
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Studies on the Learnability of Formal Languages
via Queries

坂本, 比呂志
Graduate School of Information Science and Electrical Engineering, Kyushu University

https://doi.org/10.11501/3147889

出版情報：九州大学, 1998, 博士（理学）, 課程博士
バージョン：
権利関係：

Studies on the Learnability of Formal
Languages via Queries

ABSTRACT

Studies on the Learnability of Formal Languages
via Queries

Hiroshi Sakamoto

Kyushu U niv rsity

1998

Th pres nt th sis d als with the l arnability of formal languages via queries based

on Angluin' [6] learning protocol. Assuming a class of concepts and a finite or count­

abl hypothesi space corresponding to it, for ev ry unknown target concept, a learning

algorithm is r quired to output a hypothe is that correctly describes the target using

additional information provided by membership queries and eq'uivalence queries.

For such 1 arning problems, two oracles for membership and equivalence queries

are a sumed, i . . , for the m mbership qu ry, one oracle exactly answers any question

"I thi exan1ple a member of the target concept?" and for the equivalence qu ry, the

other xactly an wers any question "Does this hypothesis correctly describe the target

concept?". The equivalence oracle returns a counterexample for the hypothesis if it

does not.

First, languag l arning from good examples is investigat d. The concept class stud­

ied i a subclass of cont xt-fr languages because of their rich pot ntial of application.

On 1 arning via qu ri s, the capacity of an equivalence query may be too powerful and

not r a onable sine the quivalenc probl rn for context-free languages is undecidable.

On th other hand, it is also tru that additional information sometimes makes lan­

guage learning ffici nt. Thu , th aim of this re arch i to pres nt a natural learning

mod l by combining l arning via queri with l arning from good examples. Inst ad

of quival nc qu ries, a method for providing good examples is applied to the class of

paTenthesis languag (cf. [44]). hese good exampl s are called characteristic stTings.

A uming the setting of m mb r hip queri s and characteristic strings for the class of

parenthesis grammars, it is shown that th re exist a polynomial-time algorithm to

learn every parentbesis language.

Second, the leaTnability of finite-m mory automata via queTies is studied. Learning

th regular languag s is on of the ultimate objectives learning theory. Although

the learnability of the regular languag s via queries w.r.t. the hypothesis space of

deterministic finite automata [4], there are very f w results for other hypothesis space,

e.g., r gular expressions and nondeterministic finite automata. The aim of this research

is to present a learning algorithm for regular languages using a new hypothesis space,

i.e., the finite-memo-ry automata (cf. [32]). A finite-memory automaton is assumed

to us -registe-r to store symbols, and the number of these registers is fixed a p-rio-ri.

Such an automaton is defined over an infinite alphabet and for any finite alphabet

A, th languag accepted by the automaton is equivalent to a regular language over

the alphab t A. Thus, we start with the natural question whether finite-memory

automata r pr sent regular languages than finite automata more compactly. This

cmnpactn ss is indirectly shown by the negative results for computational hardness of

d cision probl ms for finite-memory automata, and the learnability of the automata is

exp t d to b difficult. Th n, we investigate the learnability of a subclass of finite­

mern ry automata referred to as simple dete-rministic finite-memory automata. Almost

all omputational probl rns are intractable ven if restricted to the class of simple

det rministic automata. Thus, the learnability of this simple deterministic class is also

difficult. However, we show that ther exists a learning algorithm for this class using

memb rship and equivalence queries.

Finally, language lea-rning f-ro·m incomplete data is studi d. There is another hier­

archy of formal languages the so-called patte-rn language (cf. [1]). The aim of this

study is to analyze the contribution of negative examples to the learnability of pat­

t rn languag s. Several negative results concerning the feasibility of the consistency

probl m for pattern languag s hav b en obtained previously (cf. e.g., [1, 46, 73]).

H r the consistency probl m is d fined a follow . Given any set of labeled exam­

ples, d cid wh th r th re xists a pattern gen rating all positive xamples given and

none of the negative exampl s. Th s results provide substantial evid nee for the dif­

ficulty of learning the patt rn languag s consistently w.r.t. the hypothesis space of

all pattern . How ver, th re i an int r ting case r maining op n, i.e. the case of

one-variable pattern languag s. In thi cas th consist ncy problen1 is n ither known

to b NP-complete nor to b in P. Whil thes r ults support th difficulty of learning

patterns from both positiv and n gativ example , there is an exp ctation for effective

learnability of th class of one-variabl pattern languages, and it is an interesting open

question whether th con ist ncy problem is d cidable in tim polynomial.

In ord r to approach a solution of this probl m, incomplet strings are introduc d.

This notion is an application of the framework of monotone extensions introduced by

Boros et al. [14] for th s tting of learning Boolean functions. An incomplete string

is assumed to contain unsettled symbols denot d by a wild card * which potentially

11

n1atch s with every symbol. Thus, by fixing any finite alphabet E plus *, the consis­

tency probl m is generalized informally as follows. Given two disjoint sets T and F of

strings in (E U {*})+,an algorithm must decide whether there exists a one-variable pat­

tern consistent with each strings in T and F with respect to several criteria of suitable

settlements for these wild cards*· The computational complexity of these problems is

investigated, and it is concluded that incomplete strings make the consistency problem

difficult, i.e. almost problems studied are shown to be NP-complete.

111

ACKNOWLEDGMENTS

This res arch was supported by a JSPS (Japan Society for the Promotion of Sci­

enc) Research Fellowship for Young Scientists. Th results in this thesis were or will

b partially publish d in the proceedings of ALT'9.S, '97 and '98, the proceeding of

MCU'98, the Bulletin of Informatics and Cybernetics, and in Theoretical Computer

Science. I am thankful to all editors, program committees, the anonymous referees,

and th publi hers.

At ALT'95, the chairman of my session was Prof. Klaus P. Jantke. His smile relaxed

n1c and my pr sentation was successfully completed. At ALT'97, I had the opportunity

to meet Prof. Ming Li. He s riously listened to my talk in front of me. At MCU'98,

the progra1n committee chair Prof. Maurice Margenstern, gave us a warm welcome.

Prof. Markus Holzer was interested in our study and he bombarded us with questions

one after anoth r. We are deeply grateful to Prof. Volker Diekert for his careful proof

r ading of our u bmission to this colloquium and to the TCS special issue. At ALT'98,

I got respon to my study from Prof. Frank Stephan and his colleagues as soon as I

came back to Japan. They solved an important open probl m, and I am very glad to

have their permission to include the new result into my publication.

I invcstigat d a theme tog ther with Daisuk Ikeda. H got married this month,

and I shall wish th m good luck. I appreciate the benefits from Miss Noriko Sugimoto,

Mr Eiju Hirowatari, and other coll agu s. My incere gratitude is owing to the teach­

ing staff of Departm nt of Informatics, Kyushu University. I further give my gratitude

to m mbers of our monthly " ever minar". This seminar is supported by Prof. Set­

suo Ari kawa, Hiroki Arimura Hiroki Ishizaka, Ayumi Shinohara, Takeshi Shinohara,

Masayuki Takeda, and Thomas Zeugrnann.

This th sis was publi h d with h lpful and a curate omments from Prof. Fumihiro

Matsuo. I want to xpr s special thanks to my sup rvisor, Prof. Thomas Zeugrnann,

who had guided me for a long time. Finally, my deepest thanks go to my family.

Octob r 31, 1998

Fukuoka

IV

Hiroshi Sakamoto

Table of Notations

In this the is, w will use s veral notations which may be not standard. The

following tabl onsists of these notations. Moreover, we provide another tabl listing

computational problems as well as their abbreviations, and locations in this thesis.

J Expression

log n

lxJ; fxl

f:A-+B

small Greek letter

A*

IIAII; lal

A\ Band A EBB

1N

L: = {a, b, . . . , c}

n = { ai I i E IN}

calligraphic fac

I Usage

max { n I n :::; x}; min { n I n � x}

a partial function from domain A to range B

potentially any string e.g., a, /3, . . . , 1

the free monoid over th set A

cardinality of set A· length of string a

difference and yn1metric difference of sets

the set of all natural numb rs

th et of all n-ary Boolean vectors

a finite alphabet

an infinit alphab t

a cla of r pre entation e.g., P and Pk

small capital face a computational probl m, e.g., SAT and CvP

capital bold italic face nam of an algorithm, e.g., A

v

Table of Computational Problems

W shall summarize representative decision problems in this thesis, where consis­

t ncy problem is equal the following E, and problems for finite automata are omitted

by analogy with finite-m mory automata.

I Problem I Abbreviation

Boolean formulae and graphs:

sati fiability for Bool an formulae SAT

satisfiability for 3-CNF 3-SAT

satisfiability for circuits circuit SAT

circuit value CVP

monotone circuit value monotone CvP

3-colorability of graphs 3-CLR

Automata:

memb rship for FMAs/ DFMAs MEM/MEMD

non-emptiness for FMAs/ DFMAs -,EMP j-,EMPD

inequivalenc for FM / DFMA

Patterns:

exist ntial membership

univ rsal memb rship

consistent-, robu t-, and ordinary­

ext nsion

restrict d consist nt extension

VI

3MEM(7r w)

CE, RE, and E

RCE

Page I

1 9

90

20

20

52

95

52

57

61

86

89

85

87

List of Figures

3.1 A subtree and co-subtree on a node of a tree.

3.2 Replac ment of subtrees on a node.

3.3 he skeletal d scription of a tre .

3.4 An image of sk leton

4.1 A DFMA and the corresponding DFA .

4.2 The FMA A computed in Example 4.2.1.

4.3 The FMA A reduced from G in Example 4.2.2.

4.4 The DFMA A computed from G in Example 4.2.3.

4.5 The procedure for deciding consistency of simple DFMAs.

39

40

40

42

51

55

60

62

65

4.6 A simple DFMA with the initial assignment of empty two registers. 67

4. 7 The procedure for finding a p rmutation clos d DFA. 70

4. The procedure for computing a simple DFMA

4.9 A permutation clos d DFA and a corresponding simpl DFMA.

4.10 The algorithm for a target simple DFMA

4.11 Comparing th number of stat s of a DFA and a DFMA.

5.1 Negative examples comput d from a 3-CNF C of n variables . .

6.1 Pattern automata.

Vll

72

73

75

78

91

100

Contents

1 Introduction 1

2 Preliminaries 12

2.1 Basic Notations and Definitions 12

2.2 Formal Languag s . 13

2.3 Decision Probl ms 18

2.4 Language Learning via Queries 22

3 Learning Parenthesis Gran1mars 30

3.1 Characteristic Examples 31

3.2 Learning Par n thesis Languag s 37

3.3 Discussion 45

4 Learning Finite-Memory Automata 47

4.1 FMAs and DFMAs . . 48

4.2 Decision Probl ms for FMAs . 52

4.3 Learning Simple D FMAs 62

4.4 Discussion . . 77

5 Learning One-Variable Patterns 81

5.1 Consistency Problem 82

5.2 Variants of Extension Problem . 84

5.3 Discussion 96

6 Conclusion 98

References 103

Vlll

CHAPTER 1

Introduction

The pr s nt thesis studies learning based on Angluin's [6] framework of learning via

queries. Let � = {a, b, . . . , c} be any finite alphabet. We write �* to denote the free

nwnoid over . The underlying learning domain is �*. The concepts to be learned

are recursively enumerabl subsets of �* i.e., any r.e. language in R(�*) may be a

target concept. Subclasses of R(�*) are referred to as concept classes. Throughout this

thesis, we shall mainly study indexable concept classes. A language class £ � R(�*)
is said to be indexable provided all L E £ are non-empty and there exists a recursive

enumeration (Lj) iElN of all the languages in £ as well as a recursive procedure f such

that for all j E lN and all s E �*,

J(j,s)= { �: s ELi
otherwise.

Prominent xampl s of ind xable cla se ar the r gular languages, the context-free

language , and the pattern languages. he indices j can be thought of as suitable finite

encodings or, synonymously finite representations. For xample, the regular languages

can b represented by finite automata or regular expr ssions whil pushdown automata

or cont xt-free grammars may s rv as repres ntations for the context-free languages.

Pattern languag s are most usually repr nt d by patterns. It hould be considered

that all these repr sentation classes constitute themselves indexable class s in a normal

way. Therefore, in th following, we shall always assume all language classes and all

representations for them to be indexable.

