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Identiflcation using BCLS method 

Chapter 5 

Identification in the Presence of 
Input-Output Measurement Noises 
Using Bias-Compensated 
Least-Squares Method 

5.1 Introduction 

83 

In the previous chapters, the direct recursive identification algorithms using the digital 

filtering techniques have been discussed, in the case where only the output is corrupted by 

a measurement noise. And it was confirmed that the pass-band of the pre-filters should be 

chosen such that it matches that of the system under study as closely and that when only 

the output measurement is corrupted by a high measurement noise, the IV methods give 

excellent results. 

However, in ·some practical situations, it may not be possible to avoid the noise when 

measuring the input signal. In this case, the standard identification methods may give 

erroneous results (Soderstrom 1981 ). 

Models where both inputs and outputs are contaminated by errors are usually called 

errors-in-variables (EV) models. The problem of identifiability of the EV models has been 

discussed by Anderson and Deistler (1984, 1987), Anderson (1985), Deistler and Anderson 

(l989), Kalman (1983) etc. So far, only a limited number of works have discussed the id.enti

fication algorithms of discrete-time systems in the presence of input noise. Soderstrom (1981) 

investigated some methods of system identification from noise-corrupted input-output data. 
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And it was pointed out that the joint-output JO approach using a prediction error method, 

while being quite computationally demanding, leads to accurate results (as expected, in view 

of the optimal PEM accur~cy properties). The uniqueness problem of this method has been 

discussed by Stoica and Nehorai (1987). These pioneering works may be the best known in 

the literature. 

In the case where both the input and output measurements are corrupted by white 

noises, Fernando and Nicholson (1985) proposed the Koopmans-Levin method based on the 

singular-value decomposition . Although this method is computationally robust, it requires 

a priori knowledge of the ratio of the variances of the input and output noises. Wada and 

Eguchi (1986) applied the efficient BCLS method (Sagara and Wada 1977) without a priori 

knowledge of the noise variances. A similar idea was also investigated by Feng and Zheng 

(1988), Zheng a.nd Feng (1989), which is considered as a direct extension of the work of 

Sagara and Wada (1977). 

In this work, the problem of identification of continuous systems is considered when both 

the discrete input and output measurements are contaminated by white noises (Sagar a, Yang 

and Wada 1991d). It will be found that in the presence of input measurement noise, it is 

not appropriate to let the pass-band of the filters match that of the continuous system under 

study as suggested in some previous works. Our simulation results will show that in. this 

case the pass-band of the digital low-pass filters should be chosen such that it includes the 

main frequencies of both the system input and output signals in some range. Since most 

physical systems are low-pass systems, we emphasize that the selection of the pass-band of 

the pre-filters should be based on the main frequencies of the input signals which excite the 

system modes. 

When the pre-filters are designed appropriately such that the effects of the noises are 

sufficiently reduced, the LS method still gives acceptable results. In the case of high noises, 

since the LS estimate is biased, then the BCLS method is utilized to obtain consistent 

estimates. The BCLS algorithm compensates the bias of the LS estimate by the estimates 

of-both the input and output noise variances and hence yields a consistent estimate. This 

approach seems to be more convenient than the early works. Both classes of filters (FIR 

filter and IIR fiiter) are employed. The FIR filters can be applied to the BCLS method 

directly, whereas the IIR filters require some approximations. 
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5.2 Statement of the problem 

Consider the following SISO continuous system described by the ordinary differential 

equation 
A(p)x(t) -

A(p) 

B(p) 

B(p )u( t) 
n 

2: aipn-i 
i=O 

n 

2: bipn- i 
i=l 

(ao == 1) 
(5.1) 

Our goal is to identify the system parameters from the noisy sampled input-output data: 

y(k) - x(k) + e(k) 

w(k) - u(k) + v(k) 

where v(k) and e(k) are white noises such that 

E[e(k )] == 0, E[e( k )2
] == a; 

E[v(k)] == 0, E[v(k)2] ==a~ 

E[e(k)v(k)] == 0, E[u(k)v(k)] == 0, E[u(k)e(k)] == 0 

(5.2) 

(5.3) 

Since differential operations may accentuate the noise effects, it is necessary here to intro

duce a digital low-pass filter which would reduce the noise effects sufficiently as described in 

the previous chapters. Then we can obtain a discrete-time estimation model with continuous 

system parameters. 

5.3 Discrete-time estimation models 

In this section, we describe the estimation models derived by using the two classes of 

filters, taking both the input and output noises into account. 

5.3.1 FIR filtering approach 

Using the FIR filters described in section 3.3.1, we have 

n n 

2: ai~Fiy(k) == 2: bi~Fiw(k) + rF(k) (5.4) 
i=O i=l 
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where 

~Fiy(k) == Q F(z-1
) (~Y (1 + z-1 )i(1 - z-1 )n-iy(k) == ~Fir(k) +~Fie( k) 

~Fiw(k) == QF(z-1
) (~) i (1 + Z-

1)i(1- z-1t-iw(k) == ~Fiu(k) + ~Fiv(k) 

~Fix(k) == QF(z-1
) (~Y (1 + z-1 )i(1 - z-1 r-ix(k) 

~Fiu(k) == QF(z-1
) (~) i (1 + z-1)i(1- z-lt- iu(k) 

~Fie(k) = QF(z-1
) (~) i (1 + z-1)i(1- z-lt-ie(k) == Mfn f}z-ie(k) 

)=0 

~Fiv(k) = QF(z-l) (~) i (1 + Z-l n1 - Z-l t-iv(k) == Mfn f}z-iv(k) 
)=0 

n n Mp+n Mp+n 

rF(k) == l:ai~Fie(k)- Lbi~Fiv(k) == L O:jz-ie(k)- L /3iz-iv(k) 
i=O i=l j=O j=O 

n n 

0 "'i "'i ai == fi + D fjai, /3i == ~ fjbi 
i=l i=l 

· 5.3.2 IIR filtering approach 

Using the Butterworth digital IIR filter described in section 3.3.2, we have 

where 

n n 

L ai~Iiy(k) == L bi~Iiw(k) + r1(k) 
i=O i=l 

~Iiy{k) == QI(z-1
) (~) i (1 + z-1);(1- z-lt-iy(k) == ~Iir(k) + ~Iie(k) 

(Jiw(k) == QI(z-1) (~Y (1 + z-1 )i(1 - z-1 )n-iw( k) == (nu(k) + (nv( k) 

(Iir(k) == QI(z-1) (~Y (1 + z-1 )i(1 - z- 1 )n-ix( k) 

(!iu(k) == QI(z-1) (~) i (1 + z-1 )i(1 - Z-l riu(k) 

(Jie(k) = QI(z-1) (~) i (1 + z-1 )i(1 - z-1 )n-ie( k) 

(!iv(k) = QI(z-1) (~) i (1 + z-1);(1- z-1)n-iv(k) 

n n 

r1(k) == L ai~Iie(k)- L bi~Iiv(k) 
i=O i=l 

86 

(5.5) 

(5.6) 

(5.7) 
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5.4 LS method and its bias 

When the digital low-pass filters have been designed, we have the discrete-time estimation 

model of equation (5.4) for the FIR filtering approach, or the model of equation (5.6) for 

the IIR filtering. approach. Both can be written · in vector form: 

~oy(k) == zT(k)O '+ r(k) 

zT(k) == [-6y(k), · · ·, -~ny(k), 6w(k), · · ·, ~nw(k)] 

== [-Zy T ( k), Zw T ( k)] = [- { Zx T ( k) + Ze T ( k)} , { Zu T ( k) + Zv T ( k)}] 
(5.8) 

()T == [a1, ·· · ,an, b1, · · ·, bn] = [aT, bT] 
where 

ZeT(k) - (~le( k), · · · , ~ne( k)] 

ZxT(k) - [6x(k), · · · ,~nx(k)] 

ZvT(k) - [~lv(k), · · ·, ~nv(k)] 
(5.9) 

ZuT(k) - [6u(k), · · ·, ~nu(k)] 

and 

zT(k) == ZFT(k) 

~iy(k) == ~Fiy(k), ~ix(k) = ~Fix(k), ~ie(k) = ~Fie(k) 

~iw(k) == ~Fiw(k),~iu(k) = ~Fiu(k),~iv(k) = ~Fiv(k),r(k) = TF(k) (FIR filter) 
(5.10) 

zT(k) == ZJT(k) 

~iy(k) == ~liy(k), ~ix(k) = ~Iix(k), ~ie(k) = ~Iie(k) 

~iw(k) == ~Iiw(k),~iu(k) = ~Iiu(k),~iv(k) = ~Iiv(k),r(k) = r1(k) (IIR filter) 

We can estimate the continuous system parameters by the following LS method: 

[ 

ks+N ] -l [ ks+N ] 

{j = k=f+l z(k)zT(k) · k=f+l z(k)~oy(k) (5.11) 

Investigating the limiting behaviour of the LS estimator when the number of data tends to 

infinity leads to 

plim B - 8 + plim N P(N) [plim ~ kf£ z(k)r(k)] (5.12) 
N-oo N-oo N-oo k=ks+l 

where 

(5.13) 
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With straightforward calculations, we have 

1 ks+N 

plim- L z(k)r(k) - E 
N-+oo N k=ks+l 

(nw(k) 

n 
(Iy(k) L ai(ie(k) 

i=O (5.14) 

n 
(ny(k) I: ai(ie(k) 

-E i=O #0 n 
(Iw(k) L bi(iv(k) 

i=l 

n 
(nw(k) L bi(iv(k) 

i=l 

Therefore the LS estimator is asymptotically biased in general due to the effects of the input 

and output measurement noises. 

Now we will try to express the result of equation (5.14) with the input-output noise · 

variances ll~ and 0';. The FIR filtering approach is first investigated. Based on the above 

discussions, we have the following results through straightforward calculations: 

1 ks+N 

plim N L z(k)r(k) == E[zF(k)rF(k)] == E 
N-+oo k=ks+l 

n 

-(Fle(k) L ai(Fie(k) 
i=O 

n 

-(Fne(k) L ai(Fie(k) 
i=O 

n 

-(Flv(k) L bi(Fiv(k) 
i=l 

n 

-(Fnv(k) L bi(Fiv(k) 
i=l 
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~Fne(k) [~Foe(k) + ~ ai~Fie(k)] 
:= -E n 

~Flv(k) L bi~Fiv(k) 
i=l 

n 

~Fnv(k) L bi~Fiv(k) 
i=l 

n 

~Fle(k) L ai~Fie(k) 
i=l 

~Fle(k)~Foe(k) 
n 

= -E ~Fne(k)~Foe(k) 
0 

~Fne(k) L ai~Fie(k) 
-E i=l 

n 

~Flv(k) L bi~Fiv(k) 
i=l 

0 
n 

~Fnv(k) L bi~Fiv(k) 
i=l 

MF+n ~ (k) L JjJJ - E ~Fne 
j=O ~Flv(k) 

[~Fle(k), · · ·, ~Fne(k), ~Flv(k), · · ·, ~Fnv(k)] 

0 

~Fnv(k) 

0 

89 

[ b
a] 

(5.15) 
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where 
!J !l f1F+n 

F= . 
fg ![ ~~F+n [ FFT Onxn] Hp= FFT Dnxn 

to !I fMF+n 

MF+n 
2:: t}tJ 
j=O (5.16) 

MF+n 
Ho = L fjnfJ 

j=O 

0 

0 

and Inxn is an n x n identity matrix, Onxn is an n x n zero matrix. 

For the IIR filters, unfortunately, it is uneasy to obtain the above results directly, since, 

usually calculations of the correlations of the outputs of the IIR filters are not straightfor

ward. However, we can have similar results if Q1(z- 1
) is approximated by an FIR filter 

QFI(z-1) with a sufficiently large length Mp: 

(5.17) 

Without loss of generality, the coefficients Qm and the order MF of Q FI(z-1) are denoted as 

the same of those of Q F(z-1) defined in equation (3.22) for convenience of notation. If the 

length Mp is sufficiently large and hence the frequency response of Q F 1 ( z-1) is compatiable 

to that of Q1(z- 1 ), then the approximation error is neglect able compared to the stochastic 

noise sources. 
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Hence we have the following approximations: 

6;.(k) == QI(z-1) (~) i (1 + z-1)i(1- z-1)n-ie(k) 

~ Qn(z-1) (~Y (1 + z-1);(1- z-1)n-ie(k) 

MF+n 

= L Jjz-ie(k) 
. j=O 

~1;.( k) == Q J(Z-l) (~); (1 + z-1 );(1 - z-1 )"-iv(k) 

~ Q n(z-1) (~Y (1 + z-1 );(1 - z-1 )"-iv(k) 

(5.18) 

MF+n 

= L Jjz-iv(k) 
j=O 
n n MF+n MF+n 

r1(k) = Lai~Iie(k)- Lbi~Iiv(k) ~ L Cijz-ie(k)- L {Jiz-iv(k) 
i=O i=l j=O j=O 

n n 

ai = fi0 + L Jjai, {Ji == L Jjbi 
i=l i=l 

Then we have similar results for the IIR filters: 

n 

-~ne(k) L ai~Fie(k) 
i=O 

n 

1 ks+N -~Ine(k) L ai~Fie(k) 
plim N L z(k)r(k) == E[z1(k)r1(k)] == E i~O 
N--+oo k=ks+l -~nv(k) L bi~Fiv(k) (5.19) 

i=l 

n 

-~Inv(k) L bi~Fiv(k) 
i=l 

5.5 BCLS method 

From equations (5.12) and (5.15) or (5.19), we have 

0 == plim 0 + plim N P(N)Hoa; + plim N P(N)HFD () (5.20) 
N-oo N-oo N-oo 
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which implies that an unbiased estimate of the unknown parameters can be obtained by 

subtracting an estimate of the bias. 

Then the BCLS method is expressed as 

.-.... .-.... -1 2 -1 .-.... 
OncLs(N) = O(N) + M Hoae + M HFD OncLs(N- 1) (5.21) 

where 
M-I = plim NP(N) == {E[z(k)zT(k)]}-I = {M1 + M2} - I (5.22) 

N-+oo 

and 

Mt = E [ -::~~~] [-z;(k),z~(k)] 
(5.23) 

M2 = E [ -::~~~ ] [-z;(k), z~(k)] = HFD 

It is necessary to investigate whether this algorithm is stable. When the spectral radius 

of the matrix M-I HpD is less than unity, the algorithm is stable and will converge (Sagara 

and Wada 1977). Here the spectral radius of M-IHpD, Q[M-IHFD] is defined as 

Q[M-IHFD] == ~ax 1~\[M-IHFD]I (5.24) 
I~t~2n 

According to Lemma 2.1 in Stoica and Soderstrom (1982), ifM, M 1 are positive definite, 

and M2 is non-negative definite, then Q[M-I HFD] is less than unity, and hence the algorithm 

is stable and converge (Sagara and Wada 1977). 

It is not difficult to understand the fact that if the the input signal is persistently exciting 

of sufficient orders, M 1 may be positive definite. And it can be shown that M2 is always 

non-negative definite. 

To take more detailed discussions, we first state Lemma 5.1: 

Lemma 5.1 Define 

(T)m I I · ~ · · 2 (1 + z- )m(l - z- )m-t = !---' gjz-1 , 

. )=0 
i==1, .. ·,m (5.25) 

and the matrix Gmxm+I 

-I go -I gi -I gm 
-2 -2 -2 

Gmxm+I = 
go gi gm 

(5.26) 

-m go §1 g;;: 
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Then the matrix Gmxm+1 has full rank, i.e. rankGmxm+1 = m . 

Proof 

For an arbitrary z-1, let 

fc; (:~- z=:)m-i = 0 (5.27) 
t=1 + z 

Since (1-z-1) and (1+z-1) are coprime and hence {2/T(1-z-1 )/(1+z-1 )}m-i (i = 1, · · ·, m) 

are linearly independent for an arbitrary z-1 , then the above equation holds only when 

ci = 0( i = 1,. · · , m). 

Rewrite equation ( 5.27) as 

(5.28) 

Since equation (5.28) holds only when ci = 0, then the elements of 

(5.29) 

-m -m -1 -m -m go + g1 Z + · · · + gm Z 

are linearly independent . 

Moreover, since 

-1 -1 -1 -1 -m go + g1 Z + · · · + gm Z 1 
-2 -2 -1 -2 -m 
go + g1 Z + · · · + gm Z z 

(5.30) 

-m -m -1 -m -m go + g1 Z + · · · + gm Z 

and the elements of [1, z, ... , z-m]T are linearly independent, then 

-1 go -1 g1 -1 gm 
-2 -2 -2 

Gmxm+1 = 
go g1 gm 

-m go 91 9: 
has full rank. 

