九州大学学術情報リポジトリ Kyushu University Institutional Repository

Addition in Jacobians of hyperelliptic curves and the periodic discrete Toda lattice

野邊,厚 千葉大学教育学部

https://doi.org/10.15017/23458

出版情報:応用力学研究所研究集会報告. 23A0-S7 (12), pp.84-89, 2012-03. Research Institute for Applied Mechanics, Kyushu University バージョン: 権利関係:

応用力学研究所研究集会報告 No.23AO-S7

「非線形波動研究の進展 — 現象と数理の相互作用 —」 (研究代表者 筧 三郎)

共催 九州大学グローバル COE プログラム 「マス・フォア・インダストリ教育研究拠点」

Reports of RIAM Symposium No.23AO-S7

$Progress \ in \ nonlinear \ waves \ -- \ interaction \ between \ experimental \ and \ mathematical \ aspects$

Proceedings of a symposium held at Chikushi Campus, Kyushu Universiy, Kasuga, Fukuoka, Japan, October 27 - 29, 2011

Co-organized by Kyushu University Global COE Program Education and Research Hub for Mathematics - for - Industry

Article No. 12 (pp. 84 - 89)

Addition in Jacobians of hyperelliptic curves and the periodic discrete Toda lattice

野邊 厚(NOBE Atsushi)

(Received 15 January 2012; accepted 19 January 2012)

Research Institute for Applied Mechanics Kyushu University March, 2012

Addition in Jacobians of hyperelliptic curves and the periodic discrete Toda lattice

NOBE ATSUSHI

Department of Mathematics, Faculty of Education, Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan

Abstract

We give a geometric realization of the (g+1)-periodic discrete Toda lattice. The realization is given as the addition of g-tuples of points on the hyperelliptic curve of genus g, which is the spectral curve of the (g+1)-periodic discrete Toda lattice. We show that the addition on the hyperelliptic curve is induced from its Jacobian through a surjection and is realized by using the intersection of the hyperelliptic curve and a curve of genus 0.

1 Addition in Jacobians of hyperelliptic curves

Let h(X) be the monic polynomial of degree $2g + 2 \ge 4$:

$$h(X) = X^{2g+2} + a_{2g+1}X^{2g+1} + a_{2g}X^{2g} + \dots + a_1X + a_0.$$

Consider the hyperelliptic curve H defined by h(X):

$$H = \{P = (x, y) \in \mathbb{C}^2 \mid y^2 - h(x) = 0\} \cup \{P_{\infty}, P_{\infty}'\},\$$

where P_{∞} and P'_{∞} are the points at infinity and we assume that the equation h(x) = 0 has no multiple root. There exist exactly two points (x, y) and (x, -y) on H for any $x \in \mathbb{C}$ such that $h(x) = y^2 \neq 0$. We denote these points P and P', and call P' the conjugate of P.

Let $\mathcal{D}_0(H)$ be the group of divisors of degree 0 on H. Also let $\mathcal{D}_l(H)$ be the group of principal divisors of rational functions on H. We define the Picard group $\operatorname{Pic}^0(H)$ to be the residue class group $\operatorname{Pic}^0(H) = \mathcal{D}_0(H)/\mathcal{D}_l(H)$. Note that $\operatorname{Pic}^0(H)$ is isomorphic to the Jacobian Jac(H) of H.

Let $\mathcal{D}_q^+(H)$ be the group of effective divisors of degree g on H:

$$\mathcal{D}_q^+(H) = \left\{ D \in \mathcal{D}(H) \mid D > 0, \deg D = g \right\},\$$

where $\mathcal{D}(H)$ is the divisor group of H. Fix an element D^* of $\mathcal{D}_g^+(H)$. Define the map Φ_{D^*} : $\mathcal{D}_g^+(H) \to \operatorname{Pic}^0(H)$ to be

$$\Phi_{D^*}(A) :\equiv A - D^* \pmod{\mathcal{D}_l(H)} \quad \text{for } A \in \mathcal{D}_g^+(H).$$

We then have the following theorem [5]

Theorem 1 The map Φ_{D^*} is surjective. In particular, Φ_{D^*} is bijective if and only if g = 1.

