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In this paper, Gaussian precision modull (weights} included in the mass—consistent model,
which is one of numerical simulations predicting the three—dimensicnal wind fields based on the
wind measurerents, was examined. In the mass—consistent model, reasonable wind fields are
caleulated by adjusting the first estimated values interpolated from severa! observed results to
satisfy mass conservation utilizing the caleulus of variation. Gaussian precision moduli decide
distributions of modifications for cach component of wind velocities, and directly affect the
calculated results. Optimal values of these coefficients were estimated by using a genetic
algorithm s as Lo minimize the deviation between the observed values and the calculated
resuits. As a resull, the ratio of weights in the horizontal components was affected by the
direction of the eminent wind, regardless of the same condition for the stability of atmosphere,

In conclusion, the mass—consistent model produced a valid result in that the relation
hetween the underlying topography and wind lield fcatures was sufficiently represented by
ntroducing the genetic algorithm.

INTRODUCTION

Il is essential to grasp a three—dimensiconal wind field in a complex terrain in regional
meteorological problems, such as the dispersion of air pollution in coastal and hilly
regions, and the founding of an eptimum wind energy site for the deployment of wind
turbines. However, observations at single points alone are not suitable to represent the
complex wind field because the atmospheric airflow is significantly affected by the
underlying topography. Therefore, model simulation plays an important role to produce
the three--dimensional description of wind field characteristics that cannot be obtained by
extensive field measurements.

Dickerson (1978) calculated the wind field with a two—dimensional mass—conser-
vative flux (MASCON) meodel to simulate the air quality of the Sun Francisco Bay Area.
Sherman (1978) developed the mass—adjusted three—dimensional wind field (MATHEW)
model to provide a poliutant transport model. The numerical model that calculates the
mean wind field satisfying the continuity equation within the volume specified is called
the mass—consistent model, and has been applied to compute the spatial distribution of
wind speecds and their variation with height. Gross (1995) examined the applicability of
the mass—consistent wind model for different numbers of input wind data by utilizing a
three—dimensional nonhydrostatic model. Castino and Tombroul (1998) introduced
simple parameterizations of the internal boundary layer concept in the mass consistent
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model, showing the satisfactory model improvement.

The mass—consistent model is a numerical simulation methed that the wind field
interpolated from ohserved valies of wind speeds and wind directions, and then modified
by the calculus of variation under the constraint of the continuity equation. Therefore,
this is different from a numerical simulation of fluid flow in a strict sense. Although the
mass—consistent model is a relatively simple physical model, the modeled field has been
judged to give a rather satisfactory description of winds (Zhang and Shuto, 1990;
I[shikawa, 1994; Abdeladim &t al., 1996; Gallino et al., 1998; Finardi et al., 1998).

The purpose of this paper is to introduce a basic algorithm of the mass—consistent
model and show the application to the three—dimensional wind field of Waita mountain.
This model contains three important weights concerned with the stability of atmosphere,
with the appropriateness of the final wind field depending on the specification of these
parameters. These parameters are given by empirical assumption or by trial-and-error,
and quantitative appraisement has not been established. We then utilize the genetic
algarithm to search optimal values of weights that have an effect on the accuracy of the
mass—consistent model. '

MASS CONSISTENT MODEL

The mass—consistent model reconstructs a three—dimensional wind field starting from
several horizontal wind speeds and direction measurements near the earth’s surface
through a two-step procedure, First, the observed wind field data is interpolated and
extrapolated on to numerical grid points defined within an objective area. Next, reliable
three—dimensional wind fields are predicted from the first estimated values by the
calculus of variation so that adjusted velocity components satisfy mass conservation.

First Estimated Values of Wind Fields

In the general method, interpolated velocity values on grid points are calculated by
the weighted mean using the reciprocal number of squared distance between the aired
grid point and each measuring point;

U':._j =jEW'i,j,k L'rk /A,Z Wa,j,ic
Wiju=1/r;;,

ey

where U, | is the interpolated wind velocity on the grid peint (%, 1), L. is the wind velocity
on the measuring point &, 7, is the distance between the grid point and the measuring
point and W, . is the weight. Since it is difficult to observationally acquire detailed
vertical profiles of wind speeds and directions, we calculated first estimated values on
grid points in the horizontal plane located at the height of wind measurement z, from
equation (1), and then estimated vertical profiles of wind velocities based on these
interpolated values.