Now, learning is a proc ss of identifying a target language automatically by means

of a finite repres ntation for it. More formally, assuming a class £ of languages and

1

a class H of representations corresponding to £, a target L E £ is arbitrarily chosen,

and information about L is provid d to an algorithm as input.

The algorithm is said to learn £ if for every target L E £, it stops and outputs

a hypoth sis h E H which is a representation for L. Moreover, we are interested in

efficient l arning: the running time of the algorithm for every concept L E £ can be

stimated by th size of a minimum representation h for L and by the size of input in

binary. For a concept class, when we construct a learning algorithm satisfying the cri­

t rion of fficient learning a problem arises naturally-From what information does the

alg01�ithm l a1�n? Throughout this thesis, we mainly consider active learning. That is,

the learn r obtains information about the unknown target by asking queries. The mo­

tivation for a th or tical study of qu ry learning goes back to system implementations

that allow a computer to ask its user.

For instanc , Sammut-Banerji's (60] expert system uses questions about specific

exampl s as part of its strat gy for efficient learning a target concept, and Shapiro's [62,

63, 64] algorithmic debugging system makes a variety of questions possible to a user to

pinpoint errors in Prolog programs.

Th e intellig nt systems stimulated the theoretical analysis of exact learning, and

the framework of Angluin 's [6] query learning model has been introduced to model the

ituation in which a l arn r can put qu ri s to a teacher by oracle Turing machines. She

tudied th pow r of s veral types of queries, r ferred to as membership, equivalence,

subset sup rset, disjointn , and xhaustiv n s. In particular the m mbership and

quival nc query attract d consid rabl attention during the last decad .

Th 1 arning protocol using m mb rship and equivalence queries is referred to as

minimally adequat teach r. Consider the problem of identifying a target language

L E £ from a finit or countabl hypoth sis space H = h0, h1,.. .. Then, a 1 arn­

ing algorithm ha ace ss to a fixed set of oracles that correctly answer the following

questions.

Membership: Input IS an lement x E �* and th output IS yes if x E L and no

oth rwise.

Equivalence: Input is an index n In the hypothesis space, and the output is yes

if Ln = L and no otherwise. Moreover, if the answer is no, then an element

2

x E Ln EB L, called a counterexample, is returned, where Ln EB L is the symmetric

difference of Ln and L.

For xample, 1 t £ be the set of all regular languages L � �*, and let the class

of det rministic finit automata, DFAs, be assumed to be hypothesis space for the

learning algorithm. The goal is to identify a correct DFA which accepts the target

language L chosen by the teacher. For each w E �*, the membership oracle answers

wheth r w E L, and for each DFA M the equivalence oracle answers whether L =

L (M) . If not, then it returns a counterexample w for the hypothesis M such that

wE L EB L(M).

The choic of a hypothesis spac 1i plays an important role in the running time

of a query l arning algorithm A for a class £ of languages. A class £ is said to be

l arnabl in time polynomial using the specified queri s w .r. t. the hypothesis space 1i

if for ev ry target L E £, the total running time of A is bounded by a polynomial

in n and m where n is the size of a minimum h E 1i for L and m is the length of a

longest counterexample returned. The query model is powerful to learn various classes

of formal languages. Angluin [4] showed that the cla s of regular languages is learnable

in tim polynomial in the parameters using equival nc and membership queries w .r. t.

the hypoth sis space of DFAs.

After h r work a numb r of r earch rs succeeded to expand her result, th reby

still achieving polynon1ial-tim learning algorithm, e.g. the learnability of the class of

language ace pt d by one-counter automata by B rmann and Roos [12], even-liner

grammars by Takada [70], and simple deterministic grammars by Ishizaka (29]. These

classes of formal languages ar ubclasses of the cont xt-fre languages which have

attracted a great deal of attention b caus of the rich potential of application.

For exampl , it is w 11-known that all programming languages in BNF (Backus

Naur Form) ar mainly d fined by cont xt-fr e grammars, e.g., C and PASCAL.

Furthermore, Shinohara [67] developed a data entry system for text data base. He

investigated the learnability of regular pattern languages in the framework of Gold's (21]

identification in the limit. Although different data bases usually have different formats

for records, e.g., "Author", "Title", and "Year", his system effectively learns different

types of these formats using the patt rn inference techniques.

3

We can find other examples of wide application of context-free languages nearby.

An HTML document on web-page is defined by a parenthesis gramrnar that is also

context-fre sin e a source file consists of structural text parenthesized by a pair of

beginning tags and the corresponding ending tags, e.g., < html> text< /html>. When

consid ring the setting of equivalence queries, the answer to an equivalence query is

carried by users in real application.

How v r, this setting would make the burden too heavy for users because we need

nough information about the target beforehand to provide a correct answer to an

equival n query. Moreover, it seems that equivalence query is not reasonable accord­

ing to hypothe i spaces, since the equivalence problem of two context-free grammars

con1pu tationally undecidable.

Sine m mb rship queries alon are too weak to achieve powerful learning algo­

rithm (cf. .g., [6 8]), various authors have considered suitably chosen finite sets of

strings as information given to the learner. Intuitively, all thes sets can be thought of

as sets of good examples. For instance, Angluin s live-complete ets [2], Ibarra-Jiang's

lexicographically first string [28], and Oncina-Garda's characteristic set [49] for DFAs

and Ibarra-Jiang s shortest trings [28], Marron-Ko 's positive initial sample [43], and

Marron's single positive example [42] for pattern languages.

ate that humans al o 1 arn mainly from good examples, or at least much more

effi iently. Ther for w shall continu along this lin . The motivation of this study

to provid good xampl s com from the cla of parenthesis languages (cf. [44]). A

parenth i languag is a context-fr languag poss ing a grammar in which ach

application of a production rule introduc s a uniqu pair of parenth es, delimiting

th scope of that production. Par nthe is languages ar nontrivial since only one kind

of par nthesis is used, and they are on of rich clas s for which equivalence problems

are decidable (cf. [44, 36]).

How v r, it is not known wh th r th equival nc probl m for given two parenthesis

grammars is in P. Thus, inst ad of equivalenc qu ry, we propose a setting to provide

polynomially many good xampl s to 1 arning algorithm, and present a learning model

by combining membership qu ry with good examples. Our idea comes from the fact

that each parenth sized string pre erv s the structur of its derivation, in other words,

a pair of parentheses in the string corresponds to an application of a production rule.

4

A good example of a parenthesis grammar G is, intuitively, a string derived by

as n1any production rules of G as possible. L t L be a target parenthesis language

defin d by a grammar G. The learning algorithrn takes good examples of G and

outputs a grammar G' such that L(G) = L(G') using only membership queries. The

total running tim is bounded by a polynomial in the number of productions of the

targ t as w ll as in the length of a longest string provided to the algorithm. From the

r suiting correctness of the algorithm, we conclude that good examples contribute to

1 arning par nth sis grammars without equivalence queries.

As w shall saw in the above paragraph, when a target parenthesis language L is

l ted good xan1ples are decided by a grammar G such that L = L(G). Thus the

r sult d p nds on the hypothesis space of parenthesis grammars. This phenomenon is

al o found in other results in language learning, for example when dealing with the

clas of r gular languages. It is well-known that regular languages are learnable in time

polynomial w.r.t. the hypoth ses of DFAs, however, few results were obtained for other

hypothesis spac (cf., e.g. [4, 15, 75]). That is, both successful! arning and efficiency

of learning may d p nd on the hypothesis space cho en. This study is motivated by

al o the above problem.

There is no polynomial-time algorithm to decide whether two regular expre wns

are in qui al nt* v n if only U, · , and 2 ar allowed where e2 is a regular expression

equal to for v ry r gular xpression e. imilarly, inequivalence problem for finite

automata is PSPA E-compl t (cf., .g., [69 23]). Th s equivalence oracles are too

powerful, and it i not r a onabl to assume such orad s for the e hypothesis spaces.

Then, we consider anoth r hypoth is space consisting of finite-memory automata,

FMAs for r gular languages (cf. [32]).

Compared with finit automata, the cliff r nee of definition is that an FMA can use

k registers to m moriz k symbols. It is pos ibl to r place the content of a register

by any input symbol. Th transition is defined by only the tate and the address of

a register which contains th same symbol to input. Thus, FMAs ar released from

sp cification of alphabets of its definition. That i , an FMA potentially represents a

language over an infinite alphabet.

Assuming the hypoth sis spac of all FMAs, the following question arises naturally:

"'This problem is NEXP-complete [69], wh re NP-::/= NEXP = Uk>oNTIME[2n
k

].

5

Can finite-memory automata represent regular languages more compactly than finde

automata? Thi question is partially solved by mabng a cornparison of the complexity

of s veral decision probl ms between finite-memory automata and finite automata. The

con1plexiLy of studied decision problems is also interesting in its own right, and has

been remained open in [32]. However, unfortunately, the resulting intractability of

alrnost all d cision problems supports the hardness of the learnability of th full class

of finit -In mary automata.

Th r fore, w introduc the class of simple FMAs and investigate the learnability

of imp! DFMAs via membership and equival nee queries, where DFMA denotes a

det rmini tic FMA (cf. [32]), and an FMA is simple if its all registers are initially

empty. Although th studied decision problems remain intractable for the restricted

clas , w construct an algorithm to learn each target language. This algorithm is

ba d on Angluin 's [4] observation table t chnique. The hypothesis space assumed is

all simple DFMAs, and it is allowed to use membership and equivalence queries for

each target language over an infinite alphabet. For every target language L accepted by

a simple DFMA, our learning algorithm terminates and outputs a correct hypothesis

A such that L = L(A) over the infinite alphabet.

We have m ntion d learning subclasses of languages in the Chomsky hierarchy at

the points: th confid n of a hypoth i proposed by an algorithm and the conver­

g nee of a hypoth s s into a corre t one. Th form r is solv d by equivalence oracles for

th s hypothe is pa but the latter is not becaus these are independent problems

each oth r for in tanc , th re is other int r ting hi rarchy of the clas es of pattern

languages (cf. [1]).

L t � be any finit alphab t, and l t X = { x1, x2, .. . } such that � n X = 0.

A patt rn is a non-null string ov r U X . L t f b a nonerasing homomorphism

from patterns to patterns. If f(a) = a for all �' th n f is called a substitution. The

language of a pattern 7f is th s t L(1r) = {wE�+ I w = j(1r), f is a substitution} ,

wh re �+ = �* \ { c } for th null string c. h class of all patterns is denoted by P.

For the class P, ther is no polynomial-time learning algorithm even though mem­

bership and equivalence qu ri s ar assumed (cf. [6]). Thi is because in a worst case,

a learner must receiv xponentially many counter xampl s to achieve a correct hy­

pothesis when a targ t pattern language is a singleton. Mor over, learning pattern

6

languages is still difficult even if we assume a target is not singleton. This difficulty

is relat d to the computational problem: assuming the hypothesis space P, and given

finit sets T and F of strings, decide whether there is a pattern language L(1r) such

that T � L (1r) and F n L(1r) = 0. The samples T and F are called positive and

negative r sp ctively. This problern is r ferred to as the consistency problem for P.

The computability and learnability of patterns have been widely investigated and

several n gativ results were shown (cf., e.g., [1, 31, 46, 61, 73]). From these results it

follows that 1 arning pattern languages consistently is very hard, nevertheless not all

possibiliti s disappeared. An interesting question that remains open is the consistency

probl m for th one-variable patterns. The class of one-variable patterns, denoted by

PI, is th t of all patterns over L:UX such that JJXJJ::; 1. It is neither known whether

this probl rn i in P nor NP-complete. In order to shrink the gap of our knowledge

cone rning th complexity of the consistency problem, we shall relax this problem step

by step and w analyze th complexity of each of the resulting problems.

The idea of relaxation of this problem comes from the motivation of incomplete data

given in Boros t al. [14] which is helpful when looking at monotone exten ions from

the view point of how noisy data may influenc the complexity of learning. Since real

world data may be noisy, allowing strings to contain indefinite values can be modeled

by introdu ing a wild card * as a placeholder. Giv n samples T and F of strings

containing* w provid th following interpr tations for these indefinite values w.r.t.

th consistency probl m for P1. The ordinary consi t ncy problem for PI is equivalent

to the case that any giv n string contains no wild card.

