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Abstract 

Solomon and Gollub discussed a transport property of fluid particles in nearly 

two-dimensional, time-periodic Rayleigh-Benard convection. They deter­

mined the diffusion constant D in tern1s of Fick's law by taking only short 

time characteristics of the trajectories. In this thesis D is defined by the vari­

ance for large time. Hence D is determined by the long time correlation of 

the trajectories, and several fine-grained peaks are observed in the graph of 

D vs the amplitude B of lateral oscillation. Accelerator-mode islands appear 

around the oscillating roll boundaries in a peak range of Band the formation 

of the islands are elucidated in terms of the lobe dynamics. 

Mixing of tracer particles by chaotic advection is discussed in terms of 

the spectrum 1/J(A) and the probability density P(A; n) of the coarse-grained 

expansion rates An. These physical quantities show an anomalous scaling due 

to the intermittent sticking of tracer particles to the islands. 1/J( A) has a linear 

part of slope 0, i.e., 1/J(A) == 0 for 0 <A< A00, where A00 is the Liapunov 

exponent. P(A; n) obeys an anomalous scaling law P(A; n) = n8p{n8(A­

A00)} with 8 < 1/2, where p(x) is a power law function for -x >> 1. These 

characteristics are generic in Hamiltonian dynamical systems. 



1 Introduction 

The study of chaotic motions in nonlinear oscillator systems has been one 

of rapidly growing fields of physics for the last decades, with applications to 

a number of areas in science and engineering, including astronomy, plasn1a 

physics, statistical mechanics and hydrodynamics. Although the root of the 

fields is old, dating back to the last century when Poincare and others at­

tempted to formulate a theory for nonlinear perturbations of planetary orbits 

[1] , the field progressed remarkably in the 1960's, together with computa­

tional results obtained by using high speed computers, that facilitated our 

new treatment of the subject. The systems, however, had been mainly con­

cerned with conservative ones. Further in the 1970's, an another field of the 

chaotic properties, i.e., dissipative systems, began to progress with the dis­

covery of strange attractors. A strange attractor was found numerically in 

1963 by Lorentz (2], and the idea was elavorated mathematically in 1971 by 

Ruelle and Takens [3] as a key element in understanding irregular behavior 

described by deterministic equations, notably turbulence. 

A main emphasis in both systems is the existence of sequential stretch­

ing and folding processes, which lead to the intrinsic stochasticity in the 

deterministic system. The processes are very important since they mediate 

between stochasticity and determinism. For example, when the motion of 

tracer particles in the Rayleigh-Benard convection is studied below, it can 

be regarded as a diffusion process in spite of the fact that the equation of 

motion is deterministic. Such the processes lead to a mixing of particles, and 
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hence the mixing is one of the main themes in studying the chaotic motions. 

It is often useful to regard the motion of tracer particles in hydrodynamic 

flows as a conservative motion. The particle is considered as a virtual particle; 

namely a particle with proper mass which does not affect the velocity field 

and which is not stirred due to the Brownian effect. The motion is determined 

from a velocity field v( r, t) with 

drfdt == v(r, t) (1.1) 

and is denoted as the Lagrangian representation. The kinetic equation to 

determine the velocity field v( r, t) is the Navier-Stokes equation, which is a 

well-known nonlinear partial-differential equation. Hence the behavior of the 

tracer particles is easily analyzed both theoretically and experimentally. 

The control parameter of the equation is the Reynolds number formed 

from the three parameters, the velocity of the main stream, one linear dimen­

sion and the kinematic viscosity [5]. For sufficiently large Reynolds number, 

the velocity field is turbulent temporally and spatially, and the state is some­

times referred to as the Eulerian turbulence. The tracer particles are of course 

chaotic in that regime. The turbulence has been studied for a long time and 

much have been obtained. 

