are only two and the external force 

is not random but regular. This strange phenomenon is called chaos.1)"'3) 

The discovery of chaos has greatly influenced science. Let us first review the repre-

sentative studies and the meaning of chaos in science. 

Look back on the history of science, it was Newton to indicate that we can predict the 

behavior of matters if we know the rule of the motion. Kepler's laws explained how planets 

move around the sun. In contrast to this, Newton tried to explain the motive power which 

causes such a motion. He guessed from the law of inertia and Kepler's law that the planets 

continue to be pulled by the sun. He found that the intensity of the force is in inverse 

proportion to the second power of the distance between the sun and the planet. Kepler's 

law has been completely explained by his theory. He also guessed that the attractive force 

acts between the earth and the moon, and explained the phenomena of tide. He guessed 
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further that all matters on the earth are pulled by the earth, and explained the free fall and 

the motion of pendulum, etc. Newton showed that the motive power of celestial motion 

and motions of matters around us are the same, and explained the time evolution of motion 

of matters. Then we have been able to understand the motion of planets, comets, moon 

and pendulum, etc. This is the so-called law of universal gravitation, where gravitation 

acts between all matters. He expressed the motion in the differential equation and showed 

that we can understand the motion if we can solve the equation. By Newtonian mechanics, 

we can predict how the state of motion changes with time if we know what forces acts on 

the matter and know the motion state (place and velocity of the matter) at an initial time. 

We became to be able to understand behavior of matter by deterministic law. Physi-

cists have simplified complex phenomena to understand them and discovered regularities in 

them. Irregularities have recently been discovered though they simplified things. Though 

rule is clear, it is not able to predict the future. That is due to chaos. As a remarkable 

example, let us take the Lorenz model. 

Lorenz constructed a simple model to explain the complex motion of the atmosphere. 

First, suppose a layer of fluid of infinite horizontal extent, heated from below, as shown in 

Fig.l (a) . When the Rayleigh number Ra( = d3g1dT jva) - where dT is the temperature 

difference between the bottom and top plates, d the height between the bottom and top 

plates, g the acceleration of gravity, 1 the coefficient of cubical expansion, v the kinematic 

viscosity and a the thermal conductivity - exceeds a critical value, the static state of fluid 
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Fig.l (a) The layer of fluid of infinite horizontal extent with a temperature difference �T 

between the bottom and top plates. ( b) Rayleigh- Benard convection where rising 

current and descending current are combined. 



(a) 

(b) 

Fig.2 (a) Hexagonal convection cells on a uniformly heated copper plate in a circular con

tainer and open to air surface. Fluid is silicon oil. Visualization with aluminum 

powder. (E.L. Koschmieder, Adv. chem. Phys. 26, 177 (1974)) (b) Circular concen

tric rolls on a uniformly heated copper plate in a circular container and not open to 

air surface. (E.L. Koschmieder, Adv. chem. Phys. 26, 177 (1974)) 



becomes unstable and the regular convection appears, as shown in Fig.l(b). This is the 

so-called Rayleigh-Benard convection. The pattern of the convection is various whether 

the surface of the fluid is open or not to ambient air, as shown in Fig.2. As the temperature 

difference becomes larger, the transition to turbulence is observed. Lorenz assumed that 

the convection rolls are all parallel, as shown in Fig.l(b). Then he reduced the number of 

variables that describe this system to three. The equations are 

X= -u + uY, 

Y=-XZ+,.X-Y, 

Z = XY- bZ, 

(1.1) 

where X is the amplitude of the convection motion, Y the amplitude of the temperature 

fluctuation, Z a uniform correction to the vertical temperature profile, u the Prandtl 

number, ,. the normalized Rayleigh number and b a parameter related to the horizontal 

wave vector. These equations are the so-called Lorenz model. He discovered that these 

equations produce very complex motion. As a matter of surprising fact, the deviation 

becomes larger with time if the initial value is shifted a little, as shown in Fig.3. This 

means that the prediction of future is impossible because error of observation is rapidly 

magnified. This is called "sensitivity to initial conditions." Is this motion completely 

random, then? The dynamical motion is understood as the trajectories in the phase space. 

Figure 4 draws the motion in the phase space. The motion whose time series look random 

produces a very symmetrical form in the phase space. This means that the Lorenz model 

produces complex motion in the very symmetrical form. He showed further the possibility 
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Fig.4 Phase space {X, Y, Z} of the Lorenz model (0' 10, r 28, b= 8/3). The ong1n 1s 

{X 0.0, y 0.0, z 27.0}. 
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that the complex motion produced by many degrees-of-freedom can be understood as a 

chaotic motion with a few degrees of freedom. He observed that the change of the maximum 

in the Z-axis is represented by one dimensional map, as shown in Fig.5. 

The famous example for one dimensional map is the logistic map, 

X(n + 1) = f(X(n)) = aX(n)(1- X(n)). (1.2) 

This is the model to understand the change of the individual number of each generation 

of a living thing. Parameter a expresses propergating power which is the ratio of children 

to parents. If the number of parents is too much, they finish feed on food and the number 

of children's generation decreases. The (1 - X(n)) is in proportion to the amount of 

food. We can understand how complex motion is produced by this simple rule. Figure 

6 expresses the behavior of the change of the generation according to parameter a. For 

a > ac( = 3.56994 · · · ) , the behavior becomes chaotic. 

The Lorenz model is the dissipative system which does not conserve energy and for 

which volume elements in the phase space shrink as time increases. What is chaos in the 

Hamiltonian system which conserves energy, then? As a remarkable example, let us take 

the Henan and Heiles system. 

Henan and Heiles constructed a model to understand the motion of star which moves 

in the Galaxy. They supposed that the influence from the others of stars to a star in the 

Galaxy is represented by a potential and derived the following Hamiltonian 

H = �(P; + P;) + � (X2 + Y2) + (X2Y- �Y3), 
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where the third term represents the influence from the others of stars. They observed the 

crossings in the Py - y surface of section ( z = 0, Poe > 0) by computer simulation. The 

larger the energy E becomes, smooth curved surfaces gradually break and the region where 

many points are scattered spreads, as shown in Fig. 7. The region of regular motion and 

irregular motion generally coexists in the Hamiltonian systems. 

What mechanism breaks the smooth curves? Kolmogorov, Arnold and Moser consid-

ered about the condition that the regular orbits survive when the nonlinear perturbation 

increases and obtained the following KAM theorem. The regular orbits are stable, if the 

ratio of the system's frequency w1 to the external force frequency w2 satisfies the following 

condition 

{1.4) 

under the perturbation cH1 in the limit f. < < 1, where m and s are integers. This means 

that the more the ratio w1 /w2 is far from rational, the more the regular orbits are stable. 