If a string w contains at 1 ast one *, th n w consider an assignment for w such

that it replac s ach * by a constant and do not replac any constant. Then, the

first problem is wh th r th r exist a pattern 7r E P1 and a suitable assignment for

each string in T U F su h that 1r is consist nt with all the assigned strings. The second

problem is wheth r ther xi t a patt rn 1r E PI such that 1r is consistent with all the

assigned strings what v r assignment for T U F we choose.

In order to study the above problems in detail, we also consider the restricted

version for th m such that th positive sampl consists of only constant strings. Con­

sequently, we con lud that th first probl m is equivalent to the ordinary consistency

problem w.r.t. log-space reductions if the positive sample is restricted. Mor over, all

7

other problems are intractable. In particular, the proof of the NP-completeness of the

first probl m was provided in [68]. This problem was an open question of this study

and th author had expected that it is also equivalent to the consistency problem.

We have discussed the outline of thi th sis, now, explain the technical part for each

them . Th following chapter consists of the bases on formal languages, computational

complexity and learning theory, which are necessary for our discussions. Recent results

of languag learning via queries ar also presented in this chapter.

In Chapt r 3 we deal with the announced learning parenthesis languages us1ng

memb rship and good examples. Let G be a context-free grammar over a set � of

terminal and a s t N = N' U { (,)} of non terminals. Then, the grammar G is said to

be par nth iz d if each production rule A -+ a of G satisfies that A E N', a = ({3)

and {3 E (I: U N')*. On a parenthesis grammar, for each usage of a production rule,

xactly on pair of ' (' and ')' is derived in the leftmost and rightmost positions of

a string. H nc for any parenthesis grammar G the language L(G) becomes to be

unambiguou t, i . . , for every w E L(G), there exists exactly one leftmost derivation of

G for w. Thi point is one of the critical parts of our study.

Th unambiguity of a target grammar G = (N, �
'

P S) can be considered that a

string w derived from G preserves the structure of its derivation tree T. The task of

the learning algorithm is to d id all labels of internal nod s of T. A string w is said

to b a charact ristic string of G if all production rul s of G are used to derive the w,

but not all parenthe is grammars have such a tring.

Thus we refine th notion of good exampl for G by partitioning the grammar

G. A grammar G' (N', �', P', S) is said to be a sub-grammar of G if N' � N,

E' � �
'

and P' � P. W prov that ther are polynomially many sub-grammars

G1 ... , G k for any con t xt-fr (of cours par nthesi) gran1mar G such that Gi derives

at 1 ast one characteristic string Wi for all i = 1, . . . k. Thus we assume that these

strings w1, ... , wk are giv n to the 1 arning algorithm and show that ev ry parenthesis

grammar G is learnable using th charact ristic examples and membership queries in

time polynomial inn and m, wh re n = liP II and m =max{ lwill i = 1, . . . , k }.

In Chapter 4, we study the 1 arnability of simpl DFMAs via membership and

t Although a context-fr e grammar is inherently ambiguous, Sakakibara (53] avoided this difficulty
using special strings represented by trees for learning context-free grammars.

8

equivalen e queries. Let lN be the set of all natural numbers. Then an FMA defines a

language over the infinite alphabet n = { ai I i E IN}. Let � be any finite subset of n,

and let A be an FMA. The language L(A) n �* accepted by A is a regular language,

i.e., the cla s of languages of FMAs over the finite alphabet � is equivalent to that of

finite automata over �.

The deterministic class DFMAs is a subclass of FMAs. One easily shows that this

class is clo d under complem nt, but not closed und r union and intersection (cf. [32]).

Moreover, th r exists a language L accepted by an FMA but the language n* \ L is

not. Thus, it is traightforward that the deterministic class is properly included in the

g neral cla s (cf. [32]). Several interesting closure properties of both classes of finite­

memory auton1aLa w r investigat d in [32] however, there is a lack of investigation

on decision problems for them.

As it is well-known, the d cision problems for finite automata referred to as mem­

bership, non- mptiness, and inequivalence are complete for the classes NLOG NLOG,

and PSPACE, r spectively, and the corresponding problems for the deterministic fi­

nit automata ar compl te for DLOG LOG and NLOG respectively. On the other

hand, we prove that the membership and non-emptiness proble1ns for the class of

FMAs are both NP-cornplete. Furthermore, for the class of DFMA , the membership

probl n1 i P-compl te and th non-emptiness probl m is P-complete.

From th se r suits, we observe that, in the polynomial hierarchy, the complexity

of th studi d probl ms for FMAs hape a counterpart of th corresponding problems

for finite automata. Thus, the inequival nc problen1 for the deterministic and nonde­

terministic cla s s are xpected to b NP-complete and NEXP-complete resp ctively.

While the inequi valenc problem for th d t rmini tic cla s is in PSPACE and its

NP-hardn ss is prov d the probl m wh th r it is in P remains open.

We next turn our att ntion to the 1 arnability of a subclass of FMAs via membership

and equivalenc qu ri s. We introduc the class of simple DFMAs, and for every

targ t, we assum m mbership and quival nee queries to the learner. Even though

the alphabet n is infinite, we conclude that th setting is reasonable since, as we have

mentioned above, both r lat d decision problems for the class are decidable.

When a counterexample is returned, our 1 arning algorithm constructs a finite

automaton M based on the notion of observation table [4], and in the next stage, this

9

algorithm successively translates M into a simple DFMA A such that L(A) n I:* =

L(J\;1), wher I: is a set of all symbols in counterexamples returned so far. Consequently,

we show that the class of languages accepted by simple DFMAs is learnable using

m mbership and equivalence queries w .r. t. the hypothesis space.

In Chapter 5, the difficulty of the consistency problem for one-variable patterns is

studied. IL is known that consistency problem is very hard for almost all subclasses

of the clas P (cf., e.g., [1 46, 73]), however, no one has been proved its intractability

within P1 yet. Thus, we analyze the consistency problem as well as its variants for the

cla s P1 w.r.t. incomplete examples defined as follows.

An incomplete exampl is any string over I: U { *} , where the * potentially matches

with ev ry ymbols. We assume the s t of all functions f : (I: U { *})+ -+ I:+ such

that it maps very * in a string to a constant in I: and maps any constant in the

string to it elf. Then, given finite positive and negative samples T, F � (I: U { *})+, an

algorithm must decide whether there exists a 1r E P1 and a function f defined above

such that 1r is consistent with f(T) and f(F), where f(T) = {f(w) I wET} and J(F)

analogou . The studied problem ar d fin d by the following criteria:

1. Ther exists a on -variable pattern 1r consistent with the given T and F provided

T, F C I:+. This is the ordinary consi tency problem referred to as extension.

2. Th r exi ts a on -variable pattern 1r and a suitabl function f such that 1r

i con istent with J(T) and f(F). Thi problern is referred to as consistent

xtension.

3. Ther exists a one-variable patt rn 1r consistent with f(T) and J(F) for all f.

This problem is referred to as robust ext nsion.

Moreover, the restrict d consistent extension and robust xtension are also studied,

where a r stricted problem is that any string in T contains no*· We show that the ex­

tension and restricted consistent ext nsion are computationally quivalent with respect

to log-space reductions. The robust extension is NP-complete ev n if an alphabet con­

sists of only two symbols. Addibonally, the consistent ext n ion is also NP-complete+,

thus, we arrive at th conclusion that almost all problems are intractable.

tThe NP-completeness was prov d by Stephan [68], personal communication.

10

Finally, in Chapter 6, we mainly discuss several open questions not solved in this

thesis, i.e., the NP-completeness of th equivalence problem for the class of DFMAs,

and the computability of the ordinary consistency problem for the class P1.

11

CHAPTER 2

Preliminaries

This chapter contains basic definitions necessary to make this th sis self-contained. We

as ume familiarity with formal language theory (cf., e.g. [26] and [27]), computational

complexity theory (cf., .g., [23] and [50]), and algorithmic learning theory (cf., e.g., [35]

and [4]). For our fram work, in the first section of this chapter, we begin with formal

languages including context-free grammars, patterns, and other convenient notions.

In the next section, we d al with decision problems. Typical complete problems are

specified as well as the notions of reduction and completeness. Finally, we formalize

our learning model using queries and ummarize previously known results on learning

formal languages.

2.1 Basic Notations and Definitions

A graph is denoted by G = (N, E), wh r N is a finit set of nodes and E � N x N

is a set of edges. A path in G is a s quence of nod s n1, n2, · · · , nk such that there

Is an dge { ni, ni+I } for ach 1 � i � k - 1. The number k - 1 is called the length

of th path. A direct d graph, also d not d by G = (N, E), consists of a finite set of

nodes N and a set of ordered pairs of nod E called arcs. If (v, w) E E, we refer

to (v w) as to an arc from v tow and d note it som tim s by v ---+ w. A path in a

dir cted graph is a sequ nc of nodes n1, n2, · · · , nk such that ni ---+ ni+I is an arc for

each 1 � i � k- 1. W say the path is from n1 to nk. If v ---+ w is an arc, then we call

that v is a predecessor of w and w is a successor of v.

A tree is a directed graph that satisfies the following conditions. There is one node,

called the root, that has no predecessor and from which th re is a path to every node.

12

Each node other than the root has exactly one predecessor. The successors of each

node are ordered from the left. We continue with sorne special terminology for trees.

A succ ssor of a nod is called its child, and the pr decessor is called its parent. If

there is a path from nod ni to node nj, then ni is said to be an ancestor of nj, and

nj i said to b a descendant of ni, where each node is an ancestor and a descendant

of itself. A node with no child is call d a leaf, and all oth r nodes are called internal

nodes ex ept the root.

A binary r lation is a set of pairs. The first component of each pair is chosen

from a set call d the domain, and the s cond component of each pair is chosen from a

(possibly cliff r n t) set called the range. In particular we are in teres ted in relations in

which th domain and range are the same set S. In this case we say the relation is on

S. If R is a r lation and (a, b) E R, then we also write aRb. We say a relation R on S

i refi xive if aRa for all a E S, transitive if aRb and bRc imply aRc, and symmetric

if aRb implies bRa for all a, b, c E S.
A refi xive, symmetric and transitive relation is said to be an equivalence relation.

An quivalence r lation R on S partitions into disjoint nonempty sets called equiv­

al nc class s. That is S = 51 u 52 u · · · such that for each i and j with i #- j,

Si n Sj = 0, aRb is tru for each a, b E Si, and aRb is fals for each a E Si and b ri Sj.

Th tran itiv clo u1 e of a relation R, denot d by R+, i defined recursively by

th following conditions. (1) If (a b) E R then (a, b) E R+. (2) If (a, b) E R+ and

(b, c) E R then (a, c) E R+. (3) Nothing is in R+ unl it follows from th condition

(1) and (2). Furth rmore th r fl xiv , tran itiv closur of R, denoted by R* is the

s t R+ U { (a, a) Ia E } .

2.2 Formal Languages

An alphabet E = { a0, a1, . .. } is a t of partial ord r d symbols (i.e., for all ai, aj E E,

ai < aj iff i < j). Th expression E* d notes the free monoid over E and we set

E+ = E*\ { c } (i . . , the s t of all non-null trings over E) wh re c denot s th empty

string. The length of a string w and the cardinality of a set S are denoted by lw I and

I lSI I, resp ctively. Th l xicographical ord ring relation < on E* is defined as follows.

Let x = x1 · · · Xs and y = y1 · · · Xt be strings in E*. Th n x < y if (a) s < t or (b)

13

s = t and there exists an l � r � s such that xi = Yi for all i = l � ... , r - l � and

:r;r < Yr· A language over � is any subset of �* and a class of languages over � is a

collection of languages containing at least one nonempty language over �.

DEFINITION 2.2.1. A context-free grammar CFG is 4-tuple G = (N, �' P, S), where

N and � are finite sets of symbols such that N n � = 0, S E N, and P is a finite

subs t of N x (N U �)*. Elements of N and � are called nonterminals and terminals,

r sp ctively. Th S is called the start symbol. Any element of P is called a production

nde denoted by A----+ a for A EN and a E (N U �)*.

Let a', (J' E (NU �)*. We say that a' directly derives (J', denoted by a' ==> (J', if there

xist a1, a2 a, (J E (NU�)* such that a'= a1aa2, (J' = a1(Ja2 and a----+ (J E P. If there

xi t a1, a2, · · · ,On E (N U �)* such that ai directly derives Oi+l for all i = l, ... , m,

th n w ay that a1 derives am and this is denoted by a1 ==> * Om. That is, ==> * is the

transitive closure of==> on (N U �)*.