For simplicity, we denote the element $P_1 + P_2 + \cdots + P_g$ of $\mathcal{D}_g^+(H)$ as $\mathbf{P} := P_1 + P_2 + \cdots + P_g$. We have $\operatorname{Pic}^0(H) = \{\Phi_{D^*}(\mathbf{P}) \mid \mathbf{P} \in \mathcal{D}_g^+(H)\}$ because Φ_{D^*} is surjective. Thus we can define the addition $\{P_1, P_2, \cdots, P_g\} \oplus \{Q_1, Q_2, \cdots, Q_g\}$ of g-tuples of points on H as the addition $\Phi_{D^*}(\mathbf{P}) + \Phi_{D^*}(\mathbf{Q})$ in $\operatorname{Pic}^0(H)$:

$$\{P_1, P_2, \cdots, P_g\} \oplus \{Q_1, Q_2, \cdots, Q_g\} := \Phi_{D^*}(\boldsymbol{P}) + \Phi_{D^*}(\boldsymbol{Q}).$$

Since $\Phi_{D^*}(D^*) = 0$, we choose the *g*-tuple of points consisting of D^* as the unit \mathcal{O} of addition on H.

Let $P_i, Q_i, R_i \ (i = 1, 2, ..., g)$ be the points on H satisfying the addition formula

$$\{P_1, P_2, \cdots, P_g\} \oplus \{Q_1, Q_2, \cdots, Q_g\} \oplus \{R_1, R_2, \cdots, R_g\} = \mathcal{O}.$$
 (1)

This can be written by the divisors

$$\sum_{i=1}^{g} \left(P_i + Q_i + R_i \right) - 3D^* \sim 0, \tag{2}$$

where \sim stands for the equivalence of divisors. The formula (2) is equivalent to the existence of the rational function $k \in L(3D^*)$ whose zeros are the 3g points P_i, Q_i, R_i (i = 1, 2, ..., g) on H, where $L(3D^*) := \{k \in \mathbb{C}(H) \mid (k) + 3D^* > 0\}$ is the linear system of rational functions on H and $\mathbb{C}(H)$ is the field of rational functions on H. Let C be the curve defined by $k \in L(3D^*)$. Then the zeros P_i, Q_i, R_i (i = 1, 2, ..., g) of k are the points on C. Since these points are on H by definition, these points are the intersection points of H and C. Thus the addition (1) is realized by using the intersection of H and C.

Now let us fix D^* as follows

$$D^* = \begin{cases} \frac{g}{2}(P_{\infty} + P'_{\infty}) & \text{If } g \text{ is even,} \\ \frac{g-1}{2}(P_{\infty} + P'_{\infty}) + P_{\infty} & \text{If } g \text{ is odd.} \end{cases}$$

Put $I_n := \{1, 2, ..., n\}$ for $n \in \mathbb{N}$. We then have the following lemma [5].

Lemma 1 The kernel of Φ_{D^*} is given by

$$\ker \Phi_{D^*} = \left\{ \sum_{i=1}^g P_i \in \mathcal{D}_g^+ \ \middle| \ \forall i \in I_g \ \exists j \in I_g \ s.t. \ P_j = P_i', \ j \neq i \right\}$$

if g is even and by

$$\ker \Phi_{D^*} = \left\{ \sum_{i=1}^{g-1} P_i + P_\infty \in \mathcal{D}_g^+ \ \middle| \ \forall i \in I_{g-1} \ \exists j \in I_{g-1} \ s.t. \ P_j = P_i', \ j \neq i. \right\}$$

if g is odd. Moreover, if $\mathbf{P} \notin \ker \Phi_{D^*}$ then we have

$$\boldsymbol{P} = \boldsymbol{Q} \qquad \Longleftrightarrow \qquad \{P_1, P_2, \dots, P_g\} = \{Q_1, Q_2, \dots, Q_g\}.$$

Put $\mathcal{G}(H) := (\mathcal{D}_g^+ \setminus \ker \Phi_{D^*}) \cup \{D^*\}$. Then we have $\mathcal{G}(H) = \mathcal{D}_g^+ / \ker \Phi_{D^*} \simeq \operatorname{Pic}^0(H)$ by lemma 1. Thus $\mathcal{G}(H)$ has the additive group structure equipped with the unit of addition D^* .

Theorem 2 The reduced map $\Phi_{D^*} : \mathcal{G}(H) \to \operatorname{Pic}^0(H)$ is the group isomorphism.