Notice that from equation (3.4), the noise free output can be generated approximatedly 
by 

B'(z-1) 

x(k) = A'(z.- 1) u(k) (5.31) 
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aD;d hence 
~;.(k) - Q(z-1) (~); (1 + z-1);(1- z-1t-ix(k) 

~ Q(z-1) (T) i (1 + z-1 )i(1 - z-1 )n-i B'(z-1) u(k) 
.2 A'(z-1) 

~iu(k) - Q(z-1) (~Y (1 + z-1);(1- z-1)n-iu(k) 

- Q(z-1) (T) i (1 + z-1 )i(1 - z-1 )n-i A'(z-1) u(k) 
2 A'(z-1) 

where 
Q(z-1) = Q p(z-1

) (FIR filter) 

Q(z-1) = Q1(z- 1
) (IIR filter) 

Then through straightforward calculation, we have 

-(~r (1 + z-1)n(l- z-1)n-n B'(z-1)u(k) 

(~) 
1 

(1 + z-1 )1 (1 - z-1 )n-l A' (z-1 )u( k) 

(~) n (1 + z-1t(l- z-lrn A'(z-1)u(k) 

. (~)I (1 + z-1 )1(1 - z-1 ?n-lu(k) 

u(k) 
u(k- 1) 

u(k- 2n) 

94 

(5.32) 

(5.33) 

(5.34) 
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where 

R(-B,A)= 

0 0 

Consequently, we have 

nr( -B, A)G2nx2n+l Q(A', Q, u)Ginx2n+1R( -B, A) 

where 

' Q(z-1) 
Q(A 'Q, u) = E A'(z-1) 

u(k) 
u(k- 1) 

u(k- 2n) 

Q(z-1) 
A'(z-1) [u(k), u(k -1), · · ·, u(k- 2n)] 

95 

(5.35) 

(5.36) 

(5.37) 

The determinant of n( -B, A) is called a resultant. It is known that n( -B, A) is nonsin-

. gular if and only if A(p), B(p) are relatively prime (Soderstrom and Stoica 1981). Lemma 

5.1 implies that the matrix Gmxm+l has full rank; since M1 is symmetric, and Q(A', Q, u) 

have full rank if the input signal is persistently exciting of sufficient orders (Soderstrom and 

Stoica 1981, 1989), then it is clear that M 1 is nonsingular and positive definite. Hence, we 

have 

Lemma 5.2 Assume that u( k) is persistently exciting of sufficient orders, then M1 is 

positive definite. 

Similarly; we have 

M2 = E [ -=:~~i ] [-z;(k), z;(k)] 

= [ Gnxn+l Onxn+1 ] O(Q, e, v) [ G~xn+t ~;.+lxn ] 
Onxn+1 Gnxn+l On+lxn nxn+l 

(5.38) 
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where 

n(Q, e, v) == 
e(k) 

e(k- 1) 

e(k- n) 
v(k) 

v(k-1) 

v(k -n) 

Q(z-1)[e(k), e(k- 1), · · ·, e(k- n), v(k), v(k- 1), · · ·, v(k- n)] 

96 

(5.39) 

. Since the white noises are persistently exciting of all orders, we have the following result: 

Lemma 5.3 

is always non-negative definite, for any a; ~ 0 and a; ~ 0. 

It is clear that the result of the following Lemma holds: 

Lemma 5.4 

is positive definite if the input signal is sufficiently persistently exciting so that M1 is 

positive definite. 

The above results and Lemma 2.1 of Stoica and Soderstrom (1982) imply that the 

spectral radius of the matrix M-1 HpD is less than unity, if the input signal is sufficiently 

persistently exciting so that M 1 and M are positive definite. Hence we have 

Theorem 5.1 The BCLS method 

is stable and will converge, if the input signal is sufficiently persistently exciting. 

However, in most practical situations, it is difficult to have a priori knowledge of a; and 

a~, the practical applicability of the · BCLS method is restricted within narrow limits. If &; 
and&~ are the consistent estimates of a; and a;, the BCLS method becomes 
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Remark 5.1: In the identification process, if g[M-1 HFD] is less than unity, the algorithm 

would also converge. If we monitor the value of g[M-1 HFD] and keep it less than unity dur

ing the identification process, the algorithm will never diverge. Experience shows, however, 

it is not necessary in most cases to monitor the stability. · 

5.6 Estimation of a~ and a; 
The residual f( k) for the LS estimate 0( N) is given as 

(5.41) 

. Using equation (5.8), we have 

f(k) == zr(k) [e- O(N)] + r(k) (5.42) 

From equation (5.41) and equation (5.42), we have 

ks+N 

2: z(k)f(k) == 0 (5.43) 
k=ks+1 

Using equation (5.42) and equation (5.43), we have the sum of squared residuals: 

ks+N 

g(N) == 2: f(k)f(k) 
k=ks+1 

(5.44) 
ks+N ks+N 

2: r 2(k) + 2: zr(k)r(k) [e- O(N)] 
k=ks+1 k=ks+1 

Since 

and 

plim N
1 

zT(k)r(k) == E[zT(k)r(k)] == -H6 ();- 8THFD 
N-+oo 

(5.46) 

· then the following result can be obtained: 

plim g(N) == 
N-+oo N 

MF+n MF+n 
L aj(a)a; + 2: /3}(b)()~- he(a)[a- a(N)]a;- hv(b)[b- b(N)]a; 
j=O j=O 

= c~n fJai(a) + h•(a)li(N)] u~ + h"(b)b(N)u; 

(5.47) 
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where 

MF+n 

hi(a) = L Jjai(a), 
MF+n 

hf(b) = L: Jjflj(b) 
(5.48) 

j=O j=O 

where ai(a) and tJi(b) are defined in equation (5.5) or equation (5.18). 

Similar to the above discussions, define 0( N) by 

[ ] 

-1 [ ] 
~+N ~+N 

O(N) = L z(k)zT(k -l) · L z(k)~oy(k -l) 
k=ks+l k=ks+l 

(5.49) 

where l is a natural number. 

The residual for 0( N) is defined by 

(5.50) 

and it can also be shown that 

r(k) = zT(k)[8- O(N)] + r(k) (5.51) 

· and 
ks+N 

L: z(k)r(k -z) = o (5.52) 
k=ks+l 

Hence we have 

ks+N 

f(N) - L: r(k)r(k -Z) 
k=ks+l 

ks+N ks+N 

= L r(k)r(k -l) + L zT(k- l)r(k) [8- O(N)] 

(5.53) 

k=ks+l k=ks+l 

and thus 

plim f(N) = 
N--.oo N 

MF+n-1 MF+n-1 

L ai( a)ai+l( a)o-; + L !li(b )fli+l(b )o-~ 
j=O j=O 

-he(a)[a- a(N)]o-;- iiv(b)[b- b(N)]o-; (5.54) 

where 
iie(a) =[hi( a),···, h~(a)], fiv(b) = (h!(b), · · ·, h~(b)] 

MF+n-1 MF+n-1 

hi(a) = L Jjai+l(a), hf(b) = L JjtJi+l(b) 
(5.55) 

j=O j=O 
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Then the estimates of the unknown variances a; and a~ are given by the solution of the 

following simultaneous equation: 

(5.56) 

where MF+n 
au = 2: JJai (a(N- 1)) +he (fiBcLs(N- 1)) a(N) 

j=O 

a12 = hv (bBcLs(N- 1)) b(N) 
(5.57) 

a21 = 
MF+n-1 

2: JJai+l (a(N- 1)) +he (fiBcLs(N- 1)) a(N) 
j=O 

a22 = hv (bBcLs(N- 1)) b(N) 

Remark 5.2: It should be noted that the delay l should be chosen such that A and 

[E~~t:tl z(k)zT(k -l)] are nonsingular. To our experiences, the results are not .so sensitive 

to l. 

It is still necessary to calculate g(N) and f(N) for equation (5.56). It can be shown using 

the previous results that 

ks+N [ -~oy(k) ] T [ 1 ] k=t:+l z(k) [-~oy(k), z (k)] O(N) 

(5.58) 

= ki: [ -~oy(k) ] [-f(k)] = [ g(N)] 
k=ks+l z(k) 0 

and 

(5.59) 

= kf:.N [ -~oy(k) ] [-f(k -l)) = [ f(N) ] 
k=ks+l z(k) . 0 

Hence we can express g( N), f ( N) as 

(5.60) 
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5.7 Implementation of the algorithm 

This section describes the implementation techniques of the BCLS method. Both the 

off·line version and on-line version can be considered. However, usually, the recursive on-line 

identification algorithms have contrastively a small requirement of primary memory since 

only a modest amount of information is stored. Considering the practical applications, it is 

preferable to implement the BCLS method in an on-line manner. 

The on-line recursive BCLS algorithm is described as follows: 

1: Calculate the LS estimate O(N) and the estimate O(N): 

B(N) = O(N- 1) + L(N)[~oy(ks + N)- zr(ks + N)O(N- 1)] 

L(N) _ P(N- 1)z(ks + N) 
- p(N) + zT(ks + N)P(N- 1)z(ks + N) (5.61) 

P(N) = _1_ [P(N _ 1) _ P(N- 1)z(ks + N)zT(ks + N)P(N- 1)] 
p(N) p(N) + zT(ks + N)P(N- 1)z(ks + N) 

and 

B(N) == O(N- 1) + L(N)[~oy(ks + N- L)- zr(ks + N- L)O(N- 1)] 

L(N) == P(N- 1)z(k! + N) 
p(N) + zT(ks + N- L)P(N- 1)z(ks + N) (5.62) 

P(N) = _1_ [P(N _ 1) _ i'(N- 1)z(ks + N)zT(ks_+ N- L)i'(N- 1)] 
p(N) p(N) + zT(ks + N- L)P(N- 1)z(ks + N) 

where p( N) is the forgetting factor and is chosen to be 

p(N) = (1- 0.01)p(N -1) + 0.01, p(ks) = 0.95 (5.63) 

2: Calculate g(N) and j(N): 

(5.64) 

3: Calculate the variance estimates a;(N) and a~(N) for N >No: 

[ 
a;(N) ] [ an a12 ] -l = ~ [ g(N) ] 
a~(N) a21 a22 N f(N) 

(5.65) 
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Figure 5.1: Frequency responses of the FIR filters for Table 5.1. 

where 

MF+n 

au - L f;0a; (a(N- 1)) +he (aBcLs(N- 1)) a(N) 
i=O 

a12 - hv (bBcLs(N- 1)) b(N) 

MF+n-1 

a21 - L fJaj+l (a(N- 1)) + i}e (aBcLs(N- 1)) a(N) 
j=O 

a22 - i}v (bBcLs(N- 1)) b(JV) 

4: Compensate the bias. of the LS estimate O(N): 

101 

(5.66) 

l OBcLs(N) = O(N) , N ~No 

OBcLs(N) = O(N) + M-1 [Hoa;(N- 1) + HpD(N -1) BscLs(N- 1)] N >No 
(5.67) 

5: Increase the recursion number Nand return to 1 until convergence. 

Remark 5.3: It should be remembered that all the key equations of the BCLS algorithm 

are derived by the assumption that sufficiently long data samples have been processed, i.e. 

N is sufficiently large. Hence it is often a practical policy to delay the start of the bias 

compensation procedure by No+ 1 recursions. 
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Table 5.1: LS estimates (FIR filter, NSR~ 10%). 

Wdc (h a2 bl b2 ~11911 
(wac) (3 .0) ( 4.0) (0.0) ( 4.0) ±ao 
14.0 2.8915 4.0890 0.0089 4.0118 0.1410 

(12.47) ±0.0411 ±0.0298 ±0.0058 ±0.0338 ±0.0276 
12.0 2.9180 4.0517 0.0090 4.0038 0.0973 

(10.57) ±0.0368 ±0.0271 ±0.0056 ±0.0300 ±0.0249 
10.0 2.9298 4.0196 0.0099 3.9887 0.0743 

(8.62) ±0.0303 ±0.0248 ±0.0046 ±0.0250 ±0.0212 
8.0 2.9343 3.9931 0.0113 3.9721 0.0725 

(6.69) ±0.0251 ±0.0232 ±0.0039 ±0.0208 ±0.0182 

7.0 2.9339 3.9803 0.0125 3.9629 0.0792 
(5.69) ±0.0236 ±0.0230 ±0.0041 ±0.0199 ±0.0176 

5.0 2.9199 3.9449 0.0184 3.9326 0.1196 
(3.78) ±0.0240 ±0.0234 ±0.0052 ±0.0222 ±0.0187 

4.0 2.90176 3.9143 0.0248 3.9038 0.1633 
(3.01) ±0.0263 ±0.0245 ±0.0059 ±0.0255 ±0.0206 

Table 5.2: LS estimates (IIR filter, NSR~ 10%). 

a1 a2 bl b2 ~11911 
We (3.0) (4.0) (0.0) ( 4.0) ±ao 

2.8570 4.0999 0.0100 3.9884 0.1751 
10.0 ±0.0391 ±0.0290 ±0.0058 ±0.0297 ±0.0259 

2.9060 4.0496 0.0091 3.9896 0.1071 
8.0 ±0.0348 ±0.0273 ±0.0051 ±0.0260 ±0.0233 

2.9361 4.0127 0.0088 3.9839 0.0676 
6.0 ±0.0296 ±0.0254 ±0.0043 ±0.0223 ±0.0204 

2.9435 3.9788 0.0107 3.9652 0.0703 
4.0 ±0.0242 ±0.0231 ±0.0036 ±0.0189 ±0.0174 

2.9300 3.9490 0.0150 3.9376 0.1076 
3.0 ±0.0242 ±0.0223 ±0.0036 ±0.0198 ±0.0175 

2.8749 3.8656 0.0302 . 3.8516 0.2379 
2.0 ±0.0295 ±0.0241 ±0.0049 ±0.0265 ±0.0212 
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5.8 Illustrative examples 

Consider a second-order system described by 

x(t) + alx(t) + a2x(t) = bl u(t) + b2u(t) 
(5.68) 

a1 = 3.0, a2 = 4.0, b1 = 0.0, b2 = 4.0 

The input u(t) is the output of a second-order continuous-time Butterworth input filter 

driven by a stationary random signal ((t): 

u(t) = L(p)((t) = (pfwc) 2 + }?.(pfwc) + 1 ((t), We= 4.0 (5.69) 

Simulation experiments are carried out when the sampling interval is taken to be T = 0.04, 

and in this case, (Ju = 2.38, (Jx = 0.69. 

Example 5.1: Effects of the filter characteristics. 

The LS estimates for the case of low noises where (Jv = 0.24, (Je = 0.07 (NSR~ 10%) are 

shown in Table 5.1 for the FIR filters(MF = 50), and Table 5.2 for the IIR filters(m = 2). 

The frequency responses of the system, the digital pre-filters used in Tables 5.1rv5.2 and the 

input filter L(p) in (5.69) are shown in Figures 5.1""5.2. It is clear that accurate estimates can 

be obtained if the pass-band of the pre-filters includes that of the low-pass input filter L(p) 

in equation (5.69). Therefore, for the case of low input-output measurement noises, if the 

pass-band of the digital low-pass filters is chosen such that it includes the main frequencies of 

the input signals which excite the system modes, the noise effects are sufficiently reduced, and 

thus the LS estimates are still acceptable. For the case where only the output is corrupted 

by a measurement noise, it is known that the pass-band of the filters should be chosen such 

that it matches that of the system under study as closely. This suggestion is not appropriate 

in the presence of input measurement noise. 

Example 5.2: Parameter estimates in the presence of high noises using the FIR 

filters. 

The LS estimates and the BCLS estimates(l = 5) for the FIR filters are shown in Tables 

5.3N5.4, when (Jv = 0.60, (Je = 0.17 (NSR ~ 25%). 

In the presence of high input-output measurement noises, it is difficult to obtain accurate 

estimates with the LS method. However, the BCLS method is very efficient in this case. 

Figure 5.3 plot the examples of the LS estimates and the BCLS estimates (when Wdc = 7.0). 

For short samples, it is clear that the BCLS estimates are slightly more sensitive than the LS 
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Figure 5.2: Frequency responses of the IIR filters for Table 5.2. 
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estimates. However, when sufficiently long samples are taken, the BCLS estimates converge 

to their true values in a very accurate manner. 

Example 5.3: Parameter estimates in the presence of high noises using the IIR 

filters. 

The LS estimates and the BCLS estimates (L = 5) for the IIR filters are shown in Tables 

5.5rv5.6 respectively, when av = 0.60, ae = 0.17 (NSR ~ 25%). And the examples of the LS 

estimates and the BCLS estimates (when We = 6.0) are shown in Figure 5.4. For the IIR 

filters, a third-order Butterworth filter 

Fia(P) = (pjw.? + 2(pjw.)~ + 2../'i(pjw.) + 1 

is used, and Q1(z- 1) is approximated by an FIR filterQ FI(z-1) with a sufficiently large length 

Mp for calculating the bias of the LS estimate. Although in most identification problems, a 

second-order filter is sufficient, it is found that when it is necessary to estimate the variances 

of both the input and output noises, for the second-order system under study, the third-order 

filter yields obviously better results than the second-order filter. The reason for this fact was 

mentioned in Remark 3.2. It should be pointed out that for a filter having slower transient 

response characteristics, a larger MF is required to have accurate approximations. However, 

too large a MF may require a great amount of computational burden. 
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Table 5.3: LS estimates (FIR filter, NSR~ 25%). 

Wdc a1 a2 bl b2 LlllOII 
(wac) (3.0) (4.0) (0.0) (4.0) ±o-o 
12.0 2.3631 4.2188 0.0411 3.7028 0.7372 

(10.57) ±0.0721 ±0.0625 ±0.0131 ±0.0674 ±0.0538 
10.0 2.4765 4.0417 0.0445 3.6969 0.6709 

(8.62) ±0.0623 ±0.0571 ±0.0108 ±0.0558 ±0.0465 
7.0 2.5698 3.8391 0.0564 3.6485 0.5810 

(5.69) ±0.0510 ±0.0534 ±0.0099 ±0.0426 ±0.0392 
5.0 2.5364 3.6724 0.0825 3.5350 0.7383 

(3.78) ±0.0487 ±0.0526 ±0.0116 ±0.0444 0.0393 
4.0 2.4711 3.5447 0.1097 3.4195 0.9142 

(3.01) ±0.0510 ±0.0525 ±0.0124 ±0.0496 0.0414 

Table 5.4: BCLS estimates (FIR filter, NSR~ 25%). 