The practical example of the KAM theorem which is seen in the nature is the motion of 

asteroid between Mars and Jupiter. The asteroid continues to be perturbed by Jupiter 

and are swept in the orbits in which the ratio of the unperturbed frequency of the asteroid 

motion w to the angular frequency of Jupiter Wj becomes rational, as shown in Fig.8. 

This is the Kirkwood Gap. The existence of stable asteroid orbits can be considered as a 

confirmation of the KAM theorem. It is also guessed that the gap in the ring of Saturn 

will be originated by the same mechanism. In particular, the Cassini division which is the 
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gap between A ring and B ring is due to the perturbation of the satellites which go around 

the ring of Saturn. 

The theory of relativity and quantum mechanics were constructed to explain the 

phenomenon which can not understand by Newtonian mechanics. The relativistic theory 

is produced from the question what is the medium which transmits light. The relativistic 

theory made clear that the phenomenon looked by observer is different by observer's motion 

state. The quantum mechanics was constructed from the question how to explain the facts 

that the behavior of matter in the micro scale looks like either particle or wave according to 

the way of observing. The quantum mechanics made clear that the place and momentum 

of particle in the micro scale can not be observed at the same time and we can know only 

the existence probability of particle. 

Due to these theories, Newtonian mechanics is the classical mechanics and physicists 

considered that there is nothing to study in the Newtonian mechanics. By the discovery 

of chaos, however, classical mechanics became to be reconsidered. Because it is recognized 

that the simple systems which seemed very simple produce very complex motion. Then 

the studies of complex motion produced by simple rule became active. 

In this thesis, we shall consider on the behavior of frictionless pendulum. In particular, 

we shall study the anomalous behaviors of the diffusion and mixing of chaotic orbits caused 

by islands of normal tori and accelerator-mode tori by taking the standard map and the 

heating map since they exhibit remarkable statistical properties clearly. In §2, we would 
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introduce how the behavior of frictionless pendulum is changed by external force. In §3, 

we consider the deterministic diffusion in the standard map which gives a model for the 

complex behavior of frictionless pendulum. In §4, we look at the behavior of a small cell in 

phase space in the heating map. In §5, we introduce the coarse-grained velocity v and its 

spectrum 1/J( v ) to study the diffusion of chaotic orbits, and introduce the coarse-grained 

expansion rate A and its spectrum ,P(A) to study the mixing of chaotic orbits. In §6, 

we show numerical experiments on these quantities. In §7, we obtain a scaling law for 

the probability distribution functions of v and A by use of Feller's theorem of recurrent 

events.18) The last section is devoted to a summary and remarks. 

§2. :From regular motion to irregular motion of frictionless pendulum 

§2.1 The simple pendulum 

Let us consider the motion of the simple pendulum, where one edge of the weightless 

stick of length l is fixed on the point 0 and a mass m is suspended at the other edge of the 

stick, as shown in Fig.lO. The mass m oscillates in the vertical plane. The gravitation mg 

and tension S from the stick act on this mass. The equation of motion is 

mld2() I dt2 
= -mg sin(), (2.1) 

where() is the angle between the stick and the vertical line. The integration of this equation 

by time is 

(dB 1 dt)2 
= (2g ll) cos B + c, 

7 
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Fig.lO The simple pendulum. 

Fig.ll Phase space {B, B} of the simple pendulum. 



C = W� - (2gjl)(1- COS 0), Wo = 0 (at 0 = 0). 

If Wo is larger than 2 ViJI, the angular velocity is positive at 0 = 7r. Therefore the 

pendulum rotates. Figure 11 shows this pendulum's motion in the phase space which 

takes 0 in the horizontal axis and iJ in the vertical axis. 

§2.2. Simple harmonic oscillator and forced oscillator 

Let us consider the motion of mass m putted on the spring, as shown in Fig.12. The 

spring stretches to the point 0 due to the gravitation mg. When the restoring force is 

proportional to the deviation from the point 0, the equation of the mass m is 

(2.3) 

where z is the upward deviation from the point 0 and k is the spnng constant. This 

equation is equivalent to the simple pendulum's equation which the maximum value of 0 

is very small (sin 0 ::: 0). The general solution of this equation is 

X(t) =A cos(wot + o: ) , (2.4) 

where A is the amplitude, w0( = �) is the angular frequency and o: is the deviation of 

phase at t = 0. The behavior of phase point in phase space becomes concentric circles, as 

shown in Fig.13. The period T of the oscillation is 2trVmfh(= 2tr/wo). Then the period 

Tis independent on the amplitude and depends only on mass m and the spring constant 

k. 
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Fig.l2 The mass m putted on the spring. 
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Fig.13 Phase space { z, z} of the simple harmonic oscillator. 
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In the next, let us consider that the external force F( t ) = F0 cos( wt) acts on the simple 

Harmonic Oscillator. The equation is 

(2.5) 

The general solution (for F(t) = 0) is X (t ) = A cos(w0t +a). The one particular solution 

in this case is 

X (t ) = C cos(wt ), C-
Fo 

- m(w�-w2) '  

Then the general solution of this equation is 

Fo 
X (t) = A cos(wot +a)+ 

( 2 2) 
cos(wt ). 

m w0 -w 

(2.6) 

(2.7) 

If the angular frequency w of the external force is smaller than free frequency wo, the 

direction of deviation is equal to the deviation of the external force. But the sign of the 

second term becomes opposite in the case of w > wo. When the w becomes larger, the 

amplitude of the second term becomes very small. On the contrary, the more w closes to 

w0, the larger the amplitude becomes. The amplitude becomes infinity if w is equal to wo. 

But this does not happen because there is the limit of shirink of spring or the force does 

not proportion to the deviation in this case. It is called the resonance at the case w = wo. 

§2.3. The periodically kicked rotator 

Let us consider the periodically kicked rotator where the periodic external force acts 

on the frictionless pendulum with no gravitation, as shown in Fig.14. The equation of 
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Fig.14 Kicked Rotator. 



motion is 

00 

d2()jdt2=-Ksin() L 8(t-nT), (2.8) 
n=-oo 

where K is the strength of the external force. The rewritten equations with J (  = B) and () 

are { dJjdt = -K sin 1J 
n
t;

oo 
8(t-nT), 

d()jdt = J. 