A sequ nee like the above is called a d rivation. The set of sentential forms of a

FG G == (N �' P, S) denot d by S(G) is the set {a E (N u E)* I S ==>* o }. Thus,

the language generated by G, denoted by L(G), is the set S (G) n �*. A language

gen rat d by a CFG is referred to as a context-free language denoted by CFL. Two

CFGs G1 and G2 ar said to be eq uivalent if L(G1) = L (G2).

A d rivation tree T of a grammar G = (N �' P, S) i a tree such that each internal

node ofT is label d with an lement of N, each l af ofT i labeled with an element

of � and, for each internal nod lab led with A E N, ther exists a production rule

A ----+ a E P , w her a is the concatenation of the labels of its children in left-to-right

ord r.

W can characteriz suffi iently long string in a CFL L by the following, referred

to as the pumping l mma. his lem1na is us ful to obtain s v ral results in Chapter 3.

LEMMA 2.2.1. (Harrison [26]). Let L b a CFL such that Lis not finite. There exists

a constant n such that if z ELand lzl 2:: n, then z = uxvyw satisfies (1) jxyj 2:: 1, (2)

lxvyj � n, and (3) ux
i
vy

i
w E L for all i 2:: 1.

Every CFG G = (N, �' P, S) has s v ral normal forms equivalent to G as follows.

A nonterminal A E N is said to be useless if either S derives no sentential form

14

containing A, or A derives no terminal string. Non terminals A, B E N are said to

be equival nt if for ev ry sentential form w E S(G) A d rives w iff B derives w. A

production rule A ---+ B E P is said to be a chain rule if A, B E N.

A CFG G is said to be reduced if no useless nonterminal, no two equivalent non­

ternlinals, and no chain rule are defin d in G. It is well known that every CFL L is

gencrat d by a reduced CFG G and w can effectively compute such a G from arbi­

trary CFG G' su h that L = L(G'). Thus in this study, we assume that a CFG always

d note a "r du ed CFG '.

production rule of the form A ---+ c is said to be an E:-production. A CFG G is

said to b c-fre if G has no c-production. A CFL L is also called c-free if c tf_ L.

Furth rmore, a FG G = (N E P, S) i said to be invertible if A ---+ a B ---+ (3 E P

impli s A= B. Invertible grammar is one of normal forms of context-free grammars.

A CFG G = (N, E P, S) is said to be in Greibach normal form if each production

rule in P is of the form A ---+ a a, where a E E and a E N*. Moreover, G is said to be

in m- tandard form if G is Greibach normal form and, for each A ---+ aa E P, iai :::; m.

THEOREM 2.2.1. (Harrison [26]). Every CFL L is generated by an invertible CFG

G such that if L is c-free, then so is G. Moreover, every CFL L \ { c} is g n rated by

a CFG in Greibach normal fonn.

A sub la of FG is obtained by r tricting forms of production rules. A CFG

G = (N E, P, S) is said to b right linear grammar if each production rule in Pis of the

form A ---+ aB or A ---+ a where A, B E N, and symm trically a left linear grammar

is d fined. A right (or left) linear grammar G is said to b a regular grammar and the

language of L(G) is said to be a r gular language. The clas of regular language is

an inter sting subclas of FLs for our study. A r gular languag can be alternatively

d fin d by the following d t rministic s qu ntial machin

DEFINITION 2.2.2. A d termini tic finite automaton, denoted by DFA, is 5-tuple

A = (Q, E, 8, q0, F), wh r Q is a finit set of states, E is a finite alphabet, 8 is a

transition function: Q x E ---+ Q such that for each p E Q and a E E, exactly one

q E Q satisfies 8(p, a) = q, q0 E Q is th start state, and F � Q is a set of final states.

15

The xtension of 8 to handle input string w E E* is the reflexive, transitive closure

of 8 denoted by 8*, such that for each p E Q, 8(p, c) = p and for all p E Q a E E, and

wE LJ*, 8*(p,wa) = 8(8*(p,w),a). For simplicity, we denote 8* by just 8. Thus, the

language accept d by A, denoted by L(A), is the set { w E E* I 8(w, q0) E F}.

Two DFAs A and Bare said to be equivalent if L(A) = L(B). A DFA A is said to

be mini·mum if for any DFA B such that L(A) = L(B), th number of states of A is

less than or equal to that of B. Moreover, a minimum DFA is referred to as canonical

if it is l xicographically first.

DEFINITION 2.2.3. (Angluin [1]). Let E be a finite alphabet of constant and let

X = { x1 x2 ... } b a recursively enumerable set of variables where En X = 0. Any

finit tring in (U X)+ is said to be a pattern.

Let f be a nonerasing homomorphism from patterns to patterns over E U X. If

f(a) = a for all a E E, then f is called a substitution. We may use the notation

[s1/ x1, . . . , k/ xk] for the substitution which maps each variable Xi to the string si

(i = 1, . . . , k) and maps any other symbol to itself. Thus for a pattern 1r containing

variabl s x1, .. . , XkJ the expression 1r [s1 j x1 . . . , sk/ xk] denotes the string obtained by

replacing Xi by si for all i = 1, . . . , k. The language of a pattern 1r, denoted by L(1r) ,

i th et of all w E E+ such that there exists a substitution f : (E U X) --+ E+ such

that w = j (1r) .

A pat tern 1r is said to b a k-variabl pattern provid d the 1r contains exactly k

different variables for k 2:: 0. In parti ular, if k = 0, th n th 1r is said to be a proper

pattern. Moreov r, a pat tern 7r is said to be a regular patte·rn provid d the 1r contains

any variable in X at most on tim

The class of k-variabl patt rn d noted by Pk, th class of regular patt rns 1s

denot d by PR, and analogously w d not the class of all patterns by P = Uk?_oPk.

THEOREM 2.2.2. (Angluin [1]). The class of all pattern languages is incomparable

with the class of regular languages and with the class of context-free languages. The

class of all pattern languag s is closed unci r concatenation and reversal, but not closed

under union, complement, int rs ction, Kleen plus, homomorphism, and inverse ho­

momorphism.

16

A finit s t S of I;+ is referred to as a sample. A pattern 1r is said to be descriptive of

S iff S � L(1r) and for any pattern 7r1 such that S � L(1r'), L(1r') is not a proper subset

of L(1r). Th r fore, we shall consider the problem of finding a descriptive pattern.

PROBLEM 2.2.1. Given a sampleS, find a pattern which is descriptive of S.

Angluin [1] also studied the problem of finding descriptive patterns and she showed

that th re i an algorithm which, given a sample S C I;+ as input, outputs a pattern

1r E (I; U X)+ which is d scriptive of S. In particular, she proposed an effective

algorithm for this problem in the special case of the class of one-variable patterns as

follows.

THEOREM 2.2.3. (Angluin [1]). There exists an algorithm which, given a sample

C I;+ outputs a one-variable pattern that is descriptive of S within P1 in 0(n4 log n)

time, where n = LsES l s i .

This result has b n improved to 0(n 2 log n) time by Erlebach et al. (cf. [18]). For

th class PR of regular patt rns, Shinohara [65] provided a polynomial-time algorithm

for th problem of finding a descriptive pattern within PR.

THEOREM 2.2.4. (Shinohara [65]). Th r xists an algorithm which, given a sample

SCI;+ outputs a regular pattern that i de criptive of S within PR in O(m2n) time,

w h r m = max { I w I I w E S} and n = II II·

Shinohara [66] showed that a descriptiv patt rn is polynomially computable within

PR with respect to any (pos ibly rasing) ubstitution. Since for every sample S and

Xi EX, S � L(xi), th probl m of finding d criptiv patt rn must have at 1 ast one

solution. On the other hand, 1 t us tak a pair of samples denoted by (T, F) , such

that T, F C and T n F = 0. Elements of th sample T are called positive examples

and elem nts of F are called negative examples. A pattern 1r is said to be consistent

with (T,F) if T � L(1r) and F n L(1r) = 0.

PROBLEM 2.2.2. Giv n a pair (T, F) of samples, decide whether there exists a pat­

tern that is consistent with (T, F). This problem is r ferred to as the consistency

problem.

17

The consistency problem is a decision problem. Unfortunat ly, there is no known

polynon1ial-tim algorithm for the consistency problem even within P1. Moreover, we

suspect that this problem is intractable, that is, the consistency problem within P1

can be r garded as a most difficult problem of NP and there is no polynomial-time

algorithrn for this problem unless P = NP. For mathematical discussion of intractable

probl Ins in the next section, we shall introduce reductions and completeness for

compl xity class s and discuss the difficulty of several decision problems with respect

to the cri t rion.

2.3 Decision Problems

Let u take a graph G = (V, E). Many con1putational probl ms are connected with

graph . The most basic problem on graphs is called the reachability problem: Given

a graph G and two nodes m, n E V, is th re a path from m to n? Like this problem,

an int r sting problem has an infinit et of possible instances. Each instance is a

mathematical object (in this case, a graph and two nodes), of which we ask a question

and expect an answer. Note that the reachability problem asks a question that requires

either "yes' or "no". In complexity th ory, we usually find it conveniently unifying

and simplifying to consider only these problems, instead of probl ms requiring all sorts

of cliff r nt answers. Such problems ar call d d cision problems.

Th lem nts of a recursively enum rabl t .){ = { x1 x2 . . . } are called Boolean

variabl . Bool an variables take the two valu s 1' or 0 . W combine these variables

using Boolean conn ctiv s such as V (logical or), 1\ (logical and) and---, (logical not).

DEFINITION 2.3.1. A Boolean expr s ion i one of (1) a Boolean variable and (2)

an xpression of th form --.¢ ¢1 V ¢2 or ¢1 1\ ¢2 wh r ¢ ¢1 and ¢2 ar Boolean

expressions. In particular, a Bool an expr s ion in case --.¢, ¢1 V ¢2, and ¢1 1\ ¢2 are

respectively called the n gation of¢, th disjunction of ¢1 and ¢2, and the conjunction

of ¢1 and ¢2. An xpr ssion of th form Xi or --.xi is called a literal of the variable xi.

A truth assignm nl T is a mapping from a finite set X' of Boolean variables to the

set of truth values { 0, 1}. Let ¢ be a Boolean expression and X (¢) denot the set of

Bool an variables appearing in ¢. Then, w call T is appropriate to ¢ if X (¢) � X'.

18

We next define what it means for T to satisfy ¢Y, denoted by T I= ¢Y. If ¢Y is a

variable Xi E X (¢Y), then T I= ¢Y if T(xi) = 1. If ¢Y = •¢Y1 then T I= ¢Y if T [F ¢Y1. If

¢Y = ¢J1 V ¢J2, then T I= ¢Y if T I= ¢Y1 or T I= ¢Y2. Finally, if ¢Y = ¢Y1 1\ ¢Y2, then T I= ¢Y if

both T I= ¢I and T I= ¢2·

W say two xpr ssions ¢1 and ¢Y2 are equivalent if for each truth assignment T

appropriate to both of them, T I= ¢Y1 iff T I= ¢2. Every Boolean expression can be

rewritt n into an equivalent one in a convenient specialized style as follows.

DEFINITION 2.3.2. A Boolean expression ¢Y is said to be in conjunctive normal form

if ¢Y = /\�1 Ci, where n 2:: 1 and each of the Cjs is in the disjunction of one or more

literals. Th Cj are called the clauses of th rfy. Symmetrically, an expression ¢ is said

to be in di junctiv normal form if ¢Y = V�1 Di, where n 2:: 1, and each of the Djs is

th conjunction of one or more literals. The Djs are called the terms of the ¢Y.

We say that a Bool an expression ¢Y is satisfiable if there exists a truth assignment

T appropriat to it such that T I= ¢Y. E pecially a ¢Y is said to b tautology if T I= ¢Y for

all T appropriate to it. Satisfiability is an important property of Boolean expressions,

so we shall consider the following decision problem.

PROBLEM 2.3.1. Giv n a Boolean expr s ion ¢Yin conjunctive normal form, decide

whether ¢Y is satisfiable. This problem is ref rr d to as the sati fiability problem and is

d noted by SAT.

