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Chapter 6

A Representation Theorem for
Relation Algebras

In this chapter we consider relation algebras, which may not be Boolean, and provide
their representation theorem. Relation algebras in the sense of this chapter are equiva-
lent to Dedekind categories [Gog67] (or allegories [FS90]) with just one object. Section
5.1 proved a representation theorem for Dedekind categories, showing that a Dedekind
category with a unit object satisfying the strict point axiom Ul is equivalent to a sub-
category of the category of L-relations (where L is the lattice of all endomorphisms on
the unit object). A unit object is an abstraction of singleton (or one-point) sets, and,
following [Gog67], L-relations in section 2.2 are set-functions with values on a fixed
complete distributive lattice L, that is, functions i : X x Y — L. The discussion in
this chapter does not assume the existence of a unit object, and L-relations in this
chapter are homogeneous relations on a set X', that is, functions It : X x X — L.
This study is the first step to prove a representation theorem for Dedekind categories
without unit objects.

To prove a representation theorem for relation algebras, we use concepts of scalar
relations and point relations. The concept of scalar relation is an original one, which is
defined in section 6.1 as a relation included in the identity relation and which commutes

with the greate t relation with respect to composition. In the ca e of L-relation  calar



relations can be represented a s alar matrices. We use the concept of scalar relation

to define a new concept of crisp relations which is called s-crisp different from that in
[KF95, KEM96, Fur97a). Also the set of all scalar relations is a complete distributive
lattice, which is a sublattice of the relation algebra, and scalar relations represent
membership values. The concept of point relations was introduced by Schmidt and
Stréhlein in [SS85, SS93] in the context of applications of Boolean relation algebras
to theories of graphs and programs, and it played an important role in proofs of
representation theorems in [SS85, KF95, KFM96].

Section 6.1 provides definitions and some properties if scalar relations and s-crisp
relations. In section 6.2 we define a “strict” point axiom by using our concepts of scalar
relations and point relations. In section 6.3 we prove our representation theorem for
relation algebras.

This chapter is based on [Fur97b).

6.1 Scalar relations

In this section we study a concept of scalar relations in a relation algebra R. Note
that relation algebras in this thesis which are defined in section 2.3 are not Boolean.

Throughout the chapter all discussions will assume a fixed relation algebra R with
V" # O. All elements of the relation algebra R are called “relations” for short. A
relation « is nonzero if a # O.

First we provide some properties of relation algebras.

Proposition 6.1 Let «, 3, 3" be relations. Then the following hold:
(a) If d*a Cid, then a(BNB) = aB Nap'.
(b) If a Cid and B Cid, then of = aa = o and aff = a N S.

(¢) If BCid and B’ Cid, then a(f N [") = af Naf'.
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Proof. (a) If ofa C id, then af M af’ € a(BMNataf’) C a(Nids’) = a(8NF') by
the axiom R3.

(b) Assume that o C id and § C id. Then we have
a =anid C a(id nafid) C id N ofid C of

by the axiom R3. Similarly it can be shown that o* C « holds. Also aa C « is trivial,
and it holds that

a=anVCalanadV)C an
by the axiom R3. Moreover, since a8 C [, it holds that
af=afNBCanp and aNPBC alidndB) C af

by the axiom R3.

(¢) If B Cid and f' C id, then we have

afNaf C(aNafpYBCalB=a(BNG)

by the axiom R3 and (b). '
Note that a(My8y) C My(af,) and YV V' hold immediately by proposition
2.4(c).
The concepts of scalar relations and s-crisp relations in relation algebras are defined

by the following:

Definition 6.1 Let R be a relation algebra.
(@) A relation £ is called scalar if and only if k£ C id and £V = Vk.

(b) A relation « is called s-crisp (scalar crisp) if for all nonzero scalar relations &

and all relations g, k8 C « implies § C «.
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[t is trivial that O and id are scalar relations, and that ¥ is s-crisp (but O and id are
not necessarily s-crisp).

The concept of I-crisp relations has been defined in section 5.1 on the assumption
of the existence of a unit object. The concept of crispness can also be found in section
3.1, where it is defined via semi-scalar multiplication. In this chapter we need neither
a unit object, nor semi-scalar multiplication. Instead we used the concept of scalar
relations to define s-crisp relations.

Next we provide some basic properties of scalar relations and s-crisp relations.

Proposition 6.2 Let k be a scalar relation and «,  relations. Then the following

holds:
(a) ka =aMkN and ak = a1 Vk. In particular, k = id N kY.
(b) ka = ak.
(c) (kMKYa=aknk), (kUK)a=a(kUKL").
(d) IfkV C K'Y, then k C k'
(e) If a and (3 are s-crisp, then so is a1 f3.
Proof. (a) Since £ C id and o C Y, it holds that
ka T ankY = k(kK'an\) = kkfa = ka

by the axion R3 and proposition 6.1(b). Similarly it can be shown that ak = a M Vk.
(b) From (a) it holds that ka = a MkYV = a N Vk = ak.
(¢) It follows from

(kN kYo = (kkYa = a(kk') = a(k N k")

by proposition 6.1(b), and (b). Also it follows from

(kUK)a=kaUka=akUak' =alkUk’)



by proposition 2.4(b), and (b).

(d) Assume that AN C &'N. Then k =id iV Cid NE'N =k by (a).

(e) If ky C an g, then ky C «a and ky C G by the axiom R1. Since a and [ ar

s-crisp, Y C a and v C 4. Thus v C a M G by the axiom R1. I
In addition to be used in the definition of s-crisp relations, scalar relations also play

an important role in other respects. Let us denote the set of all scalar relations by

L. Then L is closed under the operations supremum L and infimum M by proposition

6.2(c) and axiom R1. So the tuple (L,C, M, U, 0,id) is a complete distributive lattice,

and it is a sublattice of the relation algebra R with the least element O and the greatest

element id.

6.2 Strict Point Axiom

This section introduces a new concept of point relations and a strict point axiom. A
concept of point relations was introduced by Schmidt and Stréhlein in [SS85, SS93]
to give a simple proof of a representation theorem for Boolean relation algebras and
apply such algebras to computer science. We made the concept more strict in section
3.3 to prove a representation theorem for fuzzy relation algebras. The concept of point
r lations is defined in this chapter in the spirit of section 3.3, but we have to attend
to the difference between the notions of crispness in section 3.3 and in this section.
Before define the concept of point relations, we describe properties of relations

which correspond to vectors in [SS85, SS93].

