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Abstract

We give a geometric realization of the (g + 1)-periodic discrete Toda lattice. The realization
is given as the addition of g-tuples of points on the hyperelliptic curve of genus g, which is the
spectral curve of the (g + 1)-periodic discrete Toda lattice. We show that the addition on the
hyperelliptic curve is induced from its Jacobian through a surjection and is realized by using
the intersection of the hyperelliptic curve and a curve of genus 0.

1 Addition in Jacobians of hyperelliptic curves

Let A(X) be the monic polynomial of degree 2g + 2 > 4:
h(X) = X272 4 a9 1 X291 4 agy X% + -+ + a1 X + ao.
Consider the hyperelliptic curve H defined by h(X):
H={P=(z,y) €C? | y* — h(z) =0} U{Pw, P, },

where Py, and P/, are the points at infinity and we assume that the equation h(z) = 0 has no
multiple root. There exist exactly two points (x,y) and (z,—y) on H for any € C such that
h(z) = y? # 0. We denote these points P and P’, and call P’ the conjugate of P.

Let Dy(H) be the group of divisors of degree 0 on H. Also let D;(H) be the group of principal
divisors of rational functions on H. We define the Picard group Pic’(H) to be the residue class
group Pic’(H) = Dy(H)/D;(H). Note that Pic?(H) is isomorphic to the Jacobian Jac (H) of H.

Let D; (H) be the group of effective divisors of degree g on H:

Df(H)={D e D(H) | D> 0,degD = g},
where D(H) is the divisor group of H. Fix an element D* of DS (H). Define the map ®p-~ :
Dy (H) — Pic’(H) to be
®p-(A):=A—-D" (mod Di(H)) for A € DJ(H).
We then have the following theorem [5]
Theorem 1 The map ®p~ is surjective. In particular, ®p« is bijective if and only if g = 1.

For simplicity, we denote the element Py + P> + - - -+ P, of D;(H) as P:=P +Py+---+ P,
We have Pic’(H) = {®p«(P) | P € D;(H)} because ®p- is surjective. Thus we can define the
addition {Py, P, -+, Py} ® {Q1,Q2,-- ,Qq} of g-tuples of points on H as the adition ®p«(P) +
®p-(Q) in Pic®(H):

{PlaPQa"' an}@{QlaQ%"' 7Qg} = <I>D*(P)_‘_q)D*(C2)



Since ®p«(D*) = 0, we choose the g-tuple of points consisting of D* as the unit O of addition on
H.
Let P;,Qi, R; (1 =1,2,...,9) be the points on H satisfying the addition formula

{P17P25"' apg}@{QlaQ%"' 7Qg}@{R17R27"‘ ,Rg}zo- (1)

This can be written by the divisors

g
> (Pi+Qi+Ri) —3D" ~0, (2)
=1

where ~ stands for the equivalence of divisors. The formula (2) is equivalent to the existence of
the rational function k& € L(3D*) whose zeros are the 3¢ points P;,Q;, R; (i = 1,2,...,9) on H,
where L(3D*) :={k € C(H) | (k) +3D* > 0} is the linear system of rational functions on H and
C(H) is the field of rational functions on H. Let C be the curve defined by k € L(3D*). Then the
zeros P;, Q;, R; (i =1,2,...,g) of k are the points on C. Since these points are on H by definition,
these points are the intersection points of H and C. Thus the addition (1) is realized by using the
intersection of H and C.
Now let us fix D* as follows

(P + PL) If g is even,
D* = _
——(Px+ P,)+ Py 1If gisodd.

Put I, :={1,2,...,n} for n € N. We then have the following lemma [5].

Lemma 1 The kernel of ®p~ is given by

g
ker @ p- = {ZR— €D/
=1

if g is even and by

Viel,3jel, st Pj:Pi’,j;éi}

g—1
ker @+ = {ZB+POO e Df
=1

Viel,13j€l,q st Pj=Pj 752'.}

if g is odd. Moreover, if P & ker ®p« then we have

pP=qQ = {P1, Py, Pyl = {Q1,Q2,...,Qqg} -

Put G(H) := (D \ ker ®p-) U{D*}. Then we have G(H) = D / ker ®p- ~ Pic"(H) by lemma
1. Thus G(H) has the additive group structure equipped with the unit of addition D*.