This probl m is one of th most fundamental decision problems. It is of interest

to note that SAT can b solv d by a d t rministic algorithm that tries all possible

combinations of truth values for the variabl s appearing in th expression. B sides, this

problem can be solv d by a nond termini ti polynomial-time algorithm that guesses

a truth assignment and check that it ind d satisfi s all clauses. Rene , this problem

is in NP, but pres ntly, we do not know wh ther it is in P.

An n-ary Boolean function is a function f: {0, 1}
n

-t {0, 1}. A Boolean expression

¢ with variables x1, . . . , Xn xpresses the n-ary Boolean function f if, for each n-tuple

of truth values t = (t1, ... , tn), f(t) = 1 if T I= ¢, and f(t) = 0 if T [F ¢Y, where

T(xi) = ti for i = 1, . . . , n. Thus, ev ry Boolean expression xpresses some Boolean

19

function and the converse is also true. On the other hand, there is a potentially more

economical way than expressions for representing Boolean functions as follows.

DEFINITION 2.3.3. A Boolean circuit is a directed acycle graph C = (V, E), where

the nodes in V = { 1, 2, ... , n} are called gates of C and each edge in E is of the form

(i, j) such that i < j. Each gate in V has indegree equal to zero, one, or two. Also, each

gate i E V has a o rt s (i) E { 0 , 1 , V , 1\ , • } U { x 1 , . . . x n } . If s (i) E { 0 , 1 } U { x 1 , . . . , x n } ,

then th ind gr of i is zero. The gates with in degree zero are called the inputs of C.

If (i) = • then i has indegree one. If s(i) E {V, 1\}, then the indegree of i must be

two. Finally node n is called the output of C.

This d finition xplains the syntax of circuits and the following semantics specifies

a truth valu for each appropriate truth assignment. Let X (C) be the set of vari­

abl appearing in a circuit C and a truth assignment T appropriate for C is defined

analogously.

Giv n such aT, the truth value of gate i E V, denoted by T(i), is defined recursively

as follows. Initially, each input i of C is assigned by T such that T(i) = 1 if s(i) = 1,

T(i) = 0 if s(i) = 0, and T(i) = T((i)) if s(i) E X. If (i) = • then there is a

unique (j,i) E E such that j < i. By induction, we know T(j), and then T(i) = 1

if T(j) = 0, and vice versa. If s(i) = V, then there are (j,i),(j',i) E E such that

j,j' < i. Similarly, w know T(j) and T(j'), and th n T(i) = 1 iff either T(j) = 1 or

T(j') = 1. If (i) = 1\, then T(i) = 1 iff both T(j) = 1 or T(j') = 1. Finally, the value

of the circuit, T(C) is T(n) .

In analogy with Bool an functions expressed by Bool an expressions, a Boolean

circuit with n-variabl computes an n-ary Boolean function, and the converse is true.

PROBLEM 2.3.2. Given a circuit C d id whether there exists a truth assignment

T appropriat to such that T(C) = 1. This problem is referred to as the circuit

satisfiability problem and d noted by circuit SAT.

As we shall see below, circuit SAT is computational qui valent to the satisfiability

problem, and thus presumably very hard. However, the sam problem for circuits with

no variable gates, referred to as the circuit value problem and denoted by CvP, obvi­

ously has a polynomial-time algorithm and it is another fundamental computational

problem.

20

As we have mentioned so far, NP contains the satisfiability problem and th circuit

satisfiability problem. In addition, NP certainly contains the reachability problem

and the circuit value problen1. It is intuitively clear, however, that the former two

problems are somehow more worthy representatives of NP than the latter two. We

shall now rnake this intuition precise and mathematically provable. W recall the

notion of r duction for making it precise what does it mean for a decision problem

to b at least as hard as another one. A natural definition of "effective reduction" is

defined as follow .

DEFINITION 2.3.4. (Papadimitriou [50]). Let L1 and L2 be languages ov r finite

alphab ts 2::1 and 2::2, respectively. Then, L1 is said to be reducible to L2 if there exists

a compu tabl function f : .E� ----+ 2::; such that for all x E .E� x E L1 iff f (x) E L2. The

function f is called a reduction from L1 to L2. In particular if f E D S PA C E (log n),

th n L1 is said to b log-space reducible to L2 and f is called a log -space reduction

fro·m L1 to L2.

For example, the reachability problem is reducible to the cir uit alue problem and

the circuit satisfiability problem is r ducible to the satisfiability problem. However, no

one has succeeded to prove the reducibility from the form r two problems to the latter

two. Thus, w shall be particularly inter sted in the maximal lement of this partial

ord r.

DEFINITION 2.3.5. L t C b a compl xity cla , and l t L be a language. If every

L' E C is log-space r ducibl to L, th n L is said to b C-ha1·d. In particular, if L E C,

then th L is said to be C -compl t e.

It i not a priori cl ar that compl te problern exi t ind ed, no complete problem

has b en found in RP (i. . the class of all languag s accepted by polynomial Monte

Carlo Turing machines). Th first complete probl m was provided for NP by Cook [17].

THEOREM 2.3.1. (ook [17]). The satisfiability problem is NP-complete.

Stockmeyer and M y r [69] proved that the satisfiability problem for quantified

Boolean formulae is PSPACE-complete and Ladner [37] prov d that the circuit value

problem is P-complete.

21

Mor over, we hav a useful property of reductions, that is, the fact that reducibility

is transitiv .

PROPOSITION 2.3.1. (Papadimitriou [50]). If f is a reduction from language L1

to L2 and f' is a reduction from languag L2 to L3, then the composition f · f' is a

redu tion from L1 to L3 .

Thus, it i straightforward that if L is C-complete, L' E C, and L is log-space

r du ibl to L', then L' is also C-complete. Using this chain of reductions, a large

numb r of decision problems has been proved to be complete for several complexity

class s (cf., .g., [23] and [50]). For the class of pattern languages or its subclasses, the

following r sults cone rning decision problems are known.

THEOREM 2.3.2. (Angluin [1]). The problen1 of deciding whether w E L(1r) for

given a string w E E* and a pattern 1r E P is NP-complete.

COROLLARY 2.3.1. (Angluin [1]). The problem of deciding whether 1r1 <' 1r2 for

given patterns 1r1, 1r2 E P is NP-complete.

THEOREM 2.3.3. (Miyano, Shinohara, and Shinohara [46]). The consistency prob­

lem within PR is NP-cotnpl te even if IIEII =
2.

THEOREM 2.3.4. (Wi hagen & Z ugmann [73]). Given a pair (T, F) of samples, the

probl m of constructing a pattern 1r E P consistent with (T F) is NP-hard*.

2.4 Language Learning via Queries

In this s ction we summariz Angluin 's [7] terminology. First, a hypothesis space H

for a class £ of targ t languages is assumed. A representation of languages is specified

by a 4-tuple R = (E, �' R, J-t), where E and� are finite alphabets, R is a subset of�*

and J-l is a mapping from R to subs t of *. A language is a ubs t of E*. R is the set

of representations, and 1-l is the map that sp cifies which language is represented by a

given representation. The class of languag s represented by R is just {J-t(r)ir E R}.

*The ordinary consistency probl m within P is known to be Ei-complete.

22

For each language L, we denote XL the characteristic function of L, that is, \'L(w) = 1

if w E L and L(w) = 0 otherwise.

For exampl , l t us consider the class of regular languages. We may assume that

the strings in R represent deterministic finite automata (DFAs). The size of a DFA

M is the nurnber of transition functions defined in M. W assume that there is a

polynomial p(s) such that every D FA of size at rnost s can be represented by a string

in R of 1 ngth at most p(s). Moreover, we assume that for every r E R, the D FA

r pr ented by r is of size at most lrl.

An unknown languag L is selected from a target class £ and information can be

gathered about L by asking:

1. Equival nc query: An input is a representation r E R. The response to this

question is yes if f.L(r) = L and no otherwise. In addition to the answer no, a

count rexantple w is arbitrarily selected from 2::* and returned such that XL(w) -j.

XtL(r)(W) .

2. M mbership query: An input is a string w E �·. The response to this question

is XL(w), that is yes if w E L and no oth rwise.

W ay that a d t rministic algorithm A exactly identifie the class £ with respect to

the hypothesi pace R u ing quival n and m mbership queries iff for each L E £,

wh n A runs with an oracle for quival nc and member hip qu ries for L, the A

eventually halts and outputs an r E R uch that f.L(r) = L. Such an algorithm runs

in time polynomial iff ther is a polynomial p(m, n) such that for very L E £, if m

is th minimum 1 ngth of any r E R su h that f.L(r) = L, then at any stage in the

run, th tim used by A is bound d by p(m n), wh re n 1 the length of the longest

count r xample provid d so far in the run.

The first result on language learning via membership and equivalence queries for

subclass s of CFLs is du to Angluin (cf. [4]). She introduced a data structure, called

observation table, for regular languages as follows. L t L b a r gular language over

an alphabet �. An obs rvation table for L is a two-dimensional matrix, consisting

of three things: a nonempty finite prefix-clo ed set S of strings, a non mpty finite

suffix-closed set E of strings, and a finit function T : ((SUS· �)· E) --+ {0, 1},

23

where a set is pr fix-closed iff every prefix of each member of the set is also in the set.

Suffix-clo edness is defined analogously.

The interpr tation of T is that T(u) = 1 iff u E L. The observation table initially

has c; = E = { c} and it has a two-dimensional array with rows labeled by elements of

(SUS· LJ) and colurrtns labeled by elements of E with the entry for row s and column e

equal toT(·). ForsE (SUS· E), row() denotes the finite function f: E-+ {0, 1}

d fin d by f () = T (s · e) .

An observation table is called closed provided that for each t E S · E, ther exists an

s E S su h that row(t) = row(s). An observation table is called consistent provided

that whenever 1 and s2 ar elements of S such that row(st) = row(s2), for all a E E,

row(s1 ·a) = row(s2 ·a).

Angluin [4] pres nted a polynomial-time algorithm that computes a closed, con­

sistent obs rvation table for a target language L using m mbership queries and she

show d that DFAs computed from thes tables converge to a correct one for L when­

v r tabl s ar renewed by counter xamples returned.

THEOREM 2.4.1. (Angluin [4]). Every regular language L is learnable using m m­

bership and equivalence qu ries with resp ct to the hypothesi space DFAs in time

polynomial inn and m, where n is the number of states of a minimum DFA M such

that L = L(M) and m i th length of a longest count r xample returned.

Thi result was ext nded to other subclasses of the context-free languages. The

following r sults are interesting since cla ses studied properly includes the class of

regular languages. For xample, the languag { { anbn I n � 1 }c} + is deterministic

one-counter, but not simple determini tic. ontrarily the {am bncanbm I m, n � 1}

is simpl deterministic, but not det nninisti on -counter. These languages are not

regular languages.

THEOREM 2.4.2. (B rman & Roos [12]). Every deterministic one-counter language

L is 1 arnable using memb rship and equivalence queri s in time polynomial in n and

m, where n is the numb r of states of a minimum deterministic one-counter automaton

A such that L = L (A) and m is the length of a longest count rexample returned.

24

THEOREM 2.4.3. (Takada [70]). Every even linear language L is learnable us1ng

men1bership and quivalence queries in time polynomial in n and m, where n is the

number of non terminals of a minimum even linear grammar G such that L = L(G)

and rn is the length of a longest counterexampl returned.

In particular, Ishizaka [29] presented a new method to identify a correct hypothesis

gran1mar for th class of simple deter·ministic languages, which is different from An­

gluin s observation table. A context-free grammar G in Greibach normal form defined

over tern1inals LJ and nont rminals N is called simple deterministic if for any A E N,

a E I: and a (3 E N*, if A ---+ aa and A ---+ a/3 ar production rules of G, th n

a = (3. In Ishizaka's setting, membership queries and extended equivalence queries are

assum d for a target languag L. The extended equivalence query is a relaxation of

qui valence qu ry, that is, it asks whether L = L(G) for a hypothesis grammar G in

2-standard form, but it is not necessary that G is simple deterministic.

