SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Studies on the Learnability of Formal Languages
via Queries

RAR, LaE®s

Graduate School of Information Science and Electrical Engineering, Kyushu University

https://doi.org/10.11501/3147889

HARIER : UK, 1998, F+ (B%) , FEEL
N— 30

HEFIBAMR

Studies on the Learnability of Formal
Languages via Queries

ABSTRACT

Studies on the Learnability of Formal Languages
via Queries

Hiroshi Sakamoto
Kyushu University

1998

The present thesis deals with the learnability of formal languages via queries based
on Angluin’ [6] learning protocol. Assuming a class of concepts and a finite or count-
able hypothesis space corresponding to it, for every unknown target concept, a learning
algorithm is required to output a hypothesis that correctly describes the target using
additional information provided by membership queries and equivalence queries.

For such learning problems, two oracles for membership and equivalence queries
are assumed, i. ., for the membership query, one oracle exactly answers any question
“Is this example a member of the target concept?” and for the equivalence query, the
other exactly answers any question “Does this hypothesis correctly describe the target
concept?”. The equivalence oracle returns a countererample for the hypothesis if it
does not.

First, languag | arning from good eramples is investigated. The concept class stud-
ied is a subclass of contert-free languages because of their rich potential of application.
On learning via queries, the capacity of an equivalence query may be too powerful and
not r a onable sinc the equivalence problem for context-free languages is undecidable.
On the other hand, it is also true that additional information sometimes makes lan-
guage learning efficient. Thus, the aim of this research is to present a natural learning
model by combining learning via queries with learning from good examples. Instead
of equivalence queries, a method for providing good examples is applied to the class of
parenthesis languages (cf. [44]). hese good examples are called characteristic strings.
Assuming the setting of memb r hip queries and characteristic strings for the class of
parenthesis grammars, it is shown that there exists a polynomial-time algorithm to
learn every parenthesis language.

Second, the learnability of finite-memory automata via queries is studied. Learning
the regular languages is one of the ultimate objectives learning theory. Although
the learnability of the regular languages via queries w.r.t. the hypothesis space of

deterministic finite automata [4], there are very =w results for other hypothesis space,

e.g., regular expressions and nondeterministic finite automata. The aim of this research
is to present a learning algorithm for regular languages using a new hypothesis space,
i.c., the finite-memory automata (cf. [32]). A finite-memory automaton is assumed
to use registers to store symbols, and the number of these registers is fixed a priori.
Such an automaton is defined over an infinite alphabet, and for any finite alphabet
A, the language accepted by the automaton is equivalent to a regular language over
the alphabet A. Thus, we start with the natural question whether finite-memory
automata represent regular languages than finite automata more compactly. This
compactness is indirectly shown by the negative results for computational hardness of
decision problems for finite-memory automata, and the learnability of the automata is
exp t d to be difficult. Then, we investigate the learnability of a subclass of finite-
memory automata referred to as stimple deterministic finite-memory automata. Almost
all computational problems are intractable even if restricted to the class of simple
deterministic automata. Thus, the learnability of this simple deterministic class is also
difficult. However, we show that there exists a learning algorithm for this class using
membership and equivalence queries.

Finally, language learning from incomplete data is studied. There is another hier-
archy of formal languages, the so-called pattern languages (cf. [1]). The aim of this
study is to analyze the contribution of negative eramples to the learnability of pat-
tern languages. Several negative results concerning the feasibility of the consistency
problem for pattern languages have been obtained previously (cf., e.g., [1, 46, 73]).
H r the consistency problem is defined as follows. Given any set of labeled exam-
ples, decid whether there exists a pattern generating all positive examples given and
none of the negative examples. Th s results provide substantial evidence for the dif-
ficulty of learning the pattern languages consistently w.r.t. the hypothesis space of
all pattern . However, there is an int r ting case remaining open, i.e., the case of
one-variable pattern languages. In this case, the consistency problem is neither known
to be NP-complete nor to be in P. While these r ults support the difficulty of learning
patterns from both positive and negative examples, there is an expectation for effective
learnability of th class of one-variable pattern languages, and it is an interesting open
question whether the consistency problem is decidable in time polynomial.

In order to approach a solution of this problem, incomplet strings are introduced.
This notion is an application of the framework of monotone ertensions introduced by
Boros et al. [14] for the setting of learning Boolean functions. An incomplete string

is assumed to contain unsettled symbols denoted by a wild card x which potentially

matches with every symbol. Thus, by fixing any finite alphabet ¥ plus %, the consis-
tency problem is generalized informally as follows. Given two disjoint sets T and F' of
strings in (YU {x})*, an algorithm must decide whether there exists a one-variable pat-
tern consistent with each strings in T and F with respect to several criteria of suitable
settlements for these wild cards . The computational complexity of these problems is
investigated, and it is concluded that incomplete strings make the consistency problem

difficult, i.e., almost problems studied are shown to be NP-complete.

111

ACKNOWLEDGMENTS

This research was supported by a JSPS (Japan Society for the Promotion of Sci-
ence) Research Fellowship for Young Scientists. Th results in this thesis were or will
be partially published in the proceedings of ALT’95, 97, and ’98, the proceeding of
MCU’98, the Bulletin of Informatics and Cybernetics, and in Theoretical Computer
Science. | am thankful to all editors, program committees, the anonymous referees,
and the publishers.

At ALT’95, the chairman of my session was Prof. Klaus P. Jantke. His smile relaxed
me and my presentation was successfully completed. At ALT’97, 1 had the opportunity
to meet Prof. Ming Li. He seriously listened to my talk in front of me. At MCU’9S,
the program committee chair, Prof. Maurice Margenstern, gave us a warm welcome.
Prof. Markus Holzer was interested in our study and he bombarded us with questions
one after another. We are deeply grateful to Prof. Volker Diekert for his careful proof
reading of our ubmission to this colloquium and to the TCS special issue. At ALT 98,
I got response to my study from Prof. Frank Stephan and his colleagues as soon as |
came back to Japan. They solved an important open problem, and I am very glad to
have their permission to include the new result into my publication.

| investigated a theme together with Daisuke lkeda. He got married this month,
and [shall wish them good luck. | appreciate the benefits from Miss Noriko Sugimoto,
Mr Eiju Hirowatari, and other colleagues. My incere gratitude is owing to the teach-
ing staff of Department of Informatics, Kyushu University. | further give my gratitude
to members of our monthly “severe seminar”. This seminar is supported by Prof. Set-
suo Arikawa, Hiroki , Hiroki Ishizaka, Ayumi Shinohara, Takeshi Shinohara,
Masayuki Takeda, and Thomas Zeugmann.

This thesis was publi h d with helpful and accurate omments from Prof. Fumihiro
Matsuo. [want to expr s special thanks to my supervisor, Prof. Thomas Zeugmann,

who had guided me for a long time. Finally, my deepest thanks go to my family.

October 31, 1998
Fukuoka

Hiroshi

Table of Notations

In this thesis, we will use several notations which may be not standard. The
following table consists of these notations. Moreover, we provide another table listing

computational problems as well as their abbreviations, and locations in this thesis.

Expression Usage

log n

lz]; [2] max{n | n < z}; min{n | n > z}

f:A—-B a partial function from domain A to range B
small Greek letter potentially any string, e.g., a,3,...,7

A” the free monoid over th set A

[|Al]; || cardinality of set A- length of string a

A\ Band A® B difference and ymmetric difference of sets
IN the set of all natural numbers

th et of all n-ary Boolean vectors

T st diga s 50 a finite alphabet

0 ={a |1 € N} an infinite alphabet

calligraphic fac a cla of representations e.g., P and P
small capital face a computational problem, e.g., SAT and Cvp

capital bold italic face name of an algorithm, e.g., A

Table of Computational Problems

We shall summarize representative decision problems in this thesis, where consis-
tency problem is equal the following E, and problems for finite automata are omitted

by analogy with finite-memory automata.

Problem Abbreviation Page
Boolean formulae and graphs:
satisfiability for Boolean formulae 19
satisfiability for 3-CNF 3-SaT 90
satisfiability for circuits circuit SAT 20
circuit value Cvp 20
monotone circuit value monotone CVP 52
3-colorability of graphs 3-CLR 95
Automata:
membership for MEM/MEMD G2
non-emptiness for FMAs/DFMAs —-EMp/-EMPD 57
inequivalence for FMAs/DFMA 61
Patterns:
existential membership AMEM(7,w) 86
universal membership 89
consistent-, robust-, and ordinary-
extension CE, RE, and E 85
restrict d consist nt extension RCE 87

Vi

List of Figures

3.1
B
S
B

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

5.1

6.1

A subtree and co-subtree on a node of a tree.
Replac ment of subtrees on a node. |
The skeletal description of a tree.

An image of sk leton.

A DFMA and the corresponding DFA.

The FMA A computed in Example 4.2.1. .
The FMA A reduced from G in Example 4.2.2.
The A computed from ¢ in Example 4.2.3.

The procedure for deciding consistency of simple DFFMAs.

A simple DFMA with the initial assignment of empty two registers.

The procedure for finding a permutation closed DFA.

The procedure for computing a simple DEMA.

A permutation clos d DFA and a corresponding simpl DFMA.
The algorithm for a target simple DEFMA.
Comparing th number of states of a DFA and a DFMA.

Negative examples computed from a 3-CNF C of n variables. .

Pattern automata.

Vil

91

100

Contents

1 Introduction 1
2 Preliminaries 12
2.1 Basic Notations and Definitions , 12
2 2 Languages . s
2.3 Decision Problems 18
2.4 Language Learning via Queries 22
3 Learning Parenthesis Grammars 30
3.1 Characteristic Examples "t
3.2 Learning Parenthesis Languages B
3.3 Discussion . 45
4 Learning Finite-Memory Automata 47
4.1 FMAs and DFMAs . 48
4.2 Decision Problems for FMAs . 52
4.3 Learning Simple DI'MAs 62
4.4 Discussion m) 7
5 Learning One-Variable Patterns 81
5.1 Consistency Problem 82
5.2 Variants of Extension Problem . 84
5.3 Discussion ' 96
6 Conclusion 98
References 103

Vil

CHAPTER 1

Introduction

The pr s nt thesis studies learning based on Angluin’s [6] framework of learning via
queries. lLet ¥ = {a,b,...,c} be any finite alphabet. We write £* to denote the free
monoid over ¥. The underlying learning domain is ¥*. The concepts to be learned
are recursively enumerable subsets of ¥* i.e., any r.e. language in R(¥*) may be a
target concept. Subclasses of R(X*) are referred to as concept classes. Throughout this
thesis, we shall mainly study indexable concept classes. A language class £L C R(Y™)
is sald to be indexable provided all L € £ are non-empty and there exists a recursive
enumeration (L;), N of all the languages in £ as well as a recursive procedure f such
that for all j € IN and all s € ¥,

1, S € L]'
0, otherwise.

f(3,9) ={

Prominent examples of indexable classes are the regular languages, the context-free
languages, and the pattern languages. The indices j can be thought of as suitable finite
encodings or, synonymously, finite representations. For xample, the regular languages
can be represented by finite automata or regular expressions, while pushdown automata
or context-free grammars may serv as representations for the context-free languages.
Pattern languages are most usually represented by patterns. It should be considered
that all these representation classes constitute themselves indexable classes in a normal
way. Therefore, in the following, we shall always assume all language classes and all
representations for them to be indexable.

Now, learning is a process of identifying a target language automatically by means

of a finite representation for it. More formally, assuming a class £ of languages and

a class H of representations corresponding to L, a target L € L is arbitrarily chosen,
and information about L is provided to an algorithm as input.