(2.9) 

If the external force does not act on the rotator( K = 0), the frequency is proportional to 

initial velocity. Equation (2.9) can be reduced to a two-dimensional map 

{ Jn+l = ln - � sin(211"1Jn), 

Bn+l = Bn +Jn+l, 

(2.10) 

for the variables 

(2.11) 

by integration. This map is the so-called standard map1) introduced by Chirikov. Figure 

15 shows how to change the phase space { (), J} of the standard map according to parameter 

K. Figure 16 shows the rime series of Jn for K = 0.8. The structure of the phase space is 

very different from the simple pendulum and the simple harmonic oscillator. The smooth 

curves represent regular motion (torus) and the region which many points are scattered 

represents chaotic motion (chaotic sea). Looking figure 15, we can see that regular region 

(torus) and irregular regions (chaotic sea) are complicated each other. The phase space of 

a Hamiltonian sy stem generally consists of islands of invariant tori and chaotic seas, and 
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Fig.l5 Phase space {0, J} of the standard map for (a) K = 0.0, (b) K = 0.5 and (c) K = 0.8. 
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any chaotic sea is in contact with the critical tori encircling islands of tori whose Liapunov 

exponents are zero. In particular, when the region of the boundary between torus and 

chaotic sea is magnified, it can be seen the chains of small islands around each of the 

critical tori which have the islands-around-islands hierarchy, s) as shown in Fig.17. Any 

chaotic orbits are often trapped by such a hierarchical structure in the chaos border and 

stay there for a long time, since the local expansion rate of nearby orbits is nearly zero 

around the critical tori. Such sticking of chaotic orbits to the islands occurs repeatedly 

and intermittently, and causes a long-time correlation of chaotic orbits.5) Hence the chaotic 

motion is not perfectly random. 

The chaotic motion in Hamiltonian systems is thus neither perfectly random nor 

regular. How this motion can be characterized? It should be noted that, though each 

of chaotic orbits is unstable against a small perturbation and hence unreproducible, the 

ensemble average of chaotic orbits over a cell as well as the long-time average over each 

chaotic orbit are stable and reproducible so that the statistical-mechanical properties of 

chaos c an be studied by computer simulation.4) 

§3. Anomalous diffusion in the standard map 

§3.1 Deterministic diffusion 

For K > Kc = 0.971635406 · · · , all the KAM tori which connect () = -0.5 to () = 0.5 

disappear,4) as shown in Fig.18 (b). In this parameter range (K > Kc), there exists a 
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-0.5 to 0 = 0.5, and (b) K = 1.2. All the KAM tori disappear for K > Kc = 

0.971635406 .. · .  
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Fig.l 9 The evolution of J of the standard map for K = 1.2. The initial point is { J = 0.0, () = 

0.001}. 
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Fig.20 The normalized diffusion constant D / ( t K2) vs parameter K in the standard map. 

The dots are the nun1erically computed values and the solid line is the theoretical 

result. (Rechester,A.B. and R.B.White, Phys. Rev. Lett 44 (1980), 1586) 



widespread chaotic region which includes the unstable fixed points ( er = 0, J; = integers). 

This means that the action Jn can become infinity and the chaotic region occupy most 

part of phase space. In this case, the average behavior of this system changes from regular 

to irregular. We can see that the diffusion in action Jn can occur though the evolution of 

Jn is followed the deterministic law, as shown in Fig.19. We consider the chaotic orbits in 

this widespread chaotic region and let P( J; n) be the probability distribution function for 

Jn(Xo) to take a value around J. If the time series {Jn} may be regarded as a Gaussian 

random process, then P( J; n) obeys the diffusion equation 15) 

{)P(J; n) {)2 P(J; n) 

8n 
= D 

{)J2 ' (3.1) 

where D is the diffusion constant. Then if Dis obtained, then we can know the statistical 

properties of action Jn(Xo). An analytic expression of the diffusion constant D was first 

obtained by Rechester and White.15) Figure 20 shows their analytical result of the diffusion 

constant and numerical result of the diffusion constant, as the nonlinear parameter K is 

varied. The analytical result was in good agreement with numerical result of experiments 

except for the range of parameter K in which the diffusion constant becomes infinity and 

the diffusion equation (3.1) breaks down. Why does this phenomena happen, then? 

§3.2 Anomalous diffusion due to accelerator-mode islands 

This is considered due to particular periodic points which are so-called accelerator 

modes. We consider the periodic points before we explain the accelerator modes. 

12 



The linearized matrix of the standard map are 

M = [� 
Eigenvalues of matrix M are 

-K COS 21r(}n l 
1 - K COS 21r(}n . 

A± = 2- K cos 21r8n ± )(2- K cos 27r8n)2- 4 
2 

. 

The stability condition for {Jn, Bn} yield 

12 - K COS 21r(}n I < 2. 

The period 1 fixed points of the standard map are 

{ J; = m, m : integer 

(}� = 0, 0.5. 

The linearized matrix M about fixed points are 

M = [� 
=r:

K l 1 =F K . 

The stability condition for fixed points yield 

12 =F Kl < 2. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Thus the point at 81 = 0.5 is always unstable, while for K < 4 the elliptic fixed point at 

81 = 0 is stable. There is no stable motion about period 1 fixed points for K > 4. 

For a general map, (} is always periodic by 1 but J is not. However, for the standard 

map, we can consider that J is also periodic by 1. This character causes a second type of 

13 



period 1 fixed point. If we consider that the phase and action (both mod 1) are stationary, 

then we put 

K . 
()* l - Sln 2 7l' 1l = , 271' 

m, l : integers. (3.8) 

Thus period point is named accelerator modes because the action at the fixed point in-

creases by l for every iteration. The stability condition is replaced by 

and then 

(3.9) 

Islands exist around the periodic point and islands exist around islands in the Hamiltonian 

sy stems. The chaotic orbits are trapped by islands when the chaotic orbits approach the 

islands. When the chaotic orbit enters between islands, it is difficult to go out from this 

region because of the infinite hierarchical structure of islands. Then the motion is regular 

for a long time. The action J of chaotic orbit increases by constant interval for this 

interval. Then the diffusion is enhanced. The structure of islands around the accelerator 

mode changes as the parameter K is varied, as shown in Fig.21. The accelerator-mode 

islands are created around a stable periodic orbit {X;}, (t = 1, 2, · · · , Q) with period Q, 

which satisfies16) 

(3.10) 
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Fig.21 The structures of the islands around the accelerator modes for (a) K = 6.4717, (b) 

K = 6.5973, (c) K = 6.9115. 



where l is a nonzero integer. The parameter range in which the accelerator-mode islands 

exist is determined by the stability condition of the periodic orbit { x;} and is given by 

(3.9) for Q = 1. If a chaotic orbit sticks to the critical tori encircling the accelerator

mode islands for a long time, then the action J of the chaotic orbit increases by step 

Va = ±v,, (v, - lli/Q) every iteration on the average. Such sticking to the accelerator-

mode islands leads to an anomalous enhancement of diffusion in action.10), 16)•17) For the 

two-dimensional maps which are periodic in both action and angle, such accelerator-mode 

islands appear.1) 

§4. The behavior of a small cell in the phase space in the heating map 

In relation to plasma heating by the radio-frequency wave, it is known that chaotic 

ion motion arises due to the nonlinear interaction of the resonances between the cyclotron 

motion and the wave. Karney demonstrated that the equations of motion for ions in a 

lower hybrid wave can be well approximated by a two-dimensional conservative map and 

showed that the motion produced by this map becomes chaotic. 