Ishizaka's algorithm [29] begins with a trivial hypothesis G such that L(G) = 0. If

a positiv count r xample w is returned, then the algorithm introduces new nonter­

minals. It computes production rules to derive w using the nonterminals and puts all

of them into th s t of productions. If a negative count rexample w is returned, then

th algorithm finds an incorrect production rule that is causing th derivation of the

count rexampl w by u ing m mbership qu ri s. The algorithm continues the above

routine until an xtend d cquival nc qu ry returns 'yes . This algorithm outputs a

grammar G in 2-standard form such that L = L(G) for every targ t simple determin­

i tic languag L. How v r, th l arnability of th in1ple deterministic languages in

terms of minimally adequate teach r is till op n.

THEOREM 2.4.4. (Ishizaka [29]). v ry simpl d t rministic language L is learnable

using memb rship and ext nded quivalence qu n in time polynomial in n and m,

where n is the number of nonterminal. of a minimum grammar G in 2-standard form

such that L = L(G) and m is the length of a longest counterexampl returned.

We shall refer to sev ral results on the learnability of the whole class of context-free

languages using queri s. Angluin [3] showed that the class of context-free languages

is learnable in time polynomial with respect to the hypothesis space of k-bounded

25

context-free gran1mars us1ng m mbership quen s, nonterminal n1embership quenes,

and quivalence queries.

How v r, w suspect that the problem of identifying a context-free grammar using

only memb rship and equivalence queries is very hard. This problem was character­

iz d by Angluin and Kharitonov [8]. They showed that there is no polynomial-time

algorithn1 to learn the class of context-free languages in terms of minimally adequate

teach r assuming th intractability of several cryptographic problems (e.g., quadratic

r idues modulo a composite and inverting RSA encryption).

Anoth r result concerning the learnability of the whole class of cont xt-free lan­

guag s 1 du to akakibara [53]. He introduced tree automata that accept structural

tring . A tructural string of a target context-free grammar is computed from its

d rivation tr by r placing all labels of internal nodes by one special symbol not be­

longing to any alphabet. By this string, the learner knows the skeleton of the derivation

tre . Sakakibara [53] extended the tr e automata to Angluin's observation table and he

as umed to the learner to use structural membership queries and structural equivalence

quenes.

THEOREM 2.4.5. (Sakakibara [53]). For every target context-free grammar G, using

structural m mbership queries and structural equival nc queries there exists an algo­

rithm that outputs a grammar G' canonically equival nt to G such that L(G) = L(G')

in time polynomial in n and m, wh r n is the numb r of states of a minimum tree

automaton for G and m is th l ngth of a longest count r xarnple returned.

We next focus on results of language l arning using special strings. On DFA learn­

ing this id a goes back to Trakht nbrot and Barzdin s [71] framework. Th y presented

an algorithm for constructing th smallest DFA con istent with a complete labeled sam­

ple, that is, a sampl that includes all trings up to a particular length and the corre­

sponding label that states wh ther or not th string i accepted by the target DFA.

However, the size of a complete labeled sampl for a target DFA may be exponentially

large in d p ndence on the size of the target.

Following this id a, Angluin [2] introduced a live-complete set of strings each of

which contains a representative string for a target DFA. Let A= (Q,E,fJ,q0,F) be

a DFA canonical for a regular languag L. A state p E Q is called live if there exist

26

strings x, y E E* such that 8(q0, x) = p and xy E L(A). A witness of a live state p is

each string x such that 8(q0, x) = p. The lexicographically first witness of a live state

p is called the canonical witness of p. Then, a live-complete set for L(A) is any finite

subset of E* that contains at least one witness for each live state of A. Note that the

set of canonical witn ss of all live states of A is a live-complete set for L(A).

THEOREM 2.4.6. (Angluin [2]). Every target DFA is exactly learnable using a live­

conlpl te set of examples and membership queries.

Ibarra and Jiang [28] studied the power of our learning model using equivalence

quen only. A language L over an alphabet E is said to be k-bounded regular language

if ther exist trings w1, ... , w k E E+ such that L � { w�1
• • • w� I i1 ... ik � 0}.

THEOREM 2.4. 7. (Ibarra & Jiang (28]). Every k-bound d regular languages L is

1 arnabl in tim polynomial in n and m using equival nee queries where n is the

number of states of the canonical DFA for L and rn is the maximum length of the

counter xamples returned.

Moreover Ibarra and Jiang [28] inve tigated how a partial ordering on counterex­

ampl s aff cts the learnability of formal languages. Two partial orderings on coun­

ter xampl s returned by quival nee qu ri are considered that is, ordering by length

and l xi ographical ord ring. The following r ult tells u that lexicographical ord ring

on counterexample contributes to DFA learning.

THEOREM 2.4.8. (Ibarra & Jiang [28]). A urning that any equivalence qu ry always

returns th lexicographically first counter xampl for th target and the hypothesis,

ev ry r gular languag L is learnable in tim polynomial in n using equivalence queries,

wher n i the numb r of stat s of th canonical DFA for L.

When a target DFA with n states is defined over an alphabet E, Ibarra-Jiang's

algorithm (28] learns th DFA from O(IIEIIn3) many count r xarnpl s. Recently, this

result has been improv d to be O(IIEIIn2) by Birkendorf et al. (cf. [13]).

Oncina and Garcia (49] defined anoth r type of exampl s the co-called character­

istic set for a target DFA, and they proposed a polynomial-time algorithm to identify

27

the target DFA using this type of sample as follows. Let L be a regular language,

and let A= (Q,'E,8,q0,F) be a canonical DFA such that L = L(A). We denote

p1· (L) = {a I a f3 E L} , La = { f3 I a f3 E L} , and pr s (L) = {a E pr (L) I ---, 3 f3 E

'E*, [La = Lp, f3 < a]}, where < is a standard ordering of strings on 'E. Then, the

kernel of L, denoted by N(L), is the set {s} U {aa E pr(L) I a E pr8(L), a E 'E}.

A sampl S = S+ US_ such that S+ � L(A) and S_ n L(A) = 0 is said to be a

charact ri tic t of L if th following conditions are satisfied.

1. Va E N(L) , if a E L, then a E S+ else 3/3 E 'E* such that af3 E S+.

2. Va E prs(L), Vf3 E N (L), if La #- Lp then 3/ E 'E* such that (a! E S+ and

f3! E S_) or (a1 E S_ and f3! E S+)·

THEOREM 2.4.9. (Oncina & Garcia [49]). Given a sample S of a regular language

L, if S is a super et of a characteristic set of L, then there exists a polynomial-time

algorithm to id ntify a DFA such that L = L(A).

As compar d with DFA learning, it seems that learning pattern languages is rather

difficult. Angluin (6] show d that if each equivalence query may return an arbitrary

counterexampl , any algorithm for exact identification of pattern language from equiv­

alenc and membership querie must ask xpon ntially many queries t. Thus, previous

result on l arning pattern languages require sp cial strings as additional information.

A we have mention d abov , Ibarra and Jiang (2 :1] a umed an ordering by length

on counterexamples, that is, a hortest count rexample is always returned. They

propos d a learning model under this assumption and showed th following result.

THEOREM 2.4.10. (Ibarra & Jiang (2]). Th class of pattern languages is learn­

able in time polynomial in n u ing equival nee queries that always return a shortest

counter xample where n is the 1 ngth of a targ t pattern.

Marron and Ko [43] consid r d nece sary and suffici nt conditions on a finite pos­

itive initial sample that would allow exact identification of a target k-variabl pattern

tThis upper bound does not collapse even if subset queries are allowed, but superset queries are
sufficient for polynomial-tim identification.

28

from the initial sample and fron1 polynomially many membership quenes. Subse­

quently, Marron [42] considered the learnability of k-variable patterns in the same

model, but where the initial sample consists of only a single positive example of a

targ t pattern. For the case of one-variable and two-variable patterns, Marron gave

a careful analysis of the structural properties of initial examples that can cause his

algorithm to fail. He also showed that only a small fraction of strings possess these

prop rti s.

29

CHAPTER 3

Learning Parenthesis Grammars

A ompl te English text is beginning at a capital letter and ended by

a period. Similarly, an HTML document consists of structural texts each

of which is parenthesiz d by a beginning tag and the corresponding end­

ing tag. In formal languages these parentheses are useful for analysis of

sent nc structure of a grammar owing to its beneficial byproduct of the

unambiguity. We study the contribution of these parentheses to formal

language learning.

A membership query t ll us one bit of information: whether or not a string is

a member of an unknown language. Neverthel ss, m mbership queries often play an

important role in effici nt 1 arning (cf., .g. [2 4, 7, 8]). Furthermore, it seems that

th claim of m mbership queries is r asonabl b cause the membership problem is

e:ff ctiv ly d cidabl for CFGs. In other words, th capability of a teach r is incomplete,

that is, not all the questions from a 1 arner can be answered by a teacher and a

memb rship query i a ty pical question a teach r can answer. In this chapter, we focus

on membership queries and our teacher can answer membership queries only.

On the other hand, th learning ability of a 1 arn r d pends on the information

a teacher provides. As an xampl consid r th cas that a target language can be

divided into some disjoint sub-languag s. If a teacher gives a learner no information

about one of these sub-languages (i . . , no xample is giv n from a sub-language), then

the learner can nev r identify the whole language. Thus, we assume a careful teacher,

that is, the teacher car fully selects good examples from a target language. Informally,

the task of a teacher is described as follows. A t ach r divides a target language into a

finite number of sub-languages each of which has a kind of repres ntative elements. A

30

representative elen1ent of a language is a terminal string derived using all production

rul s of a grammar that generates the language. Such sub-languages and representative

el ments are called complete languages and characteristic examples respectively.

We consid r th problem of learning parenthesis languages [44] using characteristic

exampl s and men1b rship queries. A parenthesis language is a CFL in which ambiguity

is avoid d by th syst matic and tedious use of parenth ses.

The first section contains the definition of characteristic examples for CFGs. The

properti of characteristic exampl s are investigated. In particular, we prove the

decidability of characteristic examples for a given CFG. In the next section, our learning

algorithm i pr s nted. Th input is a set of characteristic examples and finitely

many m mb rship queries are allowed. We prov the correctness of our algorithm and

polynomial-tim l arnability of the parenthesis grammars. F inally an open problem

i discu s d.

3.1 Characteristic Examples

In this section, w introduce the notion of characteristic xamples for the clas of CFGs

and investigate th ir properties. A characteristic example is a string w such that there

is a derivation of w requiring the application of each production. Thus, we have to ask

wh th r or not ev ry CFG does poss ss a characteristic example. As we shall see this

is not the ca e. Th r fore, we additionally deal with the following question;

Doe th r xist an al gorithm d ciding wh th r or not a CFG posses es a charac­

teri tic example?

We answ r thi it r mains to ask how to proceed,

if a CFG doe not poss ss a chara teristic xampl . We solv this problem by providing

a d composition theorem for CFGs. That is each CFG can be decomposed in finitely

many sub-grammars ach of which has a charact ristic example. Finally, we provid a

method for constructing characteristic exampl s for par nth sis grammars.

The class of par nth sis grammar has b en introduc d by McNaughton (cf. [44]).

Note that the equivalence problem for CFGs is undecidable. He show d that the

equivalence problem for par nthesis grammars is decidabl . Furthermore Knuth [36]

proved the decidability of the following problem. Given any CFG G, decide whether

31

or not there exists a parenthesis grammar G' such that L(G) = L(G'). We continue

with th formal definition of parenthesis gramn1ars.

DEFINITION 3.1.1. (McNaughton [44]). A parenthesis grammar is a CFG G =

{N, �' P, S} such that each production in Pis of the form A----+ (a) , where A E N,

(,) E � and a E ((N U �) \ { (,)}) * .

A parenthe is languag is a language L such that L = L(G) for a parenthesis

gramrnar G. Intuitively, a parenthesis language is intended to avoid ambiguity by the

systernatic us of parentheses, so that a sentential form (or terminal string) wears its

syntactical structure on its sl ve. In each derivation, exactly one pair of parentheses

is introduced ea �h time a production is applied.

ow, w provide th theoretical background for our learning algorithm to be pre­

sented in th next section. In particular, we introduce the notion of a characteristic

exampl . Furthermore, w establish the decomposability of CFLs into sublanguages

possessing characteristic examples.

DEFINITION 3.1.2. Let G be a CFG and let wE L(G). We call w a characteristic

example for G if ther exists a derivation of w in which each production of G is applied

at least once. A grammar G is said to b complete if G has a characteristic example.