The algorithm is said to learn L if for every target L € L, it stops and outputs
a hypothesis h € H which is a representation for L. Moreover, we are interested in
efficient learning: the running time of the algorithm for every concept L € £ can be

stimated by the size of a minimum representation h for L and by the size of input in

binary. For a concept class, when we construct a learning algorithm satisfying the cri-
terion of efficient learning, a problem arises naturally—From what information does the
algorithm learn? Throughout this thesis, we mainly consider active learning. That is,
the learner obtains information about the unknown target by asking queries. The mo-
tivation for a theoretical study of query learning goes back to system implementations
that allow a computer to ask its user.

For instance, Sammut-Banerji’s [60] expert system uses questions about specific
examples as part of its strategy for efficient learning a target concept, and Shapiro’s [62,
63, 64] algorithmic debugging system makes a variety of questions possible to a user to
pinpoint errors in Prolog programs.

These intelligent systems stimulated the theoretical analysis of exact learning, and
the framework of Angluin’s [6] query learning model has been introduced to model the

ituation in which a learner can put qu ri s to a teacher by oracle Turing machines. She
tudied the power of several types of queries, referred to as membership, equivalence,
subset, superset, disjointness, and erhaustiveness. In particular, the membership and
quivalence query attracted considerable attention during the last decade.

Th 1 arning protocol using membership and equivalence queries is referred to as
minimally adequat teacher. Consider the problem of identifying a target language
L € L from a finite or countable hypothesis space H = hg,hy,.... Then, a learn-
ing algorithm has access to a fixed set of oracles that correctly answer the following

questions.

Membership: Input 1s an element * € ¥*, and the output 1s yes if x € L and no

otherwise.

Fquivalence: Input is an index n i the hypothesis space, and the output is yes

if L, = L and no otherwise. Moreover, if the answer is no, then an element

o

r € @ L, called a counterexample, is returned, where L, @ L is the symmetric

difference of L, and L.

For example, let £ be the set of all regular languages L C ¥*, and let the class
of deterministic finite automata, DFAs, be assumed to be hypothesis space for the
learning algorithm. The goal is to identify a correct DFA which accepts the target
language L chosen by the teacher. For each w € ¥*, the membership oracle answers
whether w € L, and for each DFA M, the equivalence oracle answers whether L =

If not, then it returns a counterexample w for the hypothesis A such that
we L@ L(M).

The choice of a hypothesis space H plays an important role in the running time
of a query learning algorithm A for a class £ of languages. A class L is said to be
learnabl in time polynomial using the specified queries w.r.t. the hypothesis space H
if for every target L € L, the total running time of A is bounded by a polynomial
in n and m, where n is the size of a minimum A € H for L and m is the length of a
longest counterexample returned. The query model is powerful to learn various classes
of formal languages. Angluin [4] showed that the class of regular languages is learnable
in time polynomial in the parameters using equivalence and membership queries w.r.t.
the hypothesis space of DFAs.

After her work, a number of researchers succeeded to expand her result, thereby
still achieving polynomial-time learning algorithm, e.g., the learnability of the class of
languages accepted by one-counter automata by Bermann and Roos [12], even-liner
grammars by Takada [70], and simple deterministic grammars by Ishizaka [29]. These
classes of formal languages are subclasses of the context-free languages which have
attracted a great deal of attention becaus of the rich potential of application.

For example, it is we that all programming languages in BNF (Backus
Naur Form) are mainly defined by context-free grammars, e.g., C and PASCAL.
Furthermore, Shinohara [67] developed a data entry system for text data base. He
investigated the learnability of regular pattern languages in the framework of Gold’s [21]
identification in the limit. Although different data bases usually have different formats
for records, e.g., “Author”, and “Year”, his system effectively learns different

types of these formats using the pattern inference techniques.

We can find other examples of wide application of context-free languages nearby.
An HTML document on web-page is defined by a parenthesis grammar that is also
context-free ce a source file consists of structural text parenthesized by a pair of
beginning tags and the corresponding ending tags, e.g., <html> text < /html>. When
considering the setting of equivalence queries, the answer to an equivalence query is
carried by users in real application.

How v r, this setting would make the burden too heavy for users because we need

nough information about the target beforehand to provide a correct answer to an

equival n query. Moreover, it seems that equivalence query is not reasonable accord-

ing to hypothe 1 spaces, since the equivalence problem of two context-free grammars
computationally undecidable.

Since membership queries alone are too weak to achieve powerful learning algo-
rithms (cf. .g., [6, 8]), various authors have considered suitably chosen finite sets of
strings as information given to the learner. Intuitively, all thes sets can be thought of
as sets of good examples. For instance, Angluin’s live-complete sets [2], Ibarra-Jiang’s
lexicographically first string [28], and Oncina-Garcia’s characteristic set [49] for DFAs
and Ibarra-Jiang’s shortest strings [28], Marron-Ko's positive initial sample [43], and
Marron’s single positive example [42] for pattern languages.

ote that humans also learn mainly from good examples, or at least much more
efficiently. Therefore, we shall continue along this line. The motivation of this study
to provide good examples comes from the class of parenthesis languages (cf. [44]). A
parenth 1 language is a context-free language possessing a grammar in which each
application of a production rule introduces a uniqu pair of parentheses, delimiting
the scope of that production. Parenthesis languages are nontrivial since only one kind
of parenthesis is used, and they are one of rich clas s for which equivalence problems
are decidable (cf. [44, 36)).

How v r, it is not known whether the equivalence problem for given two parenthesis
grammars is in P. instead of equivalence query, we propose a setting to provide
polynomially many good examples to learning algorithm, and present a learning model
by combining membership query with good examples. Our idea comes from the fact
that each parenthesized string preserves the structur of its derivation, in other words,

a pair of parentheses in the string corresponds to an application of a production rule.

A good example of a parenthesis grammar G is, intuitively, a string derived by
as many production rules of GG as possible. Let L be a target parenthesis language
defined by a grammar (G. The learning algorithm takes good examples of G, and
outputs a grammar G’ such that L(G) = L(G") using only membership queries. The
total running time is bounded by a polynomial in the number of productions of the
target as well as in the length of a longest string provided to the algorithm. From the
resulting correctness of the algorithm, we conclude that good examples contribute to
learning parenthesis grammars without equivalence queries.

As we shall saw in the above paragraph, when a target parenthesis language L is

| ted, good examples are decided by a grammar G such that L = L(G). Thus, the
result d p nds on the hypothesis space of parenthesis grammars. This phenomenon is
also found in other results in language learning, for example, when dealing with the
class of regular languages. It is well-known that regular languages are learnable in time
polynomial w.r.t. the hypotheses of DFAs, however, few results were obtained for other
hypothesis space (cf., e.g., [4, 15, 75]). That is, both successful learning and efficiency
of learning may d p nd on the hypothesis space chosen. This study is motivated by
also the above problem.

There is no polynomial-time algorithm to decide whether two regular expre 1ons
are inequi al nt™ ven if only U, -, and ? are allowed, where €? is a regular expression
equal to e- e for v ry regular expression e. Similarly, inequivalence problem for finite
automata is PSPACE-compl t (cf., e.g., [69, 23]). s equivalence oracles are too
powerful, and it is not r a onable to assume such oracles for these hypothesis spaces.
Then, we consider another hypothesis space consisting of finite-memory automata,
FMAs, for regular languages (cf. [32]).

Compared with finit automata, the diff r nce of definition is that an FMA can use
k registers to memorize k symbols. It is possible to replace the content of a register
by any input symbol. e transition is defined by only the state and the address of
a register which contains the same symbol to input. Thus, FMAs are released from
specification of alphabets of its definition. That is, an FMA potentially represents a
language over an infinite alphabet.

Assuming the hypothesis space of all FM As, the following question arises naturally:

*This problem is NEXP-complete [69], where NP # NEXP = UgsoNTIME[2""].

Can finite-memory automata represent reqular languages more compactly than finite
automata? s question is partially solved by making a comparison of the complexity
of several decision problems between finite-memory automata and finite automata. The
complexity of studied decision problems is also interesting in its own right, and has
been remained open in [32]. However, unfortunately, the resulting intractability of
almost all decision problems supports the hardness of the learnability of the full class
of finite-memory automata.

Th r fore, we introduce the class of simple FNMAs and investigate the learnability
of simpl DFMAs via membership and equivalence queries, where DFMA denotes a
deterministic FMA (cf. [32]), and an FMA is simple if its all registers are initially
empty. Although the studied decision problems remain intractable for the restricted
class, we construct an algorithm to learn each target language. This algorithm is
based on Angluin’s [4] observation table technique. The hypothesis space assumed is
all simple DFMAs, and it is allowed to use membership and equivalence queries for
each target language over an infinite alphabet. For every target language L accepted by
a simple DFMA, our learning algorithm terminates and outputs a correct hypothesis
A such that L = L(A) over the infinite alphabet.

We have mentioned learning subclasses of languages in the Chomsky hierarchy at
the points: the confid n of a hypoth 1 proposed by an algorithm and the conver-
gence of a hypoth s s into a correct one. The former is solved by equivalence oracles for
th s hypothesis space, but the latter is not because these are independent problems
each oth r for instance, there is other int r ting hierarchy of the classes of pattern
languages (cf. [1]).

Let ¥ be any finite alphabet, and let = ity e, PrBucki sliat T Mo =
A pattern is a non-null string over ¥ U Let f be a nonerasing homomorphism
from patterns to patterns. If f(a) = a for all ¥, then f is called a substitution. The
language of a pattern mis th s t L(7) = {w € ¥t | w = f(x), f is a substitution},
where £t = ¥\ {e} for the null string e. h class of all patterns is denoted by P.

For the class P, ther is no polynomial-time learning algorithm even though mem-
bership and equivalence queries are assumed (cf. [6]). This is because, in a worst case,
a learner must receive exponentially many counterexamples to achieve a correct hy-

pothesis when a target pattern language is a singleton. Moreover, learning pattern

languages is still difficult even if we assume a target is not singleton. This difficulty
is related to the computational problem: assuming the hypothesis space P, and given
finit sets 7" and [of strings, decide whether there is a pattern language L(7) such
that T € 7)) and FFN L(xr) = 0. The samples T and F are called positive and
negalive r spectively. This problem is referred to as the consistency problem for P.

The computability and learnability of patterns have been widely investigated and
several negative results were shown (cf., e.g., [1, 31, 46, 61, 73]). From these results it
follows that learning pattern languages consistently is very hard, nevertheless, not all
possibilities disappeared. An interesting question that remains open is the consistency
problem for the one-variable patterns. The class of one-variable patterns, denoted by
Py, is the set of all patterns over EUX such that ||.X|| < 1. It is neither known whether
this problem is in P nor NP-complete. In order to shrink the gap of our knowledge
concerning the complexity of the consistency problem, we shall relax this problem step
by step, and we analyze th complexity of each of the resulting problems.

The idea of relaxation of this problem comes from the motivation of incomplete data
given in Boros et al. [14], which is helpful when looking at monotone extensions from
the view point of how noisy data may influence the complexity of learning. Since real
world data may be noisy, allowing strings to contain indefinite values can be modeled
by introducing a wild card » as a placeholder. Given samples T and F' of strings
containing +, we provide th following interpretations for these indefinite values w.r.t.
the consistency problem for P;. The ordinary consi t ncy problem for P is equivalent
to the case that any given string contains no wild card.

If a string w contains at least one x, then we consider an assignment for w such
that it replaces each * by a constant and do not replace any constant. Then, the
first problem is whether th r exist a pattern # € P, and a suitable assignment for
each string in 7'U F such that 7 is consistent with all the assigned strings. The second
problem is whether “. X1t apattern # € Py such that 7 is consistent with all the
assigned strings what v r assignment for 7'U F' we choose.