Theorem 2 The reduced map ®p~ : G(H) — Pic’(H) is the group isomorphism.

2 A geometric realization of the periodic discrete Toda lattice

Let us consider the (g + 1)-periodic Toda lattice in discrete time [2, 4, 3]

It vt
=t vt v v;“:’;;i;, (i=1,2,...,9+1, t € 7). (3)



The Lax form of (3) is given as follows

L™ (y) M (y) = M (y) L' (y), (4)
where y € C is the spectral parameter and the matrices L!(y) and M!(y) are defined to be
a1 (—1)984 /y 1o
b ab 1 IL 1
L'(y) = . M'(y) = RS
¢ t t
by g tl Ion 1t
(=1)% bgt1 Agt1 ) Iy

foral =1I!  +V5and bl = IIV! (i=1,2,...,9+1, t € Z).
Let us consider the eigenpolynomial of Lt(y)

fla,y) = ydet (21 + L(y)) = y* +y (@9 + cou? + - + 1w+ co) + e,

where I is the identity matrix of degree g + 1 and the coefficients ¢4, c4—1,...,c_1,co are given by
cg= Y, L+ Vi), = Y (LL+ViVp)+ > LV
1<i<g+1 1<i<j<g+1 1<i,j<g+1,j7,i~1
g+1 g+1 g+1
o oa=[[E+]]Ve ca=]]1Vi (5)
i=1 i=1 i=1
Since the eigenpolynomial of L(y) does not depend on ¢, the coefficients ¢4, cy—1,...,c—1,co of

f(z,y) are the conserved quantities of the time evolution (3). The spectral curve . of the (g + 1)-
periodic discrete Toda lattice is defined to be

G = {P= (@) € C| fla,y) = 0} U {Po, PL}.

For generic ¢; the spectral curve 7. is the hyperelliptic curve of genus g. Applying the birational
transformation on P?(C)

(z,y) — (u,v) = (33, 2y 4+ 297! + cgr? + -tz + CO) , (6)
we obtain the canonical form . of 4. defined by
fu,v) :==v? — (u9+1 +cgu? + -+ cu+ 00)2 +4c_q.

The hyperelliptic curve ~, is of degree 2g + 2 and of genus ¢g. Hereafter, we consider v, and f
instead of 4, and f .

Let the phase space of (3) be U := {U" := (I{,..., I, |, VI,..., VL) |t € Z} ~ ~ C29+D) . Also
let the moduli space of 4. be C := {c:=(c_1,...,¢4)} ~ C972. Consider the map ¢ : U — C,
Ut +— c defined by (5). We define the isolevel set U, of the (g + 1)-periodic discrete Toda lattice
to be U := {U' €U | U' =9~ !(c)}. The isolevel set U, is isomorphic to the affine part of the
Jacobian Jac(7.) of 7., and the time evolution (3) is linearized on it [1, 4].

Let ' (x,y) =" (¢, b, -+, @}, =0k, 1) be the eigenvector of L'(y). The elements ¢} are

1 2 e Z N g
lhh+x  he - ligyn oo lig
l21 loo+x - logy1 -+ la
@i (x,y) = det _ . ! N fori=1,2,....g
lg1 lgo e dggrr o ggt



and

l11 +x l12 e llg
lor loo+x -+ gy
gozﬂ(x) = det ) ,
lgl ng ce lgg +z

where [;; is the (i, j)-element of L'(y). Note that gog 41 is independent of y.
Let the curve defined by ¢! (x,y) be 0; (i =1,2,...,g). Also let the curve obtained from v; by
applying the birational transformation (6) be v; (i = 1,2,...,g). We choose the zero P} := (ul,v})
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(i =1,2,...,9) of ¢'(x,y), i.e., the intersection point of vy, vy, ..., and vy, as a representative
of Pic?(v.). Then the eigenvector map ¢ : U. — Picd (y.) =~ Jac(7.) is defined to be ¢p(U?) =
g pt—. pt
i=1"1 . .