Proposition 6.3 Let a be a s-crisp relation such that N'a = a. Then the following

three conditions are equivalent:
(a) id C aat.

(b) ¥ = aat.



(¢) ¥V =a¥\.

Proof. (a)=—=(b) If id C ad, then ¥V = Vid C Vaao! = aat.
(b)=>(c) If V = aa?, then V = aa* C aV.
(c)=(a) If V = aV, then id = idMV =idMaV C a(a’id M V) = aat

The concept of point relations in relation algebras is defined as follows:

Definition 6.2 A point relation z is a s-crisp relation such that z*z C id, id C z2*
and Vz = z. (Point relations will be denoted by lower case Roman letters such as

-
PR U

z,y,2,---.) The set of all point relations is denoted by X

Note that a point relation z is nonzero from its totality id T zz*. For point relations

r and y, the relation z*y is nonzero since y C z(z*y) by the totality id C zz* of x.

Proposition 6.4 Let x zg,y,yo be point relations and k a nonzero scalar. Then the

following holds:
(a) If kz C y, then z = y.

(b) If katy C xﬁoyo, then = g and y = yo.

Proof. (a) Since y is s-crisp, it holds that z C y. Using id C zz*, z* C ¢* and y*y C id
we have y C zz'y C zyby C .

(b) Assume that kzty C zhyo. Then we have

by proposition 6.3 and so y = yo by (a). Similarly x = x4 holds. 1
By making use of our last definition of point relations in relation algebras, we add

the following axiom:
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Definition 6.3 A relation algebra R satisfies the strict point axiom iff:
R5. (a) For each nonzero relation o there are a nonzero scalar relation k and two
point relations z and y such that zay* = kV.

(b) Uzexzlz = id.

Note that the condition (b) of the strict point axiom R5 is equivalent to Uzexz = V.
In what follows we assume that the fixed relation algebra R satisfies the strict point

axiom Rb.

Proposition 6.5 Let a be a relation, r and y point relations. Then the following

holds:

(a) If « is a nonzero relation, then there exist a nonzero scalar relation k and point

relations z and y such that kz*y C a.
(b) Ifx # y, then z Ny = O and zy* = O.
(¢) zay* = kV if and only if a N2ty = k(z'y).
(d) If a C z'y, then there exists a scalar relation k such that o = kz'y.

Proof. (a) If @ # O, then then there exist a nonzero scalar relation k& and point
relations x and y such that zay® = kV by the strict point axiom R5. Since z and y

are point relations, it holds that

by proposition 6.2(b).
(b) Assume that z # y and 2 My # O. Then there exist a nonzero scalar relation k
and point relations 2 and y such that kzfyo C z My by (a). From proposition 6.4(e)

z My is s-crisp, so it holds that zfyy C z My. Thus we have
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by proposition 6.3. Therefore x = yy = y by the axiom R1 and proposition 6.4(a).

Finally, if x My = O, then we have
gt =2y NV C (aNVy)y = (@ Ny)yf =0

(c) Assume that a M z*y = k(z'y). Then it holds that

oyt zay* MV
vay* N (zz%)(yy*)
z(a N zty)yt
zlk (')l
k(zah)(yy)
kN
by propositions 6.3, 6.1(a) and 6.2(b). Next assume that ray* = kV. Then we have

afNzly C z}zay' Nid)y
C 2fzayly
2 (kV)y
k(zty)

by the axiom R3, propositions 6.3 and 6.2(b). Conversely, it holds that

by proposition 6.2(b). Thus we have k(z'y) C o N zty.
(d) It is trivial that if & = O then o = O(z'y). Next assume that a # O. Then, by the
strict point axiom R5 and (c), there are a nonzero scalar relation k& and point relations
To, Yo such that a M x%yo = k‘(m%yo). Hence we have k(z%yg) C o C 2%y, and so z = x
and y = yo by proposition 6.4(b), which implies a = k(z*y).

By (d) of the last proposition, for every relation a and for every two point relations

T,y ther xists a scalar relation k such that

and so

ray' = kV



by (c) of the last proposition. Also, by proposition 3.4(d), such a scalar relation k
is unique. For a relation « and point relations z,y, we define (a)(z,y) to be the
unique scalar relation k& with zay* = kV. Thus, by proposition 3.4(d), ¥(a)(z,y) i

the unique scalar relation such that

vy’ = P(a)(z,y)V

Therefore 9(a) defines an L-relation on the set X" of all point relations in R since the

set L of all scalar relations is a complete distributive lattice.

6.3 Representation Theorem

First we prove a representation theorem for relation algebras satisfying the strict point
axiom R5. The representation problem of Boolean relation algebras was proposed by
Tarski in [Tar41] and investigated for a long time, see [SS85, SS93, Mad91a] for more
details on the history of the investigation of the representation theorem for Boolean
relation algebras. Also we proved an algebraic representation theorem of fuzzy relations
in section 3.4, and proved such theorems for Dedekind categories (or allegories) and
Zadeh categories in chapter 5. The following theorem also is a representation theorem

for Dedekind categories with just one object.

Theorem 6.1 (Representation Theorem) Let R be a relation algebra satisfying

the strict point axiom. Then every relation o has a unique representation

Proof. Since id = Uzexz*z and id = Uyexy®y by the strict point axiom R5, we have

o 1daid
(UIE/\'Iﬁx)a(uyE/\'yuy)
Uz yexzizayty
Ux,yEA'Iu’(/)(a)(Ia y)vy
Uz yex@*(a)(z, v)y -
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Finally we show the uniqueness of the representation. Assume that

Then for all g, yp € X we have

by proposition 6.5(b). 1
From the last theorem we can deduce the next property of the function ¥ : R —

L-Rel ().

Corollary 6.1 For every relation algebra R satisfying the strict point axiom, the

function ¢ : R — L-Rel(.Y) is bijective.