In order to study the above problems in detail, we also consider the restricted
version for them such that th positive sample consists of only constant strings. Con-
sequently, we conclud that the first problem is equivalent to the ordinary consistency

problem w.r.t. log-space reductions if the positive sample is restricted. Moreover, all

il

other problems are intractable. In particular, the proof of the NP-completeness of the
first problem was provided in [68]. This problem was an open question of this study
and the author had expected that it is also equivalent to the consistency problem.

We have discussed the outline of this thesis, now, explain the technical part for each
them . Th following chapter consists of the bases on formal languages, computational
complexity, and learning theory, which are necessary for our discussions. Recent results
of languag learning via queries are also presented in this chapter.

In Chapter 3, we deal with the announced learning parenthesis languages using
membership and good examples. Let (G be a context-free grammar over a set X of
terminals and a set N = N’ U {(,)} of nonterminals. Then, the grammar G is said to
be parenth ized if each production rule A — a of G satisfies that A € N, a = ()
and B € (X U N')*. On a parenthesis grammar, for each usage of a production rule,
xactly one pair of ’(” and ’)’ is derived in the leftmost and rightmost positions of
a string. Henc for any parenthesis grammar G, the language L(G) becomes to be
unambiguous', i. ., for every w € L(G), there exists exactly one leftmost derivation of
G for w. Thi point is one of the critical parts of our study.

The unambiguity of a target grammar G = (N, ¥, P,S) can be considered that a
string w derived from (& preserves the structure of its derivation tree T. The task of
the learning algorithm is to decide all labels of internal nodes of T'. A string w is said
to be a characteristic string of G if all production rules of (¢ are used to derive the w,
but not all parenthesis grammars have such a string.

Thus, we refine the notion of good examples for (G by partitioning the grammar
G. A grammar G' = (N, ¥, P',S) is said to be a sub-grammar of G if N' C N,
¥ C ¥, and P! C P. We prove that there are polynomially many sub-grammars
Gy, ..., Gy for any context-free (of course, parenthesis) grammar G such that G, derives
at least one characteristic string w; for all ¢ = 1,..., k. Thus, we assume that these
strings wy, . .., wi are given to the learning algorithm, and show that every parenthesis
grammar (is learnable using th characteristic examples and membership queries in
time polynomial in n and m, where n = [|P|| and m = max{|w;| | ¢ =1,...,k}.

In Chapter 4, we study the learnability of simple DFMAs via membership and

TAlthough a context-free grammar is inherently ambiguous, Sakakibara [53] avoided this difficulty
using special strings represented by trees for learning context-free grammars.

on

equivalence queries. Let IN be the set of all natural numbers. Then, an FMA defines a
language over the infinite alphabet = {a; | : € IN}. Let ¥ be any finite subset of (,
and let A be an FMA. The language L(A) N ¥* accepted by A is a regular language,
i.e., the class of languages of FMAs over the finite alphabet ¥ is equivalent to that of
finite automata over .

The deterministic class DF'MAs is a subclass of FMAs. One easily shows that this
class is closed under complement, but not closed under union and intersection (cf. [32]).
Moreover, th r exists a language L accepted by an FMA but the language Q*\ L is
not. Thus, it is traightforward that the deterministic class is properly included in the
general class (cf. [32]). Several interesting closure properties of both classes of finite-
memory automata w r investigated in [32], however, there is a lack of investigation
on decision problems for them.

As it is well-known, the decision problems for finite automata referred to as mem-
bership, non-emptiness, and inequivalence are complete for the classes NLOG, NLOG,
and PSPACE, respectively, and the corresponding problems for the deterministic fi-
nite automata are complete for DLOG, NLOG, and NLOG, respectively. On the other
hand, we prove that the membership and non-emptiness problems for the class of
FMAs are both NP-complete. Furthermore, for the class of DFMAs, the membership
problem is P-complete and the non-emptiness problem is NP-complete.

From these results, we observe that, in the polynomial hierarchy, the complexity
of the studied problems for 'MAs shape a counterpart of the corresponding problems
for finite automata. Thus, the inequivalence problem for the deterministic and nonde-
terministic cla s s are expected to be NP-complete and NEXP-complete, respectively.
While the inequivalence problem for the d t rministic class is in PSPACE and its
NP-hardness is prov d the problem whether it i1s in NP remains open.

We next turn our attention to the learnability of a subclass of FMAs via membership
and equivalence queries. We introduce the class of simple DIF'MAs, and for every
target, we assume membership and equivalence queries to the learner. Even though
the alphabet (2 is infinite, we conclude that the setting is reasonable since, as we have
mentioned above, both related decision problems for the class are decidable.

When a counterexample is returned, our learning algorithm constructs a finite

automaton M based on the notion of observation table [4], and in the next stage, this

algorithm successively translates M into a simple DFMA A such that L(A) N Y™ =
L(M), where ¥ is a set of all symbols in counterexamples returned so far. Consequently,
we show that the class of languages accepted by simple DFMAs is learnable using
membership and equivalence queries w.r.t. the hypothesis space.

In Chapter 5, the difficulty of the consistency problem for one-variable patterns is
studied. It is known that consistency problem is very hard for almost all subclasses
of the class P (cl., e.g., [1, 46, 73]), however, no one has been proved its intractability
within P, yet. Thus, we analyze the consistency problem as well as its variants for the
class P, w.r.t. incomplete examples defined as follows.

An incomplete example is any string over YU {*}, where the x potentially matches

with every symbols. We assume the set of all functions f : (¥ U {*})* — % such

that it maps every * in a string to a constant in ¥ and maps any constant in the
string to itself. Then, given finite positive and negative samples T, FF C (Y U {x})*, an
algorithm must decide whether there exists a # € P; and a function f defined above
such that 7 is consistent with f(T') and f(['), where f(T) = {f(w) | w € T} and f(F)

analogous. The studied problems are defined by the following criteria:

I. There exists a one-variable pattern = consistent with the given 7" and F' provided

T,F c £*. This is the ordinary consistency problem referred to as extension.

2. Th r exists a one-variable pattern m and a suitable function f such that =
is consistent with f(7) and f(F). This problem is referred to as consistent

rtension.

3. There exists a one-variable pattern = consistent with f(7') and f(F) for all f.

This problem is referred to as robust ertension.

Moreover, the restricted consistent extension and robust xtension are also studied,
where a restricted problem is that any string in T contains no x. We show that the ex-
tension and restricted consistent extension are computationally quivalent with respect
to log-space reductions. The robust extension is NP-complete even if an alphabet con-
sists of only two symbols. Additionally, the consistent ext n ion is also NP-completet,

thus, we arrive at the conclusion that almost all problems are intractable.

{The NP-completeness was proved by Stephan [68], personal communication.

10

Finally, in Chapter 6, we mainly discuss several open questions not solved in this
thesis, i.e., the NP-completeness of the equivalence problem for the class of DFMAs,

and the computability of the ordinary consistency problem for the class ;.

11

CHAPTER 2

Preliminaries

This chapter contains basic definitions necessary to make this thesis self-contained. We
assume familiarity with formal language theory (cf., e.g., [26] and [27]), computational
complexity theory (cf., e.g., [23] and [50]), and algorithmic learning theory (cf., e.g., [35]
and [48]). For our framework, in the first section of this chapter, we begin with formal
languages including context-free grammars, patterns, and other convenient notions.
In the next section, we deal with decision problems. Typical complete problems are
specified as well as the notions of reduction and completeness. Finally, we formalize
our learning model using queries and summarize previously known results on learning

formal languages.

2.1 Basic Notations and Definitions

A graph is denoted by (¢ = (N, F), wh r N is a finite set of nodes and E C N x N
is a set of edges. A path in G is a sequence of nodes ny,ng,---,ng such that there
is an edge {n;,n;4,} for each 1 <17 < &k —1. The number k — 1 is called the length
of th path. A direct d graph, also d not d by G = (N, E), consists of a finite set of
nodes N and a set of ordered pairs of nodes E called arcs. If (v,w) € E, we refer
to (v,w) as to an arc from v to w and denote it sometimes by v — w. A path in a
directed graph is a sequence of nodes ny,nq,---,ny such that n;, — n;4 is an arc for
each 1 <1 < k—1. Wesay the path is from n, to ng. If v — w is an arc, then we call
that v is a predecessor of w and w is a successor of v.

A tree is a directed graph that satisfies the following conditions. There is one node,

called the root, that has no predecessor and from which there is a path to every node.

Each node other than the root has exactly one predecessor. The successors of each
node are ordered from the left. We continue with some special terminology for trees.
A successor of a node is called its child, and the predecessor is called its parent. If
there is a path from node n; to node n;, then n, is said to be an ancestor of n;, and
n; is said to b a descendant of n;, where each node is an ancestor and a descendant
of itself. A node with no child is called a leaf, and all other nodes are called internal
nodes except the root.

A binary relation is a set of pairs. The first component of each pair is chosen
from a set called the domain, and the second component of each pair is chosen from a
(possibly diff v nt) set called the range. In particular we are interested in relations in
which th domain and range are the same set S. In this case we say the relation is on
S. If R is arelation and (a,b) € R, then we also write aRb. We say a relation R on S
i reflexive if aRa for all a € S, transitive if aRb and bRc imply aRe, and symmetric
if aRb implies bRa for all a,b,c € S.

A reflexive, symmetric and transitive relation is said to be an equivalence relation.
An equivalence relation i on S partitions into disjoint nonempty sets called equiv-
alence classes. That is, S = S; U S, U --- such that for each ¢ and j with ¢« # j,
SiNS; =10, aRbis true for each a,b € S;, and aRb is false for each @ € S; and b & S.

The transitive closure of a relation K. denoted by R, is defined recursively by
the following conditions. (1) If (a,b) € R, then (a,b) € R*. (2) If (a,b) € R* and
(b,c) € R, then (a,c) € R*. (3) Nothing is in Rt unless it follows from the condition
(1) and (2). Furthermore th reflerive, transitive closur of R, denoted by R*, is the

set R U {(a,a)la € S}.

2.2 Formal Languages

An alphabet ¥ = {ag, ay,...} is a set of partial ord r d symbols (i.e., for all a;,qa; € ¥,
g Al 4 = 1 e expression ¥* denotes the free monoid over ¥ and we set
¥t =¥\ {e} (i. ., the set of all non-null strings over ¥), where € denotes th empty
string. The length of a string w and the cardinality of a set S are denoted by |w| and

|S]|, respectively. Th [ricographical ordering relation < on ¥~ is defined as follows.

let 2 =a2;-- -2, and y = y,-- -2, be strings in ¥*. Thn = <y if (a) s < tor (b)

18

s = t and there exists an | < r < s such that x; = y; for all 2 = 1,...,r — 1, and
x, < Y- A language over ¥ is any subset of ¥~ and a class of languages over ¥ is a

collection of languages containing at least one nonempty language over ¥.

DEFINITION 2.2.1. A contert-free grammar CFG is 4-tuple G = (N, X, P, S), where

and ¥ are finite sets of symbols such that NNY =0, S € N, and P is a finite
subset of N x (N UX)*. Elements of N and ¥ are called nonterminals and terminals,
respectively. e S is called the start symbol. Any element of P is called a production

rule denoted by A — a for A € N and a € (N U Y)*.

Let o/, 3 € (NUX)*. We say that o' directly derives 3', denoted by o’ = ', if there
Xist aj, g, a, 8 € (NUX)* such that o’ = ajaay, ' = a;fayand a — g € P. If there
Xi t ap,az, - ,a, € (N UZX)" such that a; directly derives a;4; for all e =1,...,m,

then we say that a; derives a,, and this is denoted by a; =~ a,,. That is, =~ is the
transitive closure of = on (N U ¥)*.