Aref, on the other hand, first showed in 1984 that the tracer particles 

may be chaotic even in laminar flows [6], where the regime is referred to as 

the Lagrangian turbulence as compared with the Eulerian turbulence. The 

viewpoint is as follows. For two-dimensional incompressible flow, the equa­

tion for tracer particles ( 1.1) is formally a Hamiltonian equation with just 
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one degree of freedom. For unsteady flow, the system is non-autonomous 

and one must in general expect to observe chaotic particle motion. He devel­

oped these ideas and subseqently corroborated through the study of a very 

simple model which provides an idealization of a stirred tank. In the model 

the fluid is assumed incompressible and invicid, and its motion wholly two­

dimensional. the agitator is modeled as a point vortex, which, together with 

its image in the bounding contour, provides a source of potential flow. The 

motion of a tracer particles in this model device is cornputed numerically. It 

is shown that the deciding factor for integrable or chaotic particle motion is 

the nature of the motion of the agitator. With the agitator held at a fixed 

position, integrable tracer particle motion ensures, and the model device does 

not stir very efficiently. If, on the other hand, the agitator is moved in such 

a way that the potential flow is unsteady, chaotic tracer particle motion can 

be produced. This leads to an efficient stirring. 

These ideas are quite generic for incompressible hydrodynamical flows, 

and hence many other fluid systems have been studied after Aref's first work. 

For example, D.S.Broomhead and S.C.Ryrie studied the trajectories of indi­

vidual tracer particle moving in velocity fields which model Taylor vortices 

close to the onset of the wavy instability [7). In particular, they consider the 

possibility of transporting particles between rolling cells. By studying the 

flow in the context of dynamical systems theory, it is shown that this arises 

through the destruction of invariant surfaces which form the roll boundaries 

in the absence of the wave. Particles able to pass between cells follow chaotic 
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trajectories. 

An important characteristic in studying the Lagrangian turbulence is that 

chaotic structures can be easily analyzed both theoretically and experimen­

tally. Indeed, Franjione, Leong and Ottino showed experimentally that sim­

ple two-dimensional time-periodic flows produce chaotic mixing and, depend­

ing on the choice of the period, large dynamical structures called islands, that 

change the form in a time-periodic manner but remain segregated even after 

long times [8). Since an analytic expression for the velocity field does not 

exist in this system, making theoretical prediction of the location and size of 

islands is impossible. Hence the flow is analyzed in terms of its symmetries 

which is obtained from the gross properties of the velocity field. With this 

knowledge, an island is moved into a region of good mixing in a systematic 

way by manipulating symmetries. 

Ishii, Iwatsu, Kambe and Matsumoto studied a three-dimensional flow of 

viscous incompressible fluid in a cubic space with a moving upper wall by 

solving numerically the N avier-Stokes equation itself [9). Steady solutions 

are obtained at low Reynolds numbers. It is found that the trajectories of 

the tracer particles exhibit complicated structures even in the steady-state 

flow fields. The characteristics of the trajectories are examined in detail 

for a wide range of the Reynolds number. At the low Reynolds numbers 

in the steady regime, some sets of helical trajectories form invariant tori. 

As the Reynolds number increases in the region, certain invariant tori are 

disrupted by resonances and a region of chaotic trajectories coexists with 
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regions of invariant surfaces. The chaotic region becon1es larger in the space 

at higher Reynolds numbers. They ensured that the particle motion in a 

steady solenoidal velocity field is equivalent to a non-autonomous Hamilto­

nian system of one-degree-of-freedom. 

In general, an onset of the Lagrangian turbulence is related to a bifurca­

tion of the velocity field, but the onset is generally not related to the onset of 

the Eulerian turbulence. The former is usually lower than the latter. M. Fal­

cioni, G. Paladin and A. Vulpiani discussed the connection of this Lagrangian 

turbulence with behaviors of the velocity field [10] both in the Lorentz model 

[2) and in truncated N avier-Stokes equations. They indicate a possible road 

for the onset of Lagrangian turbulence which seems to be rather generic. It is 

found that the Lagrangian turbulence appears when the velocity field passes 

from a steady state to a periodic one via Hopf bifurcation. It is also shown 

that the transition to Eulerian turbulence does not affect the properties of 

particle motion as noted above. They further discussed an atypical example 

where it does not exhibit the Lagrangian turbulence even when it is chaotic 

in the Eulerian sense. 