This paper treats the three—dimensional wind fields within the atmospheric boundary
layer which consists of the surface boundary layer and the Ekman layer. Vertical wind
profiles were determined in each layer. In the surface boundary layer, the vertical profile
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of wind speed obeys the logarithmic law;

U)y="g

in| % |, < h (2)
where 2 is the height, ., is the [riction velocity, & is the Von Kdrman constant (=0.4), 2.
is the roughness length, and A, denotes thickness of the surface boundary layer.
Generally, the value of 2, in a forest area seems to take 1.0m. 1If 2. is the height of the
measuring point, and 2, denotes the wind speed at z,, the equalion (2) then hecornes

In(z/z,
UeVdal . sz @)

In{z,/z,)

I (2) =

On the other hand, the vertical profile of horizontal wind velocities in the Ekmnan layer can
be represented as the Ekman spiral in such cases where the turbulent diffusion
coefficient is constant. Yet, we need to acguire information such as the geostrophic wind
and ditfusion coefficienl to prescribe this profile, and these complicale the process of
wind velocily caleulation. Therefore, Lo facililate caleulations, this paper utilizes a power
law;

U)=uf? )" <2< h, (4)
ey

where u. and 2z, are the horizontal wind velocity and the height of upper edge of the

surface bhoundary layer respectively, and £, denotes thickness of the atmospheric

houndary layer. In this paper, the exponent p is set to 0.2 as & typical value in the general

land area.

Correction of Wind Fields by the Calculus of Variation

Generally, in the first step the vertical component of mean wind velocity cannot be
obtained due to a restriction of the wind ohservation method. More so, the first estimated
velocity distribution obtained by eguation (1) does not satisfy any physical conservation
relation, as well as not considering the impact of the terrain surface. In the second step,
reliable three—dimensional mass conservative wind fields are estimated from the first
estimated values by the calcuius of variation so that adjusted velocity components satisfy
mass conservation. That is, under the constraint of the continuity cquation;

du  dv  dw _
5ttt

()

where &, y arc the horizental dircection, 2 is the vertical dircection, and u, ¥ and w arc
respectively the adjusted velocity components in the 2, ¢ and 2z directions, we think the
variational problem can minimize the summation of modification between adjusted and
interpolated values;

Elu,v,w] :J { o (u —uef + a{v —voff + a2 {w —wef } AV (6)

i
where u,, #, and w, are interpolated values, V denotes the volume integral and «.*, a.*
and .’ are the Guassian precision moduli in the horizontal and vertical directions. The
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details for these coefficients will be described later. By introducing the Lagrange
muitiplier A, the functional used in this model is given as follows,

Elu,»,w,A] = L { 02 (1 ~u)? + a?(v ~vo)% + @ {w —1wo)?

+ A (% +%+%)} dv . (7

The stationary condition for the variational problem of equation (7) is given as the
following,

510,000 [ {20200 ) 28 3+ 2o ) o
+ ( Zaj(@ —wq)—% Sw +(3—;+%+%wg) 5,1} av

+ [ A Budydz +J1 An,dvdzdr + [ An dwdxdy =0 (8)
fLAY & PLA

where 7., %, and 2z, are the outward positive unit normal vectors in the x, ¥ and 2
directions respectively, and S denotes the surface integral. Since this equation is
identically applicable to arbitrary variations du, dv, dw and &4, the associated
Euler-Lagrange equations whose solution minimizes equation (7) are

vy s L 2

2 o2 0 ©
p=vp4L O (10
2 o2 oy
Wwo=10g + Zixj % (1D
Ju , v dw .
7777777777 s Gt 12
ER L @z

and the boundary conditions are

An Su=0, {(zx-direction)
An,5v =0, (y-direction) |. (13)
An.Ow=0, (z=direction)

To easily apply the mass—consistent model to the arbitrary terrain, the partial differential
equations and boundary conditions can be dealt with in the coordinale system along the
ground surlace;

=2, U=y C=8-hiEa) (14)

where h(x, y) is the surface topography height. Hereby, equations of (9) to (12) are
transformed into
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P 1 o~ 1 oh dh 5
WSt e O agk B -
T L@_;E&ﬂ (16)
1 ?’°+2a!2871 2%2(%] ac

W= 1)% 17)
du  ov  odw dh du odh v _, (18)