A sequence like the above is called a derivation. The set of sentential forms of a
FG G = (N,%,P,S), denoted by S(G), is the set {a € (NUX)" | S =~ «}. Thus,

the language generated by G, denoted by L((G), is the set S(G) N ¥*. A language
generated by a CFQG is referred to as a context-free language denoted by CFL. Two
CFGs () and G are said to be if L(Gh) = L(Gh).

A derivation tree T of a grammar G = (N, X, P, S) is a tree such that each internal
node of T is label d with an lement of N, each leaf of T' is labeled with an element
of ¥ and, for each internal node labeled with A € N, there exists a production rule
A — a € P, wher a is the concatenation of the labels of its children in left-to-right
order.

We can characterize sufficiently long strings in a CFL L by the following, referred

to as the pumping lemma. This lemma is useful to obtain s v ral results in Chapter 3.

LEMMA 2.2.1. (Harrison [26]). Let L be a CI'L such that L is not finite. There exists
a constant n such that if z € L and |z| > n, then z = urvyw satisfies (1) |zy| > 1, (2)

lzvy| < n, and (3) uztvy'w € L for all 1 > 1.

Every CFG G = (N, X, P,S) has s v ral normal forms equivalent to GG as follows.

A nonterminal A € N is said to be useless if either S derives no sentential form

14

containing or A derives no terminal string. Nonterminals A, B € N are said to
be equivalent if for every sentential form w € S(G), A derives w iff B derives w. A
production rule A — B € P is said to be a chain rule if A,B € N.

A CFG G is said to be reduced if no useless nonterminal, no two equivalent non-
terminals, and no chain rule are defined in . It is well known that every CFL L is
generated by a reduced CFG G and we can effectively compute such a (¢ from arbi-
trary (" such that L = L(G"). Thus, in this study, we assume that a CFG always
denotes a “reduced CFG”.

production rule of the form A — ¢ is said to be an e-production. A CFG G is
sald to be e-free if G has no e-production. A CFL L is also called e-free if ¢ &€ L.
ermore, a FG G = (N,X, P,S) is said to be invertible if A - a B - € P
implies A = B. Invertible grammar is one of normal forms of context-free grammars.

A CFG G =(N,X, P,S) is said to be in Greibach normal form if each production

rule in P is of the form A — aa, where a € ¥ and a € N*. Moreover, (i is said to be

in m-standard form if GG is Greibach normal form and, for each A — aa € P, |a| < m.

THEOREM 2.2.1. (Harrison [26]). Every CFL L is generated by an invertible CFG
(i such that if L is e-free, then so is (. Moreover, every CFL L\ {¢} is g n rated by

a CIFG in Greibach normal form.

A subcla of CFG is obtained by restricting forms of production rules. A CFG
G = (N,X, P,S) is said to be right linear grammar if each production rule in P is of the
form A - aB or A — a, where A, B € N, and symmetrically, a left linear grammar
is defined. A right (or left) linear grammar (is said to be a regular grammar and the
language of L((7) is said to be a regular language. The class of regular languages is
an interesting subclass of I'Lis for our study. A regular language can be alternatively

defined by the following d t rministic sequential machin

DEFINITION 2.2.2. A deterministic finite automaton, denoted by DFA, is 5-tuple
A= (Q,5,6,q,F), whr @ is a finite set of states, ¥ is a finite alphabet, ¢ is a
transition function: (Q x ¥ — @ such that for each p € @ and a € ¥, exactly one

q € @ satisfies §(p,a) = ¢, qo € Q is th start state, and F' C Q is a set of final states.

15

The extension of ¢ to handle input string w € ¥~ is the reflexive, transitive closure
of 6 denoted by 6, such that for each p € @, é(p,e) = p and forall p € @, a € ¥, and
w € 0 (p, wa) = 6(6™(p,w),a). For simplicity, we denote é* by just 6. Thus, the
language accepted by A, denoted by L(A), is the set {w € ¥~ | §(w, q) € F'}.

Two DFAs A and B are said to be if L(A) = L(B). ADFA Aissaid to
be minemum if for any DFA B such that L(A) = L(B), the number of states of A is
less than or equal to that of B. Moreover, a minimum DFA is referred to as canonical

if it 1s lexicographically first.

DEFINITION 2.2.3. (Angluin [l]). Let ¥ be a finite alphabet of constant and let
X = {r,z;,...} b a recursively enumerable set of variables, where ¥ N X = 0. Any

finite string in (% U is said to be a pattern.

LLet f be a nonerasing homomorphism from patterns to patterns over ¥ U X. If
fla) = a for all @ € ¥, then f is called a substitution. We may use the notation
[81/xy,..., 8,/ k) for the substitution which maps each variable z; to the string s;
(z = 1,...,k) and maps any other symbol to itself. Thus, for a pattern = containing
variables x,, ..., x, the expression 7(s;/xy,...,s,/zs] denotes the string obtained by
replacing z; by s; for all 2 = 1,..., k. The language of a pattern =, denoted by L(r),
is the set of all w € ¥* such that there exists a substitution f : (¥ U X) — ¥* such
that w = f(x).

A pattern 7 is said to be a k-variable pattern provided the = contains exactly k
different variables for & > 0. In particular, if & = 0, then th = is said to be a proper
pattern. Moreover, a pattern = is said to be a regular pattern provided the 7 contains
any variable in at most one tim

The class of k-variable patterns is denoted by Py, the class of regular patterns is

denoted by Pg, and analogously, we denot the class of all patterns by P = U>0Px.

THEOREM 2.2.2. (Angluin [1]). The class of all pattern languages is incomparable
with the class of regular languages and with the class of context-free languages. The
class of all pattern languages is closed under concatenation and reversal, but not closed
under union, complement, intersection, Kleene plus, homomorphism, and inverse ho-

momorphism.

16

A finite set S of ¥ is referred to as a sample. A pattern 7 is said to be descriptive of
Sifft S C L(n) and for any pattern 7’ such that S C L(='), L(#') is not a proper subset

of L(m). Th r fore, we shall consider the problem of finding a descriptive pattern.
PROBLEM 2.2.1. Given a sample S, find a pattern which is descriptive of S.

Angluin [1] also studied the problem of finding descriptive patterns and she showed
that there is an algorithm which, given a sample S C £* as input, outputs a pattern
m € (YU X)* which is descriptive of S. In particular, she proposed an effective
algorithm for this problem in the special case of the class of one-variable patterns as

follows.

THEOREM 2.2.3. (Angluin [1]). There exists an algorithm which, given a sample
C Y1 outputs a one-variable pattern that is descriptive of S within P; in O(n*logn)

time, where n = Y ,¢cs |s].

This result has been improved to O(n?logn) time by Erlebach et al. (cf. [18]). For
th class Pg of regular patterns, Shinohara [65] provided a polynomial-time algorithm

for the problem of finding a descriptive pattern within Pg.

THEOREM 2.2.4. (Shinohara [65]). Th r xists an algorithm which, given a sample
S C £t outputs a regular pattern that is descriptive of S within Pg in O(m?2n) time,

wh r m = max{|w| | w e S} and n =|| ||.

Shinohara [66] showed that a descriptiv pattern is polynomially computable within
Pr with respect to any (possibly erasing) substitution. Since for every sample S and
i S C L(z;), the problem of finding descriptive pattern must have at least one
solution. On the other hand, let us take a pair of samples, denoted by (T, F'), such
that T, FF C and TN F' = (). Elements of the sample T are called positive examples

and elements of I are called negative examples. A pattern 7 is said to be consistent

with (T, F)if T C L(x) and F N L(7) = 0.

PROBLEM 2.2.2. Given a pair (T, F') of samples, decide whether there exists a pat-
tern that is consistent with (7, F'). This problem is referred to as the consistency

problem.

17

The consistency problem is a decision problem. Unfortunately, there is no known
polynomial-time algorithm for the consistency problem even within P;. Moreover, we
suspect that this problem is ¢ntractable, that is, the consistency problem within P,
can be regarded as a most difficult problem of NP and there is no polynomial-time
algorithm for this problem unless P = NP. For mathematical discussion of intractable
problems, in the next section, we shall introduce reductions and completeness for
complexity class s and discuss the difficulty of several decision problems with respect

to the criterion.

2.3 Decision Problems

Let us take a graph G = (V, F). Many computational problems are connected with
graphs. The most basic problem on graphs is called the reachability problem: Given
a graph G and two nodes m,n € V', is there a path from m to n? Like this problem,
an int r sting problem has an infinit et of possible instances. Each instance is a
mathematical object (in this case, a graph and two nodes), of which we ask a question
and expect an answer. Note that the reachability problem asks a question that requires
either “yes” or “no”. In complexity theory, we usually find it conveniently unifying
and simplifying to consider only these problems, instead of problems requiring all sorts
of diff r nt answers. Such problems are called decision problems.

The elements of a recursively enumerable set = {x,,z,,...} are called Boolean
variabl . Boolean variables take the two values 1" or '0’. We combine these variables

using Boolean connectives such as V (logical or), N (logical and) and — (logical not).

DEFINITION 2.3.1. A Boolean erpr s ton is one of (1) a Boolean variable and (2)
an expression of the form —¢, ¢; V ¢,, or ¢, A ¢ whr ¢, ¢, and ¢, are Boolean
expressions. In particular, a Boolean expr s ion in case =@, ¢, V ¢,, and ¢, A ¢, are
respectively called the negation of ¢, the disjunction of ¢, and ¢,, and the conjunction

of ¢; and ¢,. An expression of the form x; or —z; is called a literal of the variable x;.

A truth assignment T'is a mapping from a finite set X’ of Boolean variables to the
set of truth values {0,1}. Let ¢ be a Boolean expression and X (¢) denote the set of

Boolean variables appearing in ¢. Then, we call T is appropriate to ¢ if (¢) C X"

We next define what it means for T to satisfy ¢, denoted by T |= ¢. If ¢ is a
variable z; € (@), then T |= ¢ if T(z;) = 1. If ¢ = ¢, then T |= ¢ if T [£ ¢,. If
d=¢1 Vo, then T =il T |=¢, or T = ¢,. Finally, if ¢ = ¢ A ¢y, then T = ¢ if
both T' = ¢, and T |= ¢,.

We say two expressions ¢, and ¢, are equivalent if for each truth assignment T
appropriate to both of them, T' = ¢, it T = ¢,. Every Boolean expression can be

rewritten into an equivalent one in a convenient specialized style as follows.

DEFINITION 2.3.2. A Boolean expression ¢ is said to be in conjunctive normal form
if ¢ = AL, (i, where n > 1, and each of the Cjs is in the disjunction of one or more
literals. The C'}s are called the clauses of th ¢. Symmetrically, an expression ¢ is said
to be in dis e normal form if ¢ = V7, D;, where n > 1, and each of the D;s is

th conjunction of one or more literals. The D;s are called the terms of the ¢.

say that a Boolean expression ¢ is satisfiable if there exists a truth assignment
T appropriate to it such that T = ¢. Especially, a ¢ is said to be tautology if T |= ¢ for
all T appropriate to it. Satisfiability is an important property of Boolean expressions,

so we shall consider the following decision problem.

PROBLEM 2.3.1. Given a Boolean expr s ion ¢ in conjunctive normal form, decide
whether ¢ is satisfiable. This problem is ref rr d to as the satis problem and is

denoted by SAT.