Proof. If ¥(a) = (f), then by the last theorem we have

a  Ugyexz'y(a)(z,y)Vy
= Uz,yE,\'$uw(ﬁ)($v y)vy
- /B ?

which shows that v is injective. Given an L-relation R € L-Rel(XX), we set

Then by the uniqueness of the representation in the last theorem we have

R(‘T’ y) = W(OZR)(J?,y) )

which shows that 1 is surjective. 1
The following proposition shows that 1 : R — L-Rel(X') preserves all operations

of L-relations, that is, ¢ is a homomorphism of relation algebras from R to L-Rel(.X).

Proposition 6.6 Let «, ( be relations. Then the following holds:

(@) (0)=0y, v(V)=1x and ¥(id) = Ey.



(b) Ifa C B, then (a) C 9(0).
() (auf)=v(a)Up(f),

(d) Y(anpg) =p(a) NY(s).

(f) ¥(apB) = P(a)(B).

Proof. (a) The first follows from ¥(O)(z,y)V = zOy* = OV, the second follows from
P(V)(z,y)V = zVy* = idY¥ by proposition 6.3. Remarking ¥(id)(z,y)V = zidy! =
zy?, the last follows from ¥(id)(z,y)V = idV if 2 = y and ¥(id)(z,y)V = OV,
otherwise by propositions 6.3 and 6.5(b).

(b) If a T B, then ¢(a)(z,y)V = zay* C z8y* = ¥(B8)(z, y)V.
(c) It follows from

Y(aUp)(z,y)V — z(aup)y
— zay' U zBy*
V() (z,y)V UP(B)(z,y)V
— [¥(a )(w y) U(B)(z,y)|v
— [W(a) Up(B)](z,y)V .

(d) It follows from

Y(ang)(z,y)V — z(anpg)y

— zay' N zByt
Y(a)(z,y)V NyY(B)(z,y)V
— [U(a)(z,y) NY(B)(z, )]V
— [¥(a) ny(B)](z,y)V

by propositions 6.1(a) and 6.1(c) since z and y are point relations and

v(a)(z,y),¥(8)(z,y) Cid .

(e) It follows from
() (z,y)V — zalyt
(yoat)?
= (¥(a)(y,z)V)
() (y,z)¥
= Y(a) (z,y)V



since Y(a)(y, ) is a scalar relation.

(f) It follows from

Y(apf)(z,y)V z(af)y
zaid Byt
za(U zeAZ” ) By
U,ex Tzt 2By
Ueex¥(a)(z, 2)VY(8) (2, )V
Ueext¥(a)(z, 2)¥(B)(z,y)V
Uzex[¥(a)(z, 2) M(B)(2,y)|V
(Y(a)p(B))(z,y)V

since ¥(a)(x, z) and ¥(B)(z,y) are scalar relations.
[t is now obvious that 97! is a function and is a homomorphism of algebras of

L-relations from L-Rel(.X) to R. Consequently the following corollary is deduced:

Corollary 6.2 (Isomorphism Theorem) Every relation algebra R satisfying the
strict point axiom is isomorphic to the algebra L-Rel(.X') of L-relations on the set X

of all point relations of R, where L is the distributive lattice of scalar relations in R.

In this chapter we proved a representation theorem for homogeneous relation al-
gebras R satisfying the strict point axiom RS, which can be considered as Dedekind
categories with just one object, using concepts of scalar relations and point relations.
In section 5.1 such a theorem for Dedekind category was proved without using the
concept of scalar relations. But in that section, the existence of the unit object was
assumned to prove the theorem. The contribution of this chapter is so show that such a
representation theorem can be proved without assuming the existence of a unit object,

using instead our new algebraically defined concept of scalar relations.



Chapter 7

Crispness and Representation
Theorem in Dedekind Categories

In this chapter we consider Dedekind categories named by Olivier and Serrato [0S95].
One of the aim of this chapter is to study notions of crispness and scalar relations in
Dedekind categories. A notion of crispness was introduced in section 5.1 under the
assumption that Dedekind categories have unit objects which are an abstraction of
singleton (or one-point) sets. To capture the notion of crispness without such assump-
tion, we use a notion of scalar relations. The notion of scalar relations in homogeneous
relation algebras was introduced in section 6.1. The other aim of this chapter is to
prove a representation theorem for Dedekind categories. Such a theorem for Dedekind
categories with a unit object satisfying strict point axiom was also proved in ction
5.1.

This chapter is organized as follows:

In section 7.1 we define a preoder among objects of Dedekind categories which
compares the lattice structures on objects in a sense. Section 7.2 studies notions
of scalars and crispness for Dedekind categories. The scalars on an object form a
distributive lattice, which would be seen as the underlying lattice structure. In section
7.3 we recall the definition of L-relations, due to Goguen [Gog67|, and illustrate a few

relationship b tween cri pnes and lattice structures of scalar . In section 7.4 w  how



a representation theorem for uniform Dedekind categories satisfying the strict point
axiom without the assumption of existence of unit objects, and it is proved that the

representation function is a bijection preserving all operations of Dedekind categorie .

7.1 Preorder among Objects of Dedekind Cate-
gories

In this section we provide a preorder among objects of Dedekind categories which
compares the lattice structures on objects in a sense.

First, we define a function ¢y : D(X,Y) — D(IV,1V) by
dw (&) = Vi x ¥y Midy - W7 — 1V

for a morphism € : X' —  and an object 11" of a Dedekind category D. This function
is related to scalars; the relationship will be described in the next section, and the

following lemma holds:

Lemma 7.1 (a) ¢ow()Vuz = ViwxéVyz and Vzuow(€) = VzxENVyw for each

object Z.

(b) o (dx(£)) = dw(dy(€)) = dw(§).

(d) If Vxy = VxwVyy, then £ € Vawdu (&) Viy
(e) If Vxy = VxuNVipy, then ¢w(§) = Oww is equivalent to € = Oyy-.

Proof. (a) The former follows from

dw (§)NVwz (Viex&Vyw Nidw ) Vi
C VixéVywViyyz
C VixéVyz
Vi xéVyz MV
C (Vu’,\'fvyzvgvz M idw)vwz
C (ViexéVyw Nidy ) Viz
dw(§)Vwz .



The latter is similar.