Wdc a1 a2 bl b2 LliiOII O"e O"v 

(wac) (3.0) (4.0) (0.0) (4.0) ±o-o (0.17) (0.60) 
12.0 3.0760 4.0295 0.0007 4.0936 0.1242 0.1699 0.5416 

(10.57) ±0.0964 ±0.0723 ±0.0151 ±0.0767 ±0.0651 ±0.0051 ±0.1568 
10.0 3.0521 4.0244 0.0020 4.0715 0.0918 0.1702 0.5773 

(8.62) ±0.0774 ±0.0665 ±0.0124 ±0.0609 ±0.0543 ±0.0047 ±0.0828 
7.0 3.0342 4.0233 0.0016 4.0527 0.0671 0.1706 0.5954 

(5.69) ±0.0612 ±0.0703 ±0.0104 ±0.0510 ±0.0482 ±0.0044 ±0.0366 
5.0 3.0372 4.0306 -0.0002 4.0571 0.0747 0.1707 0.6005 

(3. 78) ±0.0620 ±0.0615 ±0.0134 ±0.0606 ·±0.0494 ±0.0054 ±0.0255 
4.0 3.0393 4.0345 -0.0009 4.0611 0.0805 0.1703 0.6011 

__ (3.01) ±0.0709 ±0.0660 ±0.0161 ±0.0721 ±0.0562 ±0.0058 ±0.0249 



Identification using BCLS method 106 

Table 5.5: LS estimates (IIR filter, NSR~ 25%). 

We a1 a2 bl b2 llliBII 
(3.0) (4.0) (0.0) (4.0) ±uo 

10.0 2.3686 4.2330 0.0377 3.6949 0.7399 
±0.0652 ±0.0639 ±0.0109 ±0.0602 ±0.0505 

8.0 2.5107 4.0429 0.0391 3.7055 0.5740 
±0.0604 ±0.0598 ±0.0096 ±0.0526 ±0.0456 

6.0 2.5922 3.8931 0.0464 3.6821 0.5301 
±0.0522 ±0.0559 ±0.0088 ±0.0419 ±0.0397 

4.0 2.5507 3.6863 0.0825 3.5350 0.7201 
±0.0450 ±0.0509 ±0.0085 ±0.0387 0.0358 

3.0 2.3890 3.4105 0.1423 3.2711 1.1280 
±0.0520 ±0.0506 ±0.0103 ±0.0501 0.0408 

Table 5.6: BCLS estimates (IIR filter, NSR~ 25% ). 

We (h (h bl b2 llllOII O"e O"v 

(3.0) (4.0) (0.0) (4.0) ±uo (0.17) (0.60) 
10.0 3.0872 4.0320 0.0004 4.1076 0.1421 0.1697 0.5815 

(MF =50) ±0.091'4 ±0.0713 ±0.0130 ±0.0712 ±0.0617 ±0.0030 ±0.1858 
8.0 3.0602 4.0287 . 0.0012 4.0807 0.1047 0.1698 0.5956 

(MF =50) ±0.0741 ±0.0654 ±0.0112 ±0.0555 ±0.0512 ±0.0029 ±0.0919 
6.0 3.0419 4.0264 0.0011 4.0610 0.0786 0.1699 0.5999 

(MF =50) ±0.0599 ±0.0592 ±0.0095 ±0.0464 ±0.0438 ±0.0028 ·±0.0489 
4.0 3.0389 4.0319 -0.0002 4.0602 0.0784 0.1678 0.6049 

(MF =50) ±0.0552 ±0.0571 ±0.0104 ±0.0479 ±0.0427 ±0.0029 ±0.0276 
3.0 3.0549 4.0687 -0.0077 4.1059 0.1379 0.1345 0.6716 

(MF =50) ±0.0756 ±0.0691 ±0.0165 ±0.0741 ±0.0588 ±0.0012 ±0.0214 
3.0 3.0469 4.0478 -0.0036 4.0788 0.1035 0.1429 0.6238 

(MF = 80) ±0.0754 ±0.0692 ±0.0165 ±0.0739 ±0.0587 ±0.0037 ±0.0238 
3.0 3.0435 4.0383 -0.0018 4.0660 0.0883 0.1708 0.6010 

j_MF == 100) ±0.0753 ±0.0692 ±0.0164 ±0.0739 ±0.0587 ±0.0043 ±0.0251 
3.0 3.0436 4.0384 -0.0018 4.0661 0.0884 0.1705 0.6012 

~F == 120) ±0.0753 ±0.0692 ±0.0164 ±0.0739 ±0.0587 ±0.0043 ±0.0251 
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5.9 Conclusion 

In this chapter, the digital filtering approach to recursive identification of continuous sys

tems when the sampled input-output data are corrupted by white noises has been discussed. 

It is emphasized that in the presence of input measurement noise, the pass-band of the

filters should be chosen such that it includes the main frequencies of the real system input

output signals to reduce the noise effects. When the pre-filters are designed appropriately 

such that the effects of the noises are sufficiently reduced, the LS method still gives acceptable 

results. 

In the case of high noises, the LS estimate is biased, and the BCLS method is utilized to 

obtain consistent estimates. The BCLS algorithm compensates the bias of the LS estimate 

by the estimates of both the input and output noise variances and hence yields a consistent 

estimate. And it is pointed out that if the input signals are persistently exciting, the BCLS 

algorithm is stable. 

Both classes of filters (FIR filter and IIR filter) are employed. The FIR filters can be 

applied to the BCLS method directly, whereas the IIR filters require some approximations. 

And numerical examples show that the BCLS method combined with an FIR filter or an 

IIR filter yields very accurate estimates of the system parameter. 
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Chapter 6 

Identification in the Presence of 
Input-Output Measurement Noises 
Using Bias-Compensated 
Instrumental Variable Method 

6.1 Introduction 
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In chapter 5, the BCLS method proposed by (Wada and Eguchi 1986) for common 

discrete-time systems was extended to the problem of continuous systems by making use of 

a digital low-pass pre-filter. The BCLS algorithm compensates the bias of the LS estimate 

by the estimates of both the input and output noise variances and hence yields a consistent 

estimate. This approach seems to be more convenient than the early works discussed by 

some other researchers. 

In a lot of applications, the digitizing noise is one of the most important noise contribu

tion, and in this case it might be reasonable to assume that the input measurement noise is 

white (Schoukens, Pintelon and Renneboog 1988). However, since the output measurement 

noise includes not only the digitizing noise, but also the noises created by the e-nvironment 

such as external disturbances and the modeling error in some practical situations, it is more 

appropriate to assume that the output measurement noise is coloured. Because of these 

considerations, in the present work, we discuss the problem of parameter identification of 

dynamic processes in the case where the discrete input and output measurements are cor

rupted by a white noise and by a noise which may be coloured respectively (Yang, Sagara 
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and Wada 1991). 

As mentioned in the previuous chapters, considering using digital computers, it is prefer

able to estimate the parameters of a continuous system using an approximated discrete-time 

estimation model with the continuous system parameters. In this chapter, the discrete-time 

estimation model combined with an adaptive digital IIR filter described in chapter 4 is uti

lized. It is obvious that for the estimation model derived by the adaptive pre-filter, the LS 

estimates are biased in general due to the effects of both the input and output noises. To 

avoid the effects of the output noise we introduce an IV method with filtered inputs and 

delayed filtered outputs as instrumental variables as suggested in chapter 4. The bias of 

the IV estimate due to the input noise is then analysed. By compensating the bias of the 

IV estimate wit~ the estimated variance of the input noise, a bias compensated IV (BCIV) 

method is proposed to ·Obtain a consistent estimate. The BCIV method treats only the 

variance of the input noise and is therefore more convenient than the BCLS method which 

requires estimating the variances of both the input and output noises. Approximated on-line 

implementation techniques of the proposed method are also described. Numerical examples 

show the results of the proposed BCIV mehtod are quite satisfactory. 

6.2 Statement of the problem 

Consider the following SISO continuous system 

A(p)x(t) - B(p)u(t) 
n 

A(p) 2:: aipn-i (ao = 1) 
i=O (6.1) 
n 

B(p) - L bipn-i 
i=l 

The sampled measurements of the input-output signals are described as 

y(k) - x(k) + C(z-1 )e(k) 
(6.2) 

w(k) u(k) + v(k) 

where C(z-1
) denotes an MA process with known finite length r: 

C( -1) 1 -1 + -2 + + -r Z = + C1Z C2Z • • • CrZ (6.3) 
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v(k) and e(k) are white noises such that 

E[e(k)] = 0, E[e(k)2] =a; 
E[v(k)] = 0, E[v(k)2] =a~ 

E[e(k)v(k)] = 0, E[u(k)v(k)] = 0, E[u(k)e(k)] = 0 
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(6.4) 

Our goal is to identify the system parameters from the noisy sampled input-output data. 

Using the results in chapter 4 and taking the noisy measurements into account, we have 

the following discrete-time estimation model: 

where 

n n -1 B'(z-1) 
~Aoy(k) + ~ai~Aiy(k) = ~bi~Aiw(k) + C(z )e(k)- A'(z-1) v(k) 

€Aiw(k) = QIA(z-1
) (~)' (1 + z-1)'(1- z-1r'w(k) 

€Aiy(k) = QIA(z-1) (~) i (1 + z-1)'(1- z-1)"-'y(k) 

( -1) - 1 
QIA z - .A'(z-1) 

(6.5) 

(6.6) 

The low-pass pre-filter 1/ A'(z-1) is introdued to attempt to filter off unwanted high frequency 

components of the noises and also to let the output noise remain in its original form in the 

equation error (Young and Jakeman 1980). 

6.3 IV method and its bias 

The discrete-time estimation model of equation (6.5) can be written in vector form as 

(Aoy(k) = zT(k)8 + r(k) 

zT(k) = [-~Aly(k), · · ·, -~Any(k), ~A1w(k), · · ·, ~Anw(k)] 

= [ -Zy T ( k), Zw T ( k)] = [-{ Zx T ( k) + Ze T ( k)}, { Zu T ( k) + Zv T ( k)}] 
(6.7) 

()T = (a1, ···,an, b1, · · ·, bn) = [aT, bT) 

where 

r(k) 
-1 B'(z-1) 

- C(z )e(k)- A'(z-1) v(k) 

ZeT(k) [~le(k), · · ·, ~ne(k)] 

ZxT(k) - [~lx(k), · · ·, ~nx(k)] (6.8) 

ZvT(k) - [~1v(k), · · ·, ~nv(k)] 

ZuT(k) - [6u(k), · ~ ·, ~nu(k)] 
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and 
~Aie(k) - QIA(z-1) (~) i (1 + z-1 );(1 - z-1 )n-iC(z-1 )e(k) 

~Aiv(k) = QIA(z-1) (~); (1 +z-1);(1- z-1r;v(k) 
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(6.9) 

It should be noted that owing to using the pre-filter 1/A'(z-1), the output measurement 

noise C(z-1)e(k) remains in its original form in the equation error r(k). This fact implies 

that it is possible to avoid the effects of the output noise by introducing an IV vector mT(k) 

whose elements are highly correlated with the real system signals, but totally uncorrelated 

with the noise C( z-1 )e( k). A straightforward approach is to choose an IV vector with filtered 

inputs and delayed filtered outputs to avoid the correlations between ~Aiy(k)(i == 1, · ···, n) 

and C(z-1)e(k) (Sagara, Yang and Wada 1991c): 

[-~A1y(k -l), · · ·, -~Any(k- l), ~A1w(k), • · ·, ~Anw(k)] 

[-zyT(k -l),zwT(k)], l > r 
(6.10) 

The motivation of the choice of such an IV vector stems from the IV -3 variant discussed by 

Soderstrom and Stoica ( 1981 ). 

When the input signal is sufficiently rich so that 

[k~~:1 m(k)zT(k)] -I 

exists, we can estimate the continuous system parameters by the following IV method: 

. [ ] -1 [ ] 
ks+N ks+N 

B1v == L m{k)zT(k) · L m(k)~Aoy(k) 
k=ks+l k=ks+1 

(6.11) 

It is necessary to analyse the limiting behavior of the IV estimate when the number of 

data tends to infinity. Using equation (6.7), it can be shown that 

[ 
1 ks+N ] 

6 + plim N P(N) plim N L m(k)r(k) 
N-H:'o N--too k=ks+1 

plim B1v 
N--too 

(6.12) 

where 

P(N) = [~1 m(k)zT(k)] -

1 

(6.13) 

Furthermore, we obtain the following result due to the fact that ~Aiw(k)(i == 1, · · ·, n) are 
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correlated with r(k ): 

-~A1y(k -l) 

1 ks+N 
E 

-~Any(k -l) [ _ 1 B'(z-
1

) l plim- Z:: m(k)r(k) -
~A1w(k) C(z )e(k)- A'(z-1) v(k) 

N-+oo N k=ks+1 

~Anw(k) 
(6.14) 

0 

E 
0 #0 -

. ~Alw(k)rv(k) 

~Anw(k)rv(k) 

where 
B'(z-1) 

rv(k) ==- A'(z-1) v(k) (6.15) 

Therefore the IV estimator is asymptotically biased in general due to the presence of the 

input noise. 

Remark 6.1: Someone may suggest to choose an IV vector as 

mT(k) == [-(A1y(k- l), · · ·, -(Any(k- l), (A(n+1)y(k- l), · · ·, (A2ny(k- l)], l > r 

(6.16) 

where 
- 1 (T) i 1 . 1 2 . 
~Aiy(k) == A'2(z_1) 2 (1 + z- )'(1- z- ) n-'y(k) (6.17) 

Then he may conclude that there will be no asymptotic bias (and no need for a bias com

pensation described in the next section). It should be commented that this suggestion 

is not appropriate in general, since such a choice of m T ( k) may destroy the existence of 

P(N) == [E~~t:~ 1 m(k)zT(k))-1 (Soderstrom 1981, Soderstrom and Stoica 1981) 

Now we will consider the method to express the result of equation (6.14) with the input 

noise variance O";. It is well-known that the pre-filter 1/ A'(z-1) can be approximated by an 

FIR filter QFA(z-1) with a sufficiently large length MA: 

(~.18) 
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where 

{ 

1 = sooo 

0 = SmOo + Sm-101 + Sm-202 + ... + Sm-nOn, 1 ~ m ~ MA 

(6.19) 

If the length MA is sufficiently large and hence the frequency response of Q FA ( z-1
) is com

patiable to that of 1/ A'(z-1 
), then the approximation error is neglect able compared to the 

stochastic noise sources. 

Hence we have the following approximations: 

(~); (1 + z-1 );(1 - z-1 )"-; 

= A'(z-1) v(k) ~Aiv(k) 
(6.20) 

~ QrA(z-1) (~Y (1 + z-1);(1- z-1)"-iv(k) = Mfn Jjz-iv(k) 
)=0 

and 
B'(z-1) n . MA+n _. 

r.(k) = A'(z-1) v(k) =- f;b;~A;.(k) ~- ~ /3iz 3v(k) (6.21) 

where 
n 

!3j = 'L J]bi (6.22) 
i=1 

Based on the above discussions, we have the following results through straightforward 

calculations: 

n 

1 ks+N . -~A1v(k)Lbi~Aiv(k) 
plim N L m(k)r(k) = E[m(k)r(k)] = E i=1 

N-+oo k=ks+1 
n 

-~Anv(k) L bi~Aiv(k) 
i=1 

== -E [ Onx
1 

] [01xn, z.(k)J [ : ] 
Zv(k) 

(6.23) 

== -a;D(F) 0 
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where 
JJ !l J1A+n 

F= 
"!J f't J'ttA+n D(F) = [ Onxn Onxn] (6.24) 

Onxn FFT 

to If fMA+n 

6.4 BCIV method 

Inspection of equations (6.12) and (6.23) leads to 

9 = plim 8 Iv(N) + plim N a~P(N)D(F)9 
N-+oo N-+oo 

(6.25) 

which implies that a consistent estimate of the unknown system parameters can be obtained 

by substracting an estimate of the bias term from the IV estimate. 

Motivated by the BCLS method of Sagara and Wada (1977), we can obtain the consistent 

estimate by the BCIV method: 

(6.26) 

where 

M-1 = plim NP(N) = {E(m(k)zT(k)]}-1 = {M1 + M2}-1 (6.27) 
N-+oo 

and 

(6.28) 

M2 = E [ ~.(~1) ] [Olxn, z~ (k )] r.::J a;D(F) 

It is necessary to investigate whether this algorithm is stable. Similar to the BCLS method, 

when the spectral radius of the matrix M-1a 2 vD(F) is less than unity, the algorithm ·may 

converge (Sagar a and Wada 1977). Here the spectral radius of M-1a 2 vD(F), Q[M-1a 2 vD(F)] 
is defined as 

Q[M-1a 2vD(F)] = ~ax l;\i(M-1a 2 vD(F)JI 
1~t~2n 

(6.29) 

where Ai[M-1a 2 vD(F)] denotes an eigenvalue of M-1a 2 vD(F). 

As mentioned in chapter 5, according to Lemma 2.1 in Stoica and Soderstrom (1982), if 

M, M1 are positive definite and M 2 ~ a 2 vD(F) is non-negative definite, then Q[M-1a 2 vD(F)] 

is less than unity, and hence the algorithm is stable and converges (Sagara and Wada 1977). 

That is a sufficient condition for stability. However, in contrast to the case of the BCLS 
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roethod (Sagara and Wada 1977), unfortunately, for the delay parameter l > 1, M1 is 

not symmetric, and hence we cannot expect M, M 1 to be positive definite. So far, we 

have not found general conclusions about that under what conditions g[M-1a 2 vD(F)] is less 

than unity and hence the algorithm is stable. Empirical numerical studies tell that when 

the noise levels are not extremely high, g[M-1a 2 vD(F)] may be less than unity and the 

algorithm (6.26)_ is stable in most cases. 

However, in most practical situations, it is difficult to have a priori knowledge of a~, the 

practical applicability of the proposed method is restricted within narrow limits. If &~ is an 

consistent estimate of a~, the BCIV method becomes 

(6.30) 

In the identification process, if g[M-1&~(N)D(F)] is less than unity, the algorithm would 

also converge. If we monitor the value of g[M-1&~(N)D(F)] and keep it less than unity 

during the identification process, the algorithm will never diverge. 