This problem is one of the most fundamental decision problems. It is of interest
to note that SAT can be solved by a d t rministic algorithm that tries all possible
combinations of truth values for the variables appearing in the expression. Besides, this
problem can be solved by a nondeterministi polynomial-time algorithm that guesses
a truth assignment and checks that it ind d satisfies all clauses. Hence, this problem
is in NP, but presently, we do not know whether it i1s in P.

An n-ary Boolean function is a function f : {0,1}™ — {0,1}. A Boolean expression
¢ with variables z,,...,z, xpresses the n-ary Boolean function f if, for each n-tuple
of truth values t = (¢y,...,t,), f(t) =1 T = ¢, and f(t) = 0if T [£ ¢, where

T(z;) = t; for : = 1,...,n. Thus, every Boolean expression xpresses some Boolean

it

function and the converse is also true. On the other hand, there is a potentially more

economical way than expressions for representing Boolean functions as follows.

DEFINITION 2.3.3. A Boolean circuit is a directed acycle graph C' = (V| E'), where
the nodes in V' = {1,2,...,n} are called gates of C and each edge in F is of the form
(7,7) such that 2 < j. Each gate in " has indegree equal to zero, one, or two. Also, each
gatei € V hasa ort s(i) € {0,1,V,A,~}U{xy,...,x,.}. I{ s(z) € {0,1}U{xy,..., 2.},
then the indegr ' of 7 is zero. The gates with indegree zero are called the inputs of C'.
If s(i) = —, then ¢ has indegree one. If s(z) € {V, A}, then the indegree of i must be

two. Finally, node n is called the output of C.

This definition explains the syntax of circuits and the following semantics specifies
a truth value for each appropriate truth assignment. Let X (C') be the set of vari-
ables appearing in a circuit ' and a truth assignment T" appropriate for C' is defined
analogously.

Given such a T, the truth value of gate ¢ € V', denoted by T'(7), is defined recursively
as follows. Initially, each input ¢ of C is assigned by T such that T'(z) =1 if s(2) =1,
T(e) = 01f s(2) = 0, and T'(2) = T'(s(2)) if s(z) € X. If s(z) = —, then there is a
unique (j,2) € F such that j < . By induction, we know T'(y), and then T'(z) = 1
if T'(y3) = 0, and vice versa. If s(z) = V, then there are (),1),()',7) € F such that
J,J' < t. Similarly, we know T'(y) and T'()’), and then T'(2) = 1 iff either T(j) = 1 or
T()') =1.1f s(2) = A, then T(z) =1 iff both T(j) =1 or T()') = 1. Finally, the value
of the circuit, T(C),1s T'(n).

In analogy with Boolean functions expressed by Boolean expressions, a Boolean

circuit with n-variable computes an n-ary Boolean function, and the converse is true.

PROBLEM 2.3.2. Given a circuit C'; d 1d whether there exists a truth assignment
T appropriate to C such that T(C) = 1. This problem is referred to as the circuit

satisfiability problem and denoted by circuit SAT.

As we shall see below, circuit SAT is computational equivalent to the satisfiability
problem, and thus presumably very hard. However, the same problem for circuits with
no variable gates, referred to as the circuit value problem and denoted by CvPp, obvi-
ously has a polynomial-time algorithm and it is another fundamental computational

problem.

As we have mentioned so far, NP contains the satisfiability problem and the circuit
satisfiability problem. In addition, NP certainly contains the reachability problem
and the circuit value problem. It is intuitively clear, however, that the former two
problems are somehow more worthy representatives of NP than the latter two. We
shall now make this intuition precise and mathematically provable. We recall the
notion of reduction for making it precise what does it mean for a decision problem
to be at least as hard as another one. A natural definition of “effective reduction” is

defined as follow .

DEFINITION 2.3.4. (Papadimitriou [50]). Let L; and L, be languages over finite
alphabets ¥, and ¥,, respectively. Then, L is said to be reducible to L, if there exists
a computabl function f : ¥} — Y3 such that for all x € £}, « € L, iff f(z) € L,. The
function f is called a reduction from L to Ly. In particular, if f € DSPACE(logn),
then L, is said to be log-space reducible to L, and f is called a log-space reduction

from to L,.

[For example, the reachability problem is reducible to the circuit value problem and
the circuit satisfiability problem is reducible to the satisfiability problem. However, no
one has succeeded to prove the reducibility from the former two problems to the latter
two. Thus, we shall be particularly interested in the maximal elements of this partial

ord r.

DEFINITION 2.3.5. Let C be a complexity class, and let . be a language. If every
L' € C is log-space reducibl to L, then L is said to be C-hard. In particular, if L € C,

then the L is said to be C-complete.

It 1s not a priori clear that complete problems exist, indeed, no complete problem
has been found in RP (i. . the class of all languages accepted by polynomial Monte

Carlo Turing machines). The first complete problem was provided for NP by Cook [17].
THEOREM 2.3.1. (Cook [17]). The satisfiability problem is NP-complete.

Stockmeyer and M y r [69] proved that the satisfiability problem for quantified
Boolean formulae is PSPACE-complete and Ladner [37] proved that the circuit value

problem is P-complete.

21

Moreover, we hav a useful property of reductions, that is, the fact that reducibility

is transitive.

PROPOSITION 2.3.1. (Papadimitriou [50]). If f is a reduction from language L,
to L, and f’ is a reduction from language L, to L, then the composition f-f’"is a

reduction from L, to

Thus, it is straightforward that if L is C-complete, L' € C, and L is log-space
reducible to then L’ is also C-complete. Using this chain of reductions, a large
number of decision problems has been proved to be complete for several complexity
classes (cf., e.g., [23] and [50]). For the class of pattern languages or its subclasses, the

following results concerning decision problems are known.

THEOREM 2.3.2. (Angluin [1]). The problem of deciding whether w € L(x) for

given a string w € ¥* and a pattern 7 € P is NP-complete.

COROLLARY 2.3.1. (Angluin [1]). The problem of deciding whether =, <’ m, for

given patterns 7, 7y € P is NP-complete.

THEOREM 2.3.3. (Miyano, Shinohara, and Shinohara [46]). The consistency prob-

lem within Pg is NP-complete, even if ||S]| = 2.

THEOREM 2.3.4. ehagen & Zeugmann [73]). Given a pair (T, F') of samples, the

problem of constructing a pattern = € P consistent with (7, F') is NP-hard*.

2.4 Language Learning via Queries

In this section we summarize Angluin’s [7] terminology. First, a hypothesis space H
for a class £ of target languages is assumed. A representation of languages is specified
by a 4-tuple R = (X,A, R, 1), where ¥ and A are finite alphabets, R is a subset of A*
and p is a mapping from K to subs t of £*. A language is a subset of ¥*. R is the set
of representations, and p is the map that specifies which language is represented by a

given representation. The class of languages represented by R is just {u(r)|r € R}.

*The ordinary consistency problem within P is known to be ¥)-complete.

o
o

For each language L, we denote y, the characteristic function of L, that is, v (w) =1
ifwe L and [(w) =0 otherwise.

For example, let us consider the class of regular languages. We may assume that
the strings in R represent deterministic finite automata (DFAs). The size of a DFA
M is the number of transition functions defined in M. We assume that there is a
polynomial p(s) such that every DFA of size at most s can be represented by a string
in 12 of length at most p(s). Moreover, we assume that for every r € R, the DFA
repr ented by r is of size at most |r|.

An unknown languag L is selected from a target class £ and information can be

gathered about L by asking:

. Equivalence query: An input is a representation r € R. The response to this
question is yes if u(r) = L and no otherwise. In addition to the answer no, a

counterexample w is arbitrarily selected from ¥* and returned such that y,(w) #

Xu(r)(w)'

2. Membership query: An input is a string w € ¥*. The response to this question

is v1(w), that is, yes if w € L and no otherwise.

Wesay that ad t rministic algorithm A exactly identifies the class £ with respect to
the hypothesis space R using equival n and membership queries iff for each L € L,
when A runs with an oracle for equivalence and membership queries for L, the A
eventually halts and outputs an » € R such that p(r) = L. Such an algorithm runs
in time polynomial iff there is a polynomial p(m,n) such that for every L € L, if m
is the minimum length of any » € R such that u(r) = L, then at any stage in the
run, the time used by A is bounded by p(m,n), where n 1 the length of the longest
count r xample provided so far in the run.

The first result on language learning via membership and equivalence queries for
subclasses of CFLs is due to Angluin (cf. [4]). She introduced a data structure, called
observation table, for regular languages as follows. Let L be a regular language over
an alphabet ¥. An observation table for L is a two-dimensional matrix, consisting
of three things: a nonempty finite prefiz-closed set S of strings, a nonempty finite

suffir-closed set E of strings, and a finite function T : ((SU S - %) E) — {0,1},

where a set is prefix-closed iff every prefix of each member of the set is also in the set.
Suffiz-closedness is defined analogously.

The interpretation of T' is that T'(u) = 1 iff u € L. The observation table initially
has S = E = {&} and it has a two-dimensional array with rows labeled by elements of
(SUS-" and columns labeled by elements of £ with the entry for row s and column e
equal to T'(-). Fors € (SUS-Y), row(s) denotes the finite function f: £ — {0,1}
defined by f(e) = T(s - ¢).

An observation table is called closed provided that for each t € S-X, there exists an
s € S such that row(t) = row(s). An observation table is called consistent provided
that whenever s; and s, are elements of S such that row(s,) = row(s,), for all a € ¥,
row(s; - a) = row(s; - a).

Angluin [4] presented a polynomial-time algorithm that computes a closed, con-
sistent observation table for a target language L using membership queries and she
showed that DFAs computed from these tables converge to a correct one for L when-

v r tables are renewed by counterexamples returned.

THEOREM 2.4.1. (Angluin [4]). Every regular language L is learnable using mem-
bership and equivalence queries with respect to the hypothesis space DFAs in time
polynomial in n and m, where n is the number of states of a minimum DFA M such

that L = L(M) and m is th length of a longest count r xample returned.

This result was extended to other subclasses of the context-free languages. The
following results are interesting since classes studied properly includes the class of
regular languages. For example, the language {{a™0™ | n > 1}c}* is deterministic
one-counter, but not simple deterministic. Contrarily, the {a™b"ca™™ | m,n > 1}
is simple deterministic, but not deterministic one-counter. These languages are not

regular languages.

THEOREM 2.4.2. (Berman & Roos [12]). Every deterministic one-counter language
L is learnable using membership and equivalence queries in time polynomial in n and
m, where n is the number of states of a minimum deterministic one-counter automaton

A such that L = L(A) and m is the length of a longest counterexample returned.

THEOREM 2.4.3. (Takada [70]). Every even linear language L is learnable using
membership and equivalence queries in time polynomial in n and m, where n is the
number of nonterminals of a minimum even linear grammar G such that L = L(G)

and m is the length of a longest counterexampl returned.

In particular, Ishizaka [29] presented a new method to identify a correct hypothesis
grammar for th class of simple deterministic languages, which is different from An-
gluin’s observation table. A context-free grammar @ in Greibach normal form defined
over terminals and nonterminals N is called simple deterministic if for any A € N,
a € ¥, and a,f € N*, if A - aa and A — a3 are production rules of G, then
a = f3. In Ishizaka’s setting, membership queries and extended equivalence queries are
assumed for a target language L. extended equivalence query is a relaxation of

quivalence query, that is, it asks whether L = L(G) for a hypothesis grammar G in
2-standard form, but it is not necessary that G is simple deterministic.