The transport properties of two-dimensional incompressible flow between 

adjacent convection rolls in the temporally oscillating Rayleigh-Benard con­

vection with a large aspect ratio were discussed by Solomon and Gollub both 

experimentally and theoretically [20]. The contents will be reviewed in § 3 

in detail. The Rayleigh-Benard convection is a hydrodynamic flow between 

horizontal layers heated from below. The fluid, in the incompressible case, is 
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governed by the hydrodynamic equations [5] 

Pr-1(av;at + (v . v)v) = -Vp + fe + V2v, 

ae ;at+ v. VB = Rk. v + V2B, 

v ·v=O 
' (1.2) 

with two nondimensional control parameters: the Rayleigh number R and 

the Prandtl number Pr. Here v denotes the velocity field, p the pressure, B 

the temperature difference from the elemental temperature distribution, and 

k the unit vector in the vertical direction. Any flow type of the velocity field 

v is determined with a pair of the parameters, R, Pr, and the wave number 

a. When the Rayleigh number R increases, a time-independent laminar flow 

with a == 3.117 appears at R == Rc( == 1707). Busse et al. first studied 

how fundamental flow patterns can appear after the laminar flow becomes 

unstable [11], and some instabilities: oscillatory instability, skewed varicose 

instability, zig-zag instability, cross roll instability, etc., can be observed with 

the different Prandtl numbers and the wave numbers. The dependence of 

their instabilities on the Prandtl number Pr and the wave number a are 

exhibited in Fig. 1, which is referred to as the Busse balloon [11]. The 

oscillatory instability mainly appears in low Prandtl numbers, whereas, the 

zig-zag instability and the cross roll instability are important in high Prandtl 

numbers. 

This property indicates that the Rayleigh-Benard convection is a good 

model system for a comprehensive investigation of transport and diffusion, 
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Figure 1: The dependence of the instabilities in the Rayleigh-Benard con­

vection; oscillatory instability, skewed varicose instability, zig-zag instability, 

cross roll instability, etc., on the Prandtl number Pr and the wave number 

a, which is obtained using the theoretical and experimental results [11]. ( 
exhibited by F. H. Busse ) 
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since convective flows can be created ranging from time-independent, spa­

tially periodic flows on the one hand, to turbulent flows on the other. As 

a result, the transport rates vary over a wide range. At one extreme, when 

the fluid is motionless, the transport is due entirely to molecular diffusion. 

At the other extreme ( turbulent flows ) , transport is due to advection by 

the flow and is often described phenomenologically as eddy diffusion. There 

are two important laminar flow regimes between these extremes in a low 

Prandtl number: a time-independent and a oscillating regime. In the time­

independent regime, large-scale transport is limited by molecular diffusion 

between adjacent convection rolls. In the oscillating regime, the transport 

is dominated by advection of tracer particles across roll boundaries. In this 

regime, particle trajectories may be chaotic. The differential equation for 

the velocity of a fluid element in a two-dimensional, time-dependent flow 

are formally those of a Hamiltonian dynamical system with 1.5 degrees of 

freedom. As a result, the particle trajectories exhibit a lot of features of 

Hamiltonian chaos in real space. Chaotic structures such as heteroclinic tan­

gles, invariant tori and islands have been observed numerically. Here, the 

quantitative effects of chaotic advection on transport and diffusion shall be 

discussed extensively. 

In the present paper we shall especially show how the diffusion and mixing 

of passive particles by chaotic advection become anomalous when islands of 

tori exist [21, 22]. We shall use the stream function used by Solomon and 

Gollub to simulate the particle motion. They defined the diffusion constant 
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D in terms of Fick's law for the purpose of comparison with the experiment, 

measuring the value of D at most only for one complete period of oscillation. 

On the contrary, we shall adopt the statistical-mechanical definition of D 

which is determined by the asymptotic behavior of tracer particles over a 

long time. It is shown that the difference noted above causes important 

changes of the dependence of D on the amplitude B. In particular, there 

appear some fine-grained peaks in D vs B graph [21] which were not found 

by Solomon and Gollub. This peak structure is understood as the result of 

an enhanced transport of tracer particles which can be explained in terms of 

certain structures of the invariant manifolds in fluid space [21]. It is further 

shown as an extreme case of the enhanced transport that, in a peak range 

of B, there appear accelerator-mode islands on which particles move from 

x == =r=oo to x == ±oo in the horizontal coordinate with a definite speed, so 

that the intermittent sticking to the islands leads to an anomalous diffusion 

with D == oo [22]. When they appear, the statistics of particle motions is 

dramatically changed and so physical quantities, too, as clarified recently for 

the standard map [25]. The formation mechanism of the accelerator-mode 

islands will be elucidated in terms of the lobe dynamics developed by Wiggins 

et al [26, 27]. 