2 A geometric realization of the periodic discrete Toda lattice

Let us consider the (g + 1)-periodic Toda lattice in discrete time [2, 4, 3]

$$I_i^{t+1} = I_i^t + V_i^t - V_{i-1}^{t+1}, \qquad V_i^{t+1} = \frac{I_{i+1}^t V_i^t}{I_i^{t+1}}, \qquad (i = 1, 2, \dots, g+1, \ t \in \mathbb{Z}).$$
(3)

The Lax form of (3) is given as follows

$$L^{t+1}(y)M^{t}(y) = M^{t}(y)L^{t}(y),$$
(4)

where $y \in \mathbb{C}$ is the spectral parameter and the matrices $L^t(y)$ and $M^t(y)$ are defined to be

$$L^{t}(y) := \begin{pmatrix} a_{1}^{t} & 1 & & (-1)^{g} b_{1}^{t} / y \\ b_{2}^{t} & a_{2}^{t} & 1 & & \\ & \ddots & \ddots & & \\ & & b_{g}^{t} & a_{g}^{t} & 1 \\ (-1)^{g} y & & b_{g+1}^{t} & a_{g+1}^{t} \end{pmatrix}, \qquad M^{t}(y) := \begin{pmatrix} I_{2}^{t} & 1 & & \\ & I_{3}^{t} & 1 & & \\ & & \ddots & \ddots & \\ & & & I_{g+1}^{t} & 1 \\ y & & & & I_{1}^{t} \end{pmatrix}$$

for $a_i^t = I_{i+1}^t + V_i^t$ and $b_i^t = I_i^t V_i^t$ $(i = 1, 2, \dots, g+1, t \in \mathbb{Z})$. Let us consider the eigenpolynomial of $L^t(y)$

 $\tilde{f}(x,y) := y \det \left(x \mathbb{I} + L^t(y) \right) = y^2 + y \left(x^{g+1} + c_g x^g + \dots + c_1 x + c_0 \right) + c_{-1},$

where I is the identity matrix of degree g + 1 and the coefficients $c_g, c_{g-1}, \ldots, c_{-1}, c_0$ are given by

$$c_{g} = \sum_{1 \le i \le g+1} (I_{i} + V_{i}), \quad c_{g-1} = \sum_{1 \le i < j \le g+1} (I_{i}I_{j} + V_{i}V_{j}) + \sum_{1 \le i, j \le g+1, j \ne i, i-1} I_{i}V_{j},$$

 ...,
$$c_{0} = \prod_{i=1}^{g+1} I_{i} + \prod_{i=1}^{g+1} V_{i}, \quad c_{-1} = \prod_{i=1}^{g+1} I_{i}V_{i}.$$
 (5)

Since the eigenpolynomial of $L^t(y)$ does not depend on t, the coefficients $c_g, c_{g-1}, \ldots, c_{-1}, c_0$ of $\tilde{f}(x, y)$ are the conserved quantities of the time evolution (3). The spectral curve $\tilde{\gamma}_c$ of the (g+1)-periodic discrete Toda lattice is defined to be

$$\tilde{\gamma}_c = \left\{ P = (x, y) \in \mathbb{C}^2 \mid \tilde{f}(x, y) = 0 \right\} \cup \left\{ P_\infty, P'_\infty \right\}.$$

For generic c_i the spectral curve $\tilde{\gamma}_c$ is the hyperelliptic curve of genus g. Applying the birational transformation on $\mathbb{P}^2(\mathbb{C})$

$$(x,y) \to (u,v) = (x,2y+x^{g+1}+c_gx^g+\dots+c_1x+c_0),$$
 (6)

we obtain the canonical form γ_c of $\tilde{\gamma}_c$ defined by

$$f(u,v) := v^{2} - \left(u^{g+1} + c_{g}u^{g} + \dots + c_{1}u + c_{0}\right)^{2} + 4c_{-1}.$$

The hyperelliptic curve γ_c is of degree 2g + 2 and of genus g. Hereafter, we consider γ_c and f instead of $\tilde{\gamma}_c$ and \tilde{f} .

Let the phase space of (3) be $\mathcal{U} := \{ U^t := (I_1^t, \ldots, I_{g+1}^t, V_1^t, \ldots, V_{g+1}^t) \mid t \in \mathbb{Z} \} \simeq \mathbb{C}^{2(g+1)}$. Also let the moduli space of γ_c be $\mathcal{C} := \{c := (c_{-1}, \ldots, c_g)\} \simeq \mathbb{C}^{g+2}$. Consider the map $\psi : \mathcal{U} \to \mathcal{C}$, $U^t \mapsto c$ defined by (5). We define the isolevel set \mathcal{U}_c of the (g+1)-periodic discrete Toda lattice to be $\mathcal{U}_c := \{ U^t \in \mathcal{U} \mid U^t = \psi^{-1}(c) \}$. The isolevel set \mathcal{U}_c is isomorphic to the affine part of the Jacobian Jac (γ_c) of γ_c , and the time evolution (3) is linearized on it [1, 4].