Ishizaka's algorithm [29] begins with a trivial hypothesis GG such that L(G) = 0. If
a positive count r xample w is returned, then the algorithm introduces new nonter-
minals. [t computes production rules to derive w using the nonterminals and puts all
of them into the set of productions. If a negative counterexample w is returned, then
the algorithm finds an incorrect production rule that is causing the derivation of the
counterexample w by using membership qu ri s. The algorithm continues the above
routine until an extended equivalence query returns ‘yes”. This algorithm outputs a
grammar (7 in 2-standard form such that L = L(G) for every target simple determin-
istic language L. How v r, the learnability of th imple deterministic languages in

terms of minimally adequate teacher is still open.

THEOREM 2.4.4. (Ishizaka [29]). v ry simpled t rministic language L is learnable
using membership and extended equivalence quert = in time polynomial in n and m,
where n is the number of of a minimum grammar G in 2-standard form

such that L = L((G) and m is the length of a longest counterexampl returned.

We shall refer to several results on the learnability of the whole class of context-free
languages using queries. Angluin [3] showed that the class of context-free languages

is learnable in time polynomial with respect to the hypothesis space of k-bounded

context-free grammars using membership quer: s, nonterminal membership queries,
and equivalence queries.

How v r, we suspect that the problem of identifying a context-free grammar using
only membership and equivalence queries is very hard. This problem was character-
ized by Angluin and Kharitonov [8]. They showed that there is no polynomial-time
algorithm to learn the class of context-free languages in terms of minimally adequate
teacher assuming the intractability of several cryptographic problems (e.g., quadratic
residues modulo a composite and inverting RSA encryption).

Another result concerning the learnability of the whole class of context-free lan-
guages 1 due to akakibara [53]. He introduced tree automata that accept structural

trings. A structural string of a target context-free grammar is computed from its
derivation tree by replacing all labels of internal nodes by one special symbol not be-
longing to any alphabet. By this string, the learner knows the skeleton of the derivation
tree. Sakakibara [53] extended the tree automata to Angluin’s observation table and he
assumed to the learner to use structural membership queries and structural equivalence

qUETLES.

THEOREM 2.4.5. (Sakakibara [53]). For every target context-free grammar G, using
structural membership queries and structural equivalence queries, there exists an algo-
rithm that outputs a grammar G’ canonically equivalent to ¢ such that L(G) = L(G’)
in time polynomial in n and m, wh r n is the number of states of a minimum tree

automaton for G and m is th 1 ngth of a longest count r xample returned.

We next focus on results of language learning using special strings. On DFA learn-
ing, this idea goes back to Trakhtenbrot and Barzdin’s [71] framework. They presented
an algorithm for constructing the smallest DFA consistent with a complete labeled sam-
ple, that is, a sample that includes all strings upto a particular length and the corre-
sponding label that states whether or not the string is accepted by the target DFA.
However, the size of a complete labeled sampl for a target DFA may be exponentially
large in dependence on the size of the target.

Following this idea, Angluin [2] introduced a live-complete set of strings each of
which contains a representative string for a target DFA. Let A = (Q, %, 6,40, F) be

a DFA canonical for a regular language L. A state p €) is called live if there exist

26

strings x,y € ¥* such that 6(qp,) = p and xy € L(A). A witness of a live state p is
each string such that 6(¢o,2) = p. The lexicographically first witness of a live state
p is called the canonical witness of p. Then, a live-complete set for L(A) is any finite
subset of ¥* that contains at least one witness for each live state of A. Note that the

set of canonical witness of all live states of A is a live-complete set for L(A).

THEOREM 2.4.6. (Angluin [2]). Every target DFA is exactly learnable using a live-

complete set of examples and membership queries.

[barra and Jiang [28] studied the power of our learning model using equivalence
quert only. A language L over an alphabet ¥ is said to be k-bounded regular language

if there exist strings wy,...,w; € £ such that L C {wi‘ : -~wi“ | 84,. L0, 8 >0},

THEOREM 2.4.7. (lbarra & Jiang [28]). Every k-bounded regular languages L is
learnable in time polynomial in n and m using equivalence queries, where n is the
number of states of the canonical DFA for L and m is the maximum length of the

counterexamples returned.

Moreover, Ibarra and Jiang [28] investigated how a partial ordering on counterex-
amples affects the learnability of formal languages. Two partial orderings on coun-
terexamples returned by equivalence queries are considered, that is, ordering by length
and lexicographical ordering. The following result tells us that lexicographical ordering

on counterexamples contributes to DFA learning.

THEOREM 2.4.8. (lbarra & Jiang[28]). Assuming that any equivalence query always
returns the lexicographically first counterexample for the target and the hypothesis,
every regular language L is learnable in time polynomial in n using equivalence queries,

where n is the number of states of the canonical DFA for L.

When a target DFA with n states is defined over an alphabet ¥, Ibarra-Jiang’s
algorithm [28] learns th DFA from O(||£||n®) many count r xamples. Recently, this
result has been improved to be O(||X||n?) by Birkendorf et al. (cf. [13]).

Oncina and Garcia [19] defined another type of examples, the co-called character-

istic set for a target DFA, and they proposed a polynomial-time algorithm to identify

the target DIFA using this type of sample as follows. Let L be a regular language,
and let A = (Q,%,6,q9, F) be a canonical DFA such that L = L(A). We denote
pr(l) = {a | aB € L}, Lo = {8 | aB € L}, and pry(L) = {a € pr(L) | =38 €
Y, [Le = L, < a]}, where < is a standard ordering of strings on ¥. Then, the
kernel of L, denoted by N(L), is the set {e} U {aa € pr(L) | a € pry(L),a € £}.

A sample S = S, U S_ such that S, C L(A) and S_ N L(A) = 0 is said to be a

charactert tic set of L if the following conditions are satisfied.

I. Va € N(L),if a € L, then a € S, else 33 € ¥ such that aff € S;.

2. Va € pry(L), VB € N(L), if Ly # Lg, then 3y € £~ such that (ay € S, and
By € S_)or (ay € S_ and By € S;).

THEOREM 2.4.9. (Oncina & Garcia [19]). Given a sample S of a regular language
L, if S is a superset of a characteristic set of L, then there exists a polynomial-time

algorithm to identify a DFA such that L = L(A).

As compared with DFA learning, it seems that learning pattern languages is rather
difficult. Angluin [6] showed that if each equivalence query may return an arbitrary
counterexample, any algorithm for exact identification of pattern languages from equiv-
alenc and membership querie must ask xpon ntially many queriest. Thus, previous
results on learning pattern languages requires special strings as additional information.

As we have mentioned above, Ibarra and Jiang [2 assumed an ordering by length
on counterexamples, that is, a shortest counterexample is always returned. They

proposed a learning model under this assumption and showed the following result.

THEOREM 2.4.10. (lbarra & Jiang [28]). The class of pattern languages is learn-
able in time polynomial in n using equivalence queries that always return a shortest

counterexample where n is the length of a target pattern.

Marron and Ko [43] consid r d necessary and sufficient conditions on a finite pos-

itive initial sample that would allow exact identification of a target A-variabl pattern

TThis upper bound does not collapse even if subset queries are allowed, but superset queries are
sufficient for polynomial-time identification.

from the initial sample and from polynomially many membership queries. Subse-
quently, Marron [42] considered the learnability of k-variable patterns in the same
model, but where the initial sample consists of only a single positive example of a
target pattern. For the case of one-variable and two-variable patterns, Marron gave
a careful analysis of the structural properties of initial examples that can cause his
algorithm to fail. He also showed that only a small fraction of strings possess these

properties.

CHAPTER 3

Learning Parenthesis Grammars

A complete English text is beginning at a capital letter and ended by
a period. Similarly, an HTML document consists of structural texts each
of which is parenthesized by a beginning tag and the corresponding end-
ing tag. In formal languages, these parentheses are useful for analysis of
sentence structure of a grammar owing to its beneficial byproduct of the
unambiguity. We study the contribution of these parentheses to formal

language learning.

A membership query t Il us one bit of information: whether or not a string is
a member of an unknown language. Nevertheless, membership queries often play an
important role in efficient learning (cf., e.g., [2, 4, 7, 8]). Furthermore, it seems that
the claim of membership queries is reasonable because the membership problem is
effectively decidable for CFGs. In other words, the capability of a teacher is incomplete,
that is, not all the questions from a learner can be answered by a teacher and a
membership query i a typical question a teacher can answer. In this chapter, we focus
on membership queries, and our teacher can answer membership queries only.

On the other hand, th learning ability of a learner depends on the information
a teacher provides. As an example, consider the case that a target language can be
divided into some disjoint sub-languag s. If a teacher gives a learner no information
about one of these sub-languages (i. ., no xample is given from a sub-language), then
the learner can never identify the whole language. Thus, we assume a careful teacher,
that is, the teacher carefully selects good examples from a target language. Informally,
the task of a teacher is described as follows. A teacher divides a target language into a

finite number of sub-languages each of which has a kind of representative elements. A

30

representative element of a language is a terminal string derived using all production
rules of a grammar that generates the language. Such sub-languages and representative
elements are called complete languages and characteristic eramples, respectively.

We consider th problem of learning parenthesis languages [44] using characteristic
examples and membership queries. A parenthesis language is a CFL in which ambiguity
is avoided by th systematic and tedious use of parentheses.

The first section contains the definition of characteristic examples for CFGs. The
properti of characteristic examples are investigated. In particular, we prove the
decidability of characteristic examples for a given CFG. In the next section, our learning
algorithm is pr s nted. The input is a set of characteristic examples and finitely
many membership queries are allowed. We prov the correctness of our algorithm and
polynomial-tim | arnability of the parenthesis grammars. Finally, an open problem

is discu s d.

3.1 Characteristic Examples

In this section, we introduce the notion of characteristic eramples for the class of CFGs
and investigate their properties. A characteristic example is a string w such that there
is a derivation of w requiring the application of each production. Thus, we have to ask
whether or not every CFG does possess a characteristic example. As we shall see, this
is not the case. Th r fore, we additionally deal with the following question;

Does th r rist an algorithm deciding whether or not a CFG possesses a charac-
teristic erample?

We answer thi it remains to ask how to proceed,
if a CFG does not possess a characteristic xample. solve this problem by providing
a decomposition theorem for CFGs. That is, each CFG can be decomposed in finitely
many sub-grammars each of which has a characteristic example. Finally, we provide a
method for constructing characteristic examples for parenthesis grammars.

The class of parenthesis grammar has been introduced by McNaughton (cf. [44]).
Note that the equivalence problem for CFGs is undecidable. He showed that the
equivalence problem for parenthesis grammars is decidable. Furthermore Knuth [36]

proved the decidability of the following problem. Given any CFG G, decide whether

31

or not there exists a parenthesis grammar G’ such that L(G) = L(G"). We continue

with the formal definition of parenthesis grammars.

DEFINITION 3.1.1. (McNaughton [44]). A parenthesis grammar is a CFG G =
{N,X, P, S} such that each production in P is of the form A — (a), where A € N,

(,) € £ and a € (N US\{(,)})".

A parenthesis language is a language L such that L = L(G) for a parenthesis
grammar (. Intuitively, a parenthesis language is intended to avoid ambiguity by the
systematic use of parentheses, so that a sentential form (or terminal string) wears its
syntactical structure on its sl ve. In each derivation, exactly one pair of parentheses
is introduced ea~h time a production is applied.

ow, we provide th theoretical background for our learning algorithm to be pre-
sented in the next section. In particular, we introduce the notion of a characteristic
example. we establish the decomposability of CFLs into sublanguages

possessing characteristic examples.

DEFINITION 3.1.2. Let (7 be a CFG and let w € L(G). We call w a characteristic
example for G if ther exists a derivation of w in which each production of (i is applied

at least once. A grammar (i is said to be complete if G has a characteristic example.