The interaction between the cyclotron motion and the wave can be schematized as 

shown in Fig.22. The equations of motion for an ion in the plane {z, y} perpendicular to 

a magnetic field are 

( 4.1) 

where n is the cyclotron frequency. If the ion motion does not satisfy the wave-particle 
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E == Eoxcos(kxx- wt) 

y 

r 

X 

® B == Boz 

Fig.22 The motion of an ion with mass m and charge q in a coherent lower hybrid wave E 

with a perpendicular magnetic field B. The cyclotron frequency is 0( = qBo / m ) and 

the Larrnor radius is 1' ( = j z2 + il /0.). 
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X w/kx 
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Bo 

Fig.23 An ion orbit in phase space { �, z }. The ion is kicked at the resonance points on the 

line z == wfk.� so that {Bt,pt} is changed to {Bt+l,Pt+l} after one cyclotron motion. 



resonance condition z = w / k�, then the ion orbit draws almost a circle with radius r = 

(z2 + iJ2)112 jO. But if the Larmor radius r is larger than wfk�O , then the resonance 

points appear twice per one cyclotron motion, as shown in Fig.23. Then, taking the plots 

of the ion orbit {z{t),z{t)} at discrete times every cyclotron motion, Karney reduced Eq. 

{4.1) to the two-dimensional conservative map for Xt = {ut,vt}, (t = 0,±1,±2, ... )13): 

[ Ut+l ] 
= F(Xt) = [ Ut + d- A cos(27rvt) l 

Vt+l Vt + d +A cos{27rut+l) ' 

( 4.2) 

where Pt is the Larmor radius and Ot is the wave phase. This map is the so-called heating 

map, which gives the change of Pt and Ot every cyclotron motion. Equation { 4.2) is invariant 

under the transformation 

() � () + 0.5, p � p ± 0.5, { 4.3a) 

and the time reversal 

t � -t, () � 0.5 - ()' p � p. ( 4.3b) 

Hence the phase-space structure in { (), p} is symmetric around the vertical line () = 0.25, 

as shown in Fig.24. In the following we shall take d = 0.47. Then for A> Ac = 0.20565 ... , 

all the KAM tori which connect () = -0.25 to () = 0. 75 disappear so that the diffusion in 

Pt can occur,14) as shown in Fig.24{b). Thus in the parameter range A> Ac, there exists 

a widespread chaotic sea where Pt extends over - oo < Pt < oo . 

16 



1.5 (a) 

p 

1.5 
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Fig.24 Phase space {B,p} for (a) A= 0.188, d = 0.47 where exist the KAM tori which connect 

e = -0.25 toe= 0.75, and (b) A= 0.22, d = 0.47. All the KAM tori disappear for 

A> Ac = 0.20565 ... if dis fixed to bed= 0.47. 



There is also accelerator-modes because p is periodic by 0.5. The accelerator-mode 

islands are created around a stable periodic orbit {X;}, (t = 1, 2, · · · , Q) with period Q, 

which satisfies17) 

Q - 1 Q -1 
L {d - A cos(27rv;+d} = -n, L {d +A cos(27ru;+1+d} = m, 
i=O i=O 

( 4.5) 

where m and n are integers with m + n being a nonzero integer. The periodic points x; 

move to p = ±oo by iteration with definite velocity Va = (p;+Q - p;) / Q = ±v,, ( v, = 

lm + ni/2Q) in action p. The range of A in which the accelerator-mode islands exist is 

determined by the stability condition of the periodic orbit { x;} and is given by Az < A < 

A with 17) 1.1. 

Az = Max(lm- dl, In+ dl), 

( 4.6) 

for Q = 1. If a chaotic orbit sticks to the accelerator-mode islands, staying among the 

hierarchical structure of chains of small islands around the accelerator-mode islands for a 

long time, then the action Pt of the chaotic orbit increases by step Va = ±v, every iteration. 

In order to elucidate how the state point moves in the chaotic sea, let us take a 

widespread chaotic sea and consider the behavior of a small cell in it that represents 

numerous state points. Figure 25 shows the time evolution of a thin cell in phase space 
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Fig.25 Time evolution of a thin cell in phase space { (}, p} of the heating map for A = 0.50, d = 

0.47. The initial points of the cell at time t = 0 whose number is N = 30000 lie on 

the line { -0.25 ::; Bo < 0. 75, p0 = 0.0} uniformly. Though the cell is stretched and 

folded with increasing time, its measure is preserved. 



{0, p} of the heating map. The cell is stretched and folded with increasing time like a drop 

of milk in a cup of tea, leading to the mixing and diffusion of the cell. Such a complex 

motion is produced by most Hamiltonian systems with a few degrees of freedom. Indeed 

the mixing and diffusion of chaotic orbits in phase space have been realized to be the most 

fundamental feature of chaos since the discovery of the Lagrangian turbulence offl.uids.6),7) 

In a recent series of papers, we have started to formulate such physical processes as mixing, 

diffusion and energy dissipation in terms of the phase-space structures.4),s)"'12) 

In next section, we shall introduce statistical quantities to characterize statistical 

properties of such chaotic orbits. 

§5. Diffusion and mixing of chaotic orbits 

In the parameter range A > Ac there exists a widespread chaotic sea where chaotic 

orbits diffuse in action p. The adjacent points inside the chaotic sea become separated 

exponentially by iteration, and information on the position relation of the adjacent points 

is rapidly lost, leading to the mixing of chaotic orbits in phase space. Therefore we now 

discuss the statistical properties of the diffusion and mixing of chaotic orbits. 

§5.1 Diffusion and velocity spectrum ,P( v) 

We want to know how a thin cell in phase space diffuses with timet. Let us consider 

the diffusion of a cloud of numerous phase points Xt 's, whose number is denoted by N. 

For numerical experiments we take N = 105 phase points Xt 's which initially lie on the 

line { -0.25 � 00 < 0.75,p0 = 0.0 or 0.1} uniformly. If the decay of the time correlation of 
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Pt is sufficiently rapid, then the diffusion constant D would exist, leading to the variance 

< (Pn - Po ) 2 > = 2Dn (5.1) 

for n � 1, where < · · · > denotes the ensemble average over the N initial points Xo 's of 

the cloud, and n � N must be satisfied. 