Remark 6.2: So far, we have not found any counter-example where g[M-1 a~D(F)] ~ 1 if 

u; is known. However, it should be noted that as shown in the numerical example in this 

chapter, in some 'rare' cases where the noise levels are extremely high, with the estimate 

of a~, we may have g[M-1&~(N)D(F)] ~ 1 during the whole identification process, and in 

these cases, we have to give up the bias compensation procedure. A simple way is to set 

a~(N) to zero if g(M- 1 &~(N)D(F)] ~ 1. A strict convergency analysis of the BCIV method 

Is not available. However, simulations show the BCIV estimates converge to their true values 

in 'most cases if the noises are not extremely high. 

Remark 6.3: Notice that equation (6.25) may be written as 

Bnciv(N) =[I- N&~(N)P(N)D(F)]- 1 0Iv(N) (6.31) 

if [I- Na~P(N)D(F)]- 1 exists. This means that the consistent estimate can be obtained 

by solving a set of simultaneous linear equations. This method is similar to the bias com

pensation procedure investigated by James, Souter and Dixson (1972), Stoica (1980), Stoica 

and Soderstrom (1982) by simulations and theoritical analysis. And it was pointed by Stoica 

(1980) that this method is not always globally convergent and may explode. Although our 

simulations show that the results of algorithms ( 6. 30) and ( 6. 31) are not significantly different 

in typical cases, we will restrict our discussions on procedure (6.30) instead of (6.31), since 

in the presence of extremely high noises, we have observed that ( 6.31) can easily explode. 
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6.5 Estimation of o-; 

The BCIV method requires the estimate of a;. We will show the method to find a;. It 

is a good idea to utilize the information of the equation error r(k), and the residual of the 

IV estimate r(k). The residual f(k) is given by 

Using equation (6.7), we have 

Using equation (6.33), we have 

ks+N 

f(N) = · 2: r(k)f(k -l) 
k=ks+l 

ks+N 

:E r(k) { zT(k -l)[B- Biv(N)] + r(k -l) } 
k=ks+l 

ks+N ks+N 

2: zT(k -l)r(k) [8- Biv(N)] + :E r(k)r(k -l) 
k=ks+l k=ks+l 

Hence, we have 

plim N
1 

f(N) - E[r(k)f(k -l)] 
N-+oo 

- E[zT(k -l)r(k)][8- B1v(N)] + E[r(k)r(k -l)] 

(6.32) 

(6.33) 

(6.34) 

- E[-zyT(k -l)r(k),zwT(k -l)r(k)] [8- B1v(N)] + E[r(k)r(k -l)] 

- E[zwT(k -l)r(k)][b- b1v(N)] + E[r(k)r(k -l)] 

MA+n-1 

- -hv(b)[b- biv(N)]a; + :E ,Bi(b),Bi+t(b)a; 
j=O 

where 
MA+n-l 

hv(b) = [hj'(b ), "·, h~ (b)], kf(b) = L Jj,Bj+t(b) 
j=O 

and /3i is defined in equation (6.22). 

Consequently, the estimate of the unknown variance a~ is given as 

1 ks+N 

N :E r(k)r(k -l) 

<r;(N) k=ks+l 

(6.35) 

(6.36) 

(6.37) 
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where 
r(k) 

f(k -l) 

T -. 
- ~Aoy(k)- z (k)8Bciv(N- 1) 

- ~Aoy(k -l)- zT(k -l)Biv(N) 

6.6 Implementation of the algorithm 
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(6 .38) 

This section describes the implementation techniques of the proposed method. Both 

the off-line and on-line algorithms are described. Based on the discussions in the previous 

sections, we can establish the following off-line iterative procedure: 

1: Determine the pre-filter 1/A' (a~c~~(N), z-1
) where i = 1, 2, ···and a~biv(N) are given 

by an appropriate guess. 

--( i) 
2: Calculate the IV estimate (}IV ( N): 

[ ] 

-1 [ ] 
( .) ks+N ks+N 

e;v(N) = E m(k)zT(k) . E m(k)~Aoy(k) 
k=ks+1 k=ks+ 1 

(6.39) 

3: Estimate the input noise variance: 

1 ks+N 

N E r(k)r(k -l) 
k=ks+1 

(6.40) 

r(k) 

r(k -z) 

where iJ~biv(N) is replaced by B~~(N). 

4: Compensate the bias of the IV estimate iJ~i~ ( N): 

O(i) (N) - O(i) (N) + N--2(i)(N)PCi)(N)DF (--(i-1) (N)) O(i-
1

) (N) 
BCIV - IV (Jv aBCIV BCIV (6.41) 

--(0) --(1) 
where 9 BCIV ( N) is replaced by (}IV ( N). 

5: Increase the iteration number i and return to 1 untill convergence. 

Obviously, the above off-line procedure requires a great amount of computational bur

den and is hence not practical. Usually, the rec~rsive on-line identification algorithms have 
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contrastively a small requirement of primary memory since only a modest amount of in

formation is stored. Considering the practical applications, it is still necessary to derive 

an on-line version of the above off-line estimation procedure. Many recursive identification 

methods are derived as 8:pproximations of off-line methods. It may therefore happen that the 

price paid for the approximation is a reduction in accuracy. For long data records, however, 

the statistical efficiency will approach that of the off-line algorithm (Young and Jakeman 

1979, Ljung and Soderstrom 1983, Soderstrom and Stoica 1989) and hence the difference is 

not significant. 

The approximated recursive BCIV algorithm is described as follows. 

1: Determine the pre-filter 1/A' (a.Bciv(N), z-1
) as mentioned above, for N = 1, 2, · · ·: 

{ 

a(N) = a(O) N ~ N0 
(6.42) 

a(N) = (1- J-L)a(N- 1) + J-LaBc(N- d) N >No 

where J-l and d can be chosen to be 

J-l 0.05 
(6.43) 

d - 10 

2: Calculate the IV estimate 01v(N): 

fhv(N) = Biv(N- 1) + L(N)[~AFoy(ks + N)- zT(ks + N)Biv(N- 1)] 

L(N) _ P(N- 1)m(ks + N) 
-:- p(N) + zT(ks + N)P(N- 1)m(ks + N) (6.44) 

P(N) = _1_ [P(N _ 1) _ P(N- 1)m(ks + N)zT(ks + N)P(N- 1)] 
p(N) . p(N) + zT(ks + N)P(N- 1)m(ks + N) 

where p( N) is the forgetting factor. A typical choice of the forgetting factor is given 

as 

p(N) = (1- 0.01)p(N- 1) + 0.01, p(ks) = 0.95 (6.45) 

3: Estimate the input noise variance cr; and monitor the stability for N > N0 : 

~f(N) 
(6.46) -

hv (f>Bciv(N- 1)) biv(N) 

and 

l a;(N) = a;'(N) if {} [N PB(N)a;'(N)DF (a.Bciv(N))] < 1 
(6.47) 

a;(N) = 0 if Q[NPB(N)a;'(N)DF (aBciv(N))] ~ 1 
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where 

f(N) = 
ks+N 

L: [~Aoy(k)- zT(k)Bnciv(N- 1)][~Aoy(k -l)- zT(k -l)Oiv(N)] N =No 
k=ks+l 

f(N) = f(N- 1) + f(N)r(N -l) 

and 
f(N) 

r(N -Z) 

T ...... 
- ~Aoy(ks + N)- z (ks + N)fJBciv(N- 1) 

T ...... 
- ~Aoy(ks + N -l)- z (ks + N -l)fJ Iv(N) 

4: Compensate the bias of the IV estimate 01v(N): 

N>No 
(6.48) 

(6.49) 

{ 

~BC'Iv(N) = ihv(N) N::; No 

Bnciv(N) = Oiv(N) + Na~(N)P(N)DF (aBciv(N)) OBciv(N- 1) N >No 
(6.50) 

5: Increase the recursion number N and return to 1 untill convergence. 

Remark 6.4: Due to the adaptions of the pre-filter and the small initial value of the for

getting factor, the IV estimate 01v(N) may change roughly during the beginning recursions 

(Sagara, Yang and Wada 1991c ). Hence it is nonsense to start the BCIV algorihm together 

with the IV algorithm. It is often a practical policy to delay the start of the BCIV algorithm 

by No+ 1 recursions. To the experience, N0 = 100 rv 500 are reasonable when the system 

signals are corrupted by high measurement noises. 

Remark 6.5: As mentioned previously, it is necessary to monitor the stability of the al

gorithm and contract the estimates within the stable region. The simplest way of this 

modification is to keep the estimates in the stable region during the recursions, as described 

in equation (6.47). This means that when instabilty of the algorithm is detected, we have 

to avoid the bias compensation procedure by setting a~(N) to zero. Experience shows that 

the zero setting as shown in equation ( 6.4 7) typically takes place at only few samples in the 

beginng recursions. The information loss by ignoring certain samples, as in equation (6.47) 

is therefore moderate. 
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6.7 Illustrative examples 

To illustrate the effectiveness of the proposed estimation algorithm, we consider a second

order system described by 

( 6.51) 
a1 = 3.0, a2 = 4.0, b1 = 0.0, b2 = 4.0 

· The input u(t) is the output of a second-order continuous-time Butterworth input filter 

driven by a stationary random signal ((t): 

u(t) = L(p)((t) = (pfwc) 2 + .h(pfwc) + 1 ((t), We= 4.0 (6.52) 

Simulation experiments are carried out when the sampling interval is taken to beT= 0.04, 

and in this case, au = 2.38, ax = 0.69. 

The on-line recursive algorithm is applied in the simulation experiments. The bias com

pensation procedure is performed when N > ks + N0 = ks + 100, and the pre-filter QIA(z-1) 

is initialized as 

(6.53) 

ao = 1.0, a1 = 11.0, a2 = 10.0 

Example 6.1: Effects of the values of land MA. 

The effects of the delay parameter l of the delayed filtered outputs in the instrumental 

variables, and the order MA of the FIR filter QFA(z-1) which approximates the pre-filter 

· 1/A'(z-1) are first investigated. To take comparison of the BCIV method with the BCLS 

method described in chapter 5, we first perform the simulation experiments under the same 

conditions as given in chapter 5. The input and output noises are assumed to be white: 

y(k) - x(k)+e(k) 
(6.54) 

w(k) u(k) + v(k) 

and the noise variances are given as 

ae = 0.17 av = 0.60 (6.55) 

Which let N /S ratio(NSR)= ae/ ax ~ av/ au ~ 25%. 
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Table 6.1: Estimates for different values of l (MA =50). 

II z = 1 II z = 2 II z = 4 II z = 8 II z = 12 

auv 2.5626 2.6146 2.7045 2.8235 2.8899 
(3.0) ±0.0618 ±0.0621 ±0.0670 ±0.0751 ±0.0857 

auv 3.5073 3.5539 3.6376 3.7570 3.8291 
(4.0) ±0.0615 ±0.0595 ±0.0601 ±0.0621 ±0.0704 

buv 0.0921 0.0839 0.0695 0.0488 0.0365 

(o .. o) ±0.0111 ±0.0109 ±0.0113 ±0.0121 ±0.0136 

buv 3.4117 3.4689 3.5689 3.7047 3.7832 
(4.0) ±0.0589 ±0.0580 ±0.0608 ±0.0638 ±0.0797 

alEC 3.0396 3.0324 3.0245 3.0215 3.0178 
. (3.0) ±0.0747 ±0.0673 ±0.0756 ±0.0818 ±0.0938 

a2BC 4.0414 4.0328 4.0233 4.0204 4.0149 
(4.0) ±0.0695 ±0.0604 ±0.0668 ±0.0676 ±0.0798 

blBC 0.0003 0.0016 0.0033 0.0038 0.0047 
(0.0) ±0.0121 ±0.0110 ±0.0117 ±0.0124 ±0.0148 

b2BC 4.0655 4.0567 4.0464 4.0438 4.0368 
(4.0) ±0.0707 ±0.0610 ±0.0677 ±0.0767 ±0.0912 
(jv 0.5924 0.5904 0.5897 0.5939 0.5892 
(0.60) ±0.0298 ±0.0285 ±0.0259 ±0.0300 ±0.0301 

l\IIOII1v 0.8880 0.7979 0.6398 0.4240 0.2994 

l\IIOIIBc 0.0870 0.0731 0.0575 0.0519 0.0438 

CJeiv 0.0483 0.0476 0.0498 0.0542 0.0623 

CJOBC 0.0567 0.0499 0.0555 0.0589 0.0699 
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Table 6.2: Estimates for different values of MA (l = 8). 

II MA = 20 II MA = 30 II MA = 40 II MA =50 II MA = 60 II MA = 100 I. 
a1BC 3.1007 3.0393 3.0240 3.0211 3.0208 3.0208 

(3.0) ±0.0877 ±0.0824 ±0.0814 ±0.0812 ±0.0811 ±0.0811 

a2BC 4.1274 4.0442 4.0239 4.0201 4.0198 4.0198 

(4.0) ±0.0754 ±0.0679 ±0.0667 ±0.0665 ±0.0664 ±0.0665 
-blBC -0.0170 -0.0005 0.0030 0.0037 0.0037 0.0037 

(0.0) ±0.0162 ±0.0133 ±0.0127 ±0.0126 ±0.0126 ±0.0126 

b2BC 4.1771 4.0736 4.0478 4.0429 4.0424 4.0425 

(4.0) ±0.0860 ±0.0786 ±0.0780 ±0.0755 ±0.0753 ±0.0754 

Uv 0.8236 0.6430 0.6012 0.5939 0.5935 0.5957 
(0.60) ±0.0394 ±0.0321 ±0.0303 ±0.0300 ±0.0301 ±0.0300 

L\IIBIIBc 0.2409 0.0941 0.0587 0.0519 0.0514 0.0514 

CJoBC 0.0663 0.0603 0.0592 0.0589 0.0589 0.0589 

We have shown that due to the considerable high noises described above, the conventional 

LS estimates are greatly biased, and in this case the BCLS method gives very accurate 

estimates. 

The results for different values of l and MA are shown in Table 6.1 and Table 6.2 re

spectively. It is clear from Table 6.1, that the IV estimates are greatly biased as pointed 

out through theoretical analysis in section 6.3. In contrast, the BCIV estimates are quite 

accurate. Furthermore, it seems that the efficiency of the BCIV estimates is comparable 

to that of the BCLS estimates in the presence of white noises. It should be noted that 

in this case, when the delay parameter l ~ 1, the BCIV estimates are consistent accord

ing to the theoretical analysis in section 6.3. However, during the estimation process, the 

pre-filter 1/ A'(z-1) is constru.cted adaptively by the BCIV estimates, and any error of the 

BCIV estimates may make the IV vector m(k) be slightly correlated with the output noise 

e(k). These possible correlations can be reduced by taking a considerable large l(l 2:: 4), 

and hence the BCIV estimates are more accurate than in the case of small l(l ~ 2). How

ever, an unnecessarily large l should be avoided, since a large l may destroy the existence 

of_P(N) = [L:~~t:+ 1 m(k)zT(k)]-1 (Soderstrom and Stoica 1981) and hence may make the 

algorithm very sensitive or even unstable. It seems that selection of an appropriate l is not 

a difficult task since the results are not sensitive to l. 

Table 6.2 shows that the estimation error of the BCIV estimates decreases when the order 
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Table 6.3: Estimates for different noise levels(MA = 50,1 = 12). 

I NSR II 40% II 50% II 60% II 80% II 100% 

allv 2.7290 2.6168 2.5058 2.2313 1.9929 
(3.0) ±0.1280 ±0.1419 ±0.1412 ±0.2527 ±0.3225 

auv 3.5864 3.4250 3.2617 2.8344 2.4778 
(4.0) ±0.1006 ±0.1347 ±0.1414 ±0.2522 ±0.3401 

b11v 0.0772 0.1035 0.1250 0.1856 0.2232 
(0.0) ±0.0207 ±0.0272 ±0.0792 ±0.0550 ±0.0712 

b21V 3.4579 3.2200 2.9797 2.4146 1.9303 
(4.0) ±0.1081 ±0.1286 ±0.1245 ±0.2579 ±0.3011 

a1BC 3.0167 3.0330 3.0503 2.9469 2.8118 
(3.0) ±0.1460 ±0.1952 ±0.2007 ±0.4703 ±0.7634 

a2BC 4.0031 4.0258 4.0459 3.8522 3.6294 
(4.0) ±0.1234 ±0.1960 ±0.1900 ±0.5245 ±0.9437 

b1BC 0.0082 0.0072 0.0035 0.0408 0.0766 
(0.0) ±0.0245 ±0.0369 ±0.0372 ±0.10045 ±0.1561 

b2iJc 4.0299 4.0522 4.0778 3.8483 3.5844 
(4.0) . ±0.1445 ±0.2168 ±0.2178 ±0.7001 ±1.1982 

av 0.96 1.20 1.44 1.92 2.40 

av 0.9312 1.1608 1.3916 1.7719 1.9464 
±0.0553 ±0.0726 ±0.0851 ±0.4340 ±0.8735 

~IIOII1v 0.7378 1.0472 1.3586 2.1207 2.7686 

~IIOIIsc 0.0353 0.0673 0.1035 0.2222 0.5928 

CJ()JV 0.0875 0.1081 0.1091 0.2045 0.2587 

CJ()BC 0.1096 0.1612 0.1615 0.4488 0.7653 

MA of the FIR filter QFA(z-1) defined in equation (6.18) increases. This is due to the fact 

that, in general, the FIR filter QFA(z-1) becomes a better approximation of the pre-filter 

1/A'(z-1
) as the order increases. A large MA, however, also increases the computation and 

storage requirement. The results in Table 6.2 show that for the system under study, when 

MA exceeds about 40, the estimates do not vary significantly, therefore it is not necessary 

to choose too large an M A. 