(b) follows from

gbn(d)/\(f)) wadﬁ,\'(f)v,\'w M idw ( DeﬁlllthIl of ¢11 )
Virx Vxx&Vyn Nidy (6x(6)Vaw = Vxx&Vyw )
Virx &Ny Midy (ViexVaixy =Viy)
dw (€) ( Definition of ¢y )

and
iy éy (§)Vyy Nidy  ( Definition of ¢y )
VirxéVyy Uy Nidw ( Viexdy (§) = Ve x€Vyy )
Virx&\Vy e Midy ( Vyy VY = Vyy )

o (€) ( Definition of ¢y )

px,y) Y DY, X)

¢Yl J'¢w
DY) — DOV.W)

(Pw (€))F
(Vury &V xp Midyy)*
Vi E Ny Midyy

P (€)

(c) follows from

(d) If v/\'y = v/\' anwy, then
3 EMVyy
EN NV xw\Vyy
C Vaaw(Vwx&Vyw Nidw ) Vipy
Vawdxyw (§)Viy

(e) is immediate from (d).

A binary relation < among objects of D is defined as follows: For two objects X
and Y, the relation X < Y holds if and only if Vyy = VxyVyx. (Note that the
three conditions Vyx = ViyVyy, idy C Viy Uy and ¢y (idy) = idy are mutually
equivalent.) It is easy to see that < is a preorder, that is reflexive and transitive. For

v/\',\' = v/\'/\'v/\'/\', and if v,\',\' = \_",\'Yvy,\' and VYY = vyzvzy, then

Hence its symmetric kernel with X ~ Y if and only if X < Y and Y < X, is an
equivalence relation. Remark that in the category Rely of example 2.1, two distinct

objects are never equivalent.



Proposition 7.1 Assume that X < Y. If u C idy, v C idy and uN vy C oV yy for

w,v: X — X, then u C v.
Proof. It follows from Vxxy = Uxy VUyy that w = idy MuN x4 = idxy MuV xy Uy x. a

Definition 7.1 A Dedekind category D is uniform if all pairs of objects of D are

equivalent, that is, if X ~ Y for all objects X and Y of D.

A morphism f : X — Y such that f*f C idy (univalent) and idy T ff* (total) is

called a function and may be introduced as f : X' — Y.

Proposition 7.2 (a) If there exists at least one total morphism « : X — Y| then

X <Y,
(b) If there exists at least one function f : X — Y, then X < Y.
(c) If X < W orY < W, then Vyy = VxwViy.
(d) If X <Y and Vyy = Uxw iy, then X < TV,

(e) If Vyy = p*q for some functionsp: W — X and q: W — Y and if X <Y, then

X~ .

Proof. (a) Assume that « is total, then we have idy C aa* C Vyy Vyy.

(b) It is a just corollary of (a).

(c) If Vxx = VxiwVirx, then Vxy = VxxVxy = Vi Viex Viy © Viw Vipy.

(d) Vax = VayVyxy = VxwViuy Vyx E Vg Vipx.

(e) First note that 11" < X by (a). Next Vyy = plq C and so it follows

from (d) that X' < " 1



7.2 Scalars and Crispness

We now introduce the two notions of scalars and of s-crisp relations as a preparation
for defining a concept of points with a separation property, that is, different points

never meet.

Definition 7.2 A scalar £ on X is a morphism k& : X — X of D such that £ C idy

and AV xx = Vi xk.

A scalar k£ on X commutes with all endomorphisms « : X — X, that is, ka = ak,
because

ka=anNkVyy =anNVyxk=ak .
[t is trivial that the zero morphism Oyxy : X — X and the identity morphism idy
X — X are scalars on X. The set of all scalars on X is denoted by F(.X'). It is clear
that F(X') is a complete distributive lattice for all objects X. A morphism § : X —V

is called an ideal if Vxx&Vyy = £ The notion of ideals in relation algebras was

initially introduced by Jénsson and Tarski [JT52]. The following lemma shows that

scalars bijectively correspond to ideals.

Lemma 7.2 (a) If¢: X — X is an ideal, then k = «Midy Is a scalar on X such

that « = kN y x.
(b) Ifk is a scalar on X then « = kN xx is an ideal such that k = ¢ Midy.
Proof. (a) Assume that ¢ is an ideal on an object X', then we have
(tMidy)Vxx CVyxx =0 =0 NidyVyxx C (V4 Nidy)Vyx = (¢Nidy)Vyx ,

and so (1 Midx)Vyx =¢ = Vxx(¢MNidy).

(b) Assume that & is a scalar on an object X, then we have

Vax(hVxx)Vaxy = kVxxVaxVixx = kVix
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and

k= ki(l,\' =k = kV,\—,\— ([ id,\' .

Proposition 7.3 Let £ : X — Y be a morphism. Then the following holds:

(a) dw (&) is a scalar on 1.

(b) If X <Y, then ¢x(¢y(k)) =k for all scalars k € F(X).
(c) If X ~  then F(X) and F(Y) are isomorphic as lattices.
(d) éx(k)E = Epy (k) for all scalars k on .

(e) If &€ # Oxy, then there is a nonzero scalar k € F(X) such that Vxx{Vyy =

kY xy

Proof. (a) Set 11" Z in lemma 7.1(a). Then ¢w(§)Vww
Vi dw (§).
(b) First note that ¢y (k)Vyx = VyxkVyx by lemma 7.1(a) and so

Vixydy (k)Vyx VxyVyxkVixx
ViaxkViyx (by Vxx = VxyVyx )
kN v x (since k is a scalar )

H nce we have '
dx(dy(k)) Vxy oy (k)Vyy Midy
k’v,\'/\' M id/\'
k .
(c) It is obvious from (b).

(d) By lemma 7.1(a) we have ¢x(k)Vxy = VxuwkViy = Vxydy (k) and consequently
ox(k)a = anox(k)Vxy = an Viyoy (k) = agy (k).

() Set k = ¢x(&). Then it is clear that k is a scalar on X by (a) and Vyx&Vyy =
k¥ xy by lemma 7.1(a). And k is nonzero by lemma 7.1(d), since £ is nonzero. (Cf.
(KE 196, Th orem 5.4])

From the above lemma 7.1(a) we have ¢y as a mapping ¢ : D(X,Y) —
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Fact 7.1

vu'l\'(ﬁ/\-(é)v/\'”' M idn' (Deﬁnition of Cbn')
Vi EVyw Nidye (dx ()N xu = VaxéVyw)
VirxnéNVyx Vxw Nidy (Viexox(§) = Ve x&Vyx)

and

v[yy(ﬁy(f)vyu' M i(lu' (Deﬁnition of d’u')
Vi xEVyw Nidy (Vieydy (§) = VirxéVyy)
Viry Vyx €V Nidys (v () Vyx = VyaéVyx)

In particular, the following holds for & = V xy-:

ViraVay Vyx Uy Midye
vli'}’v)",\’v,\'yvyur M idn.’ .