Our learning algorithm requires characteristic examples of a target language as
input. Therefore, we have to take care whether or not characteristic examples do
always exist. As the following example shows there are even regular grammars not
having a characteristic example. On the other hand, context-free but not regular

grammars may possess characteristic examples as displayed in Example 3.1.1.
EXAMPLE 3.1.1. Let us consider the CFGs (¢} and G,.
Gy = {{S, A, B}, {a,b}, P\,S}, where P, = {S — AB, A — aAla, B — bB|b}.

Gy = {{S, A, B},{a,b}, P,, S}, where P, = {S — A|B, A — aAla, B — bB|b}.

™ 1s a characteristic

L(G,) is regular, sinc it is {a™™ | n,m > 1}. Every string a™b
example of GG, for n,m > 2. On the other hand, clearly, L(G,) = {a" | n > 1} U {b™ |
m > 1}, that is, L(G;) is also regular, and thus there is no characteristic example of

e

For overcoming this difficulty, we consider the decomposition of CFGs into finitely
P . . . ;
many ‘sub-grammars’. Let us define the notion of sub-grammars by a relation C on

CFGs as follows.

DEFINITION 3.1.3. Let G, = (N, &y, P, S) and Gy = (N3, 8, P, S) be CFGs.
grammar (/| is said to be a sub-grammar of the grammar G, if Gy C G, where

(r'] [; (1'2 denotes /Vl g /\/'2, S] Q SQ, and 1)1 Q [)2.

The next proposition shows that for each CFG, there are polynomially many sub-

grammars each of which has a characteristic example.

~

PROPOSITION 3.1.1. Let G = (N, Y, P, S
mars G, Gy, -+, Gy C G such that & < ||P|| and UL, P; = P, where P; is the set of

) be a CFG. There exist complete gram-

productions of G; for all 2 = 1,... k.

PROOF. Let L = L(G). Without loss of generality, we can assume that A — ¢ & P
for each A € N\{S}. That is, if ¢ € L, then G has no e-production, otherwise G has
exactly on e-production of the form S — ¢. Thus, we can assume that ¢ ¢ L.

[or every w € L, there exists G' C (7 such that w is a characteristic example of G'.
Since the number of nonempty subsets of P is 2/IPll — 1 there exist complete grammars
Gy, Gy, Gy C G such that & < 2071 — 1 and UE_, P, = P, where P, is the set of
productions of G; for all e = 1,... k.

If & > ||P]|, then there exists (; such that
kP € Biforrsome], < 1505'< Iyor
2. forevery r € P, th r xists j € {1,2,---,k} such that if 2 # j, and r € P;.

First, assume that Condition 1 holds. We can remove G; from G, Gy - -+, G with-

out losing the statement

U P=r

1<0<k
T

Next, suppose that Condition 2 holds. It follows that

U r= U P

33

Thus, we can remove G; from Gy, G, -+ -, G. Continuing this process until neither
Condition 1 nor 2 are fulfilled, we obtain grammars G, G, -- -, G such that for each
r € P, there is exactly one production set [, 1 < i < k such that » € P. Consequently,

k <||P]], and there exist G}, G- -+, Gy C G such that UX_, P, = P. Q.E.D.

Let (- and G’ be CFGs, then G’ is said to be complete with respect to G if G' € G and
(" is complete. For unambiguous CFGs, we can show the uniqueness of characteristic

examples of sub-grammars by the following proposition.

PROPOSITION 3.1.2. Let GG be a parenthesis' grammar and let Gy, Gy, -+ ,Gn be
any set of complete grammars with respect to G obtained by Proposition 3.1.1. Let

Wi, 1 <2 < m be the sets of characteristic examples for ;. Then for all 1 <:,) < m:

Win =0iffi#j.

PROOF. Since ¢ = j implies W; = W;, we assume ¢ # j. Let P; and P; be sets of
productions of Gi; and G, respectively. By Proposition 3.1.1, G; Z Gj and G; Z G;.
Thus there exists a production r € P\ P;. Every w; € W} is derived using all production
rules in F; and every w; € W is not derived using the production rule r € P;. Since

(i is unambiguous, (; and G; both are unambiguous. Hence, W;N1; =0. Q.E.D.
We next deal with the following problem for CFGs.

PROBLEM 3.1.1. Given a CFG (G decide whether there exists a characteristic ex-

ample of G

For the problem, let us use the following notations. Let G = (N, X, P, S) be any
CFG. A sentential form of G containing a nonterminal A € N is denoted by 3[A]. For
a nonterminal A € N, we write a =% S if th r xi t a derivation from a to 3 such
that a =~ 9,4y, = B. For a production rule A — w in P, we write a =7%_,, S if
there exists a derivation from strings a to # such that a =* v Ay, = ywy, =~ 5.

For a derivation tree T of G, let d(T') denote the depth of T. For a nonterminal
A € N, let n(T)4 denote the number of internal nodes of T labeled by A. For a
production rule A — w € P, let n(T)4_, denote the number of internal nodes of
T labeled by A such that w is the concatenation of labels of its children. For a set
P C P of production rules, let Tp: denote a derivation tree such that for every r € P’,

n(TP!)r 2 l

34

DEFINITION 3.1.4. Let A be a nonterminal of a CFG . We call A bounded if there

exists a constant A such that for every derivation tree T of GG, n(T') 4 < k.

DEFINITION 3.1.5. A production rule r of a CFG G is said to be bounded if there

exists a constant A such that for every derivation tree T of G, n(T), < k.
LEMMA 3.1.1. [t is decidable whether or not a nonterminal of a CFG is bounded.

PROOF. We first prove that the following conditions are equivalent for any CFG
G =(N,L,PS).

1. A nonterminal A € N is not bounded.

2. For a nonterminal A € N, there exists a B € N such that B =7 3[B|.

It is clear that Condition 2 implies 1. Now, we assume that there exists no B € N
that satisfies Condition 2. Let T be a derivation tree of ;. For any subtree of T" whose
root a; 1s labeled by A, it has no internal node labeled by A except a;. If the length
of the path of T' from the root to a, is greater than |N|, then there exist two or more
internal nodes of T labeled by B € N in the path. Let b, and b, be such internal
nodes in root-to-leaf order. Let T} and T, be subtrees of T' whose root are b, and b,
respectively. Since both T} and T, have exactly one internal node labeled by A, and
since T; 1 a subtree of T}, the tree obtained by replacing T} of T by T is a derivation

tree of G. Thu for any derivation tree T of G there exists a derivation tree T" of GG

such that n(T)4 = n(T')4 and d(T") < |N|. Hence, the A is bounded. Q.E.D.

We note that for every CFG G = (N, X, P, 5) and all strings a,8 € (N U X)*, it
is decidable whether or not @ =* 3. lLet m be the maximum length of right sides
of production rules in P. For every B € N and §[B], we can decide whether or not
B =~ B[B], where th length of B[B] is at most m!/Fll. For each nonterminal A € N,
the A is not bounded if B =% B[B], and the A is bounded otherwise.

LEMMA 3.1.2. [t is decidable whether or not a production rule of a CFG is bounded.

PROOF. Let G = (N, %, P,S) be a CFG. Clearly, every production rule of the form
S — wg (ws € (NUX)*) is bounded. Without loss of generality, let a production rule
r € P be of the form A — wy4, where A € N\ {S} and wy € (NUX)*. We prove that

for such an r € P, the following conditions are equivalent.

35

1. » € P is not bounded.

2. There exists a B € N such that one of the following conditions is satisfied.

(a) B =~ p[B] and B[B] contains A.

(b) B =~ Bi[A] and A’ =~ 3,[B], where A" € N is contained in wy.

It is clear that Condition 2 implies 1. Now, we contrarily assume Condition 1.
Since A is not bounded, there exists B € N such that B =7 p[B], that is, it holds
that B =~ a;Aa, =~ B[B] for some strings a;,a; € (N UX)". If B is derived from
a nonterminal contained in a; or a,, then Condition (a) of 2 holds. If B is derived
from a nonterminal contained in w4, then Condition (b) of 2 holds. @therwise, for any
derivation tree T' of G, the number n(7T'), is less than the number of internal nodes of
a derivation tree of G having depth less than or equal to ||N||. Thus, the r is bounded.

contradicts that r is not bounded. Hence, Condition 2 holds.

Similarly as above, for any production rule in P we can decide whether or not one

of Condition (a) and (b) of 2 holds. Q.E.D.

Now, we are ready to solve the decision problem for characteristic examples and

prove this problem in the following theorem.
THEOREM 3.1.1. [tisd idable whether or not a CFG has a characteristic example.

PROOF. Let P' C P be a set of bounded production rules ofa CFG G = (N, X, P, S5).
By Lemma 3.1.2, membership in P’ is decidable. First we prove that the following

conditions are equivalent.

1. Th G has a characteristic example.

2. There exists a derivation tree Tp: of G.

It is clear that Condition 1 implies 2. For the converse direction, assume that
Condition 2 holds. Let r € P\ P’. There exists a nonterminal A, € N such that
Ay =7 B1[A1]. If Tps has an internal node labeled by Ay, then there exists a derivation
tree T of GG such that n(Tp/),epr < n(T)epr and n(T), > 1. If not, any production

rule r; € P containing A, is not bounded. If there exists no A, € N such that

36

W=t By[Ay] and A, # A;, then A; must be contained in the right side of a production
rule of the form S — wg € P’. This contradicts that Tp/ has no internal node labeled
by Aj. Thus, A, # Aj.
Since th r are only finitely many nonterminals, we can find an A, € N such that
Ay =7, Be[Ak], Ax_y =7 BalAc_1]y ooy Ay =7 Bi[A1] and the tree Tp: has an
internal nod labeled by Ay, namely, there exists a derivation tree T of G such that
n(1Tp)repr < n(1)epr and n(T), > 1. Thus, Condition 2 implies 1.
we prove that it is decidable whether or not there exists Tp:. Let T be a
derivation tree of (. If d(T') > ||N||, then for a production rule (A — w) € P, there
xists an internal node a; of T labeled by A such that w is the concatenation of labels
of its children and n(7T})4_. > 2, where T} is the subtree of T" whose root is a,. Since
n(T})a—w > 2, there exists an internal node a, (# a;) of T} labeled by A such that w
is th concatenation of labels of its children. Let T}, be a subtree of T; whose root is a,.
A tree obtained by replacing T of T' by T, is also a derivation tree of (. Thus, there
exists a derivation tree T’ of G such that n(T).epr = n(T")ep and d(T') < ||N]|.
Hence, we can decide whether or not there exists Tp: by enumerating all derivation

trees of depth less than or equal to || N||. Q.E.D.

3.2 Learning Parenthesis Languages

In this section, we study the learnability of the class of all parenthesis grammars.
The scenario is as follows. An unknown target parenthesis language L represented by
a parenthesis grammar (G has to be learned. We assume that ' is in normal form,
that is, a reduced, invertible parenth is grammar. The learner receives finitely many
characteristic examples for G as input. Additionally, our learning algorithm has access
to an oracle that answers memb rship queri

Next, we describe th general idea behind our algorithm. The algorithm is denoted
by A. In any derivation of (¢, exactly one pair of parentheses ‘(" and ‘)’ is introduced
at every application of every production rule. Thus, we can describe a ‘silhouette’
of a derivation tree according to the derivation, that is, a tr having no label for
its internal nodes. However, these parenth s s are of just one species and have no

subscript. Therefore, the parentheses do not tell us which production introduced them,

37

or even from which nonterminal they came from. Thus, the main part of the A is to
restore the original derivation tree from the silhouette.