Example 6.2: Parameter estimates in the presence of extremely high noises. 

To investigate the performance of the BCIV method in the presence of high noises, 

some simulation experiments are performed for different values of NSR. The results are 
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Table 6.4: Estimates under correlated output noise(NSR~ 25%, MA = 50). 

II z = 1 II z = 8 II z = 10 II z = 12 

allv 2.6036 2.8327 2.8692 2.8951 
(3.0) ±0.0748 ±0.0766 ±0.0814 ±0.0860 

liuv 3.59.43 3.7700 3.8091 3.8373 
(4.0) ±0.0692 ±0.0655 ±0.0685 ±0.0735 

b11v 0.0703 0.0469 0.0403 0.0355 

(0.0) ±0.0132 ±0.0145 ±0.0151 ±0.0159 

buv 3.4944 3.7171 3.7600 3.7910 
(4.0) ±0.0733 ±0.0671 ±0.0703 ±0.0781 

(ilBC 4.1379 3.0222 3.0197 3.0182 

(3.0) ±0.1976 ±0.0839 ±0.0922 ±0.0965 

ll2BC 5.2572 4.0234 4.0915 4.0167 
(4.0) ±0.1833 ±0.0733 ±0.0818 ±0.0850 

b1BC -0.1991 0.0034 0.0043 0.0048 

(0.0) ±0.0257 ±0.0155 ±0.0166 ±0.0172 

b2BC 5.5878 4.0442 4.0390 4.0365 

(4.0) ±0.2345 ±0.0762 ±0.0888 ±0.0932 

(jv 0.9989 0.5900 0.5836 0.5820 

(0.60) ±0.0213 ±0.0348 ±0.0351 ±0.0326 

~IIBIIIv 0.7631 0.4038 0.3358 0.2871 

~IIOIInc 2.3413 0.0548 0.0481 0.0443 

ClOJV 0.0578 0.0557 0.0583 0.0634 

uonc 0.1603 0.0622 0.0699 0.0730 

shown in Table 6.3. It is clear from Table 6.3 that in the presence of high noises, the IV 

estimates are not acceptable at all due to the great effects of the noises. However, when the 

noises are not extremely high (NSR~ 60%), the BCIV estimates still converge to their true 

values. Unfortunately, when NSR exceed 80%, even the BCIV estimates are not satisfactory. 

Especially when NSR= 100%, we have observed that some realizations of the BCIV estimates 

fail to converge, if we do not monitor the stability of the algorithm and contract the estimates 

within the stable region as described previously. It should, however, be stressed that this 

fact by no means implies that the BCIV method is useless, since practically the situations 

where NSR of both the input and output noises exceed 80% are 'rare'. Rather, it means it is 

important to monitor the stability of the algorithm during the identification process in the 

Presence of very high noises. 
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Figure 6.1: Parameter estimates under correlated noise (NSR~ 40%, l = 8). 



Identincation using BCIV method 128 

Table 6.5: Estimates under correlated output noise(NSR~ 40%, MA = 50) . 

II z = 1 II z = 8 II z = 10 II z = 12 1 
allv 2.2741 2.6353 2.7025 2.7504 
(3.0) ±1.2253 ±0.1064 ±0.1135 ±0.1156 

auv 2.9843 3.4961 3.5678 3.6203 
(4.0) ±1.0835 ±0.1031 ±0.1051 ±0.1068 

bllv 0.2107 0.0929 0.0805 0.0714 
(0.0) ±0.1777 ±0.0240 ±0.0236 ±0.0232 

buv 2.7936 3.3546 3.4302 3.4859 
(4.0) ±1.2576 ±0.0941 ±0.0998 ±0.1007 

alBC 6.3674 3.0408 3.0309 3.0272 
(3.0) ±9.5672 ±0.1354 ±0.1505 ±0.1515 

a2BC 7.5261 4.0410 4.0285 4.0237 
(4.0) ±10.2896 ±0.1334 ±0.1442 ±0.1393 

b1BC -0.4535 0.0024 0.0044 0.0048 
(0.0) ±1.5415 ±0.0281 ±0.0281 ±0.0274 

b2BC 8.3185 4.0688 4.0502 4.0461 
(4.0) ±12.2363 ±0.1395 ±0.1582 ±0.1574 
(jv 0.7025 0.9405 0.9260 0.9249 
(0.96) ±0.9664 ±0.0549 ±0.0547 ±0.0546 

~II9IIIv 1.7488 0.9012 0.7788 0.6898 

~II9IIBc 6.5276 0.0900 0.0656 0.0588 

CJOIV 0.9360 0.0819 0.0855 0.0866 

CJOBC 8.4087 0.1091 0~1202 0.1189 
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Example 6.3: Parameter estimates when the output noise is correlated. 

The effects of the correlations of the output noise are investigated. The measurements 

of the input ·and output signals are given as 

y(k) - x(k) + C(z-1 )e(k) 
(6.56) 

w(k) u(k) + v(k) 

where C(z-1) is 

(6.57) 

and can be approximated by an MA process model with finite order r: 

C(z-1) ~ 1 + 0.5z-1 + 0.52 z-2 + 0.53 z-3 + · · · + 0.5r z-r 

~ 1 + 0.5z-1 + 0.25z-2 + 0.125z-3 + 0.0625z-4 + 0.03125z-5 + 0.015625z-6 

(6.58) 

Although in section 6.2 it is assumed that C(z-1) is an MA process with finite length r, to 

show that the proposed method is still efficient even when C( z-1) is an stable AR process 

which can be approximated by an MA process with finite length, we choose C(z-1) as 

eq.uation (6.57) for simulation study. Therefore, for delay parameter l > r = 6, we may 

expect the BCIV estimates to be consistent. However, it might be noted that the BCLS 

method does not give consistent estimates when the output noise is correlated. 

Simulation experiments are performed for two different noise levels: 

(i) ae = 0.15, av = 0.60, NSR ~ 25% 

(ii) ae = 0.24, av = 0.96, NSR ~ 40% 
(6.59) 

The results for the two different noise levels are shown in Table 6.4 and Table 6.5 re~pec

tively. From Tables 6.4~"-~6.5, we know that if we neglect the correlations of the output noise 

and hence let l = 1, the BCIV estimates are greatly biased. Therefore it is dangerous to use 

the bias compensating techniques when the correlations of the output noise are neglected. 

However, for large values of l = 8, 10, 12, i.e. l > r, the BCIV estimates are very accurate. 

To show the convergency properties of the BCIV algorithm, the associated estimates of one 

example where NSR~ 40% are plotted in Figure 6.1. As will be seen from the figures, the 

BCIV estimates are much more accurate than the IV estimates, however in the presence of 

very high noises the BCIV estimates require long samples to ensure convergence. Addition

ally, it is found that the estimate of the standard deviation CJv of the input noise approaches 

th~ true value very quickly. 
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6.8 Conclusion 

In this chapter, a new method has been proposed for identification of continuous systems 

in. the case where the discrete input measurement is corrupted by a white noise and the 

discrete output measurement is corrupted by a noise which may be coloured. 

The continuous system is identified through the approximated discrete-time estimation 

model with continuous system parameters involving adaptive IIR filters. The adaptive IIR 

filter is introduced to attempt to filter off unwanted high frequency components of the noises 

and also to let the output noise remain in its original form in the equation error. 

Then a BCIV method is proposed to obtain consistent estimates. The effects of the 

output noise are avoided by introducing an IV method with filtered inputs and dei'ayed 

filtered outputs as instrumental variables, while the bias of the IV estimate due to the input 

noise is compensated with the estimated variance of the input noise. The proposed method 

does not require the assumption that the output noise is white and is hence more practical. 

The approximated recursive version of the proposed method is also described in detail. 

And it is pointed out that the proposed algorithm is stable under weak conditions. 

The proposed recursive identification algorithm is easy to implement on digital computers 

and numerical examples show that the proposed recursive identification algorithm is quite 

efficient even in the presence of high input-output noises. 
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Chapt~r 7 

Parameter Identification of 
Distributed Parameter Systems in 
the Presence of Measurement Noise 

7.1 Introduction 

131 

In practical situations, we often come across dynamical systems described by partial dif

ferential equations. Therefore identification of distributed parameter systems (DPSs) is very 

important in practice. Applications of orthogonal functions in the field of DPS identifica

tion are studied by several researchers such as double general orthogonal polynomials (Lee 

and Chang 1986), Laguerre polynomials (Ranganathan, Jha and Rajamani 1984,1986,1987), 

Chebyshev series (Horng, Chou and Tsai 1986), Walsh functions (Sinha, Rajamani and Sinha 

1980), block-pul~e functions (Hsu and Cheng 1982, Jiang Ning and Jiang Jiang 1988), La

guerre operational matrices ( Jha and Zaman 1985) and shifted Legendre polynomials (Mohan 

and Datta 1987) etc. A unified approach of these methods was given by Mohan and Datta 

(1991). These approaches first derive some operational matrices for double integrations from 

the orthogonal functions, then the partial differential equation which characterizes the dy

namics of the DPS under study is converted into a set of over-determined linear algebraic 

equations by the operational matrices. Therefore if the input-output data can be observed, 

the unknown parameters can be estimated directly by the LS algorithm without using direct 

partial differentiations which may accentuate the measurement noise. However, the dimen

sions of these operational matrices may grow drastically according to the number of observed 

data, thus these algorithms are not suitable for on-line processing. With these methods, it 

is also difficult to consider the consistency problem in the presence of stochastic measure-
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ment noise. Furthermore, with the orthogonal function expansion approaches, the initial and 

boundary conditions should be estimated as unknown parameters. Since much more param

eters including those concerning the initial and boundary conditions are estimated by the LS 

type algorithms, it should be careful to choose the input signals to obtain unique solution 

to the parameter estimation problem. Hara, Yamamoto and Ougita (1988) also proposed a 

direct method for identification of DPSs. In their method, the noise contaminated observed 

data are smoothed by splines to get an approximation function of the real output before 

the parameters are identified. However, although their method can avoid treatment of the 

in~tial and boundary conditions, the smoothing procedure requires complex calculations and 

should be implemented in a batch manner. Although the integration operational matrices 

using orthogonal functions or the smoothing procedure using splines are introduced to re

duce the noise effects, the consistency problem, that is whether these estimation methods 

can give consistent estimates in the presence of high noise were not discussed. 

In this chapter, the problem of direct parameter identification of a second-order DPS is 

discussed under unknown initial condition and boundary condition, when input and noise 

corrupted output are available at a finite number of discrete points equidistantly located 

in the space domain. A two-dimensional low-pass filter which is designed in continuous 

time-space domain is introduced to reduce the effects of measurement noise. A class of two

dimensional low-pass IIR filters is then obtained by discretizing the designed low-pass filter 

via the bilinear transformation. Thus a discrete estimation model of the DPS under study 

is constructed with filtered input-output data for recursive on-line identification algorithms. 

The main advantage of this discrete estimation model is that the parameter identification 

procedure does not treat any initial and boundary conditions and thus the identification 

algorithm can be implemented in an on-line manner. If the pass-band of the filter is designed 

appropriately, the noise effects can be reduced and therefore accurate estimates can be 

obtained by the LS method. It is shown by simulation that the estimates are not sensitive 

to· the selection of the filter parameters in some cases. When the filter is not designed 

appropriately, o~ when the output is corrupted· by high noise, the LS method cannot give 

unbiased estimates. In these cases, we consider a recursive IV method with filtered input data 

as instrumental variables. No restrictions about specific types of the stochastic properties 

of measurement noise are imposed. Theoretical analysis shows that the IV method gives 

consistent estimates. Simulation results show that the IV method is quite efficient when the 

output data is corrupted by high noise or the filter parameters are not selected successfully. 
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7.2 Estimation model 

Consider the following second-order partial differential equation (Mohan and Datta 1987, 

Hara, Yamamoto and Ougita 1988): 

82y(x, t) a2y(x, t) a2y(x, t) ay(x, t) ay(x, t) ( t) - ( t) 
C1 8t2 +c2 axat +c3 ax2 +c4 at +cs ax +c6y X, -U X, 

( t ;?: 0, 0 :::; X :::; L) 
(7.1) 

where u(x, t), y(x, t) and ci(i = 1, · · ·, 6) denote the system input, real system output and 

the unknown parameters respectively. 

The time sampling instants for the system signals are assumed to be 

t = NsT, (Ns + 1)T, · · · ,nT, · · ·, NpT 

where T is the time sampling interval and Ns, Np are natural numbers. And for each 

time sampling instant, the system signals are available at a finite number of .equidistant 

observation points in the space domain located at 

where X is the spatial observation interval and ML, MR are natural numbers. 

Practically, the output is corrupted by a measurement noise. Denoting y( mX, nT) as 

y(m, n) for convenience of notation, the noisy output observation vector is defined to be 

z(n) = y(n) + v(n) 

z(n) = [z(ML, n), z(ML + 1, n), · · ·, z(m, n), · · ·, z(MR, n)]T 

y(n) = (y(ML, n), y(ML + 1, n), · · ·, y(m, n), · · ·, y(MR, n)]T 

v(n) = [v(ML, n), v(ML + 1, n), · · ·, v(m, n), · · ·, v(MR, n)]T 

(7.2) 

· Considering the practical situations, the restrictions about the stochastic properties of 

noise process v~ctor v( n) should be as mild as possible. Here we only assume that the 

noise vector is uncorrelated with the input and is a widely stationary stochastic process with 

zero-mean, i.e. 

E[v(n)] = 0 (7.3) 

Since partial differential operations may accentuate the measurement noise, lt is critical 

to avoid using direct approximations of the partial differentiations from the discrete observed 
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input-output data. A lot of efforts have been made to this problem. The methods using 

operational properties of orthogonal functions have been studied by several authors in recent 

years. However, the unknown initial and boundary conditions should also be estimated as 

unknown parameters and thus the number of the parameters to be estimated may increase 

drastically according to the number of the observed data. Therefore these methods are not 

convenient and not suitable for recursive on-line identification. Instead of taking double 

integrations by orthogonal functions, we introduce the following two-dimensional filter to 

remove the direct partial differentiations: 

(7.4) 

where 71,72 are space constant and time constant, and p1,p2 denote the partial differential 

operators: 
a 

P1 ==ax 
a 

P2 == at 
(7.5) 

Multiplying both sides of the partial differential equation (7.1) by the two-dimensional filter 

leads to 

c1 F2o(P1,P2) y(x, t) + c2 Fn(P1,P2) y(x, t) + c3 Fo2(P1,P2) y(x, t) + c4 F21(P1,p2) y(x, t)+ 

cs F12(P1,p2) y(x, t) + C6 F22(P1,p2) y(x, t) == F22(P1,p2) u(x, t) 
(7.6) 

where 

i,j==0,1,2 (7.7) 

It is known that the partial differential operator p1 , p2 can be replaced by the bilinear 

transformation as 
2 1- z11 

P1 ==X 1 + Z11 

2 1- z21 

P2 == T 1 + Z21 

w~ere z1\ z21 are the shift operators which let 

(7.8) 

(7.9) 

The filters in equation (7.6) can be discretized into two-dimensional IIR digital filters by the 

bilinear transformation: 

. (X)i (1- Z!1?-i(1 + Z!l)i (T)j (1- Z21?-i(1 + Z21)j 
F' ( -1 -1) - 2 2 ( 7 10) 

ii z1 'z2 - X X }2 ( T (T }2 . 
{ (rt+ 2) + ( 2- r1) z\1 { Td 2) + 2 - r2) z;-1 



parameter identification of distributed parameter systems 135 

Hence we have the discrete estimation model from equation (7.6): 

c1 ~2oy(m, n) + c2~11y(m, n) + c3~o2y(m, n) + c4~21y(m, n) + cs~12y(m, n) + C6~22y(m, n) 

== 62u(m, n) 

where ~ijy(m, n), ~iju(m, n) are the outputs of the two-dimensional filters: 

~iiy(m, n) = F;i(z1 1
, z21 )y(m, n) 

~iju(m, n) = F;i(z!1
, z21 )u(m, n) 

(7.11) 

(7.12) 

Substituting the observations of equation (7.2) into the discrete estimation model, we have 

c16oz(m, n) + c2~11z(m, n) + C3~02z (m, n) + C4~21z(m, n) + Cs~12z(m, n) + C6~22z(m, n) 

= ~22u(m, n) + w(m, n) 
(7.13) 

where 

(7.14) 

and the noise term w(m, n) is 

w(m,n) = 

c1~2ov(m, n) + c2~11v(m, n) + C3~02v(m, n) + c4~21v(m, n) + Cs~12v(m, n) + c6~22v(m, n) 

(7.15) 

where rii, qii are the resulting coefficients and 

(7.16) 

7.3 Estimation methods 

The discrete estimation model can be written in vector form: 

62u(m, n) - cpT(m, n)fJ- w(m, n) 

({)T(m, n) - [~2oz(m, n), ~uz(m, n), ~02z(m, n), ~21z(m, n), ~12z(m, n), ~22z(m, n)] (7.17) 
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· For computing the filters' outputs on digital filters, we may set the boundary values and 

the initial values of the filters to be zero, i.e. 