The Tarski rule for Boolean relation algebras are introduced hy Tarski [JT52, SS85,
SS93, Tar41]. A Boolean relation algebra which satisfies Tarski rule has no ideal except
for the zero relation and the universal relation. The next proposition corresponds to

the suggestion.

Proposition 7.4 If the Tarski rule holds in D, that is, all nonzero morphisms « :
X — X satisfy VyxyaVyxxy = Vxa, then there is no scalar on X except for the zero

morphism Oy x and the identity idy .
Proof. Let k be a nonzero scalar on .X'. Then, by the Tarski rule, we have
EN xx = kVaxViaxx = VixkVix = Vixx

which means that k& is total, and so idy C kk* = k by k Cidy.
By using the notion of scalar, we define a crispness which called s-crispness (scalar

crispness).

Definition 7.3 A morphism a : X — Y is s-crisp if k&7 C « implies 7 C « for all

nonzero scalars k : .X — X and all morphisms 7: X — Y.

[t 1 trivial from the above definition that every universal morphi m Y yy- is s-cri p.



Proposition 7.5 (a) A morphism is s-crisp if and only if its converse is s-crisp.
(b) The infimum of two s-crisp morphisms is s-crisp.

(c) If f: X — Y is a function and a morphism f Y — Z is s-crisp, then the

composite ff: X — Z is s-crisp.
(d) If the identity idy is s-crisp, then so are all functions f: X — Y .

(e) A morphism a : X — Y is s-crisp if and only if its relative pseudo-complement

o' = « is s-crisp for every morphism o' : X — Y.

Proof. (a) Assume that o : X — Y is s-crisp and k7 C o for a nonzero scalar k on Y’
and a morphism 7:Y — X. Then ¢x (k)" = 78k = (k7)* C (of)* = @ and so 7* C q,
since ¢y (k) is a nonzero scalar on X by lemma 7.1(e). Hence 7 C o

(b) Assum that a; : X — Y is s-crisp for ¢ = 0 or 1 and k7 C ag M «; for a nonzero
scalar £ on X' and a morphism 7: X — Y. Then we have k7 C o and k7 C a4, and
so T C ap and 7 C a; by s-crispness. Hence 7 C ag M a;.

(c) Assume that k7 C ff for a nonzero scalar £k on X and a morphism 7 : X — Z.
First note that ¢y (k) is a nonzero scalar by lemma 7.1(e) and ¢y (k)f* = f'k by

proposition 7.3(d). Then we have

and so fir C B by the s-crispness of 3. Therefore 7 C ff*r T ff3, which completes
the proof.

(d) is a special case of (b).

(e) First assume that o : X — Y is s-crisp and k7 C o’ = « for a nonzero scalar k

and morphisms 7,0’ : X — Y. Then we hav

k(rMa)y=krMNa Ca
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and so 7Ma' C a. since a : X — Y is s-crisp. Therefore 7 C o/ = «. Conversely, if
o' = « is s-crisp for all morphisms o' : X — Y, then @ = Vyy = « is s-crisp. This
completes the proof.

It immediately follows from the last proposition 7.5(c) that every composite of
s-crisp functions is also an s-crisp function.

A morphism o : X' — Y is complemented if it has a complement morphism @ :

X — Y such that cU@a = Vyy and ala@ = Oyy.

Theorem 7.1 The following four statements are equivalent:
(a) If k # Oxx and kM k' = Ox x for scalars k, k' € F(X), then k' = Oy yx.

(b) The zero morphism is s-crisp for every object Y (that is, if kT = Oxy for

a nonzero scalar k on X and a morphism 7 : X — Y| then 7 = Oyxy ).
(c) For every morphism a : X - Y| its pseudo-complement -« : X' — Y is s-crisp.

(d) Every complemented morphism a : X — Y is s-crisp.

Proof. (a)=(b) Assume that k&7 = Oy for a nonzero scalar k£ on X and a morphism

7: X — Y. Recall that ¢ (7) is a scalar on .X. Hence we have
k‘ M (b,\’(T) = k(b/\(T) k‘(v,\'/\'TV)V'/\' M ld,\)

kN xx7\xy

v,\',\'k‘Tvy)"

Oxx .

{1

[t follows from (a) that ¢x(7) = Oxx and so 7 = Oxy by lemma 7.1(e). Hence Oxy
1 s-crisp.
(b)=(a) is trivial.

(b) <= (c) <= (d) is a corollary of the last lemma.

Definition 7.4 A scalar k on X is called linear if and only if for every calar k' on

X an equation kMK = Oy x implies £ = Oy x.



Let W(.X) denote the set of all linear scalars on Every identity idy is obviously
linear. Note that a scalar k£ on X is linear if and only if its pseudo-complement

=k (=idx N (k= Oxy)) in F(X) is equal to Oy .
Lemma 7.3 If X is a nonempty object, then W(X) is a filter of F(X).

Proof. 0) It is trivial that Oy is not a linear scalar, whenever X is nonempty.
) If ko, ky € W(X), then ko Mk, € W(X): Assume (ko Mky) Mk = Oxx. Then
koM (ky ME") = Oxx and so k; Mk" = Ox x, which shows k' = Oy .
i) If kg € W(X)and k; € F(X) with kg C ky, then k; € W(X): Assume kiMk" = Oy .
Then koM k" = Oxx and so k' = Oy .

So the set of linear scalars on X" is a sublattice of the lattice F(.X') of all scalars on

X, and as such it is distributive.

Definition 7.5 A morphism o« : X — Y is l-crisp if k&7 C «a implies 7 C « for all

linear scalars £ : X' — X and all morphisms 7: X' — Y.
Proposition 7.6 Every zero morphism Oyy is I-crisp.

Proof. Assume that k7 = Oy for a linear scalar on X and a morphism 7: X — Y.

Th n w hav
kMox () ko (1)
k‘(v,\',\'TV)*,\' M ld,\>

C kv,\',\'Tvy,\'
C VixkrVyx
Oxy

and so ¢x(7) = Oy x. Hence 7 = Oxy by lemma 7.1(e).