By using the eigenvector map, we obtain the following theorem from lemma 1.

Theorem 3 We have ¢(U') € G(7.) if and only if there exists no polynomial £(z) in = such that
¢ _ 2
Pgr1() = &)

Since the time evolution (3) of the (¢g+1)-periodic discrete Toda lattice is linearized on Jac (7.) ~
Pico(’yc), it can be realized as the addition of g-tuples of points on the spectral curve ~.:

{Pf+1’P2t+1’... ’p;-i-l} — {plt,pg,... ,pg} S{T1, Ty, -, Ty},
where P! and Pf“ are the points on 7, given by the eigenvector map: P'*! = A Pit'H = ¢p(UY)
and P' = Y9 P! = ¢(U?). For generic 2g points P{ and P/ (i = 1,2,...,g), there exists a
unique curve C' passing through these points and defined by a rational function k € L(3D*). If
both P! and P* are in G(v.) then T = Y_%_, T; is uniquely determined as an element of G(v.)
via the intersection of 7, and C.

In the following subsections, we give several examples of geometric realizations of the (g + 1)-
periodic discrete Toda lattice in terms of the additions of g-tuples of points on the spectral curves.

2.1 Thecaseofg=1

Suppose g = 1. Then the matrices in (4) reduce to'

rw= (% TaY) = (2L,

by—y  —ai —y I

The canonical form 7. of the spectral curve is given by f(u,v) = v? — (u2 + cu+ 00)2 + 4c_q,
where ¢; = —a! — ab, co = alal — b} — bh, and c_; = bib,. The eigenvector ¢! of L!(y) is

t_ 905 _ l12 (1= bﬁ/y
SD - _ t - _ _ — t - .
©5 li1 —x ay —

The curve v; defined by ¢} is v — (u2 + c1u+co + 2b§) = 0. Let one of the intersection point of ~.
and v be P} = (uf,v}) = (ab,b} — b%). The eigenvector map is ¢(I%, I3, Vi, V§) = Pf.

Now we fix D* on . as D* = P,. Then, by lemma 1, we have ker ®p« = {D*}, and hence
G(ve) = DF (7e) = e =~ Pic®(7.). The time evolution of the 2-periodic discrete Toda lattice is
realized as the addition on ~,:

Pl =plom = ~P'e PleT =0, (7)

where T1 is a point on v, and O = D* = P,

We can assume L'(y) has the form in order the geometric realization of the 2-periodic discrete Toda lattice to
be simple.



In order to obtain the point 77 in (7), we con-
sider the curve C' defined by a rational function k£ €
LB3D*) = (LY +X?+aX, X (Y +X?+c1X +¢p)),
where X and Y are the rational function on -, such that
X(P)=wand Y(P) =v for P = (u,v) € v, and L(3D*)
is the vector space over C spanned by the rational func-
tions 1, ¥ + X2 + ¢1 X, and X (Y + X? + 1 X +¢g) on
Ye. A rational function in L(3D*) can be considered to
be defined on C2. Suppose the points —Pf“ and P} on
7. to be in generic position. Then there exists a unique
curve C passing through both —Pf"H and P!. Let the
third intersection point of 7. and C be 17 then we have
(k) = —PI™ + P} + Ty — 3D*, which is equivalent to (7).
Noting the fact —Pf“ @PIHI = O and the time evolution ) o
(3), we have? —PI1 = (IL + VI, ILVE — I'V}). There- Flg.ure'l: A geometric real'lzatlon of 2-
fore the curve C' passing through both —P/*! and P} is periodic discrete Toda lattice.
uniquely determined by the rational function

L
4

\
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1

k(u,v) = Vy (IT15 — VIV3) + cou+ (u — Vi) (cru + u® 4 ).