~ijz(ML, n) - 0, ~iiu(ML, n) - 0 
(7.18) 

~iiz(ML + 1, n) - 0, ~iju(ML + 1, n) - 0 

and 
~ijz(m, Ns) 0, ~iju(m, Ns) - 0 

~iiz(m, Ns + 1) 0, ~iju(m, Ns + 1) 0 
(7.19) 

-

Therefore the outputs of the filters can be computed out using the observed input-output 

data respectively for t ~ NsT + 2, x ~ MLX + 2. Then using the outputs of the two

dimensional filters for 

t = (Ns + 3)T, (Ns + 4)T, .. ·, nT, NFT 

and 

x = (ML + 3)X, (ML + 4)X, · · ·, mX, · · ·, MnX 

the system parameters can be estimated directly by the LS method: 

(7.20) 

If the filter parameters. are selected appropriately, the effects of the measurement noise 

are reduced and thus the LS method can give accurate estimates in the presence of low 

measurement noise. It will be shown by simulation results that the parameter estimates are 

not sensitive to the selection of the filter parameters. 

When the observed data is corrupted by high measurement noise, or the filter parameters 

are not correctly selected since little a priori knowledge of the unknown systems can be 

obtained, the LS method will give biased estimates due to the measurement noise effects. 

To obtain consistent estimates in these cases, we can introduce an IV vector m( m, n) which 

includes elements chosen to be highly correlated with the real system output, but totally 

uncorrelated with the measurement noise added to the real system output (Soderstrom and 

Stoica 1981). For the estimation model of equation (7.17), since the vector <p(m, n) includes 

only filtered noisy observations of the system output, we can use filtered input data to 

construct the IV vector as 

mT(m, n) = [~2ou(m, n), ~nu(m, n), ~02u(m, n), ~21u(m, n), ~12u(m, n), ~22u(m, n)] (7.21) 
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where ~iju(m, n) is defined in equation (7.12). 

If 
1 NF MR 

plim · N (N ) L L m(m,n)cpT(m,n) 
NF-HX) F - S + 2 n=Ns+3 m=ML+3 

exists and is nonsingular, we have the following IV estimate (Soderstrom and Stoica 1981): 

(7.22) 

Using equation (7.17) we have 

plim 8 
Np--+oo 

[ 
1 NF MR ] 

plimN-(N 
2

) L L m(m,n){cpT(m,n)fJ-w(m,n)} 
NF-+oo F S + n=Ns+3 m=ML+3 

[ 

1 NF MR ] -l 

- fJ- plim N _ (N 
2

) L L m(m,n)cpT(m,n) . 
NF-+00 F S + n=Ns+3 m=ML+3 

[ 
1 NF MR ] 

plim N _ (N 2) L L m(m,n)w(m,n) 
NF-+oo F S + n=Ns+3 m=ML+3 

(7.23) 

It is known that' if 

1 NF MR 

plim N -(N 2) L L m(m,n)w(m,n)==O (7.24) 
NF-+oo F S + n=Ns+3 m=ML+3 

the IV method gives a consistent estimate (Soderstrom and Stoica 1981 ). 

From equation (7.15) we have 

Since the noise vector v(n) == [v(ML, n), v(ML+l, n), · · ·, v(m, n), · · ·, v(MR, n)]T is assumed 

to be a widely stationary stochastic process with zero-mean, and the IV vector m(m, n) 
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Table 7.1: Estimates of c1 in Example 7.1 (true value of c1 = 1.0 ). 

r1 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.6 2.0 

f2 

0.1 0.4004 0.2465 0.1888 0.1578 0.1220 0.1019 0.0892 0.0805 0.0696 0.0631 

0.2 1.2840 0.8303 0.7153 0.6561 0.5845 0.5376 0.5043 0.4797 0.4460 0.4243 

0.3 1.5814 1.0484 0.9997 0.8965 0.8503 0.8212 0.7998 0.7835 0.7600 0.7439 

0.4 1.6255 1.0940 0.9982 0.9646 0.9343 0.9174 0.9056 0.8966 0.8838 0.8750 

0.5 1.6261 1.1049 1.0162 0.9870 0.9634 0.9518 0.9442 0.9387 0.9309 0.9257 

0.6 1.6298 1.1113 1.0248 0.9972 0.9763 0.9670 0.9612 0.9518 0.9442 0.9387 

0.7 1.6443 1.1195 1.0316 1.0039 0.9838 0.9753 0.9704 0.9672 0.9518 0.9483 

0.8 1.6692 1.1309 1.0389 1.0100 0.9898 0.9811 0.9765 0.9735 0.9698 0.9675 

0.9 1.7025 1.1457 1.0473 1.0163 0.9947 0.9859 0.9813 0.9784 0.9749 0.9728 

1.0 1.7418 1.1635 1.0570 1.0232 0.9994 0.9904 0.9856 0.9826 0.9791 0.9770 

1.2 1.8316 1.2081 1.0812 1.0397 1.0106 0.9971 0.9945 0.9906 0.9867 0.9845 
1.4 1.9268 1.2634 1.1112 1.0602 1.0238 1.0102 1.0033 0.9992 0.9944 0.9918 
1.6 2.0198 1.3282 1.1477 1.0851 1.0397 1.0227 1.0140 1.0088 1.0030 0.9998 
1.8 2.1063 1.4013 1.1908 1.1147 1.0585 1.0372 1.0264 1.0200 1.0127 1.0088 
2.0 2.1838 1.4814 1.2407 1.1493 1.0806 1.0543 1.0409 1.0320 1.0238 1.0190 

includes only filtered input signals which are uricorrelated with the measurement noise, the 

following result holds: · 

(7.26) 

Therefore the IV estimate is consistent. Mohan and Datta (1987), Hara, Yamamoto. and 

Ougita (1988) also considered the situations of the presence of measurement noise. In their 

methods, although the noise effects are reduced by multiple integrations or spline functions, 

it is still difficult to obtain consistent estimates in the presence of high measurement noise. 

Sagara and Zhao (1990) also used the IV technique combined with the two-dimensional finite 

integral filters, however the measurement noise was strictly restricted to be uncorrelated in 

time domain or in space domain. To the best of the knowledge of the authors, it is a new 

approach in the literature to introduce the filtered input data as instrumental variables to 

obtain consistent estimatess when the noise effects cannot be neglected. 



parameter identification of distributed parameter systems 139 

Table 7.2: Estimates of -c3 in Example 7.1 (true value of -c3 = 2.0 ·). 

r-- 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.6 2.0 11 

f2 

0.1 1.5070 2.2685 2.3845 2.4018 2.3923 2.3797 2.3688 2.3605 2.3490 2.3416 

0.2 1.3009 1.9989 2.1202 2.1563 2.1821 2.1927 2.1985 2.2021 2.2063 2.2086 

0.3 1.2185 1.8893 2.0014 2.0348 2.0591 2.0698 2.0763 2.0808 2.0867 2.0904 

0.4 1.2370 1.8714 1.9720 2.0009 2.0204 2.0282 2.0327 2.0356 2.0395 2.0419 

0.5 1.2370 1.8694 1.9634 1.9900 2.0071 2.0134 2.0167 2.0189 2.0216 2.0232 

0.6 1.2409 1.8669 1.9592 1.9850 2.0012 2.0069 2.0098 2.0115 2.0136 2.0149 

0.7 1.2289 1.8613 1.9553 1.9815 1.9978 2.0033 2.0060 2.0076 2.0094 2.0105 

0.8 1.2040 1.8358 1.9505 1.9780 1.9915 2.0008 2.0035 2.0051 2.0068 2.0078 

0.9 1.1692 1.8396 1.9446 1.9743 1.9926 1.9986 2.0015 2.0031 2.0049 2.0059 

1.0 1.1273 1.8240 1.9376 1.9699 1.9900 1.9965 1.9996 2.0014 2.0033 2.0043 

1.2 1.0303 1.7847 1.9199 1.9594 1.9841 1.9921 1.9964 1.9980 2.0003 2.0015 

1'.4 0.9263 1.7353 1.8973 1.9460 1.9769 1.9870 1.9917 1.9944 1.9972 1.9986 

1.6 0.8236 1.6770 1.8696 1.9295 1.9681. 1.9809 1.9868 1.9902 1.9937 1.9955 

1.8 0.7272 L6108 1.8368 1.9098 1.9576 1.9736 1.9811 1.9852 1.9897 1.9920 

2.0 0.6396 1.5380 1.7987 1.8866 1.9452 1.9650 1.9743 1.9795 1.9851 1.9879 

7.4 Illustrative examples 

The recursive identification algorithms can all be described by an algorithm of the fol-

lowing form: 

B(k) - O(k- 1) + L(k)c:(k) 

c:(k) - ~22u(m, n)- ¢T(m, n)O(k- 1) 

L(k) 
P(k -1)1/;(m,n) (7.27) 

- p(k) + ¢T(m, n)P(k- 1)1/;(m, n) 

P(k) = 1 [P(k ) P(k- 1)1/;(k)¢T(m, n)P(k- 1) ] 
p(k) -

1 
- p(k) + ¢T(m, n)P(k- 1)1/;(m, n) 

where k is the recursion number and p( k) is the forgetting factor. Here the forgetting factor 

is chosen to be 

p(k) = (1- 0.01)p(k- 1) + 0.01, p(O) = 0.95 (7.28) 
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The initial setting of the algorithm is 

0(0) - 0 

P(O) - 1061 
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(7.29) 

Now the methods under discussion will be obtained as special cases of the recursive algorithm. 

The LS method is obtained with 

¢(m, n) = ~(m, n) 

7/J(m, n) = ~(m, n) 

and the proposed IV method is obtained with 

¢(m, n) = ~(m, n) 

7/J(m, n) = m(m, n) 

(7.30) 

(7.31) 

Some illustrative examples are given here to illustrate the effectiveness of the proposed 

identification algorithms. 

Example 7.1: Effects of the pre-filters (example 1). 

The following system is considered in order to investigate the effects of the selection of 

the filter parameters ( 71 , 72) using the LS method: 

(t ~ 0, 0 ~X~ 2) 
(7.32) 

c1 = 1, c3 = .- 2 

The input and the output are 

u(x, t) - -4 (x2 + 4)cos(t) 

y(x, t) 4 x2cos(t) 
(7.33) 

The sampling intervals are taken to be 

X - 0.25 
(7.34) 

T 0.1 

The input and the output are observed at nine points: 

X= 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00 

And at each observation point the output is corrupted by a white noise with zero-mean and 

variance O";(O"x = 0.1x2 ). The results are shown in Table7.1 and Table 7.2. It is shown that 
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Table 7.3: Estimates of c1 in Example 7.2 (true value of c1 = 1.0 ). 

,..-
0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.6 2.0 T.! 

72 

0.1 0.7428 0..6926 0.6791 0.6798 0.6839 0.6868 0.6887 0.6900 0.6917 0.6927 

0.2 1.0745 0.9754 0.9597 0.9587 0.9609 0.9629 0.9644 0.9655 0.9669 0.9678 

0.3 1.1262 1.0124 0.9952 0.9936 0.9956 0.9976 0.9991 1.0002 1.0017 1.0026 

0.4 1.1511 1.0259 1.0060 1.0041 1.0062 1.0085 1.0102 1.0115 1.0131 1.0142 

0.5 1.1726 1.0371 1.0134 1.0110 1.0136 1.0163 1.0184 1.0199 1.0219 1.0232 

0.6 1.1926 1.0495 1.0209 1.0180 1.0212 1.0245 1.0270 1.0289 1.0313 1.0329 

0.7 1.2108 1.0636 1.0295 1.0260 1.0299 1.0340 1.0371 1.0393 1.0423 1.0442 

0.8 1.2266 1.0793 1.0394 1.0351 1.0400 1.0451 1.0488 1.0514 1.0550 1.0573 

0.9 1.2400 1.0962 1.0506 1.0457 1.0516 1.0576 1.0620 1.0651 1.0693 1.0719 

1.0 1.2511 1.1378 1.0630 1.0575 1.0645 1.0715 1.0765 1.0801 1.0849 1.0879 

Table 7.4: Estimates of -c3 in Example 7.2 (true value of -c3 = 1.0 ). 

rl 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.2 1.6 2.0 

T2 

0.1 0.6466 1.6165 1.7472 1.7519 1.7289 1. 7101 1.6971 1.6877 1.6755 1.6678 
0.2 0.3862 0'.9823 1.0617 1.0675 1.0574 1.0478 1.0409 1.0359 1.0293 1.0249 
0.3 0.3374 0.8998 0.9755 0.9822 0.9739 0.9654 0.9592 0.9546 0.9485 0.9446 
0.4 0.3042 0.8682 0.9489 0.9566 0.9481 0.9392 0.9327 0.9279 0.9214 0.9172 
0.5 0.2662 0.8381 0.9292 0.9381 0.9287 0.9187 0.9113 0.9058 0.8985 0.8938 
0.6 0.2663 0.8025 0.9077 0.9183 0.9073 0.8955 0.8868 0.8804 0.8719 0.8664 
0.7 0.1887 0.7610 0.8824 0.8950 0.8818 0.8678 0.8575 0.8500 0.8400 0.8336 
0.8 0.1556 0.7143 0.8530 0.8676 0.8518 0.8353 0.8232 0.8144 0.8027 0.7954 
0.9 0.1277 0.6640 0.8194 0.8362 0.8174 0.7981 0.7842 0.7741 0.7607 0.7523 
1.0 0.1047 0.6117 0.7822 0.8010 0.7791 0.7570 0. 7412 0.7298 0.7148 0.7055 ..._ 
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Table 7.5: Estimates of Example 7.3 by LS method ( 71 = 0.1, 72 = 0.1) . 

.-
0.00 0.03 0.05 0.10 0.20 0.30 0.40 0.50 cJo 

c1 0.9916 0.9701 0.9284 0.7428 0.4102 0.2345 0.1465 0.0988 

c3 -1.0209 -0.9394 -0.8527 -0.6466 -0.3468 -0.1962 -0.1217 -0.0815 

Table 7.6: Estimates of Example 7.3 by IV method ( 71 = 0.1, 72 = 0.1). 

ao 0.00 0.03 0.05 0.10 0.20 0.30 0.40 0.50 

c1 0.9916 0.9916 0.9916 0.9917 0.9918 0.9916 0.9920 0.9921 

.c3 -1.0209 -1.0210 -1.0211 -1.0212 -1.0214 -1.0217 -1.0219 -1.0222 

the LS estimates are still accurate in a relative wide range of ( 71, 72), where the noise effects 

are reduced sufficiently. It is obvious that the estimates are not sensitive to the selection of 

the filter parameters. 

Example 7.2: Effects of the pre-filters (example 2). 

Another system which was studied by Hara, Yamamoto and Ougita (1988) is also con

sidered using the LS method like Example 7.1: 

82y(x, t) 82y(x, t) - ( t) 
c1 at2 +c3 ax2 -ux, (t ~ 0, 0 ~X ~ 1) 

(7.35) 

C1 = 1, C3 = -1 

The input and the output are 

u(x, t) - -13 exp( -x)cos(1.5t)- 9.32 exp( -0.5x)cos(2.1t) 
(7.36) 

y(x, t) 4 exp( -x)cos(l.5t) + 2 exp( -0.5x)cos(2.1t) 

The sampling intervals are the same as those in Example 7.1. The input and the output 

ar~ observed at only five points: 

X= 0.00, 0.25, 0.50, 0.75, 1.00 

And at each observation point the output is corrupted by a white noise with zero-mean 

and variance a;( ax = 0.1 exp( -0.5x)). The results are shown in Table 7.3 and Table 7.4. 

It is shown that the LS estimates are still acceptable if the filter parameters are selected 

appropriately. However, it seems that the LS estimates of Example 7.2 are more sensitive 
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to the selection of the filter parameters than the results of Example 7.1. From Tables 

7Jtv7.4, we know that when the filter parameters are selected unsuccessfully, the parameter 

estimates are greatly biased. In some practical situations, we may fail to design the digital 

filters successfully, since little a priori knowledge of the unknown systems can be obtained. 

And some times, the output measurement may be corrupted by a high measurement noise. 

In these cases, the LS method is not efficient. 

Example 7.3: Comparison of the IV method with the LS method. 

The system in Example 7.2 is considered in order to compare the LS method and the 

IV method under the same situations. The filter parameters are selected to be 

ll = 0.1 

72 = 0.1 
(7.37) 

Considering the results of Example 7.2, the selection is a very bad one. At each observation 

point the output is corrupted by a white noise with zero-mean and variance a;( ax = 

a0 exp(-0.5x) ). Simulation experiments are carried out for different values of a0 . The 

results are shown in Table 7.5 and Table 7.6. It is shown that even when a bad selection 

of the filter parameters is taken, the IV method is still effective in the presence of high 

measurement noise. Therefore the IV method is quite efficient and much superior to the LS 

method. Furthermore, we can conclude that if the IV method is used, the selection of the 

filter parameters becomes to be unimportant. 
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7.5 Conclusion 

. In this paper, the two-dimensional digital IIR filtering approach to the problem of iden

tification of second-order DPSs in the presence. of measurement noise has been considered 

by the authors. 

This approach need not estimate the initial and boundary conditions in contrast to those 

using orthogonal functions. Compared with the methods using orthogonal functions, the 

methods proposed here are thought to be simpler, more convenient for on-line i~plementa

tion by digital computers. 

It has been shown that the two-dimensional IIR digital filters can reduce the effec.ts of 

the measurement noise, and therefore the LS method is still efficient if the filters parameters 

are selected appropriately. In practice, the estimates are not so sensitive to the selection of 

the filter parameters in some cases. 

An IV method with filtered input signals as instrumental variables has also been proposed 

when the filter is not designed appropriately or the output is corrupted by high noise. It 

has been shown that the IV method can give consistent estimates without restrictions about 

the stochastic properties of measurement noise. Therefore the IV method is thought to be 

suitable for practical situations. 