7.3 Crispness in L-Relations
Obviously an L-relation k& : X' — X is a scalar on  if and only if

Ve, € X 1 k(z,z) = k(2',2') and z # 2’ = k(z,2") =0



An L-relation R : X — Y is called 0-1 crisp [Gog67] if R(z,y) =0 or R(z,y) =1 for
all (z,y) € X x Y. Of course the zero relation Oxy, the universal relation 1yy and
the identity relation E'x- are 0-1 crisp. For a 0-1 crisp L-relation R : X — } define an
L-relation R : X — Y by R(z,y) = 0if R(z,y) =1 and R(z,y) = 1 otherwise. Then
RUR = 1xy and RN R = 0yy. This fact means that all 0-1 crisp L-relations are

complemented.
Proposition 7.7 All s-crisp L-relations are 0-1 crisp.

Proof. Let an L-relation R : X — Y be s-crisp. Assume that a = R(zo, yo) is not
equal to 0 € L for some point (xg, 1) € X x Y. Consider a scalar £ on X such that
k(z,z') = a if £ = 2" and k(z,2") = 0 otherwise, and an L-relation 7' : X' — Y such

that T'(z,y) = a = R(x,y) for all (z,y) € X x Y. Then we have kT C R, since
(kT)(z,y) = an(a = R(z,y)) < R(z,y)

for all (z,y) € X x Y. Hence T C R follows from the fact that R : X — Y is s-crisp.
Finally we have 1 = (a = a) = T'(xo, yo) < R(z0, yo), which shows I is 0-1 crisp.
The converse of the last proposition does not hold in general. Its necessary and

sufficient condition is given by the following:

Proposition 7.8 For L-relations the following statements are equivalent:
CO0. Va,be L:aANb=0=a=0o0rb=0.

K0. All 0-1 crisp L-relations are s-crisp.

Proof. First assume that CO and k7T C R for a scalar k on X, an L-relation T :
X — Y, and a 0-1 crisp L-relation R : X — Y. To prove that R is s-crisp we have
to show that T(z,y) < R(z,y) for all (z,y) € X x Y. Since R(z,y) = 0 or 1 by

the 0-1 crispness of It it is enough to show that if R(z,y) = 0 then T(x,y) = 0. But



(kT)(z,y) = k(z,2) AT (z,y) < R(z,y). Hence when R(z,y) = 0. we have T(z,y) =0
from CO and k(z,z) # 0. Conversely assume that KO and aAb =0 for a,b € L. Define
a scalar k on a singleton set I = {*} and an L-relation R : I — I by k(*,*) = a and
T(*,%) = b, respectively. Then kT = 0;; and so k = 0;y or T = 0y since 0;; is s-cri p

by the assumption KO. 1

Proposition 7.9 For L-relations the following statements are equivalent:
Cl.Va,be L:anb=0andavb=1=a=0o0rb=0.

K1. All complemented L-relations are 0-1 crisp.

K2. All L-relations which are functions are 0-1 crisp.

Proof. Trivial. 1

Definition 7.6 An element x of a lattice L is called linear if z Ay = 0 implies y = 0

fory e L.

Let k: X — X be an L-relation on a nonempty set X. If k is a linear scalar, then
k(z,zx) is linear in L for all x € X.

Assume that k(z,z) Aa = 0 for a € L. Now consider a scalar ¥’ : X — X such
that &'(xz,2') = a if z = y, and k'(x,z’) = 0 otherwise. Then £k Nk’ = Oy and so

k" = Ox x by the linearity of k. Hence a = 0, which proves that k(x,z) is linear.
Proposition 7.10 All 0-1 crisp L-relations are I-crisp.

Proof. Let an L-relation R : X' — Y be 0-1 crisp and assume that k7 C R for a linear
calar k on X and an L-relation T : X — Y. We have to show that T(z,y) < R(z y)
forall (z,y) € X x Y. Now k(z,z) A T(z,y) < R(z,y) = (kT)(z,y) C R(x,y), and
ince k(z,z) is linear, it follows that R(z,y) = 0 implies T(x,y) = 0, which i . ufficient

since [R(z,y) can only be 0 or 1 by 0-1 crispness. 1



The conver of the above proposition does not hold: Consider a Boolean lattice
L having a nontrivial element s such that s # 0 and s # 1, and define an L-relation
Ry: X — X by R(z,2') = s if x = 2’ and R(z,2") = 0 otherwise. Then it is clear
that I, is l-crisp, but not 0-1 crisp. Generally for a Boolean lattice L every L-relation

is l-crisp since the identity E'y is a unique linear scalar on X.

7.4 Representation Theorem

In this section we first introduce the concept of points in Dedekind categories. Then
some useful properties on points, due to Schmidt and Strohlein [SS85], and a point
axiom will be stated to show a representation theorem in uniform Dedekind categories.
In particular, the point axiom induces a function assigning a concrete L-relation be-
tween the sets of point relations to an abstract relation in Dedekind categories. In
view of [Fur97b, KF95 SS85] the concept of points in Dedekind categories is defined

as follows:

Definition 7.7 Let D be a Dedekind category. A point z of X is an s-crisp function

z: X — X such that Vyyx = z.
We will denote the set of all points of X by y(.XX).

Lemma 7.4 Let x and z' be points of X. Then the following holds:

(a) If Vxxp = p and p C z for a morphism p: X — X, then p = kx for a unique

scalar k on X.
(b) Ifz # 2, then 2Nz’ = Oxx and zz" = Oy .

Proof. (a) First set k = ¢ (pz*). Then by proposition 7.3(a) k is a scalar on X and

k= pz*Midy from Vyyzr =z and Vyxyp = p. loreover w have
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Finally the uniqueness of & follows from k = k¥ y yMidy = kx¥V x xMNidy = pV xaNidy .
(b) It is enough to show that if z Mz’ # Oxyx then z = 2'. As Nz’ C z and
VUxx(zNz') =xNa’, by (a) there is a unique scalar k£ : X' — X such that x N2’ = kx.
If zMz" # Oxy, then k # Oxy and so xz C 2, because kx C z' and z’ is s-crisp. If
Nz’ = Oyxy, then 22" = 22" N Vyxy C (z N V,\-Xz’)x’u = (zMNz")z" = Oyy. This
completes the proof.