Let $\varphi^t(x,y) = {}^t \left(\varphi_1^t, \varphi_2^t, \cdots, \varphi_g^t, -\varphi_{g+1}^t\right)$ be the eigenvector of $L^t(y)$. The elements φ_i^t are

$$\varphi_i^t(x,y) := \det \begin{pmatrix} 1 & 2 & \cdots & i & \cdots & g \\ l_{11} + x & l_{12} & \cdots & l_{1,g+1} & \cdots & l_{1g} \\ l_{21} & l_{22} + x & \cdots & l_{2,g+1} & \cdots & l_{2g} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ l_{g1} & l_{g2} & \cdots & l_{g,g+1} & \cdots & l_{gg} + x \end{pmatrix} \quad \text{for } i = 1, 2, \dots, g$$

and

$$\varphi_{g+1}^t(x) := \det \begin{pmatrix} l_{11} + x & l_{12} & \cdots & l_{1g} \\ l_{21} & l_{22} + x & \cdots & l_{2g} \\ \vdots & \vdots & \cdots & \vdots \\ l_{g1} & l_{g2} & \cdots & l_{gg} + x \end{pmatrix},$$

where l_{ij} is the (i, j)-element of $L^t(y)$. Note that φ_{q+1}^t is independent of y.

Let the curve defined by $\varphi_i^t(x, y)$ be \tilde{v}_i (i = 1, 2, ..., g). Also let the curve obtained from \tilde{v}_i by applying the birational transformation (6) be v_i (i = 1, 2, ..., g). We choose the zero $P_i^t := (u_i^t, v_i^t)$ (i = 1, 2, ..., g) of $\varphi^t(x, y)$, *i.e.*, the intersection point of $v_1, v_1, ...,$ and v_g , as a representative of $\operatorname{Pic}^g(\gamma_c)$. Then the eigenvector map $\phi : \mathcal{U}_c \hookrightarrow \operatorname{Pic}^g(\gamma_c) \simeq \operatorname{Jac}(\gamma_c)$ is defined to be $\phi(U^t) = \sum_{i=1}^g P_i^t =: \mathbf{P}^t$.

By using the eigenvector map, we obtain the following theorem from lemma 1.

Theorem 3 We have $\phi(U^t) \in \mathcal{G}(\gamma_c)$ if and only if there exists no polynomial $\xi(x)$ in x such that $\varphi_{g+1}^t(x) = \xi(x)^2$.

Since the time evolution (3) of the (g+1)-periodic discrete Toda lattice is linearized on $\operatorname{Jac}(\gamma_c) \simeq \operatorname{Pic}^0(\gamma_c)$, it can be realized as the addition of g-tuples of points on the spectral curve γ_c :

$$\left\{P_1^{t+1}, P_2^{t+1}, \cdots, P_g^{t+1}\right\} = \left\{P_1^t, P_2^t, \cdots, P_g^t\right\} \oplus \left\{T_1, T_2, \cdots, T_g\right\},\$$

where P_i^t and P_i^{t+1} are the points on γ_c given by the eigenvector map: $\mathbf{P}^{t+1} = \sum_{i=1}^g P_i^{t+1} = \phi(U^{t+1})$ and $\mathbf{P}^t = \sum_{i=1}^g P_i^t = \phi(U^t)$. For generic 2g points P_i^t and P_i^{t+1} $(i = 1, 2, \dots, g)$, there exists a unique curve C passing through these points and defined by a rational function $k \in L(3D^*)$. If both \mathbf{P}^{t+1} and \mathbf{P}^t are in $\mathcal{G}(\gamma_c)$ then $\mathbf{T} = \sum_{i=1}^g T_i$ is uniquely determined as an element of $\mathcal{G}(\gamma_c)$ via the intersection of γ_c and C.

In the following subsections, we give several examples of geometric realizations of the (g + 1)periodic discrete Toda lattice in terms of the additions of g-tuples of points on the spectral curves.