The proposed algorithms are expected to be applicable to on-line identification of real 

systems. 
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Chapter 8 

Implementation of Multi-Rate 
Model Reference Adaptive Control 
for Continuous-Time Systems 

8.1 Introduction 

. The two major forms of the model reference adaptive control system (MRACS) are 

continuous-time algorithms and discrete-time algorithms. The continuous-time algorithms 

are developed by generating adaptive feedback laws to let the error between the system 

output and the reference model output be zero under stability considerations, whereas the 

discrete-time algorithms are usually viewed as a combination of a parameter estimator and 

a feedback controller (Egardt 1979). Reasons for the popularity of discrete-time algorithms 

stem from rapid development and wide uses of digital computers, and also from the con

siderable flexibility in choice of both the controller and estimator. However, it is known 

that the parameters of the discrete-time models of continuous-time processes do not have 

physical interpretations and may depend on sampling interval. Furthermore, it was pointed 

by Astrom, Hagander and Sternby (1984) that for a discrete-time system sampled at a fast 

sampling rate with zero-order hold (ZOH) input, the zeros may be outside or on the unit cir

cle. Thus the discrete-time adaptive control algorithms are inappropriate in some practical 

situations. Gawthrop (1980) pointed out that the 'hybrid' approach to adaptive control is 

superior to the wholly discrete-time approach. And it was shown by Goodwin, Lozano-Leal, 

Mayne and Middelton (1986) that using the delta operator which approximates the differen

tiations directly for a fast sampling rate, there is no essential difference between continuous 

and discrete MRACS and therefore the nonminimum phase zero problem is easily avoided. 
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This work is perhaps the best known in the literature. Most recently, the limiting-zero model 

and the modified delta operator model has been proposed by Mizuno and Fujii (1991). Ap

plication of the bilinear transformation based on the trapezoidal rule to implementation of 

indirect multi-rate MRACS was investigated by Sagara and Yang (1988). 

In recent years, considerable attention has been given· to the development of algebraic 

methods for system analysis, identification, order reduction and control by using orthogonal 

functions. Walsh functions and BPFs have been widely used to control theory, because 

digital computer control is usually implemented on the basis of the discrete-time models 

where the step functions produced by sampling and holding can be precisely expressed by 

finite Walsh functions or BPFs. The BPFs have received more and more attention due to the 

convenience and simplicity of related computations. Numerous papers have been published 

on system identification (Palanisamy and Bhattacharya 1981, Cheng and Hsu 1982, Hsu 

and Cheng 1982, Sagara, Yuan and Wada 1988a etc.), system analysis (Shieh, Yeung and 

Mcinnis 1978, Rao and Srinivasan 1978,1980, Chen and Lee 1982, Kawaji 1983 etc.), and 

optimal control (Hsu and Cheng 1981, Zhu and Lu 1988 etc.). Application of the BPFs 

to implicit MRACS of Egardt's algorithm (1979) was first described by Sagara, Yuan. and 

Wada (1988b ). Most recently, a detailed description of an explicit self-tuning algorithm for 

continuous systems has been proposed by Patra and Rao (1989) successfully, by making use 

of the so-called one-shot operational matrix of the BPFs for repeated integration. And it 

was shown by an example that the continuous-time approach is superior in performance to 

the corresponding discrete-time version (Patra and Rao 1989). 

Motivated by the previous works( Goodwin, Lozano-Leal, Mayne and Middelton 1986, 

Sagara, Yuan and Wada 1988b, Sagara and Yang 1988, Patra and Rao 1989), the purpose 

of this chapter is to show that the bilinear transformation based on the BPFs can be ap

plied to adaptive systems with excellent precision and simple related calculations, and to 

show that the method using the BPFs is much more satisfactory than the others. In this 

chapter, the BPFs are further investigated in the sense of the bilinear transformation which 

is closely related with the trapezoidal integrating rule. The discretization or approxima

tion techniques for continuous syste~s using the well-known delta operator, and the bilinear 

transformation based on the BPFs or the trapezoidal rule are discussed. It is shown that the 

bilinear transformation gives more accurate approximations than the delta operator. And 

it is shown that the approximated discrete-time model obtained by the bilinear transforma

tion based on the BPFs can be viewed as the Pade approximation of the ZOH sampling 



Implementation of multi-rate adaptive control 147 

of the controlled system model, whereas the approximated discrete-time model obtained by 

the bilinear transformation based on the trapezoidal rule neglects the fact that the input 

control signal u(t) is constant between the sampling instants when a ZOH is used. Then 

an algorithm of multi-rate indirect model reference adaptive control for SISO continuous 

systems is addressed. The algorithm includes: a recursive LS type parameter estimator, a 

continuous system model and a controller designed in continuous-time domain. The recur

sive parameter estimator estimates the parameters of the continuous process using sampled 

system input-output data. The system model with the continuous-time state variable filters, 

and the continuous-time controller are discretized by the delta operator, the bilinear trans

formation based on the BPFs or the trapezoidal rule. Therefore the whole algorithm can 

be implemented .on a digital computer. To reduce the computational burden, the algorithm 

is implemented in a multi-rate manner with a small sampling interval of the system signals 

and a relatively large parameter estimation interval. Numerical results for an unstable min

imum phase continuous system show that the control performance is very excellent. It is 

also shown that the algorithm gives accurate estimates of the parameters of the unstable 

continuous system. Comparison of the discretization methods for the adaptive system using 

the BPFs, the trapezoidal integrating rule and the delta operator is discussed through sim

ulation study. It seems that the BPF method is the most effective one since the BPFs give 

excellent 'approximations of the signals of the digital controlled continuous system. 

8.2 Brief review of bilinear transformation, delta op

erator and BPFs 

We define the integration operator p-1 to be 

p-1 f(t) == lt f(t) dt 
to 

(8.1) 

It is well-known that for a small sampling interval, using the trapezoidal rule , p-1 is repre

sented to be (Sinha and Zhou 1983, Krishna 1988) 

_ 1 _ T 1 + z-1 

p - 2 1- z-1 
(8.2) 

where T is the sampling interval which is assumed to be sufficiently small and z-1 is the 

shift operator which lets 

z-1 f(kT) == f(kT- T) (8.3) 



Implementation of multi-rate adaptive control 148 

Equivalently the differential operator p can be replaced by the well-known bilinear transfor-

mation: 
2 1- z-1 

p = T 1 + z-1 
(8.4) 

which maps the semi-infinite left half of the p-plane into the unit circle of the z-plane and 

thus keeps the stability of the discretized system. 

Consider the following continuous system 

D(p)y(t) N(p)u(t) 
n 

D(p) - I: aipn-i 
i=O 

(ao = 1) (8.5) 
n 

N(p) - I: f3iPn-i 
i=O 

w~ere y(t), u(t) are system output and input respectively. 

Replacing th~ differential operator p with the bilinear transformation and writing u( kT), y( kT) 

as u(k), y(k) for convenience of notation, we have (Krishna 1988) 

(8.6) 

An alternative approach to discretization is the well-known delta operator (Euler oper

ator) which replaces the differential operator p by 8 as (Kuo 1980, Goodwin, Lozano-Leal, 

Mayne and Middelton 1986, Hori, Nikiforuk and Kanai 1988) 

8 = z -1 
T 

In this case the discrete-time model becomes to be 

n (Z 1)n-i n (Z 1)n-i t; ai ; y(k) = t;Pi ; u(k) 

(8.7) 

(8.8) 

Application of the delta operator to MRACS was proposed by Goodwin, Lozano-Leal, 

Mayne and Middelton (1986) successfully. However, it was also pointed out by Kuo (1980) 

that the delta operator based on the advanced rectangular approximated integration does 

n~t give so accurate approximations as the bilinear transformation which is based on the 

trapezoidal approximated integration. For a small sampling interval which approaches zero, 

we have 
z·-1 

T (8.9) 

- p+ O(T) 
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and 

2 1- z-1 

T 1 + z-1 

p2T2 p3T3 
2 pT+2!+3!+··· 
T p2T2 p3T3 

2+pT+2!+3!+··· 
pT p2T2 p3T2 

p 1 +2+-4- -n+··· 

1 +pT +pT 
2 4 

p + O(T2
) 
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(8.10) 

Therefore, the bilinear transformation gives more accurate approximations than the delta 

operator. Numerical examples will show that the bilinear transformation is more satisfactory 

than the delta operator in implementation of the adaptive system. 

It can be shown that when the sampling interval decreases, both the discrete-time models 

by the bilinear transformation and by the delta operator converge in some sense to the 

original continuous-time system described in equation (8.5) (Hori, Mori and Nikiforuk 1989). 

For detailed discussions· about discrete-time models of a continuous system, the reader is 

referred to the work of Hori, Mori and Nikiforuk (1989). 

A set of BPFs ¢k(t), k == 1, · · ·, N is defined in the interval [0, NT) by 

( k - 1 )T <_5; t < kT 
(8.11) 

otherwise 

An arbitrary function f(t) which is square integrable in the interval [0, NT) can be approx

imated by the BPFs: 

where 

N 

f(t) ~ L f(k )¢k(t) == "fT <P N(t) 
k=1 

f - [f(1), f(2), · · ·, f(N)]T 

cp N(t) - [¢1 (t), ¢2( t), · · · , ¢N( t)]T 

(8.12) 

(8.13) 

!(k) which is called the kth BPF expansion coefficient of the function f(t) is chosen such 

that 
{NT 

€ == Jo [f(t)- fT cp N(t)]2 dt (8.14) 

~minimized. Thus /(k) is given by 

/(k) 1lkT - - f(t) dt 
T (k-1)T 

1 
~ 2[/(k- 1) + f(k)] 

(8.15) 
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Remark 8.1: If f(t) is the input signal of the continuous-time system preceded by a ZOH, 

which is held constant between the sampling instants: 

f(t) == f(kT- T) , ( k - 1 )T ~ t < kT (8.16) 

then the BPF value /(k) of piece-wise constant f(t) is given by 

/(k) == f(k- 1) (8.17) 

It is known that the integral of the BPF vector 

(8.18) 

where P N is the N x N operational matrix of integration: 

1 2 2 2 
1 2 2 

T 
(8.19) PN ==- 1 

2 
0 2 

1 

With the BPFs, we have 

(8.20) 

and with the operational matrix of integration P N, we have 

(8.21) 

Hence we have 

P-1fT ~ N(t) == "fTp N~ N(t) (8.22) 

The kth ( k == 1, 2, · · · , N) elements of p-1{ can be computed by 

p-1 /(1) - ~/(1) 
(8.23) 

r 1/(k- 1) + ~ [/(k) + /(k -1)] p-1J(k) -

Then we have 

p-1 
T 1 + z-1 

(8.24) 
2 1- z-1 

or equivalently 
2 1- z-1 

(8.25) p 
T 1 + z-1 
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Therefore the BPF method is closely related to the trapezoidal method. Similarly to 

the trapezoidal method, replacing the differential operator p by the bilinear transformation 

based on the BPFs, we have the following piecewise constant system model: 

w~ere u(k ), y(k) are the kth BPF expansion coefficient of u(k ), y(k) respectively: 

u(k) 11kT 
T 

u(t) dt 
(k-l)T 

11kT 
T 

y(t) dt 
(k-l)T 

(8.27) 

y(k) == 

Comment 8.1: It is clear that approximation of a continuous system using t.he BPFs is 

very similar to that using the trapezoidal rule. It should be noted that the discrete-time 

models of equation (8.6) and equation (8.8) represent the relations of the discrete values 

of the system input-output signals at sampling time instants while the piecewise constant 

model of equation (8.26) represents the relations of the average values of the input-output 

signals over one sampling interval. For modeling of a digital controlled system, we would use 

the BPFs rather than the trapezoidal rule and the delta operator, since the step functions 

produced by sampling and holding employed in digital control can be precisely expressed 

by the BPF coefficients, while the trapezoidal rule and the delta operator only give discrete 

values of continuous signals at sampling time instants. 

8.3 Relation between the BPF model and the ZOH 
sampled model 

To show the advantage of the BPF method, the relation of the approximated discretized 

model with the common discrete-time model is analyzed here. 

Consider a strictly proper SISO system 

A(p )y(t) 

A(p) -

B(p)u(t) 
n 

Laipn-i 
i=O 

n 

B(p) - L bipn-i 
i=l 

(ao == 1) 
(8.28) 
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Assuming that all the initial values of the signals of the system are zero, we can write it. into 

the following companion form: 

x(t) - Ax(t) + bu(t) 

y(t) crx(t) 
(8.29) 

where 
(Xt(t), X2(t), · · ·, Xn(t)]T x(t) 

0 1 

0 0 1 0 
A 

0 0 1 (8.30) 

an -an-1 -a2 -at 

b (0, 0, · · · , 0, 1 ]T 

C [bn, bn-1, · · ·, b2, bt]T 

The transfer function of the companion form is given as 

(8.31) 

A common situation in computer control is that the input signal u( t) is constant between 

the sampling instants: 

u(t) == u(kT- T), ( k - 1 )T ~ t < kT (8.32) 

hence the BPF value u(k) of piece-wise constant input signal u(t) is given by 

u(k) == u(k- 1) (8.33) 

Then the ZOH equivalent of system (8.29) is given as (Astrom and Wittenmark 1984) 

where 

{ 
X(k) == <PX(k- 1) + ru(k) 
y(k) == crx(k) 

The transfer function of sampled· system model (8.34) is given as 

(8.34) 

(8.35) 

(8.36) 
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Notice that equation (8.34) does not involve any approximations. It gives the exact 

values of the state values and the output at the sampling instants because the control signal 

is constant between the sampling instants. The model (8.34) is therefore called a ZOH 

sampling of system (8.29) or the ZOH equivalent of (8.29). 

For a sufficiently small sampling interval T, using the famous Pade approximation we 

have (Haykin 1972, Haberland and Rao 1973, Sinha and Lastman 1981) 

eAT~ (1+ ~AT) (I- ~AT) -I= (I- ~AT) -
1 (1+ ~AT) (8.37) 

and 

Then the transfer function of sampled system model (8.36) is approximated as 

y(k) ~ cT [I- z-1 (I- ~ATr1 

(1+ ~AT) r T (I- ~ATr\u(k) 

- cT [(I- ~AT)- z-1 (I+ ~AT) r T bU(k) 

_ cT [~~~;=:I- Ar1 

[(1 + z-1)~r T bU(k) 

2 T [ 2 1 - z-1 I A] -1 b -(k) 
1 + z-1 c T 1 + z-1 - u 

Consequently, we have 

1 + z-1 

y(k) = 2 y(k) cr (3.. 1-z-
1 I- A] bu(k) 

T 1 + z-1 

- G(p) 1- 2 1_%-1 u(k) 
P-T l+z-1 

(8.38) 

(8.39) 

(8.40) 

It is interesting to find that equation (8.40) is equivalent to the BPF model (8.27), i.e. the 

BPF model can be viewed as the Pane approximation of a ZOH sampling of the controlled 

system model. 

On the other hand, the trapezoidal model (8.6) is equivalent to 

y( k) = G (p) _ 2 1-%-1 u( k) 
P-r l+.r-t 

(8.41) 
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which represents the relations of the discrete values of the system input-output signals at 

sampling time instants. Hence we can say that the trapezoidal model neglects the fact that 

u(t) is constant between the sampling instants. Therefore, for digital control systems with 

zoH, the BPF model is more appropriate than the trapezoidal model. 

8.4 Basic design of the indirect MRACS 

The unknown minimum phase SISO system is described by 

A(p )y(t) - B(p )u(t) 
n 

A(p) - :L aipn-i (ao == 1) 
i=O m 

B(p) - L bipm-i 
i=O 

n>m 

The desired reference model is given by 

n 

Am(p) - L aipn-i (a()= 1) 
i=O 
m 

Bm(p) - L bipm-i 
i=O 

where um(t) is the command input. 

(8.42) 

(8.43) 

The block diagram of the closed-loop of the MRACS is shown in Figure 8.1 ~here 

R(p), S(p) and T(p) are polynomials in the differential operator. The stable polynomial 

T(p) can be chosen freely without changing the closed-loop transfer function. However, it 

is of importance for the transient properties and the effect of disturbance (Egardt 1979). 

Usually, T(p) is chosen to be 

nr~n-m-1 

If the equation 

T(p)Am(p) == A(p)S(p) + R(p) 

has the unique solutions R(p) and S(p), defined by 

R(p) - r1pn-1 + · · · + rn 

S(p) - pnT + S1PnT-1 + • .. + SnT 

(8.44) 

(8.45) 

(8.46) 



Implementation of multi-rate adaptive control 

Controller 

parameter 

calculation 

Estimator 
\~ i-------------------------·-------·----·· -·-···-·-····---------------~ 

I Controller 1 
! I 

i i 
1um ( t ) i + l 
---+-! ~--71 :_ ~~ 1 t--ij_u_( _t_)_.._ ..... -?1 B ( P ) 
- I .... T (p) Bm (p) ~ B (p) S (p) ....- A ( P ) 

I 
I 
j 

i R(p) ~

1
. 

I 
! 

,_i -·--··--------~----·-------------···-·-----------J 

Figure 8.1: Block diagram of the closed-loop of the adaptive system. 

then the closed-loop transfer function becomes to be 

y(t) 
Um(t) 

The adaptive algorithm consists of the following steps: 

Step 1 

Introduce a low-pass filter to remove the direct signal derivatives: 

1 
F(p) -

- (rp + l)n 

where Tis the time constant which determines the pass-band of F(p). 

Step 2 

I\ 

155 

y ( t ) 

(8.47) 

(8.48) 
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Filter both sides of the system model to get 

~oy(t) - zT(t)fJ 

zT(t) [-~ly(t), · · ·, -~ny(t), ~lu(t), · · ·, ~mu(t)) (8.49) 

where the outputs of the filters are defined as 

n-i 

~iy(t) = ( T: + l)n y(t) 

m-i p 
~i~(t) == (rp + l)n u(t) 

(8.50) 

Step 3 

Estimate the system parameters from the outputs of the filters by an LS type algorithm. 