Set L = F(W) for a fixed object 1I". Then L is a complete distributive lattice.
A function x(a) : x(X) x x(Y) — L assigning x(a)(z,y) = ¢w(zay*) € L to a pair
(z,y) of points z of X and y of Y, gives an L-relation of x(.X) into x(}). Thu we
have a function x : D(X,Y) — L-Rel(x(X), x(})).

Proposition 7.11 IfD is a uniform Dedekind category, then the function x : 1)

— L-Rel(x(X), x(Y")) satisfies the following properties:
RO = X - Y, ) —= - - 1 ) = Y(XN)-
(2) x(Oxy) = Oy, X(Vxy) = Ly and x(idx) = Eyx)

(b) x(aua’) = x(a) U x(a) and x(aNa') = x(a) N x(a').

(e) The function x : D(X,Y) — L-Rel(x(\X), x(}")) is surjective.

Proof. Recall that x(a)(z,y) = ¢wdx(zay*) = dwdy (zay®) by lemma 7.1(b).
(a) It is immediate that x(Oxy)(z,y) = Oww. Note that zVyyy* = Vyy from

V¥V xx = Vyy and yVyy = Vyy. The second equality follows from

dw (Vixy) (by 2V xx = Vyx and yVyy = Vyy)
duwdx(Vyy) (bylemma 7.1(b))

dw (idx) (by X ~Y)

idy (by X ~ 1V )
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and the third holds from d),\-(:rid,\-;r’ﬁ) = v,\',\'II/nV)",\' MNidy = zz" Midy and lemma
7.4(h).

(b) The former equality is trivial from ¢w (z(a U o )y*) = ¢u-(zay?) U dw (za'y?). and
the latter follows from

dw (z(ana’)yt) Viwx (zay* Nza/y") Vyw Nidy
N Vwxza'y*Vyw Nidy
dw (zay?) Moy (za'yt) )
Vi (@ay* 1V xw Vi x 2o’y Uy Uiy ) Ve Midye
Vi x(zay*n V/\/\IECY ¥ Vyy ) Uy Midy
Virx(zay* Nza'y*) Vyw Nidy
(Z)u/(.f((l M« ) )

N

—~

i

(c) It directly follows from lemma 7.1(c).

(d) First note that x(a)(z,y) N x(B8)(y,z) = x(ay*yB)(z, z) for (z,y,2) € x(X) x

x(Y) x x(Z), since

du-(zay®) M ¢y (ypz*) Viazay* Vyw N VieyyB2* Sz Nidw
C Vixzay (Vyw Ny st e Vieyy 828V 21 ) Nidy
[ Vw,\-rayﬁVn-vyﬁzﬁvzw [ idw
Vu.-,\'xay“yﬁzﬁvzw M idw
(= ow(zay'yp2t) )
(Vi xzay N Vi zz00) (yat 2 Y yw NyB2iY zuw) Midw
C Vwxray'Vyw N ViyyB2iV 2w Nidy
ow (zay*) N ow (yB2") .

Ther fore we have

x(a)x(B)(z, 2) Uyex)x(a)(z,y) 1 x(B)(y, 2)]
UyEx(Y)X(ayﬁyﬁ)(I’ Z)
x(e[Uyex(v)y*y)6)(, 2) -

(e) Let R : x(X') — x(Y") be an L-relation. Noticing L = F(W') we define a morphism

ar: X —Y by

Then we have ¢y (zoagyh) = ¢x (R(xo, yo)) from



Hence we have

which completes the proof. 1

Definition 7.8 A Dedekind category D satisfies the strict point axiom iff:
Uzey(x)T = Vixx

for all objects X.

Assume that Uye,(xvyz = Vyx. Then it follows from idy Mz C (idyz*Nidy )z C o'z
that idy = idy N Vyx = idy N (Uzey)®) = Ugeyx)(idy M) C Ugey(x)zie.
Hence Uzex(/\v)mnx = idy. Conversely assume that UIGX(X):I:% = idy. Then Vyy =
Vixidy = Vi x (Uzex(n) ') = Urey(x) Vxx T = Uy (x)VxxT = Ugey(x)z. There-

fore the condition U,ec,(x)z = Vyx is equivalent to LIIEX(,\—):C% =idy.

Proposition 7.12 If a Dedekind category D satisfies the strict point axiom, then for
all objects X the identity morphism idyx is complemented. Moreover, if the statement

(a) of theorem 7.1 is valid in D, then idy is s-crisp.
Proof. Assume that Vyx = Uzcy(xyz. Then it is obvious that
Vix = Vax Vxx = (aexn) @) (Uyex(xyy) = idx U (Urgzyex)z'y)

Here note that for z # y € x(.X) we have idy Mz*y C z*(zidy My) = Oxx. Hence this

shows that Uy zyey(x)2ty is the complement of idy. 1
Theorem 7.2 (Representation Theorem) Assume that D is a uniform Dedekind and
satisfies the strict point axiom. Then every morphism o« : X — Y has a unique
representation

where k;, is a scalar on X for all (z,y) € x(X) x x(}).
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Proof. Note that zay' = ¢(zay*)Vyy for z € x(X) and y € x(Y'), because ray* =
Vaxxzay*Vyy = ox(zay*)Vixy by lemma 7.1(a). We now show the uniqueness of
the representation. Assume a = Uzey(x) Uyex(y) kzyz'V xyy. Then for all (z,y) €
x(X) x x(Y) we have k; ,Vyy = zay* = dx(zay’)Vxy and so k;, = ¢x(zay?) by
proposition 7.1. Hence it suffices to see that a = Uze,(x) Uyey(yv) dx (zay?)z'V xyy.
Since idy = UIEX(X)CEuJL' and idy = l_lyex(y)yuy by the strict point axiom, we have

« 1d y aidy
(Uzex(x)z'z)a(Uyexryy'y)
Urex(x) Uyex(v) Tzay’y
Uzex(x) Uyex(r) Tox (zay*) Vyyy
Uzex(x) Uyex(v) dx (zay?) z#V xyy

This completes the proof. 1

Corollary 7.1 A uniform Dedekind category D satisfies the strict point axiom if and

only if the function x : D(\X, X) — L-Rel(x(.X'), x(X)) is injective for all objects X.