&Tm A & o m AL

and the boundary conditions of {11) become to

Ane du =0, (&-direction) \
Ang dv =0, (17— direction) (19
Ane (Su - %}é Hu — %}:’? 61,) 0, (- direction) f
Two types of boundary conditions can be considered from equation (19). Oneis
=0 (20)

which means that an adjustment of the velocity component parallel to the boundary is
zero. In general, the normal derivative of A is not zero when A is zero on a boundary., A
non-zero adjustment. of the velocity component normal to the boundary implies a change
in the amount of mass entering or leaving the volume. Therefore, the boundary condition
of A =0 is appropriate for open or [low—threugh boundary. Another instance is under the
condition in which the variation of the normal velocity component is zero on boundary;

e Ou =0, (E—direction) 20
g S =0, (17— direction) (22)
Tz \5w = a&)% & — ?; L &)) =0, ({-direction) . (23)

i s Tais sn oy

In this case, the adjusied value of the normal velocity must be the observed value on that
boundary. If Lhe observed normal velocity is zero, the boundary condition will imply no
transport of mass across the boundary. Therefore, this condition is used for closed, or
no—flow—through boundary. In this paper, it was assumed that the boundary condition of
equation (23) was established on the ground surface, and the equation (20) was utilized
for other boundaries.
The partial differential equation for A is derived by differentiating equations of (15)
to (17) and substituting the resuits into {(18);
e 32/1+ 1 @A, [ 1 - 1 (ah, 1 (an ) |22 1 oh oA
20238 " 202n? 240 €/ 2afonl |y aldE I8
Lon ¥4 |1 azh, L1 ¥n ) A, auo : azw_:_ duwy
oo Indg \2a2dr | 2ofant! ok g
ok duo dh a’UU _

o€ 3 an A

(24)
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In consideration of the equation {23), the equation for A on the ground surface is given

as follows,
{

_aﬁﬂ B aiﬂ,(il i L(ah) 1 dlz} l
& o a’dndn \202 o /)  olong
g—g' Uy + a 'U(}*'T.EQ =il (25)

Equations approximating (24) and (25) by the finite difference are solved for A using
successive over relaxation (SOR}, and second estimated velocity components w0, v and w
are calculated from equations of (15) to (17).

ESTIMATION OF WEIGHTS BY GENETIC ALGORITHM

Guassian Precision Moduli

Parameters @ ., «.* and .’ are weights which represent the distributions of
medifications of the horizontal and the vertical component, depending on the stability of
atmosphere. That is, the weights can be changed according to the state of the
almospheric houndary layer when measuring wind speeds and directions. The final wind
field simulated by the mass-consistent model is sensitive to how to choose @, a.?and a,”.
Guassian precision moduli @.*(i=u, », w) can be defined as follows,

o2="0-2 (i=u, v, w) (26)

where o#(i=u, v, w) denotes deviation of the observed field from the desired adjusted
field.

Generally, on the assumption of a.*=a.? the value of . a.* has been discussed on
the basis of comparing orders of horizontal and vertical components of wind velocitics
due to the fact that (a./a.)*=(0,/0,)* seems ta be proportional to the magnitude of the
expected (w/u)?. If this ratio is larger, the adjustment is predominantly in the vertical
component. If it is smaller, the horizontal adjustinent dominates. Dickerson (1978)
acquired reasonable horizontal and vertical adjusted fluxes by supposing that (a./a.)*
was 10%  Also, Sharman (1978) assumed that the value of (g,./6.)* was approximately
10, the values of a, and «.? were taken to be 0.5 and 5000, respectively. Furthermore,
Zhang and Shuto (1990) established the ratio Gaussian precision moduli, a (=a./a.), so
that it was equal to the ratio @./¢,, and could obtain the optimum value of @ =0.13.
However, there is need for clarification in that @.” and «,* were simply determined by
empirically comparing orders of the horizontal and the vertical velocity component. More
s0, we think that the assumption of a,’=@.* is not always valid because this needs to be
taken into consideration the feature of topography and the stability of atmosphere have
influence on not only the ratio of the weight of the horizontal component and one of the
vertical component, but also the ratio of weights in the W-E-direction, and in the
S-N-direction.

In this paper, Gaussian precision moduli @, @ and @.* are estimated by a genetic
algorithm in order to minimize the deviation between measured wind speed and
calculated results obtained by the mass—consistent mode]. We think that it is beneficial to
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find out optimal values of .2, @2 and @, for relating Gaussian precision moduli to
atmospheric conditions when measuring wind speeds and directions.