Step 4 

Solve the following equation with an appropriately chosen T(p) and estimated A(p) to 

have R(p) and S(p ): 

T(p)Am(p) == A(p)S(p) + R(p) (8.51) 

Step 5 

Generate the control signal u( t): 

1 "' 
u(t) == "'( ) "'( ) {T(p)Bm(p)um(t)- R(p)y(t) } 

BpS p . 
(8.52) 

Step 6 

· Go to Step 2. 

8.5 Digital implementation of the algorithm 

In this section we will describe the digital implementation techniques of the MRACS 

using the bilinear transformation based on the BPFs. To reduce the computatio-nal burden, 

the algorithm is implemented in a multi-rate manner with a very small sampling interval of 

the system signals and a relatively large parameter estimation interval. 

When the adaptive system has been designed in continuous-time domain, the digital 

implementation procedure of the adaptive algorithm by the BPFs includes the following. 
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Step 1 

Compute the outputs of the following digital low-pass state variable filters derived from 

the bilinear transformation based on the BPFs with a small sampling interval T: 

(;y ( k l = F' ( z - 1 l ( ~) i ( 1 + z - 1 l i ( 1 - z - 1 
ri Y( k l 

(8.53) 

where 

(8.54) 

Step 2 

Construct the estimation model 

zr(k) (8.55) 

and then estimate the parameters by the recursive LS algorithm. 

The estimation procedure need not be carried out at every sampling time instant. Define 

an estimation interval Te to be 

Te == lT (8.56) 

where l is a natural number. The system parameters are estimated at every estimation time 

instant (t == keTe) by the following algorithm: 

B(ke) - B(ke- 1) + L(ke)c(ke) 

c:(ke) [oy(k)- zr(k)B(ke- 1) 

P(ke- 1)z(k) (8.57) 
L(ke) 

p(ke) + zT(k)P(ke- 1)z(k) 

P(ke) == _1_ [P(k _ 1) _ P(ke- 1)z(k)zT(k)P(ke- 1)] 
p(ke) e p(ke) + zT(k)P(ke- 1)z(k) 

where p(ke) is the forgetting factor and in this chapter it is chosen to be 

p(ke) = (1 - O.O'l)p(ke- 1) + 0.01, p(ks) = 0.98 (8.58) 

Step 3 
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Solve the following equation with an appropriately chosen T(p) and estimated A(p) to 

have R(p) and S(p) at every estimation time instant: 

T(p)Am(p) == A(p)S(p) + R(p) (8.59) 

Step 4 

Generate the piecewise constant control signal u( k ): 

u(k) 
T ( 2 1 - z-1) Bm ( 2 1 - z-1) - (k) R ( 2 1 - z- 1) -(k) 

T 1 + z-1 T 1 + z-1 Um - T 1 + z-1 y 

(8.60) 

where 

T'(z-1) 

B'm(z-1) 

R'(z-1) - (8.61) 

B'(z-1) -

S'(z-1) 

Step 5 

Go to Step 1. 

The digital implementation techniques of the MRACS by the delta operator (Goodwin, 

Lozano-Leal, Mayne and Middelton 1986) or the trapezoidal rule (Sagara and Yang 1988) 

can be described similarly as the above procedure. 

In practice, it is critical to choose the sampling interval T and the estimation interval Te 

considering the trade-off between the truncation error and the computational burden. Here 

we outline the methods of selection ofT and Te, following the error analysis of the BPFs 

st\ldied by Roo and Srinivasan (1978). Basically, the most important element of the adaptive 
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loop is the estimator. Therefore it is important to choose a small sampling interval T so that 

{;y(k) and (iu(k) approximate ~iy(t) and ~iu(t) accurately. If a function f(t) is represented 

by a series of the BPFs ¢k(t) in the subinterval [(k- 1)T, kT), the representation error is 

(k- 1)T 5: t < kT (8.62) 

where /(k) is given by · 
11kT /(k) = - f(t) dt 
T (k-l)T 

(8.63) 

to minimize the squared error e~(t). It can be shown (Rao and Srinivasan 1978) that the 

minimum integral squared error E~ is 

( k - 1 )T ~ tk < kT (8.64) 

Hence the mean squared error over the interval [0, NT) is 

( k - 1 )T ~ tk < kT 
(8.65) 

where f:nax is the largest among all the f'(tk)· 

Taking the mean squared error over the normal interval, we have 

(8.66) 

If a signal f(t) = Asin(wt) has to be approximated by a set of the BPFs over the normal 

interval by subinterval T, and if the allowable error should be such that 

En - < (J A - r 

where Ur is a constant specified error bound, then from equation (8.66), we hav~ 

Wmax 

(8.67) 

(8.68) 

For the low-pass filters in equation (8.50), usually r is selected such that the pass-band 

of the filters includes the frequency band of importance to the analysis. Suppose that the 

highest frequency of the main components of the outputs of the filters is 1/r radians per 

second, then we have 

. (8.69) 
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In our case, we choose ar = 5%. Then if the sampling interval is chosen such that 

T ~ 0.173 T (8.70) 

{iy(k) and (iu(k) may approximate ~iy(t) and ~iu(t) accurately. 

Now we will consider how to choose the estimation interval Te. Actually, the parameters 

are estimated at every estimation time instant t = keTe· That is, we sample the values 

of the digital filters' outputs (iy(k), (iu(k) with the estimation interval Te to estimate the 

p~rameters by the LS algorithm. Therefore to keep the information of (iy( k) and (iu ( k), 

Te should be chosen to agree with the sampling theorem. It has been mentioned that the 

highest frequency of the main components of the outputs of the filters is 1/r radians per 

second, thus Te should be chosen such that 

(8.71) 

8.6 Numerical examples 

The effectiveness of the discussed methods is demonstrated by applying them to an 

unknown unstable minimum phase system governed by the following differential equation: 

(8.72) 
a1 = 1.0, a2 = -3.0, bo = -1.0 

with unknown nonzero initial conditions: 

y(O) = 1.0, y'(O) = 1.0, u(O) = 0.0 (8.73) 

The reference model is 

(8.74) 
a! = 2.8, a2 = 4.0, b! = 4.0 

And the command input um(t) is a square wave with a time period of 40 seconds. The 

amplitude is ±10. 

The low-pass filter is chosen to be 

1 
F(p) = (rp+ 1)2' T = 0.2 (8.75) 
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The polynomial T(p) is chosen to be 

and R(p), S (p) are described as 

which satisfy the following equation: 

The controller is 

T(p) 

R(p) 

S(p) 

168 

p+1 (8.76) 

(8.77) 
p+ s1 

(8.79) 

Example 8.1: Performance of the BPF method with a very small sampling in

terval. 

The performance of the adaptive. algorith1n using the BPFs for the second-order system 

is investigated with a very small sampling interval of the signals and a relatively large 

estimation interval when 

T = 0.02, Te = 0.4 (8.80) 

Figure 2 shows the trajectories of the system output y(t), the command input um(t), the 

control input u(t) and the system parameter estimates with their true values. It is shown 

that when a small sampling interval is taken, the adaptive algorithm has very excellent 

results. 

Example 8.2: Comparison of the three methods under apart sampling intervals. 

Comparison of robustness of the method using the bilinear transformation based on the 

BPFs, the method using the bilinear transformation based on the trapezoidal rule (Sagar a 

and Yang 1988) and the one using the delta operator (Goodwin, Lozano-Leal, Mayne and 

Middelton 1986) under apart sampling intervals is studied when 

T = 0.1, Te = 0.5 (8.81) 

and 

T = 0.2, Te = 0.4 (8.82) 
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. The results for T = 0.1, Te = 0.5 are shown in Figures 3rv5. For the BPF method, 

the parameter estimates are still accurate. The overshoot of the output y(t) in Figure 3 

becomes large compared. with the result in Figure 2, however the control performance is still 

excellent at low frequencies (constant um(t) ). When an apart sampling interval is taken, 

the truncation error appears significantly at high frequencies (changing um(t) ) but can be 

neglected at low frequencies (constant Um ( t) ) . In practice, the controlled plants are usually 

excited by band-limitted low frequency signals, therefore the adaptive algorithm need not 

require too small a sampling interval considering the limitation of computational time. For 

the trapezoidal rule method and the delta operator method, although the controlled system 

output signals are similar to the result by the BPF method (in fact, the overshoot of the 

delta operator method is the largest of the three), the parameter estimates are greatly biased 

due to the truncation error. 

The results for T = 0.2, Te = 0.4 are shown in Figures 6rv8. Clearly, in this case, the 

truncation error is greater than that in the case ofT = 0.1. The system outputs for both 

the trapezoidal rule and the BPF methods are still acceptable at low frequencies while very 

large overshoot arises in both methods. It is shown that the parameter estimates by the BPF 

method are still acceptable, while the parameter estimates by the trapezoidal rule method are 

much greatly biased. For the delta operator method, unfortunately, the parameter estimates 

do not converge and the system output performance is very poor. 

Due to the limitation of simulation, although it is difficult to draw the general conclusions 

about the three methods for all cases, we can summarize the simulation results as follows: 

1 For very small sampling intervals, all the three methods give excellent performances of 

the adaptive parameter estimation and control algorithm. It seems that ·selection of 

the estimation interval TE is not so serious as that of the sampling interval T. 

2 The BPF method is the most satisfactory for the purposes of both parameter estimation 

and system output control, since the step functions produced by sampling and holding 

employed in digital control for continuous systems can be precisely expressed by the 

BPF coefficients. 

3 The trapezoidal rule method has similar control performance to the BPF method. How

ever, the parameter estimation error by this method is much greater than that by 

the BPF method when an apart sampling interval is taken. This is because that by 

the trapezoidal rule, we can only obtain sampled .data of continuous signals at sam-
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pling time instants, thus the ZOH input signal of a digital control system cannot be 

expressed so precisely as the BPF method. 

4 The delta operator method which has been studied by some authors (Goodwin, Lozano

Leal, Mayne and Middelton 1986, Janecki 1988) is the best known of the three. How

ever, as mentioned previously, since the delta operator cannot give so accurate approx

imations as the bilinear transformation and hence produces more truncation error, the 

robustness. under apart sampling intervals is the poorest of the three. 
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8. 7 Conclusion 

In this chapter, the techniques of the implementation of multi-rate adaptive control of 

continuous systems have been discussed. 

Approximated models of a continuous system by the bilinear transformation and the 

delta operator are discussed and it is pointed out that the bilinear transformation based on 

the BPFs is the most satisfactory one in digital control systems, where the step functions 

produced by sampling and holding can be precisely expressed by the BPFs. The relation 

between the BPF model and the common ZOH sampled model is discussed and it is shown 

that the BPF model can be thought as the Pade approximation of the ZOH sampling of the 

controlled system model, whereas the approximated discrete-time model obtained by the 

bilinear transformation based on the trapezoidal rule neglects the fact that the input control 

signal u(t) is constant between the sampling instants, if a ZOH is used. 

Simulation experiments have been carried out with an unstable continuous system. It 

is shown that our algorithm is useful not only for adaptive control of continuous systems 

but also for parameter estimation of unstable continuous systems. Comparison ·of the BPF 

method with the trapezoidal rule method and the famous delta operator method has been 

taken through numerical examples. It is concluded that the BPF method is the most satis

factory of the three while the robustness to the trucation error of the delta operator method 

is the poorest. 
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Chapter 9 

Conclusions 

In this dissertation, the methods of identification and adaptive control for continuous

time systems using digital signal processing techniques have been studied in a unified sense. 

The major results and concluding remarks are summarized as follows. 

1:. In chapter 2, the popular integral-equation approach to identification of continuous

time systems is reviewed in a unified sense. A general form of the IIF employed 

in the convention~ integral-equation method concerning the OFs and the numerical 

integrating rules is formulated and it is emphasized that the troubling initial condition 

problem arises due to the cancellation of the differential operators. Motivated by this 

fact, a new calculation procedure of the multiple integrations of the signal derivatives 

termed NIIF is proposed for which the initial conditions need not be identified as 

unknown parameters. Therefore complexity of the identification algorithms can be 

greatly reduced compared with the conventional methods. Effects of the measurement 

noise in integral-equation approach is also investigated. It is found that the noise 

reducing effects of the IIF and the proposed NIIF are similar since the frequency 

responses are same. Since the IIF and the NIIF can be viewed as a kind of unstable 

IIR filters which have multiple poles on the unit circle, the equation error in the 

integral-equation due to the noise increases with the time and this can make the LS 

estimates diverge. 

2: In chapter 3, a unified approach to direct recursive identification techniques of con

tinuous systems from sampled input-output data using digital low-pass filters is dis

cussed. Using a pre-designed digital low-pass filter, a discrete-time estimation model in 

continouou-time system parameters is constructed easily. Thus the system parameters 



Conclusions 173 

can be identified directly by recursive identification algorithms. It is concluded through 

numerical results that if the filter is designed so that its pass-band matches that of the 

system under study closely and thus the noise effects are sufficiently reduced, accurate 

estimates can be obtained by recursive identification algorithms such as the LS method 

and the IV method. It is also pointed out · that some well-known distinct methods are 

unified as either the IIR or the FIR filtering approach. Some new comments to the 

initial condition problem which is unclear in the literature are given. It is found that 

the NIIF method can be viewed as a special case of the SVF method. Therefore, 

when designing the IIR filters in continuous-time domain, it is not necessary to let the 

pre-filter has fast damped characteristic so that the initial conditions decay as soon 

as possible as suggested in some other previous works. It is pointed that when using 

the IIR filtering approach, one may be troubled by the initial conditions if he neglects 

the fact that usually the commulative law does not hold in the linear pre-processing 

procedure. 

3: In chapter 4 some recursive identification algorithms for continuous systems using an 

adaptive procedure are discussed. Using the estimated denominator of the transfer 

function of the discrete-time model obtained by the bilinear transformation to con

struct the adaptive IIR filters which are introduced to avoid direct approximations of 

differentiations from sampled data, an approximated discrete-time estimation model 

with continuous system parameters is derived. With filtered inputs and delayed filtered 

outputs as instrumental variables, some kinds of recursive IV identification algorithms 

are proposed to obtain consistent estimates in the presence of noise. The proposed 

identification algorithms have close relations to the standard recursive identification 

algorithms for common discrete-time systems. The results of this chapter show that 

the continuous-time system parameters can be identified in very similar ways to those 

for common discrete-time systems. The continuous-time system identification requires 

a digital filtering procedure to avoid direct approximation of differentiations from sam

pled data while the discrete-time system identification is usually based directly on a 

linear regression model composed of delayed sampled input-output data. 

4: In chapter 5, the problem of identification of continuous systems is considered when both 

the discrete input and output measurements are contaminated by white noises. It is 

found that in the presence of input measurement noise, the pass-band of the digital 

low-pass filters should be chosen such that it includes the main frequencies of both 
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the system input and output signals in some range. When the noise effects cannot be 

neglected, the BCLS method combined with a digital filter is applied to obtain the 

consistent estimate, which compensates the bias of the LS estimate with the estimates 

of the noise variances . And it is pointed out that if the input signals are persistently 

exciting, the BCLS algorithm is stable. Both classes of filters (FIR filter and IIR filter) 

are employed. The FIR filters can be applied to the BCLS method directly, whereas the 

IIR filters require some approximations. And numerical examples show that the BCLS 

method combined with a digital pre-filter yields very accurate parameter estimates 

when both the discrete input and output measurements are contaminated by white 

noises. 

5: In chapter 6, the BCIV method for identification of continuous systems is proposed, in 

the case where the discrete input measurement is corrupted by a white noise and the 

discrete output measurement is corrupted by a noise which may be coloured. The 

continuous system is identified through the discrete-time estimation model derived in 

chapter 4 using the adaptive procedure. The effects of the output noise is avoided 

by the IV method with filtered inputs and delayed filtered outputs as instrum~ntal 

variables and the bias of the IV estimate due to the input noise is eliminated by the 

proposed BCIV method. Although general conclusions on the stability of the method 

have not been given, Empirical numerical studies tell that during the identification 

process, if we monitor the stability of the algorithm and contract the estimates within 

the stable region, the method gives excellent estimates in typical cases. 

6: In chapter 7, a new approach using two-dimensional filtering techniques to recursive pa

rameter identification of second-order distributed parameter systems in the presence 

of measurement noise under unknown initial condition and boundary condition is pro

posed. The LS method is still efficient in the presence of low measurement noise if the 

filter parameters are designed so that the noise effects are reduced sufficiently. Using 

filtered input data as instrumental variables, an IV method is also presented to obtain 

consistent estimates when the digital low-pass filters are not designed appropriately or 

the output data is corrupted by high measurement noise. 

7: In chapter 8, comparison of the discretization methods for the adaptive system using 

the BPFs, the trapezoidal integrating rule and the well-known delta operator is first 

discussed through theoretical analysis and simulation study. It is shown that the 

bilinear transformation gives more accurate approximations than the delta oper~tor. 
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And it is shown that the approximated discrete-time model obtained by the bilinear 

transformation based on the BPFs can be viewed as the Pade approximation of the 

ZOH sampling of the controlled system model, whereas the approximated discrete-time 

model obtained by the bilinear transformation based on the trapezoidal rule neglects 

the fact that the input control signal u(t) is constant between the sampling instants, 

when a ZOH is used. Therefore the BPF method is the most effective one of the three 

for digital systems. Then the implementation techniques of multi-rate indirect model 

reference adaptive control for continuous systems purely using digital computers are 

described. To reduce the computational burden, the algorithm is implemented in a 

multi-rate manner with a small sampling interval of the system signals and a relatively 

large parameter estimation interval. Comparison of the discretization methods for 

the adaptive system using the BPFs, the trapezoidal integrating rule and the delta 

operator is discussed through simulation study. It is shown that the BPF method is 

the most effective one since the BPFs give excellent approximations of the signals of 

the digital control~ed continuous system. 
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