We consider the time series of Ut = Pt+l - Pt which represents the displacement of 

Pt by one iteration. As mentioned in §3, 4, the chaotic orbits stick to the accelerator-

mode islands repeatedly. Since the value of Ut in the chaos border is far from its average 

< Ut >= 0, we first study the fluctuations of Ut about its average by introducing the 

coarse-grained velocity4) 

n-1 
Vn(Xo) = (Pn - po)/n = (1/n) L Ut· {5.2) 

t=O 

Its probability density is given by P(v; n) =< 8(vn(Xo)-v) >,where 8(g) is the 8 -function 

of g. As n � oo, Vn converges to the average v00(Xo) =< Ut >= 0 and P(v; n) decays as 

n � oo .  We want to know how P( v; n) decays with time n. We may first assume that the 

decay is exponential for large n so that there exists the velocity spectrum 4) 

,P(v) = lim 1/Jn(v) with 1/Jn(v) = -(1/n)log[P(v;n)/P(v;n)], (5.3) n-oo 

where v -< vn(X0) >=< Ut >= 0 and ,P(v) is a concave even function of v with ,P(v) � 

,P{O) = 0. If Ut is Markov, then P(v; n) is Gaussian with ,P(v) = v2 /4D. 
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Equation ( 5.2) leads to the variance 

n-1 
< (Pn- Po)2 > =nCo+ 2 L(n- t)Ct, (5.4) 

t=1 

where Ct = < Ut u0 > is the time-correlation function of Ut. In general, we have 

(5.5) 

for large n. If Ct has a long-time correlation of the form Ct ex t-(;S-1) with 1 < {3 < 2, then 

the second term of (5.4) leads to ( = 3- {3 > 1, so that (5.1) and (3.1) break down with 

D = oo, leading to 1/;( v) = 0. This will be called the anomalous diffusion. Indeed such a 

remarkable situation occurs when an accelerator-mode island exists, as will be shown in 

section §3, 4. 

§5.2 Mixing and expansion-rate spectrum 1/;(A) 

We want to know how a small cell in the chaotic sea is mixed with time t. The 

mixing is indispensable for the diffusion. Let us consider a small cell at Xt in the chaotic 

sea. The small cell is expanded in the local direction along the local unstable manifold 

and contracted along the local stable manifold, where the area of the cell is preserved for 

Hamiltonian systems. This process leads to the stretching and folding of the cell, as shown 

in Fig.25, causing the mixing of chaotic orbits. Therefore the mixing of chaotic orbits is 

characterized by the local expansion rate A1 (Xt) of a small cell along the local unstable 

manifold. 
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The local expansion rate of nearby chaotic orbits at Xt is given by4) 

(5.6) 

where u1(Xt) is the unit vector tangent to the local unstable manifold at Xt and DF(Xt) 

is the Jacobian matrix of the map F at Xt. The Liapunov exponent of the orbit { Xt} is 

given by its long-time average 

n-1 
Aoo(Xo) = n�� {1/n) L ..\1(Xt). (5.7) 

t=O 

We assume that the chaotic sea is ergodic. Then the Liapunov exponent Aoo(Xo) is 

independent of the initial point X0 for almost all X0 within the chaotic sea and is simply 

denoted by A 00, where A 00 = < ..\1(X0) > is positive. Nearby chaotic orbits around the 

islands in the chaos border are not easily separated from each other so that ,\1 (Xt) is 

nearly zero there and this situation lasts for a long time. This gives a remarkable effect to 

the statistical properties of ..\1(Xt). Then it is convenient to introduce the coarse-grained 

expansion rate 4) 

n-1 
An(Xo) (1/n) L ..\1(Xt) (5.8) 

t=O 

to know how ,\1(Xt) fluctuates about the Liapunov exponent A 00• The probability density 

for An(X0) to take a value around A is given by P(A; n) =< 6(An(Xo)- A) >, where 6 (g ) 

denotes the 6-function of g and < · · · > denotes the long-time average 

N-1 
< G(Xo) >= lim (1/N) L G(Xt). N--+oo (5.9) 

t=O 
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Similarly to the velocity spectrum (5.3), we introduce the expansion-rate spectrum4) 

,P{A) - lim '1/Jn{A) with '1/Jn{A) = -{1/n) log[P{A; n )/ P(A 00; n )] . n-+oo 

The variance of the sum Sn{X0) = nAn(Xo) with < Sn >= nA 00 is given by 

n-1 
< (Sn- < Sn >)2 > = nc; + 2 L(n- t)C;', 

t=1 

(5.10) 

(5.11) 

where C(' = < .\1{Xt),\1(X0) > is the time-correlation function of ,\1(Xt) = .X1{Xt)- A oo. 

In general, we have 

(5.12) 

for large n. If C;' has a long-time correlation of the form C;' ex t-(.8-1) with 1 < � < 2, 

then the second term of (5.11) leads to ( = 3- � > 1, further resulting in ,P{A) = 0 

for 0 < A < A 00• This will be called the anomalous mixing. Indeed such a remarkable 

situation occurs when a visible island exists, as will be shown in §6.2. 

The expansion-rate spectrum (5.10) and the variance (5.11) characterize the mixing 

of chaotic orbits from the statistical-mechanical viewpoint. 

§6. Numerical results 

In this section we shall show numerical experiments. Parameter values used in com-

putations are {a) A= 0.50,d = 0.47 and (b) A= 0.574,d = 0.47. Figure 26 shows the 

phase-space structure for ( a) A = 0.50 with visible islands where no accelerator-mode is-

lands coexist, and (b) A = 0.574 with visible islands where the accelerator-mode islands 

with Q = 3, v, = 1/2 coexist, as shown in Fig.26{b3). 
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Fig.26 Phase space {B,p} for ( a ) A 
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0.50, d 0.47 (the same parameter values as Fig.25 ) , 

and (bt) A 0.574, d 0.47. (b2) The magnification of the normal islands with 

v .. 0. (b3) The magnification of the accelerator mode islands with v .. 1/2. 



§6.1. Anomalous diffusion with ( > 1 

Figure 27 shows numerical experiments on the variance of Pn - Po = nvn ( X0) for 

A= 0.50, where no accelerator-mode islands coexist. Thus the linear n-dependence (5.1) 

is satisfied with a definite value of D unless accelerator-mode islands coexist. We have 

D ::: 0.086 for A = 0.50. The reason for this is that any orbit segment which sticks to an 

island and encircles the island does not contribute to the sum (5.4) since [vn(Xo)]torus = 

0 =< Ut >. Then (5.4) is determined by the segments of a chaotic orbit which lie inside 

the chaotic sea, and Ct has a finite correlation time so that (5.5) reduces to (5.1) with 

( = 1. Then the coarse-grained velocity ( 5.2) obeys the normal distribution 

P(v; n) = (n/4-rrD)112 exp[-nv2 j4D] ( 6.1) 

for n -t oo, according to the central limit theorem, leading to the normal spectrum '¢( v) = 

v2 j4D. Then P(v; n) dv = p(z) dz for z = fov with p(z) = J1/47rD exp[-z2 /4D]. 

Figure 28 shows numerical experiments on 1/Jn( v) and the scaling of P( v; n) for different 

values of n with n � 1, justifying the normal distribution (6.1). 

