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Abstract

We explain how to transform the bilinear discrete equations into the
nonlinear discrete equation of ordinary forms using the generalized discrete
KP equation.

1 Generalized discrete KP equation

We have the generalized discrete KP(g-dKP) equation in a bilinear form.
[c1 exp(Dq) + coexp(Ds) 4+ cgexp(D3)]f - f =0, (1)

where D4, Dy, D3 are the bilinear operators which are a linear combination of
the operators Dy, D,,, D, etc., and cy, co, c3 are arbitrary constants satisfying a
relation ¢; + ¢3 + ¢3 = 0 for soliton solutions.

The Backlund transformation for the g-KP equation is known,

[ale—(D1—D3)/2 — eD1=Ds)/2 516—(D2—D4)/2]f .g=0, (2)
[a2€*(D2*D3)/2 — eD2=Ds3)/2 | 526*(D1*D4)/2]f .g=0, (3)
where Dy = —D1—Dy— D3 and o = 1— 31, g = 1— 35 for soliton soloutions,and

01, P2 are constants satisfying a relation ¢13; + co3o = 0.

2 Transformation of the discrete bilinear forms
into the nonlinear discrete wave equations.

We show that Eq.(1) and its Bécklund transformation,Eqgs.(2) and (3) are trans-
formed into nonlinear soliton equations of ordinary form.



2.1 3-D Soliton Equation

We shall transform Eq.(1) into a 3-dimensional discrete nonlinear wave equation,
which exhibits solitons. We write Eq.(1) as

[(c1 + ca)ePt — crePm — cpeP]f - f =0, ¢c1,¢0 > 0. (4)

t
m,n’

First we introduce dependent variables wy, , and z

o = eDmf : f _ f:rz—l-l,n :ﬁ—l,n (5)
mn ean : f fn,n—l—lfrtn,n—l 7
1pt—1
Zt o Gth' f . Ttnfn Ttn,n (6)

e ean : f B f?ﬁz,n—&-lffn,n—l'
Then Eq.(4) is reduced to
(c1 + @)zfmn = clwfn’n + c5. (7)

Next we look for another relation than Eq.(7) between w}, , and 2/, ..
For this purpose let us introduce shift operators p, ¢, s operating on an aritrary
function hf

m.n?

pahfn,n = h£n+a,m (8)
qﬁhfn,n = hfn,n—i—ﬁ? 9)
§ Ny = Pt . (10)
Then the logarithm of Eqs.(6) and (5) are expressed by the shift operators
logz=(s+s'—qg—q"logf, (11)
logw = (p+p~' —¢—q")log f. (12)

Accordingly we find a relation,

(s+s ' —q—q " ogw=(p+p" —q—q ")logz, (13)
which is equivalent to

t+1 wt—l Zt Zt

wm,n m,n _ “m+1n“m—1n (14)

w? w? gt 2t ’
mn+1“mmn—1 m,n+1“m,n—1
which is transformed, using Eq.(7), to a 3-dimentional discrete nonlinear wave

equation of w!

m,n?

1,1 [wfn—i-l,n + (02/01)][wfn—1,n + (e2/c1)]
et L4 (eo/en) Wi L+ (e2/er) /why o]

(15)

q=c0000000 (1500000000000 Y-systemsOOOOOOO
000000 (4)0 T-systems DO OO00O0O0OO



2.1.1 Special solutions to the 3-D ultradiscrete equation of wy, ,

Let

Wy, = ewltmnl/e ) fey = eVe, (16)

Then Eq.(15) is transformed into a ultradiscrete form,
w(t+1,m,n)+w(t —1,m,n)
= max(w(t,m + 1,n),d) + max(w(t,m — 1,n),d)
—max(0, —w(t,m,n + 1) + d) — max(0, —w(t,m,n — 1) + d).
(17)
We consider Eq.(17) under the condition ¢; = ¢o. Then Eq.(17) is reduced to
w(t+1,m,n)+w(t—1,m,n)
= max(0, w(t,m + 1,n)) + max(0, w(t,m — 1,n))
—max(0, —w(t,m,n + 1)) — max(0, —w(t,m,n — 1)). (18)
We have special solutions to Eq.(18). There are two types of solutions.