Proof. First assume that the function x is injective. Then it follows from proposi-
tion 7.11(a) and (d) that idy = UIEX(X):C”:L', which is equivalent to Vx = Uzey(x)T-
Secondly assume that the point axiom and consequently the representation theorem
7.2 hold. Let x(a) = x(«) for a,a' : X — Y. Then ¢w(zay?) = ow(za'y)
for all (z,y) € x(X) x x(Y). Since D is uniform, ¢x(zay*) = ¢y (za'y*) for all
(z,y) € x(X) x x(}Y)and so @ = o by the virtue of the representation theorem. 1

From the proof of proposition 2.4(d) it is easy to see that Vyxy # Oyy for all
nonempty objects X and Y if D has a unit object I and satisfies the strict point
axiom.

As a result we have proved that a Dedekind category which has a unit object
satisfying the strict point axiom is equivalent to a subcategory of a category of L-
relations.

Let I and X be objects in D. An [-point of X is an s-crisp function p : [ — X

uch that p = V;p. Thus, when [ is a unit object in D, an [-point of X is just an
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s-crisp function from I to X. The set of all I-points of .\ will be denoted by Q(X).

Proposition 7.13 Let I and X be objects in D. Then the following holds:

(a) If X < I, then a morphism z = Vx;p: X — X is a point of X for an I-point

(N R, du o) 4. I3

(b) If I < X, then a morphism p = Vi xz : I — X is an [-point of X for a point

z:X — X of X.
(c) If X ~ I, then YV x = Upeq(x)P Is equivalent to Vxx = Ugzex(x)T-
Proof. (a) First note that

Vxxr= xxVxip=Vxip=1z ,

and

zz' = (Vxp)(Vxip)' = Vxpp'Vix 3 Vi Viy = Vxx
by X' < I. Next assume that k7 C Vx;p(= x) for a nonzero scalar k on X and a
morphism 7 : X' — X. Then ¢;(k)V;x7 = Vixk7 C Vi x Vi C Vyp = pand so
Vix7T C p, since ¢;(k) # Oy by lemma 7.1(e) and p is s-crisp. Hence 7 C Vi x7 =
VarVNixTCVxpp=z by X < I.
(b) First note that

Vip=VuVixz=Vixz=p
P = (Vix2) (Vixz) = 2V Vixz C 'V vz = 22 C idy

and

pp' = (Vixz)(Vixz)' = Vixz2' Vi = VixVax Vs = Vi Jidg

by I < X. Next assume that k7 T V', yz(= p) for a nonzero scalar k on I and

a morphism 7 : I — X. Then ¢x(k)Vx7 = Vxik7 T Vx,Vixz C Vyxxr =<z
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and so Vx;7 C z, since ¢x(k) # Oxy by lemma 7.1(e) and z 1s s-crisp. Hence
TEVT=VxVxiTEVixz=pby I < X.

(c) First assume that V;x = Upeg(x)p. Then
Uzex(x)T = Upe@x)VxrP = Vxr Upeox) P = VarVix = Vaax
by X < I. Conversely assume that Vxy = Uzey(x)yz. Then we have
UpeQ(,\')P = Uxex(,\')vl,\'l' =Vx Uzex(x) T = VixVxx=Vix .

In this chapter, we defined a notion of s-crisp and points. Unfortunately s-crispness
i1s not equivalent to 0-1 crispness in L-relations but just a sufficient condition for 0-
1 crispness. So we gave a condition the two crispness to be equivalent. However the
notion of s-crispness is enough to make points satisfy separate property, and we proved
representation theorem for Dedekind categories without assumption of existence of unit

objects.
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Chapter 8

Conclusion

The contribution of this thesis is as follows:

(1) We proposed new two algebraic formalisations of fuzzy relations which are fuzzy
relation algebras and Zadeh categories, and proved their representation theorems. To
prove such theorems, we used a notion of point relations with a separation property,
that is, different point relations never meet. In order to make point relations satisfy
the property, a notion of crispness is necessary. In the two formalisations, we defined
a notion of crispness via scalar multiplications, which is equivalent to an intuitive
element-wise definition of crispness of fuzzy relations, namely 0-1 crispness.

(2) We proved representation theorems for relation algebras and Dedekind cate-
gories. As in the case of fuzzy relations, we used a notion of point relations. Since
neither relation algebras nor Dedekind categories have scalar multiplications, we in-
troduced a notion of scalar relations and defined the crispness by using the notion of
scalar relations. Of course the crispness also provided the separation property of point
relations.

The li t of our future researches is below:

(a) As we described in (1), the notion of crispness in fuzzy relation algebras and
Zadeh categories is well defined via scalar multiplications. But in relation algebras and

Dedekind categories, the notion is not so well defined, that is, definition of crispne. s
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in the two frameworks are not equivalent to 0-1 crispness of L-relations. The notion
of s-crispness is just a sufficient condition for 0-1 crispness of L-relations.

(b) We would like to investigate the aspect of new applications of our fuzzy rela-
tional calculus.

The suggestion (a) proposes the necessity to continue studying crispness in Dedekind
categories. Especially the author is interested in the case that L-relations take values
in a Boolean algebras; for example power set P({a,b}) of a set {a,b}. In this case, the
notion of s-crispness is too strict to characterize 0-1 crispness in Dedekind categories.

In spite of (b), already, fuzzy relation algebras [KF95] which were introduced in
chapter 3 gave a theoretical basis to theory of fuzzy difunctional dependency in fuzzy
relational databases (0J96], and a rewriting system of fuzzy graphs by using single
pushouts [MoK97] based on a study of Zadeh categories [KFM96] which were intro-
duced in chapter 5. Besides that, in the future, our calculus would be applied to graded
accessibility and fuzzy possible world semantics introduced by Suzuki [Suz96]. In the
research, accessibility relations correspond to L-relations which satisfy condition CO
provided in chapter 7. The relations may be useful tool to investigate accessibility
and reliability of networks. Also the results in Boolean relation algebraic approach
to theory of natural languages [Bot92a, Bot92b, Sup76, Sup79, Sup81] suggest that
our calculus may enable them to treat fuzziness in element-free style. But, in order
to consider applications of our calculus to relational modelling of fuzzy systems, we

should study fuzzy relational equations in our frameworks.
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