Eliminating v from f(u,v) = 0 and k(u,v) = 0, we obtain u(u — a}*1)p4(u) = 0. Solving this
equation, we obtain the third intersection point 7T} of v, and C' as T} = (0, I — vagt). It should
be noted that the point 77 is independent of ¢ because we have (I LIt — Vszt)2 = cg —4c_q. Thus
the 2-periodic discrete Toda lattice is realized as the addition of points on the elliptic curve -,
by using the intersection of 7. and the curve C of degree 3 (see figure 1). Thus we see that the
2-periodic discrete Toda lattice is nothing but a member of the celebrated QRT family.

2.2 The case of g = 2

Next suppose g = 2. Then the Lax matrices in (4) reduce to

) ai 1 bi/y t L 1 0
Li(y)= by ab 1 Mi(y)=10 I§ 1
y by ab y 0 I

The canonical form . of the spectral curve is given by f(u,v) = v — (u3 + cou® + cru + co)2+4c,1,
where ¢y = al + ab + af, c1 = alal + abal + alal — b} — b, — VL, co = alabal — abbl — albl — alby,
and c_; = bibhbh. The eigenvector ¢ of Li(y) is

lis o .
lag Iz + 2 t b1
ot (as +x)— —1
o = @’% i+ b ybt bt
2t 121 l23 Cbﬁ +x— 172
—¥3

i1+ o

)
—(a} +z)(ab + x) + b
lo1 log + x

The curves vy and vg respectively defined by ¢! and ¢} are given as follows

vi: v — (b —bh)u —abbl +albl =0,

ve: (u+al) {U + bg(atl — aé)} + bé(bg — btl) =0.

2The intersection point of . and the curve passing through P{™' and defined by k € L(2D") is —Pf** [5].



By eliminating v form vy and vg, we obtain ¢4(u) = (a} + u)(al +u) — b}, = 0.
Let the intersection points of v1 and vy be P! = (ul,v!) (i = 1,2). Then we have
by, o = (bt —bh)ul 4+ abdt —albh (i =1,2).

uf +uy = —(ay +ay), ujup = ajay —
The eigenvector map is ¢ (11, I%, I, Vi, Vi, V) = Pf + P = P,
Now we fix D* as D* = Py, + P,,. Then, by lemma 1, we have ker ®p« = {P + P' | P € 7.}
and hence G(v:) = (D3 (7¢) \ {P + P' | P € v}) U{D*} ~ Pic’(7.). Noting theorem 3, we assume
that @4(u) has no double root. Then we have P!, P! ¢ Gy(v.) and the time evolution of the

¢
u .
3-periodic discrete Toda lattice is realized as the addition of couples of points on 7,
) ) (8)

(PIFL P — (PL P @ (1), Ty} {Pf“’,Pﬁ“}@{PI,P2}@{T1,T2} O
=—{P[", Rt

where T = Ty +Ts € Go(7e), O = {Pso, P..} and we use the fact® { PI+Y pitt
Consider the curve C defined by a rational function k € L(3D*) = (1, X, X? X® Y). Assume

that the points P!™! pirv P}, P} are in generic position and C passes through these points. Then
C is uniquely determined and is given by the rational function
k(u,v) = (1315 = VYV V) + (1115 — oI5 + IS — ViVy = ViVs = VgV + V5 — I V5 — IV )u
(2IT — co)u? — ud +v.

= Pt 4

Let the remaining two intersection points of . and C be T7 and T5. Then we have (k)
PHY 4 Pt 4 PL4 Ty + Ty — 3D*, which is equivalent to (8). Eliminating v from f(u,v) = 0
and k(u,v) = 0, we obtain ug}(u )<p§+1( ) = 0. By solving ugh(u )(pé“( ) = 0 we conclude that
{T1,Tx} = {(0, V{V§V§ — ILILIL), Poo}. Since we have (VIV{V{ — If[é[é) = ¢ — 4c_1, the points
T1 and T are independent of ¢t. Thus the 3-periodic discrete Toda lattice is realized as the addition

of points on the hyperelliptic curve v, by using the intersection of v, and the curve C' of degree 3
(see figure 2).
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%If g is even then we have { P, P,’,