2.1 The case of g = 1

Suppose g = 1. Then the matrices in (4) reduce to¹

$$L^{t}(y) = \begin{pmatrix} -a_{2}^{t} & 1 - b_{1}^{t}/y \\ b_{2}^{t} - y & -a_{1}^{t} \end{pmatrix}, \qquad M^{t}(y) = \begin{pmatrix} I_{2}^{t} & 1 \\ -y & I_{1}^{t} \end{pmatrix}.$$

The canonical form γ_c of the spectral curve is given by $f(u,v) = v^2 - (u^2 + c_1 u + c_0)^2 + 4c_{-1}$, where $c_1 = -a_1^t - a_2^t$, $c_0 = a_1^t a_2^t - b_1^t - b_2^t$, and $c_{-1} = b_1^t b_2^t$. The eigenvector φ^t of $L^t(y)$ is

$$\varphi^t = \begin{pmatrix} \varphi_1^t \\ -\varphi_2^t \end{pmatrix} = \begin{pmatrix} l_{12} \\ -l_{11} - x \end{pmatrix} = \begin{pmatrix} 1 - b_1^t / y \\ a_2^t - x \end{pmatrix}$$

The curve v_1 defined by φ_1^t is $v - (u^2 + c_1 u + c_0 + 2b_1^t) = 0$. Let one of the intersection point of γ_c and v be $P_1^t = (u_1^t, v_1^t) = (a_2^t, b_1^t - b_2^t)$. The eigenvector map is $\phi(I_1^t, I_2^t, V_1^t, V_2^t) = P_1^t$.

Now we fix D^* on γ_c as $D^* = P_{\infty}$. Then, by lemma 1, we have ker $\Phi_{D^*} = \{D^*\}$, and hence $\mathcal{G}(\gamma_c) = \mathcal{D}_1^+(\gamma_c) = \gamma_c \simeq \operatorname{Pic}^0(\gamma_c)$. The time evolution of the 2-periodic discrete Toda lattice is realized as the addition on γ_c :

$$P_1^{t+1} = P_1^t \oplus T_1 \qquad \Longleftrightarrow \qquad -P_1^{t+1} \oplus P_1^t \oplus T_1 = \mathcal{O}, \tag{7}$$

where T_1 is a point on γ_c and $\mathcal{O} = D^* = P_{\infty}$.

¹We can assume $L^{t}(y)$ has the form in order the geometric realization of the 2-periodic discrete Toda lattice to be simple.

In order to obtain the point T_1 in (7), we consider the curve C defined by a rational function $k \in L(3D^*) = \langle 1, Y + X^2 + c_1X, X (Y + X^2 + c_1X + c_0) \rangle$, where X and Y are the rational function on γ_c such that X(P) = u and Y(P) = v for $P = (u, v) \in \gamma_c$ and $L(3D^*)$ is the vector space over \mathbb{C} spanned by the rational functions 1, $Y + X^2 + c_1X$, and $X (Y + X^2 + c_1X + c_0)$ on γ_c . A rational function in $L(3D^*)$ can be considered to be defined on \mathbb{C}^2 . Suppose the points $-P_1^{t+1}$ and P_1^t on γ_c to be in generic position. Then there exists a unique curve C passing through both $-P_1^{t+1}$ and P_1^t . Let the third intersection point of γ_c and C be T_1 then we have $(k) = -P_1^{t+1} + P_1^t + T_1 - 3D^*$, which is equivalent to (7). Noting the fact $-P_1^{t+1} \oplus P_1^{t+1} = \mathcal{O}$ and the time evolution (3), we have² $-P_1^{t+1} = (I_2^t + V_2^t, I_2^t V_1^t - I_1^t V_2^t)$. Therefore the curve C passing through both $-P_1^{t+1}$ and P_1^t is uniquely determined by the rational function

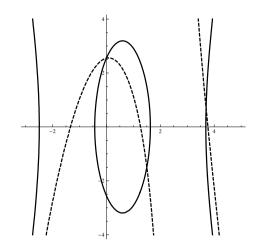


Figure 1: A geometric realization of 2periodic discrete Toda lattice.

$$k(u,v) = V_2^t \left(I_1^t I_2^t - V_1^t V_2^t \right) + c_0 u + (u - V_2^t)(c_1 u + u^2 + v).$$

Eliminating v from f(u, v) = 0 and k(u, v) = 0, we obtain $u(u - a_1^{t+1})\varphi_1^t(u) = 0$. Solving this equation, we obtain the third intersection point T_1 of γ_c and C as $T_1 = (0, I_1^t I_2^t - V_1^t V_2^t)$. It should be noted that the point T_1 is independent of t because we have $(I_1^t I_2^t - V_1^t V_2^t)^2 = c_0^2 - 4c_{-1}$. Thus the 2-periodic discrete Toda lattice is realized as the addition of points on the elliptic curve γ_c by using the intersection of γ_c and the curve C of degree 3 (see figure 1). Thus we see that the 2-periodic discrete Toda lattice is nothing but a member of the celebrated QRT family.