Genetic Algorithm

A genetic algorithm (GA) is an optimization technique using artificial processes
patterned on natural selection, evolution, and the principle of survival of the fittest. An
important characteristic of this algorithm is the coding of the variables that describe the
optimization problem. The variables are transformed into a binary string of specific
length with each string being called a chromosome. If the problem has more than one
variable, a multivariable coding is constructed by concatenating as many single variable
codings as the number of the variables in the problem. Individuals in the population are
evaluated quantitatively by applying an objective function (phenotype) on the solution
encoded by their chromosomal representation, and then fitness of each individual, which
indicates the worth of the solution to the problem, is calculated depending on the method
snuitably set by a GA modeler. It is a necessary for the GA to define the phenotype and to

estimate the fitness.

Generate the f{irst generation of population with a specified
numbcr of chromosomes

Evaluate the objective function and fitness value
of each chromosome

| Select fittest chromosomes |

I

] Crossover to generate new chromosomes ]

i Mutate new chromosome |

]

[ Termination condition reached ? l
T NO

YES

Fig. 1. Flowchart of genetic algorithm.

Fig. 1 shows the basic outline of the GA thal starts with creation of an initial
population using a random number. Froem the current population, the next generation
evolves by performing three distinet operations, namely, repreduction {selection and
multiplication), crossover, and mutation. First, the next generation is then reproduced
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based on the statistic of this population by [ollowing the weighted roulette wheel method,
which then follows a bias law that assigns probabilities to the members of the population
analogous to the statistics of the generation. In this way, the next generation evoives
where the fittesl have survived and increased Lheir presence, while individuals having
lewer fitness die out or disappear from the generation. Furthermore, the individuals
having the maximum fitness, so—called clite, are invariably passced to the next generation.
Secondly, with a specilied probability of crossover (crossover rate), two members of the
population are then selected randomly and modificd by exchanging the right part of their
string at a randomly selected position. This is referred to as a single—point crossover
scheme. The crossover rale determines whelher or not a crossover will be applicd to the
selected pair of parents. Finally, the mutation operation is performed by randomly
changing the values of certain genes. In normal mutation, each bit corresponding to the
gene compaosing of the individual is altered as zero to one, or one to zero based on a
probability of mutation (mutation rate). The GA evolves the population of chromosomes
over many generations until a terminaling criterion is met. :

The GA works with a collection of solutions, while the search space is explored in a
highly parallel and efficient manner through crossover and mutation. Since the GA is
superior in that it is less likely to get trapped in regions containing local minima and can
perform a global search of the scarch space, the GA has been applied to various fields
(Liong et al. {1995) and Mohan (1997)).

Definition of Genotype and Phenotype

The search problem which becomes the object in this study is to estimate optimal
values of ¢’ and «,* which minimize the ercor between observed values and calculated
results, under the condition of &,’=1. A coded string consists of 2 coded substrings each
of 8 binary bits, which provides a resolution of 25 points to cover the range of each
weighted coefficient in the mass-consistent model used. The string of each gene
corresponds to the Guassian precision moduli @.* and a,.° by the following equations;

N=2'"B,+2'B.+2°8,+2'B, + 2°B, + 2*13, + 2'B; + 2°B,-+ 1 (27)
Na=27B, 4 2B,y +2°8., +2'B,, + 2°B, + 2*Bu,+2'B;s +2'Byy +1 (28)
T
'=——— (N, —1]+a,
o5 V1-1) (29)
5 [log b, —log @.. . |
i=exp { ——————(Na—1|+10g a, :
D\ 255 (N2—1) +log | (30)

where B.(i=1, 2,- - -, 16) is the value of gene which takes zero or one, a. and b, denote the
lower limit and upper limit of the range of @.* respectively, and a,. and b, denote the
lower limit and upper limit of the range of @,° respectively. Since il is considered that the
order of wind velocity component ¢ is similar to one of ¢, both the valucs of a. and b.
were sef to 0.0 and 1.5. On the other hand, considering the observations in past studics
and the ratio of order in the horizontal and the vertical wind velocity component, the
values of a, and b, were set to 10" and 107, respectively. The method lor estimating the
fitness will be described later.
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RESULTS AND DISCUSSION

Calculated Region and Conditions

The caleulated region was a 2km>X2km hilly area wherce the Waita mountain (about
1500 1m above sea level) is localed in the center, as shown in Fig. 2. In numerical
simulations, a grid resolution of 100m was used, leading to 21 horizontal grid poinls. It
was assiumed that the distance from ground surlace to upper edge in the atmospheric
boundary layer £, and thickness of the surface boundary layer A, were both 1000m and
100 m respectively, and that vertical mesh interval was 20 m.