Our learning algorithm requir s characteri tic exampl s of a target language as

input. Th refore we have to take care wheth r or not characteristic examples do

alway xist. As the following example shows there ar ven regular gran1mars not

having a characteristic example. On th oth r hand, context-free but not regular

grarnmars may possess characteristic xamples a dis played in Exan1ple 3.1.1.

EXAMPLE 3.1.1. Let us consider the CFG G1 and G2.

G1={{S, A B}, {a, b}, P1 S}, wher Pl={S----+AB, A----+aAia, B----+bBib}.

G2 = {{S, A, B}, {a, b}, P2, S}, whereP2 = {S----+ AIB, A----+ aAia, B----+ bBib}.

L(GI) is regular sine it is { anbm I n, m 2::: 1}. Every string anbm is a char act ristic

example of G1 for n, m 2::: 2. On the other hand, clearly, L(G2) = {an I n 2::: 1} U { bm I

m 2::: 1}, that is, L(G2) is also regular, and thus there is no characteristic example of

G2.

32

For overcoming this difficulty, we consider the decornposition of CFGs into finitely

many 'sub-grammars'. Let us define the notion of sub-grammars by a relation � on

CFGs as follows.

DEFINITION 3.1.3. Let Gr = (N1,�1,P1,S) and G2 = (N2,�2,P2,S) be CFGs.

The grammar Gr is said to be a sub-grammar of the grarnmar G2 if G1 � G2 where

Gr � G2 d notes Nr � N2, �1 � �2, and Pr � P2.

The next proposition shows that for each CFG, there are poly nomially many sub­

grammars each of which has a charact ristic example.

PROPOSITION 3.1.1. Let G = (N, �' P, S) be a CFG. There exist complet gram­

mar Gr, G2 · · · , Gk � G such that k::; IIPII and Uf=rPi = P, where Pi is the set of

productions of Gi for all i = 1, . .. , k.

PROOF. Let L = L(G). Without loss of generality, we can assume that A----+ c tf_ P

for each A E N\ { S}. That is, if c tf_ L, then G has no c-production, otherwise G has

exactly on c-production of the form S ----+ c. Thus, we can assume that E: rf_ L.

For every w E L, there exists G' � G such that w is a characteristic example of G'.

Since the number of nonempty subsets of P is 2IIPII - 1, there exist complete grammars

Gr, G2 · · · , Gk � G such that k ::; 2IIPII - 1 and Uf=1 Pi = P, where Pi is the s t of

production of Gi for all i = 1, .. . , k.

If k > IIPII then ther xi ts Gi uch that

1. Pi C Pj for some 1 ::; i -; j ::; k, or

2. for very r E Pi, th r xists j E {1,2, · · · , k} such that if i-; j, andrE Pj.

First, assume that Condition 1 holds. We can remove Gi from G1, G2 · · · , Gk with­

out losing th statem nt

U Pe = P.
l<f<k
f.:lt

N xt, suppose that Condition 2 holds. It follows that

U Pe = U Pe.

33

Thus, we can remove Gi from G1, G2 · · · , Gk. Continuing this process until neither

Condition 1 nor 2 are fulfill d, we obtain grammars G1, G2 · • · , Gk such that for each

r E P, there is xactly one production set Pi, 1 ::; i ::; k such that r E P. Consequently,

k::; 1/P//, and there exist G1, G2 · · · , Gk � G such that Uf=1Pi = P. Q.E.D.

Let G and G' be CFGs, then G' is said to be complete with respect toG if G' � G and

G' is con1pl te. For unambiguous CFGs, we can show the uniqu ness of characteristic

exarnple of sub-gran1mars by the following proposition.

PROPOSITION 3.1.2. Let G be a parenthesis· grammar and let G1, G2, · • · , Gm be

any s t of compl te grammars with respect to G obtained by Proposition 3.1.1. Let

wi' 1 ::; i ::; 7TI be the sets of characteristic examples for Gi. Then for all 1 ::; i j ::; m:

wi n wj = 0 iff i =1- j .

PROOF. Since i = j implies � = Wj, we assume i =1- j. Let Pi and Pi be sets of

productions of Gi and Gj, respectively. By Proposition 3.1.1, Gi !l Gj and Gj !l Gi.

Thus there exists a production r E pi \Pj. Every Wi E wi is derived using all production

rules in pi and v ry Wj E wj is not derived using the production rule r E Pi. Since

G is unambiguous, Gi and Gi both are unambiguous. Hence Win Wi = 0. Q.E.D.

W n xt d al with the following probl m for CFGs.

PROBLEM 3.1.1. Given a CFG G decid whether there exists a characteristic ex­

ample of G.

For the problem, let us us the following notation . Let G = (N �' P, S) be any

CFG. As ntential form of G containing a nont rminal A EN is denoted by ,B[A]. For

a nonterminal A E N, w write a =}A ,B if th r xi t a d rivation from a to ,B such

that a :::}* r1Ar2 :::}* ,B. For a production rul A-+ win P, we write a *A�w ,B if

ther exists a derivation from strings a to ,B such that a:::}* r1Ar2:::} {1W{2 :::}*,B.

For a derivation tr T of G, let d(T) d note the depth of T. For a nonterminal

A E N, let n(T)A denote th number of internal nodes of T labeled by A. For a

production rule A -+ w E P , let n(T)A�w denote th number of internal nodes of

T labeled by A such that w is the concatenation of lab ls of its children. For a set

P' � P of production rul s, let TP' denot a derivation tre such that for every r E P',

n(TP') r 2:: 1.

34

DEFINITION 3.1.4. Let A be a nonterminal of a CFG G. We call A bounded if there

exists a constant k such that for every derivation tree T of G, n(T)A :::; k.

DEFINITION 3.1.5. A production rule r of a CFG G is said to be bounded if there

exists a constant k such that for every derivation tree T of G, n(T) r :::; k.

LEMMA 3.1.1. It is decidable whether or not a non terminal of a CFG is bounded.

PROOF. We first prov that the following conditions ar equivalent for any CFG

G=(N, , P, S) .

1. A nonterminal A E N is not bounded.

2. For a nonterminal A E N there exists a B E N such that B =>:4 ,B[B].

It is cl ar that Condition 2 implies 1. Now, we assume that there exists no B E N

that satisfies Condition 2. Let T be a d rivation tree of G. For any subtree ofT whose

root a1 is label d by A, it has no internal node labeled by A except a1. If the length

of the path ofT from the root to a1 is greater than INI, then there exist two or more

internal nodes of T labeled by B E N in the path. Let b1 and b2 be such internal

nodes in root-to-leaf order. Let T1 and T2 be subtrees of T whose root are b1 and b2

respectively. Since both T1 and T2 have exactly one internal node labeled by A, and

since T2 i a ubtree of T1, the tree obtained by replacing T1 ofT by T2 is a derivation

tree of G. Thu for any d rivation tree T of G ther exists a derivation tree T' of G

such that n(T)A = n(T')A and d(T') :::; INI. Hence the A is bounded. Q.E.D.

We note that for every CFG G = (N, L:, P,) and all strings a, ,B E (N U L:)*, it

is decidable whether or not a =>* ,B. Let m be the maximum length of right sides

of production rul s in P. For every B E N and ,B[B], we can decide wheth r or not

B =>* ,B[B], where th length of ,B[B] is at most mi!PII. For a h nonterminal A EN,

the A is not bounded if B =>:4 ,B[B] , and the A is bounded oth rwise.

LEMMA 3.1.2. It is decidable wheth r or not a production rule of a CFG is bounded.

PROOF. Let G = (N, , P, S) be a CFG. Cl arly, every production rule of the form

S--+ w5 (w5 E (NUL:)*) is bounded. Without loss of gen rality, let a production rule

rEP be of the form A--+ WA, where A EN\ {S} and wA E (NUL:)*. We prove that

for such an r E P, the following conditions are equivalent.

35

1. r E P is not bounded.

2. There exists a B E N such that one of the following conditions is satisfied.

(a) B ** ,B[B] and ,B[B] contains A.

(b) B ** ,BI[A] and A'** ,B2[B], where A' EN is contained in wA.

IL i clear that Condition 2 implies 1. Now we contrarily assume Condition 1.

Since A is not bounded, there exists B E N such that B *A ,B[B], that is, it holds

thaL B =>* a1Aa2 ** ,B[B] for some strings a1,a2 E (N U 2:)*. If B is derived from

a nont rminal contain d in a1 or a2, then Condition (a) of 2 holds. If B is derived

fron1 a nonterminal contained in wA, then Condition (b) of 2 holds. Otherwise, for any

derivation tr e T of G, the number n(T)r is 1 ss than the number of internal nodes of

a derivation tr of G having depth less than or equal to IINII· Thus, the r is bounded.

This contradicts that r is not bounded. Herre , Condition 2 holds.

Similarly as above, for any production rule in P we can decide whether or not one

of Condition (a) and (b) of 2 holds. Q.E.D.

Now, we are ready to solve the decision problem for characteristic examples and

prove thi problem in the following theorem.

THEOREM 3.1.1. It is d idable whether or not a CFG has a characteristic example.

PROOF. Let P' � P be a s t of bound d production rul s of a CFG G = (N 2:, P, S).

By L mma 3.1. 2, m mbership in P' is decidabl . First we prove that the following

conditions are equivalent.

1. Th G has a characteristic example.

2. There exists a derivation tr e Tp, of G.

It is cl ar that Condition 1 implies 2. For the converse direction, assume that

Condition 2 holds. Let r E P \ P'. Ther exists a nonterminal A1 E N such that

A1 =>; ,BI(A1]. If Tp, has an internal node lab led by A1, then there exists a derivation

tree T of G such that n(TP')r'EP' � n(T)r'EP' and n(T)r � 1. If not, any production

rule r1 E P containing A1 is not bounded. If there exists no A2 E N such that

36

A2 �;1 ,82[A2] and A2 -/:- A1, then A1 must be contained in the right side of a production

rule of th form S ---+ ws E P'. This contradicts that Tp, has no internal nod labeled

by A1. Thus, A2 -/:- A1.

Since th r are only finitely many nonterminals, we can find an Ak E N such that

Ak �;k_1 ,Bk[Ak], Ak-1 �;1 ,82[Ak-l], ... , A1 �; ,BI[A1] and the tree Tp, has an

int rnal nod label d by Ak, namely, there exists a derivation tree T of G such that

n(TP')r'EP' � n(T)r·'EP' and n(T)r· � 1. Thus, Condition 2 implies 1.

Finally, we prove that it is decidable whether or not there exists T P'. Let T be a

derivation tr of G. If d(T) > IINII, th n for a production rule (A---+ w) E P, there

xi ts an int rnal node a1 ofT labeled by A such that w is the concatenation of labels

of its children and n(T1)A-->w � 2, where T1 is the subtree ofT whose root is a1. Since

n(T1)A-->w � 2, th re exists an internal node a2 (-/:- a1) of T1 labeled by A such that w

is th concat nation of labels of its children. L t T2 be a subtree of T1 whose root is a2.

A tr obtained by replacing T1 of T by T2 is also a derivation tree of G. Thus there

exists a derivation tr e T' of G such that n(T)r'EP' = n(T')r'EP' and d(T') � IINII·

Hence, we can decid whether or not there exists TP' by enum rating all derivation

trees of depth less than or equal to IINII· Q.E.D.

3.2 Learning Parenthesis Languages

In this section w study the learnability of the class of all parenthesis grammars.

The cenario is as follows. An unknown targ t parenthesis language L represented by

a parenthesis grammar G has to b learned. W assume that G is in normal form,

that is, a reduc d, invertibl par nth is grammar. The learner receives finitely many

characteristic xamples for G as input. Additionally, our learning algorithm has access

to an oracle that answers memb rship queri .

Next, we d scribe th gen ral id a b hind our algorithm. The algorithm is denoted

by A. In any derivation of G, exactly one pair of parentheses ' (' and ')' is introduced

at every application of ev ry production rul . Thus, we can describe a 'silhouette'

of a d rivation tre according to th derivation, that is, a tr having no label for

its internal nodes. However, th se parenth s s ar of just one species and have no

subscript. Therefor , the parenth ses do not tell us which production introduced them,

37

or even from which nonterminal they came from. Thus, the main part of the A is to

restore the original derivation tree from the silhouette.