2.2 The case of g = 2

Next suppose g = 2. Then the Lax matrices in (4) reduce to

$$L^{t}(y) = \begin{pmatrix} a_{1}^{t} & 1 & b_{1}^{t}/y \\ b_{2}^{t} & a_{2}^{t} & 1 \\ y & b_{3}^{t} & a_{3}^{t} \end{pmatrix} \qquad M^{t}(y) = \begin{pmatrix} I_{2}^{t} & 1 & 0 \\ 0 & I_{3}^{t} & 1 \\ y & 0 & I_{1}^{t} \end{pmatrix}.$$

The canonical form γ_c of the spectral curve is given by $f(u, v) = v^2 - (u^3 + c_2u^2 + c_1u + c_0)^2 + 4c_{-1}$, where $c_2 = a_1^t + a_2^t + a_3^t$, $c_1 = a_1^t a_2^t + a_2^t a_3^t + a_3^t a_1^t - b_1^t - b_2^t - b_3^t$, $c_0 = a_1^t a_2^t a_3^t - a_2^t b_1^t - a_3^t b_2^t - a_1^t b_3^t$, and $c_{-1} = b_1^t b_2^t b_3^t$. The eigenvector φ^t of $L^t(y)$ is

$$\varphi^{t} = \begin{pmatrix} \varphi_{1}^{t} \\ \varphi_{2}^{t} \\ -\varphi_{3}^{t} \end{pmatrix} = \begin{pmatrix} \begin{vmatrix} l_{13} & l_{12} \\ l_{23} & l_{22} + x \\ \begin{vmatrix} l_{11} + x & l_{13} \\ l_{21} & l_{23} \end{vmatrix} \\ - \begin{vmatrix} l_{11} + x & l_{12} \\ l_{21} & l_{22} + x \end{vmatrix} \end{pmatrix} = \begin{pmatrix} (a_{2}^{t} + x) \frac{b_{1}^{t}}{y} - 1 \\ a_{1}^{t} + x - \frac{b_{1}^{t} b_{2}^{t}}{y} \\ -(a_{1}^{t} + x)(a_{2}^{t} + x) + b_{2}^{t} \end{pmatrix}$$

The curves v_1 and v_2 respectively defined by φ_1^t and φ_2^t are given as follows

$$v_1: \quad v - (b_1^t - b_3^t)u - a_2^t b_1^t + a_1^t b_3^t = 0, v_2: \quad (u + a_1^t) \left\{ v + b_3^t (a_1^t - a_2^t) \right\} + b_2^t (b_3^t - b_1^t) = 0.$$

²The intersection point of γ_c and the curve passing through P_1^{t+1} and defined by $k \in L(2D^*)$ is $-P_1^{t+1}$ [5].

By eliminating v form v_1 and v_2 , we obtain $\varphi_3^t(u) = (a_1^t + u)(a_2^t + u) - b_2^t = 0$.

Let the intersection points of v_1 and v_2 be $P_i^t = (u_i^t, v_i^t)$ (i = 1, 2). Then we have

$$u_1^t + u_2^t = -(a_1^t + a_2^t), \quad u_1^t u_2^t = a_1^t a_2^t - b_2^t, \quad v_i^t = (b_1^t - b_3^t)u_i^t + a_2^t b_1^t - a_1^t b_3^t \quad (i = 1, 2).$$

The eigenvector map is $\phi(I_1^t, I_2^t, I_3^t, V_1^t, V_2^t, V_3^t) = P_1^t + P_2^t = \mathbf{P}^t.$