Fig. 2. Three-dimensional perspective view and contours of the hilty simulation area.

The input observational data for wind speeds and directions was calculated based on
the experimental values obtained from a vector rain gauge by Sakanoue (1969). For
details concerning the estimation process of the wind speed and direction from
precipitation obtained with the veetor rain gauge, the reader should refer to the paper
written by Wakimizu et af. (1988). The numerical simulations by the mass—consistent

“ modcl were performed for the lwo cases, and the computational conditions lor wind
speeds and directions is summarized in Table 1, in which wind directions of north, east,
south and west are 0°, 90°, 1807 and 270°, respectively.

The stability of almosphere in each case was estimated utilizing the Richardson
number,

T (dU/dzp by (U - Us)? 1)

_gd—QLd‘z fz ‘zleff' g 'IHI:Z]/ZZ)J_QI_‘QJ_
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Table 1. Cbserved values for the wind speeds and directions obtained by the vector rain gauge.

Coordinate rase 1 case 2
(E‘_‘_ n) speed (m/s)  direction () speed (m/s)  direction (7))
A {1210, 1000) 9.431 368.1 9327 174.5
B ( 820, 1000) 10.160 188.9 4.126 184.2
C (1000, 820) 777 196.1 9,787 104.8
D {1000, 1230) 8.037 253.2 3.189 98.3
E (1540, 1000) 7.125 200.1 4.991 101.3
F ( 220, 1000) 9397 184.0 6.603 97.3
G (1000, 1000) 9714 2669 7.5h42 109.7

where T is the temperature, ¢ is the gravitational acceleration, ® is the potential
temperature of air, and {7 is the mean wind velocity. Since there was no observed result
by AMeDAS for a circumference for Waita mountain, we substituted the upper layer data
obtained at the Fukuoka district meteorological observatory. As a result, the Richardson
numbers in ¢ase 1 and case 2 were 3.55 and 2.96, respectively.

Optimum Value of Gaussian Precision Moduli
To examine the validity of results simulated by the mass—consistent model, we
calculated the mean sguare error between the observed and calculated wind velocities;

M !

Lr'f'm.‘:g " 2 ([j ot _[]r',')g/M ‘I

i=1
M
U ymst = 2 (uo,1 _uc.rjzfﬂ’f k (32)

el

.
Vps? = z:] (Vo —ve )P/ M )
¢ = 4
where subscripts o and ¢ represent observed and calculated values respectively, M is the
number of measuring peoints, « and ¢ are both wind velocity components in the
W-E-direction and the S-N—direction, and [/=,/22 + »2 Table 2 and Table 3 show
variations of root mean square errors |, U b, and o,,,, and the products of 2., and 2.
when varying values of the weight .’ operatc under the condition a./=1.0, and when
varying @, operates under the condition of a.’=10%, respectively. It can be seen from
Table 2 thal mean square error between the observed values and the calculated results
deecrease with a decrease of @2 in the case of fixing values of @.?. Table 3 indicates the
tendency such that with an increase of .2, values of U7, and #,... iIncreases, while one of
.., decrease. Also, it is found from Table 3 that the mean square error of wind speed
U(=/2u2+ v¥) in case 1 is the smallest at «,’=0.6 when fixing the value of a.” as 10°
However, the accuracy of this calculated result in this casc is low for the wind direction
becausce the mean sguare error of the velocity compenent in the S-N direction is
relatively large. Therefore, the using of U,... is not suitable for the calculation of fitness in
the GA. In this paper, to relatively estimate the accuracy of numerical simulalions in
considering the wind direction as well as the wind velocity, the reciprocal number of the
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Tahle 2. Variations of toot medn square error with 2, under the condition of «.?=1.0

i, casc 1 7 case2
[ Wi B o Efs U P B N
{1/s) {m/s) (m/s) (ms") (mi/s) m/s} (m/s} {m¥s*)
10 1.625 1.551 1.939 12.007 3.918 3.975 2088 8.300
1o 1.616 1.484 1.906 2.820 3.500 3.646 2.047 7463
1 1.571 1,292 1.814 2344 2.665 2.817 1.921 5411