One is “positive wave” travelling along the m-axis with a speed ¢o(= £1) and
another is “negative wave” travelling along the n-axis with a speed cy(= +1):

gbuoggbbodbuogboobobuodgboobbboobuooboobbo
O000000000000000000000000020050 (11/9-11/11).

1. Positive wave. Let w(t,m,n) > 0. Then Eq.(18) is reduced to

w(t+1,m,n)+w(t—1,m,n)
= max(0,w(t,m + 1,n)) + max(0, w(t,m — 1,n))
—max(0, —w(t,m,n + 1)) — max(0, —w(t,m,n — 1)).
=w(t,m+1,n)+w(t,m—1,n). (19)

which is solved if
w(t,m,n) = h(t —com), c¢o= %1, (20)

where h(t — com) > 0 denotes a positive wave travelling along the m-axis
with a speed ¢o(= +1) .

2. Negative wave. Let w(t, m,n) < 0. Then Eq.(18) is reduced to

w(t+1,m,n)+w(t—1,m,n)
= —max(0, —w(t,m,n + 1)) — max(0, —w(t,m,n — 1)),
=w(t,m,n+1)+w(t,mn—1). (21)
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which is solved if
w(t,m,n) = h'(t —con), co==+1, (22)

where h/(t — con) < 0 denotes a negative wave travelling along the n-axis
with a speed ¢o(= £1).

We note that these positive and negative waves have no corresponding solu-
tions to the discrete wave equation of w!  Eq.(15) with ¢; = c,.

m,n’

2.2 Coupled 3-D soliton equation
The Béacklund transformation with (1¢; + B2co = 0,

[ale_(Dl—DZ’))/2 — eD1=D3)/2 4 /816_(D2_D4)/2]f -g=0, (23)
[oge™ (P2 D9)/2 _ o(D2mDs)/2 4 gy o= (Dr=Da)2] . g — ), (24)

are transformed into a coupled soliton equations.
We choose the parameters aq, as as

ap=1-=01, ay=1— [, (25)

so that Eqs.(23) and (24) have soliton solutions.
First we arrange Eqs.(23) and (24) as

PP f g = (1= e PP f g4 grem (PP E g (26)
e~ (PI=DO/2p g (1 g DD f L g 4 gD f L g (27)

Let us introduce new dependent variables vy, 09, 2; and 23 by

e~ (D2=Da)/2¢ . g

e~ (D1=Ds)/2f . ¢

~ flrr—1/2,20 — 1,23 — 1/2)g(21 + 1/2, 29 + 1,23 + 1/2)
fler —1/2, 29,23+ 1/2)g(x1 + 1/2, 29,25 — 1/2)

e(Pr=Ds)/2f . ¢

e~ (D1=Ds3)/2f . g

~ flrr+1/2,20, 23 — 1/2)g(21 — 1/2, 29, 23 +1/2)

 f(m = 1/2, 20, w3+ 1/2)g(21 + 1/2, 29, 75 — 1/2)

,[)1(3717 X2, xS) =

51(371,$2756’3) =

e(P2=Ds)/2f . ¢
e~ (D2=Ds)/2f . ¢
_ flrrwe +1/2,25 — 1/2)g(21, 20 — 1/2, 23 + 1/2)
 flr, e —1/2,23 + 1/2)g(z, 20 + 1/2, 23 — 1/2)

Ug (21, T2, T3) =
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e~ (D1=Da)/2f . g
e~ (D2=D3)/2f . ¢

 flrr =1y —1/2,23 — 1/2)g(xy + 1,20 + 1/2, 23 + 1/2)
 f(r,me—1/2, 25+ 1/2)g(wy, 20 +1/2, 25 — 1/2)