W first define an equivalence relation over nodes of derivation trees of a parenthesis

grammar. The algorithm uses this relation as its success criterion: if this relation holds

on two nodes, th n the A assigns them the same label (nonterminal), otherwise he

assigns then1 cliff rent labels. The correctness of this assignment is proved in the next

section. Mor over, we also prove that th running time of our algorithm is bounded

by a polynomial in the number of production rules of the target G and in the length

of a longest characteristic example provided.

For th discussion below, we give the definition of replacement of subtrees or co­

subtr es of tr s. We also define the specific membership queries used by our learning

mod l.

For any tree t, let us denote the root of t by rt(t). The label of a node x of t is

denot d by t(x). Th frontier of t is denoted by fr(t). Let N and E be the sets of

nod s and edges oft, resp ctively. The subtree of t on a node x E N, written tj x, is

the tree with Nt;x � N and Et;x � E such that

1. a node y E N is in Nx;t iff there exist (x, xi), (x 1, x 2), · · ·, (xn, y) E E for some

n � 1 or x1 = y, and

The co-subtree of t on a nod x E N, written t\x, is th tr e with Nt\x � N and

Et\x � E su h that

1. Nt\x = (N\Nt;x) U {x} and

2. Et\x = E\Etfx·

It is easy to see that if t is a tr , then rt(tjx) = x and rt(t\x) = rt(t). In

Figure 3.1, we display an example for a tre , a subtree, and a co-subtree, respectively.

Let t1 = (N1, E1) and t2 = (N2, E2) b tre s such that N1 n N2 = 0. Let x be a leaf

of t1. Then, we define the tr t1 # xt 2 = (N#, E#) as follows.

38

co-subtree subtree

Figure 3.1: A subtree and co-subtree on a node of a tree.

Let x1 E N1, and let x2 E N2. More generally, we define the tree t\x1 #x1 t2/ x2

obtained by replacing the subtree t1/ x1 by the subtree t2/ x2. Given trees t1 and t2, it

i cl ar that x1 i a leaf of th tree t1 \x1. In thi case we omit the subscript of#, that

, instead of t\x1 #x1 t2/ x2 we writ t\x1 #t2/ x2.

xt, we recall the definition of a 'skel ton', a special ty pe of trees.

DEFINITION 3.2.1. (Sakakibara [53]). Let t = (N, E) be a tree and V be the set of

labels of nodes oft. The skeletal description oft, written St, is a tree with N and E

such that for each x E N,

()
_ { t(x),

St X -

$ '

wher $ is a special sy mbol not in V.

if x is a leaf,
otherwise,

Intuitively, the skeletal description of a tree is with labeled leaves, and all internal

nodes label d by$. In this th sis, the term' skeleton' is used for the skeletal description

of a derivation tree of a parenthesis grammar.

39

0

Figure 3.2: Replacement of subtrees on a nod .

a a

0

b

------:;.....

Figur 3.3: The skeletal description of a tree.

40

a a

0
b

Let G be a parenthesis grammar. The set of derivation trees of G is denoted by

T(G). The s t of skeletons oft E T(G) is denoted by s(T(G)). Next, we define a

relation ov r (T(G)).

DEFINITION 3.2.2. Let G be a parenthesis grammar. Let s, s' E s(T(G)), a be an

internal node of s, and a
' be an internal node of s'. Then, we define the relation =c(s,s')

such that a =c(s,s') a' iff both fr(s\a#s'/a') and fr(s'\a'#s/a) are in L(G).

In Table 3.1, we provide the procedur M which determines derivation trees of

characteristic examples with membership queries. As input, M takes a set of char­

acteristic examples of complete grammars with respect to a parenthesis grammar G

g nerating a targ t parenth sis language L, and M outputs a set of derivation trees for

th characteristic examples given as input. For explaining the basic ideas, we include

Example 3.2.1.

EXAMPLE 3.2.1. L t us consider a CFG G such that

G = { {S, A, B}, {a, b ()}, P S}, where

P = {S--+ (AB),A--+ (aB)i(a),B--+ (bA)I(b)}.

The grammar G is an invertible parenth sis grammar. Th re exists a derivation of

G for th string w = ((a(b))(b(a))) in which every production is appli d. Thus th G

is also complete. From this characteristic exampl , we can compute the uniqu tree

t = (N,E) , where N = {1,2,· ··,9} and E contains th following elements.

E
_ { (1, 2), (1, 3) (2, 4), (2, 5) }
- (3,6)(3,7)(5)(7,9)

Mor over, all labels oft ar d fined a follows and an image of this tree is displayed

in Figur 3.4.

t(i) = { �:
$,

if i = 4 or 9,
if i = or 6, and

oth rwise.

41

$

a

Figure 3.4: An image of skeleton.

Procedure M(s); s = {s1 · · · , sm} of skeletons of characteristic examples

begin
for each i = 1 . . . m

for each nod s j and k of si
if j =c(s,,s,) k, then

r nam i(k) by si(j)
else·

for each i = 1, .. . , m- 1 and j = i + 1, ... , m

for each nod s i' of si and j' of Sj
if i' =c(s, ,s1) j', then

rename j(j') by i(i')
if i' "i=c(s s) j' and i' = j', then

" J

rename Sj(j') by a new lab 1 k
else;

output s;
end

I First loop I

I* by membership queries *I

I* Second loop *I

I* by m mbership queries *I

Table 3.1: The procedure M to decide derivation trees.

42

---=:- - � --� --- -

Now, w return to the explanation of the general behavior of our procedure M.

Let L be a target grammar and let s = { s1, s2 · · · , sm} be a set of skeletons for

m characteristic xamples of L. First, for any two nodes i and j of a skeleton sk

(1 ::; k ::; rn) , our procedure uses a membership query. A memb rship query proposes

two frontiers of tre s sk \i#skl j and sk \j#skli. If these two frontiers are both in L,

then the answ r ye is r turned. If one of the frontiers is not in L, then no is returned.

In cas of yes, th M renames sk(j) by sk(i).

Furth rmore, for any node i' of a skeleton si and for any node j' of another skeleton

Sj such that 1 ::; i ::; m - 1 and i < j, M uses a membership query. In this stage, a

membership qu ry proposes two frontiers of si\i'#sjlj' and sj\j'#sdi'. If these two

frontiers are both in L, then the answer yes is returned. If one of the frontiers is not

in L, th n no is returned. In case of y s, M renames sj(j') of Sj by si(i') of si. In

ca of no and i' = j' procedure M introduces a new label k and renames sj(j') of Sj

by k.

Finally the proc dure outputs a refined set s as a set of derivation trees of a gram­

mar for the targ t parenthesis language L. Our algorithm A computes a parenthesis

grarnmar G' = (N, 2.:, P, S) u ing such a refined s = { s1, s2, • · · sm}· Since each si

(1 ::; i ::; m) is a derivation tree for a characteristic example, the N, $ and P are effec­

tively computabl . For exampl , if E s has an int rnal node i such that its children

are j1 j2, · · · Jk in left-to-right ord r, then th algorithn1 A makes a production rule

s(i) --t (ji)s(j2) · · · s(jk)·

LEMMA 3.2.1. Let a and b be internal nod s of a d rivation tree T of a reduced

inv rtible parenth sis grammar G. Th n T(a) = T(b) iff a =c(T,T) b.

PROOF. Clearly, if two lab ls of a and b are equal, th n a =c(T,T) b. We assume

a =c(T,T) b. Sine G is inv rtibl , if two fronti rs of I a and sIb are equal, then T(a)

and T(b) ar also equal.

Let two frontiers of s I a and sIb be not qual. Th grammar G has two production

rules of the form A--t (w1T(a)w2) and A' --t (w�T(b)w;), where A and A' are nonter­

minals and w1, w2, w� and w; ar s ntential forms. G also has two production rules of

the form A--t (w1T(b)w2) and A' --t (w�T(a)w;).

43

Henc , it follows that any sentential from of G containing T(a) or T(b) are of the

form vV1(w1 Bw2)W2 or W{(w�Bw�)W� for a nonterminal B E {T(a), T(b)}, where

W1, W2, vV{ and W� are sentential forms. Thus, a string aT(a){3 is derived from G

iff th string aT(b){3 is derived from G. Since no two distinct nontern1inals of G are

equival nt, w onclude that the strings T(a) and T(b) are equal. Q.E.D.

LEMMA 3.2.2. Let G be an invertible parenthesis grammar . Let a and a' be inter­

nal nod s of d ri vation tr es T and T' of G, respectively. Then, T(a) = T' (a') iff

- I a =G(T,T') a ·

PROOF. Analogous t Lemma 3.2.1. Q.E.D.

From Lemma 3.2.1 and 3.2.2, we conclude that for a target parenthesis language,

our algorithm eventually terminates and outputs a parenthesis grammar which gen­

erate th target parenthesis language. We now analyze the time complexity of our

algorithm.

LEMMA 3.2.3. The time used by the procedure M is bounded by a polynomial in

the number of characteristic examples initially given and in the length of a longest

characteristic example returned.

PROOF. It is suffici nt to show that the total number of membership quenes 1s

bound d by a polynomial in the numb r of charact ristic examples, denoted by m,

and in the length of a long st charact ri tic example by n.
For any characteristic example w, its skeleton has at most cjwj2 internal nodes,

where c is a constant. In order to decid wh th r or not any two lab ls of internal

nodes of the skel ton ar equal, th procedur Muses at most (cjwj2- 1) + (cjwj2-
2) + · · · + (cjwj2- (cjwj2- 1)) = �(cjwj2 + 2)(cjwj2- 1) many membership queries.

For any two characteristic examples w 1 and w2 such that jw1j :::; jw2j their skeletons

have at most cjw2j2 int rnal nodes. In order to d cid wh th r or not any two labels of

internal nodes of the skel tons ar equal, the M uses at most c2jw2j4 many membership

queries.

Thus, the total number of membership queries used by the procedure is at most

�m(cn2 + 2)(cn2- 1) + �c2(m- l)(m- 2)n4 = O(m2n4). Q.E.D.

44

LEMMA 3.2.4. Th total number of characteristic examples to decide a parenthesis

grammar for a targ t language is bounded by the number of production rules of a

minimal invertibl parenthesis grammar.

PROOF. Let C = (N, �' P, S) be an invertible parenthesis grammar for a target.

By Proposition 3.1.1, there exist complete grammars C1, · · · , Ck with respect to C

such that Uf=1 Pi = P and k :::; liP II, where Pi is the set of productions of Ci for all

i = 1 ... 'k.

L t wi b a haracteristic example of Ci. By Proposition 3.1.2, the string Wi is

not a haracteri tic xample of any oth r Cj E { C1, · · · , Ck} \ { Ci}. By Lemma 3.2.1

and 3.2.2, a grammar C� is d cidable such that L(Ci) = L(CD and L(CD # L(Cj) for

any oth r Cj E {C1, · · · , Ck} \ {Ci}.
Th u given characteristic examples w1, · · · , Wk of the grammars C1, · · · , C k, we can

compute parenth sis grammars C� · · · ,C� such that k:::; IIPII and L(Ci) = L(CD for

all i = 1, . .. , k. Q.E.D.

Putting it all tog ther, we obtain the following theorem.

THEOREM 3.2.1. The class of parenthesis grammars is l arnable with respect to

reduc d, invertible par nthesis grammars as hypothesis space using membership queries

and charact ristic exampl in tim polynomial in th length of a longest characteristic

xample provided and in the numb r of production rules of a minimal grammar for an

unknown target.

3.3 Discussion

We have introduced th notion of characteristic exampl s for CFGs. and discussed their

properties. In particular, it can be effectively decided whether or not a CFG has a

charact ristic example. Consequently, in our learning model for parenthesi grammars,

we assumed that characteristi exampl s are giv n for the learning algorithm as input

instead of using equivalence queries. The class of parenthesi grammars is learnable

in time polynomial in the length of th longest characteristic example and in the size

of a minimum grammar for the target using membership queries and characteristic

examples.

45

However it r mains open whether the tin1e complexity of our model is polynomial

in the sens of Angluin (cf. [6]). That is, when we consider the length of examples,

characteristic examples may be very long compared with counterexamples returned in

response to equivalence queries.

As futur work we consid r learning of CFGs us1ng characteristic examples and

structural m mb rshi p queries: The teacher gives 'plain' characteristic examples (that

have no additional information) as input and answers the membership queries for

structural strings. It is necessary to show that an algorithm its lf can decide a skele­

tal d scription of each characteristic example of a CFG using structural membership

quen s.

46