Figure 29 shows numerical experiments on the variance of Pn - po = nvn(Xo) for 

A= 0.574, where the accelerator-mode islands with Q = 3, v, = 1/2 coexist. This leads to 

( ::: 1.2, which is quite different from the normal case ( = 1. The variance can be analyzed 

in the following manner. A chaotic orbit in the chaotic sea sticks to the accelerator-mode 

islands repeatedly with an inverse-power distribution function /( r) of sticking times r; 

f(r) ex r-t-f3, (2 > j3 > 1) for r � 1, where exists a finite mean sticking time f.5) The 
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< (Pn- Po)2 > 

100 

0 500 n 1000 

Fig.27 < (Pn - p0 ) 2 > vs n for A= 0.50 with N = 105, where (5.1) is satisfied with D � 0.086. 

Xbs lie on the line { -0.25 � 80 < 0.75, Po = 0.0} uniformly. 
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Fig.28 ( a) 1/Jn(v) vs v and (b) P(v;n) vs fov for A= 0.50 with three plots for n = 

250(x),500(6), lOOO(o) and N = 105, corresponding to Fig.27. This justifies the 

normal distribution ( 6.1). 



n 

Fig.29 < (Pn -po)2 > vs n for A= 0.574 with N = 105, where (5.5) holds with ( � 1.2. X�s 

lie on the line { -0.25 :s; ()0 < 0.75, p0 = 0.1} uniformly. 



probability for the chaotic orbit to stick longer than n is given by4),s)I'V10) 

00 

W ( n) = L T f ( r ) ex n-(,8 -1), ( 1 < f3 < 2) (6.2) 

for n � 1. During the sticking to the accelerator-mode islands, we have Pn - p0 � ±nv •. 

Then, using the sticking probability (6.2), we have 

(6.3) 

for n � fc, since 3 - f3 > 1, where fc is the mean duration of those segments of a chaotic 

orbit which lie inside the chaotic sea.8) This leads to ( = 3- {3, which is consistent with the 

time correlation Ct ex t-(,B-1) fort � fc. Numerical experiments on the variance shown 

in Fig.29 lead to f3 � 3- ( � 1.8. It should be noted, however, that the value f3 � 1.8 is 

not universal and f3 takes different values between 1 and 2 for different A(> Ac).8) 

Figure 30 shows numerical experiments on the velocity spectrum 7/Jn ( v) defined by 

(5.3) for A= 0.574, where accelerator-mode islands coexist with stream velocity v. = 1/2. 

Four curves with n = 100, 200,400, 800 are shown for a cloud of phase points described 

above (5.1), where n << N must be satisfied. As n increases, the curve of7/Jn(v) becomes 

flat and approaches the square-well spectrum 

�(v) = {! for -v. < v < v. , 
for I vi > v •. 

(6.4) 

This asymptotic spectrum can be obtained theoretically by using the thermodynamic for-

malism of 7/;( v ) ,9) and represents the intermittent switching between the two long streams 
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shown with N = 105• Plots for \vi > v, = 1/2 are not visible, since their probabilities 

are extremely small so that their values of 1/Jn ( v) are extremely high . 



Ut = ±v, via the chaotic sea.4) According to the law of large numbers, the general form of 

P( v; n) would be given by 

logP(v;n) = -1/;(v)n- ¢(v) logn + a(v) 

for large n, where ¢(v) > 0. Then (6.4) leads to the power-law decay 

{ A(v) n-4>(v) 
P(v;n) = 

0 
for -v, < v < v, , 
for lvl > v, 

(6.5) 

(6.6) 

for large n. This is quite different from the normal distribution (6.1). In next section we 

shall discuss A( v) and ¢( v) explicitly. 

§6.2. Anomalous mixing with ( > 1 

Figure 31 shows numerical experiments on the convergence of An(Xo) to the Liapunov 

exponent A (X) for ( a) A= 0.50, and (b) A= 0.574. The convergence is very slow. The time 

scale n = 102 I'.J 103, however, would be enough for studying large fluctuations of local 

quantities about their average. Figure 32 shows numerical experiments on the variance of 

Sn(Xo) for (a ) A= 0.50 and (b) A= 0.574. These justify (5.12) with ( � 1.33 for (a) and 

( � 1.29 for (b), which are quite different from the normal case ( = 1. 

The variance can be analyzed similarly to the previous. A chaotic orbit in the chaotic 

sea sticks to the visible islands repeatedly with an inverse-power distribution function /( T) 

of sticking times r; f( r) ex: r-l-.8, (2 > � > 1) for T � 1, where exists a finite mean 

sticking time f.5) During the sticking to the islands, we have nAn- nA(X) � -nA(X) since 
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Fig.31 An (Xo) vs n( = 1 rv 107) for (a ) A = 0.50 and (b) A = 0.57 4, where ( a )A cc ::: 1.12 and 

(b )A cc ::: 1.35. 
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At � 0 in the chaos border. Then, using the sticking probability of the form ( 6.2), we have 

(6.7) 

for n � fc, since 3- � > 1. Figure 32 leads to � � 3- ( � 1.67 for ( a) and � � 3- ( � 1.71 

for (b). Thus the normal islands with v, = 0 make the mixing anomalous though they do 

not make the diffusion anomalous. 

It is quite interesting that, in the case of A= 0.574, � � 1.71 (( � 1.29) is different 

from (3 � 1.8 ( ( � 1.2) clearly. This means that the normal islands with v, = 0 produce a 

larger contribution to the variance (6.7) than the accelerator-mode islands with v, = 1/2, 

and the two kinds of islands give different values of the exponent, indicating that the 

hierarchical structures of chains of small islands around the two kinds of islands are different 

from each other. Then the smaller one of (3 and � ' i.e., � contributes to the variance (6.7) 

to produce a larger contribution with a larger exponent ( � 1.29. 

Figure 33 shows numerical experiments on the spectrum 1/Jn(A) defined by (5.10) for 

(a) A= 0.50 and (b) A= 0.574. As n increases, the curve of 1/Jn(A) converges to 1/;(A) = 0 

for 0 < A < A 00 • This is because the repeated sticking to islands with At = 0 brings about 

the orbit segments with 0 < A(X0) < A 00 and the probability for such orbit segments to 

appear decays slowly with n, obeying a power law for n---+ oo. This asymptotic spectrum 

can be obtained theoretically by using the thermodynamic formalism of ,P(A).8) 

According to the law of large numbers, the general form of P(A; n) for 0 < A < A 00 
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would be given by 

log P(A; n) = -,P(A)n- ¢(A) log n +a( A) 

for large n, where ¢(A) > 0. This leads to the power-law decay 

P(A;n)=A(A) n-<I>(A) for O<A<A(X) 

for large n. In next section we shall discuss A( A) and ¢(A) explicitly. 

§7. Anomalous scaling law for P(v;n) and P(A;n) 

(6.8) 

(6.9) 

In this section we shall discuss an anomalous scaling law of the probability distribution 

functions P( v; n) and P(A; n) for the anomalous diffusion and mixing . 