22(3717 T2, .]73) =

Accordingly Eqgs.(26) and (27) are reduced to relations among 01, 09, 21 and 2z

Z1(xy, 29, 23) = 1 — By + (101 (21, 29, x3), (28)
Zo(xq, g, w3) =1 — 5{1 + 5§1ﬁ2($1,$2,$3)- (29)

We define new variables vy, v, 21 and 2z, for notational convenience, shifting
independent variables xq,xs and x3 by 1/2

U1($1,[E27$3) = @1((131 + 1/2,[L’2,l’3 + 1/2),
. f(il)l,flfg — 1,1’3)9(331 + 1,1‘2 + 1,1’3 + 1)

f(x1, 2,23 + 1)g(21 + 1, 22, 23) ’ (30)
21(x1, o, x3) = 21(x1 + 1/2, 9, 23 + 1/2),
_ fzy + 1,29, 23)g(21, X2, 23 + 1) (31)
f(w1, 29, w3 4+ 1)g(w1 + 1, 29, 73)
vo(x1, T, x3) = Ug(x1, w0 + 1/2, 23 + 1/2),
_ fz1, 29 + 1, 23)g(x1, X2, 23 + 1) (32)
f(@1, 2,23 + 1)g(w1, 29 + 1, 23)
29(21, T, x3) = Zo(x1, 29 + 1/2,23 + 1/2),
_ flzy — Lz, x3)g(xy + 1,29 + 1,25 + 1) (33)
[y, xo, w3+ 1)g(wy, w0 + 1,23)
Accordingly Eqgs.(28) and (29) read as
21 (21, 2, x3) = 1 = B1 + frvi (21, 22, 23), (34)
2o(w1, @, w3) = 1 — By ' + By 'oa(a1, w2, 23). (35)

Secondly we look for other relations among vy, v9, 21 and 2z than Eqgs.(34) and
(35).
Let us introduce shift operators p, ¢, s operating on an aritrary function h(xy, zo, x3)

by

pOh(xy, 22, 23) = Wy + o, 29, x3), (36)
qﬁh(l‘l,xmfs) = h($1,$2 + 57$3)a (37)
sTh(xy, kg, x3) = h(z1, 22, T3 + 7). (38)

Then logarithm of Eqs.(30),(32),(31),(33) are expressed by
logvy = (¢~ — s)log f + (pgs — p) log g
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= (¢! = s)[log f — pqlog g],
logvy = (¢ —s)log f + (s — q)log g
= (q — s)[log f —log g],
log 21 = (p—s)log f+ (s —p)logyg
= (p— s)[log f —log gl,

logzo = (p~" — s)log f + (pgs — q) log g

= (p~' — s)[log f — pqlog g].

(39)
(40)
(41)

(42)

These expressions give us new relations among vy, v9, z; and z2. From Eqs.(39),(42)

we obtain

(p’1 — s)logv, = (cf1 — s) log 2,

and from Eqs.(40),(41) we obtain

(p — s)logve = (¢ — s)log 2.

They are equivalent to the relations

vi(rr — 1, 29,23) 2

(
v1 (21, X9, 23+ 1)
vo(xy + 1, 29, x3)
vo(xq, X9, 23 + 1)

(43)

(44)

(45)

(46)

Substituting Eqgs.(34) and (35) into Eqs.(45) and (46) respectively we obtain
a coupled 3-D soliton equation of v; and ws,

U1(T1 — 17.1'2756'3

1— Byt + 85 og(wy, 10 — 1, 23)

v1(r1, T2, x3 + 1

(%)

1— Byt + 85 vg(wy, w9, 23 + 1)

vo(T1, To, w3 + 1

) _
)

vy + 1, 9,23) 1= 1+ Broi(wg, 2 + 1, 23)
) N 1— 61 + ﬁlvl(xl,azg,xg + 1)‘

(47)

(48)