Now we fix D^* as $D^* = P_{\infty} + P'_{\infty}$. Then, by lemma 1, we have ker $\Phi_{D^*} = \{P + P' \mid P \in \gamma_c\},\$ and hence $\mathcal{G}(\gamma_c) = (\mathcal{D}_2^+(\gamma_c) \setminus \{P + P' \mid P \in \gamma_c\}) \cup \{D^*\} \simeq \operatorname{Pic}^0(\gamma_c)$. Noting theorem 3, we assume that $\varphi_3^t(u)$ has no double root. Then we have $\mathbf{P}^t, \mathbf{P}^{t+1} \in \mathcal{G}_2(\gamma_c)$ and the time evolution of the 3-periodic discrete Toda lattice is realized as the addition of couples of points on γ_c :

$$\left\{P_{1}^{t+1}, P_{2}^{t+1}\right\} = \left\{P_{1}^{t}, P_{2}^{t}\right\} \oplus \left\{T_{1}, T_{2}\right\} \iff \left\{P_{1}^{t+1'}, P_{2}^{t+1'}\right\} \oplus \left\{P_{1}^{t}, P_{2}^{t}\right\} \oplus \left\{T_{1}, T_{2}\right\} = \mathcal{O}, \quad (8)$$

where $\mathbf{T} = T_1 + T_2 \in \mathcal{G}_2(\gamma_c), \mathcal{O} = \{P_{\infty}, P_{\infty}'\}$ and we use the fact³ $\{P_1^{t+1'}, P_2^{t+1'}\} = -\{P_1^{t+1}, P_2^{t+1}\}$. Consider the curve C defined by a rational function $k \in L(3D^*) = \langle 1, X, X^2, X^3, Y \rangle$. Assume that the points $P_1^{t+1'}, P_2^{t+1'}, P_1^t, P_2^t$ are in generic position and C passes through these points. Then C is uniquely determined and is given by the rational function

$$k(u,v) = (I_1^t I_2^t I_3^t - V_1^t V_2^t V_3^t) + (I_1^t I_2^t - I_2^t I_3^t + I_3^t I_1^t - V_1^t V_2^t - V_2^t V_3^t - V_3^t V_1^t + I_1^t V_2^t - I_2^t V_3^t - I_3^t V_1^t)u + (2I_1^t - c_2)u^2 - u^3 + v.$$

Let the remaining two intersection points of γ_c and C be T_1 and T_2 . Then we have $(k) = P_1^{t+1'} + P_1^{t+1'}$ $P_2^{t+1'} + P_1^t + P_2^t + T_1 + T_2 - 3D^*$, which is equivalent to (8). Eliminating v from f(u, v) = 0and k(u, v) = 0, we obtain $u\varphi_3^t(u)\varphi_3^{t+1}(u) = 0$. By solving $u\varphi_3^t(u)\varphi_3^{t+1}(u) = 0$ we conclude that $\{T_1, T_2\} = \{(0, V_1^t V_2^t V_3^t - I_1^t I_2^t I_3^t), P_\infty\}$. Since we have $(V_1^t V_2^t V_3^t - I_1^t I_2^t I_3^t)^2 = c_0^2 - 4c_{-1}$, the points T_1 and T_2 are independent of t. Thus the 3-periodic discrete Toda lattice is realized as the addition of points on the hyperelliptic curve γ_c by using the intersection of γ_c and the curve C of degree 3 (see figure 2).

References

- [1] Adler M and van Moerbeke P, "Linearization of Hamiltonian systems, Jacobi varieties and representation theory", Adv. Math., 38 (1980), 318-79.
- [2] Hirota R, Tsujimoto S, and Imai T, "Difference scheme of soliton equations", In Future Directions of Nonlinear Dynamics in Physical and Biological Systems, edited by Christiansen P L, Eilbeck J G, and Parmentier R D, New York: Plenum Press (1993).
- [3] Inoue R and Takenawa T, "Tropical spectral curves and integrable cellular automata", Int. Math. Res. Not., 2008 (2008), Art ID. rnn019.
- [4] Kimijima T and Tokihiro T, "Initial-value problem of the discrete periodic Toda equations and its ultradiscretization", Inv. Prob., 18 (2002), 1705-32.
- [5] Nobe A, "A geometric realization of periodic discrete Toda lattice and its tropicalization", in preparation.

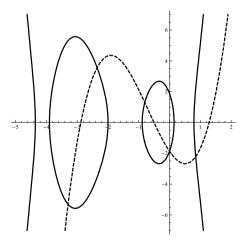


Figure 2: A geometric realization of 3periodic discrete Toda lattice.

³If g is even then we have $\{P'_1, P'_2, \cdots, P'_g\} = -\{P_1, P_2, \cdots, P_g\}$ [5].