§7.1. P(v;n) for -v, <v <v, 

The probability distribution function of the coarse-grained velocity ( 5.2) would obey 

a scaling law of the form 

(7.1) 

for large n, where 8 is a scaling exponent satisfying 1 � 8 > 0, and p( z ) is an even function 

of z which depends on v and n only through z = n6v. The normal distribution (6.1) 

satisfies this scaling law with 8 = 0.5. Indeed if the time-correlation function Ct decays 

exponentially so that 1 � ( � 0 for ( 5.5 ), then the scaling law (7 .1) would hold with the 

scaling relation 8 = 1- ((/2) � 0.5.4) 

If Ct has a long-time correlation of the form Ct ex: t-Cf3-l), 2 > f3 > 1 so that ( = 

3-/3 > 1, then the scaling relation 8 = 1-((/2) = (/3-1)/2 breaks down. Feller's theorem 
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with three plots for n = 400( x ), 800(6), 1600( o ) and N = 105, where 5 � 0.44, 

f3 � 1.8. This justifies the scaling law (7.1) and the asymptotic form (7.3) with 
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1600( o ) for K = 6.9115 with N = 105 in the standard map, where 8 = 2/5, {3 = 

5/3. This justifies the scaling law (7.1) and the asymptotic form (7.3) with exponent 

1 +{3 = 8/3. 



of recurrent events18) suggests, however, that the scaling law (7.1) holds with 

8 = (f3 - 1) 1 f3, ( o. 5 > 8 > o) 

where lvl < v,. Inserting (7.3) into (7.1) and comparing with (6.6), we obtain 

A(v) ex lvl-(1+�), ¢(v) = f3- 1 

(7.2) 

(7.3) 

(7.4) 

for n.51vl � oo. Figure 34 shows numerical experiments on P(v;n)IP(v;n) vs z = n.5v 

and log{p(z)I.P(z)}-1 vs log lzl for A = 0.574, where f3 � 1.8, 8 � 0.44. The function 

p( z) ex P( v; n) I P( v; n) is given by a unique identical function of z = n.5 v for different 

values of n with n � 1, as shown in Fig.34(a), and its tails lie on the asymptotic form (7.3), 

as seen from Fig.34(b). Thus the scaling law (7.1) is justified with the anomalous scaling 

relation (7.2) and the asymptotic form (7.3). These results agree with the anomalous 

diffusion in the standard map, 10) as shown in Fig.35,36. It should be noted that much 

larger numbers for n and N are needed to obtain a better curve of log p( z) vs log I z I for 

z � ±oo, which is difficult for our numerical experiments. 

§7 . 2 . P(A; n) for A> 0 

The probability distribution function of the coarse-grained expansion rate ( 5.8) would 

also obey a scaling law of the form 

P(A;n)=nip(n5(A-A00)) for A>O. 
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IfC(' has a long-time correlation of the form C(' ex t-C.B-1), 2 > {3 > 1 so that ( = 3-� > 1, 

then we have the scaling relation 

8 = (� - 1) 1 �. ( o. 5 > 8 > o) 

For 0 < A < A 00, Feller's theorem indicates that 

Inserting (7.7) into {7.5) and comparing with {6.9), we obtain 

for n6(A- A 00) � - oo . 

(7.6) 

(7.7) 

{7.8) 

Figure 37 shows numerical experiments on log {P{A;n)/P{A00;n)}-1 vs log jn6{A-A00)j 

for (a ) A= 0.50 with 8 � 0.40, 1+� � 2.67, and {b) A= 0.574 with 8 � 0.42, 1+� � 2.71. 

Thus the scaling law {7.5) is also justified with the anomalous scaling relation (7.6) and 

the asymptotic form (7.7). 

For A> A00, we have p(�) ex exp [-a�116 ] , (a> 0) for�>> 1.18) This leads to 

(7.9) 

(7.10) 

where 0{ �) is the step function taking 1 for � > 0 and 0 for � < 0, and (+ = 2{ 1 - 8) = 

2/�.19) Since 2/� < ( = 3- �' the conditional variance (7.10) is masked in the variance 
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(5.9). This justifies the scaling law (7.5) and the asymptotic form (7.7) with exponent 

( a) 1 + � ::: 2. 6 7 and (b) 1 + � ::: 2. 71. 
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(6.7) by the fluctuations in the region A00 >A> 0. Figure 38 justifies (7.9) numerically 

for A= 0.574 with 1/8 � 2.38. Figure 39 justifies (7.10) numerically, where (a)(+� 1.20 

for A= 0.50 and (b)(+� 1.17 for A= 0.574. 

For 0 > A > Amin, Fig.40 leads to 

1/;(A) = -2A. (7.11) 

It has been shown that such a linear part with slope -2 is a universal feature of Hamiltonian 

dynamical systems, arising from the dynamics of the tangency points of the unstable and 

stable manifolds.19) 

§8. S ununary and remarks 

In this thesis, we have studied the complex motion of the frictionless pendulum whose 

motion looks like random and can not be predicted in future. We expect that, although 

each of the chaotic orbits is unstable and unreproducible, their ensemble and long-time 

average over each orbit are stable and reproducible. We have concretely studied the anoma-

lous behaviors of the diffusion and mixing of chaotic orbits due to the intermittent sticking 

to the islands of tori in terms of the fluctuations of the coarse-grained velocity vn(Xo) and 

the coarse-grained expansion rate An(X0) by taking the standard map and the heating 

map which exhibit their remarkable features clearly. It is well-known that the distribu-

tion function is Gaussian if the motion is completely random. It is interesting that the 

distribution function is very different from the Gaussian. 
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Table I is shows the comparison between the diffusion and mixing of chaotic orbits 

according to parameter A. 

Diffusion Mixing 

A(A > Ac) rvariance Distribution Function Variance Distribution Function 
of Sn of P( v; n) of Sn of P(A; n) 

Normal Islands <X n Gaussian cxn3-� Non Gaussian 

Accelerator-Mode ex n3-� Non Gaussian ex n3-� Non Gaussian 
Islands 

No Islands <X n Gaussian <X n Gaussian 

Table I. 

It is supposed that the distribution function of the sticking time of chaotic orbits 

around the torus is an inverse-power distribution f(t) rv t-l-� .5) W hat we wanted to study 

is the relation between the statistics which are the distribution function of sticking time 

of chaotic orbits, the variance and the distribution function of the coarse-grained velocity 

Vn and coarse-grained expansion rate An. We have found that the probability distribution 

functions for the fluctuations of vn(Xo) and An(X0) obey an identical anomalous scaling 

law of the form (7.1) and (7.5) with 0.5 > 8, 8 > 0, and the scaling exponents 8, 8 are 

given by (7.2) and (7.6), where (3,{3 can be obtained from the variances. The anomaly is 

brought about by the intermittent sticking of chaotic orbits to the islands of tori. There 

exist two kinds of islands of tori with streaming velocity v, > 0 (accelerator-mode islands) 

and v, = 0 (normal islands), depending on the bifurcation parameter A. Both of these 

islands produce a long-time correlation of chaotic orbits, leading to anomalous statistical 
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properties. 