10" 1.482 1.162 15804 2193 2.653 2.890 1.687 4.615

Table 3. Variations of root mean square error with @, under the condition of @, 2=1(-

@2 _casc | T ase 2
Ui Uons T T L e U [ TS T
(m/s) {m/s) {mfs) (m¥/s9) (m/s) (1n/s) {m/s) {m¥s?)
0.6 1.467 1.201 1.867 2.242 2,403 2.328 2,488 5.795
.8 1.489 1.223 1.824 2.231 2.530 2.590 2.178 5.661
12 1.703 1,346 1.647 2217 2719 1.697 4,981
1.4 1.532 1417 1.633 2.641 3176 2.619 6,906

product of ... and v, was utilized as the fithess.

Table 4 shows the optimal valucs of @, and a.’ obtained by the GA. As for the
weight of the vertical wind velocity Component,' the value of ecase 1 was nearly equal to
the one of easc 2, and is considered that this result was attributable to the stability of
atmosphere. For example, the Richardson number of case I and case 2 were almost the
same. On the other hand, with reference to the weight of the velocity component in the
S-N-direction, therc was the remarkable differenee between case 1 and case 2 regardless
ol the same atmospheric conditions. It is assumed that such @& result was reflected by an
influence of ihe Lerrain on ihe wind fields, and differed ihe direciion of ithe emineni wind.

Table 4. Oplimal values of .7 and a,* estiinated by the GA

@’ @ Ui Vs B Ui+ Vs
(s} (m/s) (m/s) (m'/s%)

case 1 0.696 53.025 1.437 L.167 1.826 2.131
case & 1.145 52.406 2.662 2.866 1.687 4838

Horizontal and Vertical Wind Vectors
Fig. 3 and Fig. 4 show variations of horizontal wind vectors, in which heights above
sea level are shown for every 100 m, simulated by the mass—consistent model with heights
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Fig. 3. Horizontal wind vectors in case 1.

in case 1 and case 2. It is found from Fig. 3 that there are differences of wind directions
around the ground and at the upper layer of the atmosphere in the x=1000~ 1500m and
y=1600~-2000m region, and in the x=1400~ 1600 m and y=700~ 1500 regicn. That is,
airflow along the Lerrain appears clearly in the region of { <100m. Meteorological
phenemena like this can be seen in case 2.

Fig. 5 shows variations of wind vectors in the & —{ section, in which the compenents
in the vertical direction are represented twenty times larger than those in the horizonlal
direction in order to emphasize the vertical wind velocity components, with coordinates
in the S-N-direction. Fig. 6 shows variations of distributions of vertical velocities with
heights in case 1. It is found from Fig. 5 that the airflow rose and descended according to
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Fig. 4. Horizontal wind vectors in case 2.

the terrain gradient in the surface boundary layer, and that the wind velocity cormpenents

became less in the vertical direction and zero in the upper layer.
that vertical wind velocities around the ground surface were intricately distributed due to
the effect of the ground gradicnt on the wind field. Also, distributions of the rising flow
and the descending flow in the lower layer {{ <100m} were clear, for example strong
rising and descending flows were generated in the x=600~800m and y=300
region and in the x=1200~-1600m and y=1100~1500m region respectively, while values
of the vertical component of wind velocities were nearly zero in the upper layer ({ >

500 m).
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Fig. 5. Wind vectors in the & — { section (case 1).

CONCLUSIONS

In this study, numerical simulations of the three-dimensional wind fields in the
circumference of Waita mountain were performed by using the mass—consistent model
and optimal values of the Gaussian precision moduli, which have an effect on the
calculated results, were estimated by genetic algorithm. As a result, both two cases
chosen as the subject of the study had the same stability of atmosphere as well as similar
weights in the vertical component. More so, for the ratio of the weight in the W-E
component and the S-N component, there was a remarkable difference between two
cases, such a resull, seetning to be attributed fo the difference of ithe effects {rom ithe
terrain gradients on wind fields by directions of the eminent wind. In conclusion, Lhe
introduction of the genetic algorithm to the mass—consistent model is valid, and wind
vectors simulated by this method represent sufficiently the relation between the
underlying topography and wind ficld featurcs.
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