We first define an equivalence relation over nodes of derivation trees of a parenthesis
grammar. The algorithm uses this relation as its success criterion: if this relation holds
on two nodes, then the A assigns them the same label (nonterminal), otherwise he
assigns them different labels. The correctness of this assignment is proved in the next
section. Moreover, we also prove that the running time of our algorithm is bounded
by a polynomial in the number of production rules of the target G and in the length
of a longest characteristic example provided.

For th discussion below, we give the definition of replacement of subtrees or co-
subtrees of trees. We also define the specific membership queries used by our learning
model.

IFor any tree t, let us denote the root of ¢t by rt(t). The label of a node x of ¢ is
denoted by t(x). The frontier of ¢ is denoted by fr(t). Let N and E be the sets of
nodes and edges of t, respectively. The subtree of t on a node * € N, written t/z, is

the tree with Ny, € N and Ey/; C E such that

1. anode y € N is in Ny, iff there exist (z,r1),(x1,22), -, (20, y) € £ for some

n>1orz =y, and

The co-subtree of t on a node z € N, written t\z, is the tree with Ny, C N and
En: C F such that

1. Noz = (N\Ny:) U {z} and
5. Bo = B\Eyp.

It is easy to see that if ¢ is a tree, then rt(t/x) = x and rt(t\z) = rt(t). In
Figure 3.1, we display an example for a tree, a subtree, and a co-subtree, respectively.

Let t; = (Ny, Ey) and ty = (Ng, E3) b trees such that NN Ny, = (0. Let = be a leaf
of t;. Then, we define the tree t;#.t; = (N4, E4) as follows.

38

co-subtree subtree

I'igure 3.1: A subtree and co-subtree on a node of a tree.

Let z; € Ny, and let r, € N,. More generally, we define the tree t\z,#,,t2/ 12
obtained by replacing the subtree ¢;/z; by the subtree t,/x,. Given trees t; and t,, it
is clear that x, is a leaf of the tree ¢;\z;. In this case we omit the subscript of #, that

, instead of t\z, #,,t2/x2 we writ t\z,#t,/ ;.

xt, we recall the definition of a ‘skeleton’, a special type of trees.

DEFINITION 3.2.1. (Sakakibara [53]). Let t = (N, E) be a tree and V' be the set of
labels of nodes of t. The skeletal description of t, written s, is a tree with N and FE

such that for each x € N,

t(x), if z is a leaf,
$, otherwise,

where § is a special symbol not in V.

Intuitively, the skeletal description of a tree is with labeled leaves, and all internal
nodes labeled by $. In this thesis, the term ‘skeleton’ is used for the skeletal description

of a derivation tree of a parenthesis grammar.

39

Figure 3.2: Replacement of subtrees on a node.

Figur 3.3: The skeletal description of a tree.

40

Let GG be a parenthesis grammar. The set of derivation trees of (G is denoted by
T(G). The set of skeletons of t € T(G) is denoted by s(T(G)). Next, we define a

relation over s(71'((7)).

DEFINITION 3.2.2. Let (G be a parenthesis grammar. Let s,s € s(T(G)), a be an
internal node of s, and @’ be an internal node of s’. Then, we define the relation =g, 4

such that a =g 5,5 @’ iff both fr(s\a#s'/a’) and fr(s'\a'#s/a) are in L(G).

In 3.1, we provide the procedure M which determines derivation trees of
characteristic examples with membership queries. As input, M takes a set of char-
acteristic examples of complete grammars with respect to a parenthesis grammar G
generating a target parenthesis language L, and M outputs a set of derivation trees for
the characteristic examples given as input. For explaining the basic ideas, we include

Example 3.2.1.
EXAMPLE 3.2.1. let us consider a CFG G such that

G ={{S5,A,B},{a,b,(,)},P,S}, where

P={S = (AB),A — (aB)|(a), B — (bA)|(b)}.

The grammar G is an invertible parenthesis grammar. There exists a derivation of
G for the string w = ((a(b))(b(a))) in which every production is applied. Thus the GG
is also complete. From this characteristic example, we can compute the uniqu tree
t=(N,E), where N = {1,2,---,9} and E contains the following elements.
E: (112)7(17})1(234)7(235))
(3,6) (3,7),(5) (7,9)
Moreover, all labels of t ar d fined as follows and an image of this tree is displayed

in Figure 3.4.

a, b= 4 ar¥,
% e Sy ift = 8or 6, and
3, otherwise.

41

Figure 3.4: An image of skeleton.

Procedure M (3); § = {s;, -+, 8n} of skeletons of characteristic examples

begin
foreachi:=1 ... m / First loop /
for each nodes j and k of s;
if) =G(s,.5,) k, then /* by membership queries */
rename s;(k) by si(7)
else
foreach:=1,....m—land j=71+1,...,m /* Second loop */
for each nodes ¢’ of s; and j’ of s;
it =g} i then /* by membership queries */
rename s;(j') by s;(¢)
if i #6(s,.5,)) and 7' = ', then
rename s;(7’) by a new label &
else;
output §;
end

Table 3.1: The procedure M to decide derivation trees.

42

Now, w return to the explanation of the general behavior of our procedure M.
Let L be a target grammar and let § = {s1,82,---,8,} be a set of skeletons for
m characteristic examples of L. First, for any two nodes i and j of a skeleton s
(1 £k <m), our procedure uses a membership query. A membership query proposes
two frontiers of trees sp\it#sx/j and s;\j#si/i. If these two frontiers are both in L,
then the answer ye is returned. If one of the frontiers is not in L, then no is returned.
In case of yes, the M renames si(y) by si(2).

Furthermore, for any node 7’ of a skeleton s; and for any node ;" of another skeleton
sjsuch that 1 < <m —1 and 7 < j, M uses a membership query. In this stage, a
membership query proposes two frontiers of s;\¢'#s;/)" and s;\j'#s,/¢'. If these two
frontiers are both in L, then the answer yes is returned. If one of the frontiers is not
in L, then no is returned. In case of yes, M renames s;()') of s; by s;(:") of s;. In
case of no and " =)', procedure M introduces a new label & and renames s;(;’) of s;
by k.

Finally, the procedure outputs a refined set s as a set of derivation trees of a gram-
mar for the target parenthesis language L. Our algorithm A computes a parenthesis
grammar G/ = (N, X, P, S) using such a refined § = {s;,82,--+,8,}. Since each s;
(I <2< m)is aderivation tree for a characteristic example, the N, §, and P are effec-
tively computable. For example, if s € § has an internal node 7 such that its children

are Ji,J2,- -+, Jk in left-to-right order, then the algorithm A makes a production rule

s(2) = s(1)s(2) -~ s(Jk)-

LEMMA 3.2.1. Let a and b be internal nodes of a derivation tree 7' of a reduced

invertible parenthesis grammar (. Then T'(a) = T'(b) iff a =g(7,7)b.

PROOF. Clearly, if two labels of a and b are equal, then a =g1)b. We assume
a=¢(t)b. Since G is invertible, if two frontiers of s/a and s/b are equal, then T'(a)
and T'(b) ar also equal.

Let two frontiers of s/a and s/b be not equal. e grammar (' has two production
rules of the form A — (w,T(a)w,) and A" — (w]T(b)w}), where A and A’ are nonter-
minals and w, wy,w} and w) ar sentential forms. (' also has two production rules of

the form A — (w;T(b)w;) and A" — (w]T(a)w)).

43

Hence, it follows that any sentential from of GG containing T'(a) or T'(b) are of the
form Wi (w, Bwy)W, or W{(w] Bwy)W; for a nonterminal B € {T'(a), T(b)}, where
Wy, Wo, W] and are sentential forms. Thus, a string aT'(a)f is derived from G
iff the string b)3 is derived from (. Since no two distinct nonterminals of G are

equivalent, we conclude that the strings T'(a) and T'(b) are equal. Q.E.D.

LEMMA 3.2.2. Let (i be an invertible parenthesis grammar. Let a and ' be inter-
nal nodes of derivation trees T and T’ of G, respectively. Then, T'(a) = T'(a’) iff

a —:—G(T,T’) (ll.
PROOF. Analogous to Lemma 3.2.1. Q.E.D.

From Lemma 3.2.1 and 3.2.2, we conclude that for a target parenthesis language,
our algorithm eventually terminates and outputs a parenthesis grammar which gen-
erates th target parenthesis language. We now analyze the time complexity of our

algorithm.

LEMMA 3.2.3. The time used by the procedure M is bounded by a polynomial in
the number of characteristic examples initially given and in the length of a longest

characteristic example returned.

PROOF. It is sufficient to show that the total number of membership queries is
bounded by a polynomial in the number of characteristic examples, denoted by m,
and in the length of a longest characteristic example by n.

For any characteristic example w, its skeleton has at most c|w|? internal nodes,
where ¢ is a constant. In order to decide whether or not any two labels of internal
nodes of the skeleton are equal, the procedur M uses at most (c|w|* — 1) + (c|w|? —
2)+ - 4 (c|w]® = (clwl* = 1)) = 3(clw|* + 2)(c|w|* — 1) many membership queries.

For any two characteristic examples w; and w, such that |w;| < |w,|, their skeletons
have at most c|w,|* internal nodes. In order to decide whether or not any two labels of
internal nodes of the skeletons are equal, the M uses at most ¢?|w,|* many membership
queries.

Thus, the total number of membership queries used by the procedure is at most

sm(en? +2)(en? — 1) + 12 (m — 1)(m — 2)n* = O(m?n?). Q.E.D.

44

LEMMA 3.2.4. Th total number of characteristic examples to decide a parenthesis
grammar for a target language is bounded by the number of production rules of a

minimal invertible parenthesis grammar.

PROOF. Let G = (N,X, P,S) be an invertible parenthesis grammar for a target.
By Proposition 3.1.1, there exist complete grammars Gy,---,G, with respect to G
such that U, P; = P and k < ||P||, where P; is the set of productions of G; for all
RN o

Let w; be a characteristic example of ;. By Proposition 3.1.2, the string w; is
not a characteristic example of any other GG; € {Gy,---, Gy} \ {G;}. By Lemma 3.2.1
and 3.2.2, a grammar G! is decidable such that L(G;) = L(G?) and L(G?) # L(G;) for
any other G; € {G\, -, G} \ {G:}.

Thu given characteristic examples wy, - - -, wy of the grammars Gy, - - -, G, we can
compute parenthesis grammars G - -+, G} such that & < ||P]| and L(G;) = L(GY) for

all o' = Thio o, 06 Q.E.D.
Putting it all together, we obtain the following theorem.

THEOREM 3.2.1. The class of parenthesis grammars is learnable with respect to
reduced, invertible parenthesis grammars as hypothesis space using membership queries
and characteristic examples in time polynomial in the length of a longest characteristic

xample provided and in the number of production rules of a minimal grammar for an

unknown target.

3.3 Discussion

We have introduced the notion of characteristic examples for CFGs. and discussed their
properties. In particular, it can be effectively decided whether or not a CFG has a
characteristic example. Consequently, in our learning model for parenthesis grammars,
we assumed that characteristic examples are given for the learning algorithm as input
instead of using equivalence queries. The class of parenthesis grammars is learnable
in time polynomial in the length of the longest characteristic example and in the size
of a minimum grammar for the target using membership queries and characteristic

examples.

45

However it remains open whether the time complexity of our model is polynomial
in the sense of Angluin (cf. [6]). That is, when we consider the length of examples,
characteristic examples may be very long compared with counterexamples returned in
response to equivalence queries.

As future work we consider learning of CFGs using characteristic examples and
structural membership queries: The teacher gives ‘plain’ characteristic examples (that
have no additional information) as input and answers the membership queries for
structural strings. It is necessary to show that an algorithm itself can decide a skele-
tal description of each characteristic example of a CFG using structural membership

quer: s.

46