The two kinds of islands, however, produce different contributions to the diffusion 

and the mixing. The statistical properties of the diffusion and mixing are different at even 

the same value of parameter A; indeed, we have f3 = 2, 8 = 0.5, ,8 = 1.67, 5 = 0.40 for 

A = 0.50, d = 0.4 7 where no accelerator-mode islands coexist, and f3 = 1.8, 8 = 0.44, ,8 = 

1.71, 5 = 0.42 for A= 0.574, d = 0.47 where accelerator-mode islands coexist. The reason 

is the following. For A = 0.50, the value ( � 0) of Vn in the chaos border is equal to 

the average value vn(= 0), whereas the value (� 0) of An in the chaos border is different 

from the average value A 00 ( � 1.09 ) . This leads to the fact that the diffusion is normal, 

whereas the mixing is anomalous. For A = 0.574, however, the value ( = ±v,) of Vn in 

the chaos border with the accelerator-mode islands is different from the average value 

vn( = 0), so that both the diffusion and the mixing become anomalous. The values of f3 

and ,8 are, however, different from each other, since the accelerator-mode islands and the 

coexisting normal islands have different structures of the islands-around-islands hierarchy. 

Indeed, the numerical experiments imply that the coexisting normal islands produce a 

larger contribution to the variance of Sn = nAn(X0) than the accelerator-mode islands, 

and the deviation 6.( = ( -1 = 2- f3 is produced by the accelerator-mode islands, whereas 

6.( - ( - 1 = 2 - ,8 is produced by the normal islands in the both cases of A = 0.50 and 

A= 0.574. 

Thus the statistical properties of chaotic orbits in a chaotic sea are drastically infl.u-
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enced by what kinds of islands exist in the chaotic sea. The sticking time is an inverse-power 

law which is slower than the exponential decay. This is due to the hierarchical structure 

of torus. But the relation between the geometrical structure of torus and the power f3 is 

not clear. 

These anomalous statistical properties are expected to hold for other two-dimensional 

maps which are periodic in action. We have shown that such anomalous features hold 

for both the standard map and the heating map.8)1"Vto) It is also worth noting that such 

anomalous properties of the mixing and diffusion have been found observable even in 

the time-dependent laminar flows such as oscillating Rayleigh-Benard convection with a 

large aspect ratio whose Poincare map is periodic in the roll position.11),2o) Thus it turns 

out that these statistical properties of the mixing and diffusion of chaotic orbits give the 

universal features which are generally valid for the widespread Lagrangian turbulence of 

fluids as well as the widespread chaos of the two-dimensional periodic maps. In order to 

establish this important fact, however, we need further investigation from the viewpoint 

of dynamical systems. 
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Appendix A. Derivation of the diffusion equation for two-dimensional maps 

In the nonlinear two-dimensional maps, the diffusion of the chaotic orbits occurs in 

action when the nonlinear parameter exceeds a critical value (for example, standard map 

for K > Kc( = 0.97163 ... ) and heating map for A > Ac ( = 0.20565 ... )). To study the 

statistical properties of the behavior of chaotic orbits, we consider the distribution function 

of only action direction. Let P( J; n) be the probability distribution function for J( Xt ) 

and suppose that the distribution function obeys a Markoff process. The evolution of this 

distribution function is given by the equation 

P(J, n + �n) = J P(J- �J, n)Wn(J- �J, �J, �n)d(�J) , (A.l) 

where W( J, n ,  flJ, fln) is the transition probability which the probability distribution func-

tion to take J at n increase by flJ after fl n. The expansion of PWn to second order is 

The transition probability satisfies the condition 

J W,.(J, n ,  �J, �n) d(�J) = 1. 

Thus we obtain the Fokker-Plank equation 

fJP fJ(BP) 1 fJ2(DP) 
fJn 

= 

- f)J 
+ 

2 f)J2 ' 
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where B is the friction coefficient and D is the diffusion constant. These are 

B(J) = -1 jdJ Wn(J,n ,dJ,dn) d(dJ) , 
dn 

1 J 2 D(J) = 

dn (dJ) Wn(J, n,  dJ, dn) d(LlJ) . 

Landau derived the following relation B and D 

1 dD B = 

2 dJ 

(A.5) 

(A.6) 

(A.7) 

for Hamiltonian system. The Fokker-Plank equation can be rewritten in the following 

diffusion equation 

The diffusion constant is 

{)p- {) 
(
D {)p) 

8n - {)J 2 {)J · 

1 J 2 D = 

2 (Jn- Jo) W(J, e, niJo, Bo, O) d(LlB) d(dJ) 

for n � oo. 

(A. B) 

(A.9) 

Appendix B. Derivation of the local expansion rate .A1(Xt) in the heating map 

To determine A1(Xt) we define a reference trajectory (ut, Vt)· We consider a neigh-

boring trajectory ( Ut + 8ut, Vt + 8vt ), where 8ut and 8vt are infinitesimals. Then, 8ut and 

8vt satisfy 

[ �:::�] = DF(Xt) [ �:;] , (B.1 ) 
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where 

[ 1 
DF (Xt ) = . 

-21rAs1n 27rut+l 

21r A sin 21rVt ] 1 - (27r A) 2 sin 27rut+l sin 27rvt 

for the heating map. Eigenvalues of matrix DF (Xt ) are 

The vector tangent to the local unstable manifold at Xt is 

{ .5u: � 21rA sin(21rv, ), 

6vt - ,\+- 1. 

The unit vector u1 ( Xt ) is 

--;:::.==1 == [ �:ti ] . v6u; 2 + 6v; 2 

(B.2) 

(B.3) 

(B.4) 

Since the local expansion rate .\t (Xt ) is the rate of increase of vector to the local unstable 

manifold at Xt, .\1 (Xt ) is given by 

(B.5) 

where 

Then the local expansion rate .\1 (Xt ) is given by 

(B.6) 
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Appendix C. Derivation of (6.2)5) 

Suppose that the total length which chaotic orbits stick to islands is T and NT is the 

number of segments of length r. Then we have 2:: rNT = T. The distribution function 

f( T) of sticking time r is given by 

f(r)= � . (C.l) 

Since the distribution function f(r) are therefore normalized so that l:rf(r) 1, the 

probability which has segment length r is 

(C.2) 

Then the probability for the chaotic orbit to stick longer than n is given by 

00 

W(n) = Lrf(r). (C.3) 

If we suppose that the distribution function obeys inverse-power law f( r) ex: r-l-f3, we 

obtain 

W ( n) ex: n- (f3 -l) (C.4) 

by integrate ( C.3). 
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