As noted above, tracer particles diffuse in a widespread chaotic sea and 

this can be regarded as a stochastic process in a coarse-grained scale in 

spite that the dynamics is deterministic. This comes from an important 

feature of particle orbits in fluid space, i.e., the orbital instability due to the 
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exponential expansion of nearby particle orbits which leads to the mixing 

of tracer particles [20]. The existence of the mixing is indispensable for the 

presence of diffusion. The degree of mixing is quantified by the positive 

Liapunov exponent. The distribution function P(A; n ) of the coarse-grained 

expansion rates An gives us much more information on the particle orbits. In 

this thesis we shall also discuss the asymptotic form of P( A; n ) in the limit 

n ----* oo, and elucidate the anomalous mixing due to the coexisting normal 

islands. It should be noted here that, though each of the chaotic particle 

orbits is unstable against a small perturbation, their statistical properties 

over a sufficiently long time are stable and reproducible so that the statistical 

properties of particle orbits over a long time can be studied by computer 

simulation [23] . 

The present paper is organized as follows. In § 2 a review of dynamical 

systems is described. Here, the definitions of the Poincare surface, unstable 

and stable manifolds, pips and lobs, etc., are given. The lobe dynamics noted 

here will play an important role of understanding the diffusion process from 

a deterministic point of view. In § 3 an experiment and a simulation by 

Solomon and Gollub are reviewed. In § 4 we describe the dependence of the 

diffusion constant D on the amplitude B of the roll oscillation of the velocity 

field, and discuss the fine-grained peaks. These results are compared with 

Solomon and Gollub's results, and the differences are elucidated. In § 5 we 

show the existence of accelerator-mode islands in a peak range of B and 

describe a few characteristics about them. In § 6 we treat the enhanced 
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diffusion and the accelerator-mode islands in terms of the lobe dynamics 

reviewed in § 2. In § 7 we discuss the spectrum 1/J(A) and the probability 

density P( A; n ) of the coarse-grained expansion rates An when islands exist. 

These quantities will show an anomalous scaling in this regime. A summary 

is given in § 8. 
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2 Review of Dynamical Systems 

In this section, definitions and some properties for the equations of the fol­

lowing form are summarized: 

dx / dt = f ( x, t; J.L) (2.1) 

or 

x r-+ g (x; J.L) (2.2) 

where xis aD-dimensional vector, t means 'time' and J.L are some parameters 

which control the properties of (2.1) or (2.2). We refer to (2.1) as a vector 

field or ordinary differential equation, and to (2.2) as a map or a difference 

equation. When (2.1) is solved with an initial condition x0, a family of the 

orbits x(xo,t;J.L) or {xo,x1,x2,···} is obtained, and the family is referred to 

as a dynamical system. 

2.1 Poincare map 

The study of the continuous time systems (2.1) is reducible to the study 

of an associated discrete time system (2.2), by taking the Poincare surface 

[1]. Nowadays virtually any discrete time system that is associated with an 

ordinary differential equation is referred to as a Poincare map. This tech­

nique offers several advantages in the study of ordinary differential equations, 

including the following: 

• Dimensional Reduction. Construction of the Poincare map involves the 

elimination of at least one of the variables of the problem resulting in 
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the study of a lower dimensional problem. 

• Global Dynamics. In lower dimensional problems ( say, dimension:::; 4) 

numerically computed Poincare maps provide an insightful and striking 

display of the grobal dynamics of a system [29, 30]. 

• Conceptual clarity. Many concepts that are some what cumbersome to 

state for ordinary differential equations may often be simply stated for 

the associated Poincare map. 

An example would be the notion of orbital stability of a periodic orbit of 

an ordinary differential equation [12]. In terms of the Poincare map, this 

problem would reduce to the problem of the stability of a fixed point of the 

map, which is simply characterized in terms of the eigenvalues of the map 

linearized about the fixed point as noted below. 

The ordinary differential equation is easily reduced to a Poincare map in 

the case where the phase space of the equation is periodic , such as in period­

ically forced oscillators. We consider the D-dimensional ordinary differential 

equation (2.1) and let ¢(t,x;p) denote the solutions of (2.1), which form 

a one-parameter family of cr' r � 1' diffeomorphism of the phase space. 

¢(t,x) is referred to as a phase flow or just a flow [13]. Let� be anD -1-

dimensional surface transverse to the vector field at x0 (note: "transverse" 

means that f(x) · n(x) -=/= 0 where " ·" denotes the vector dot product and 

n( x) is the normal to � at x ) ; we refer to � as a cross-section to the vector 

field (2.1 ). We can find an open set V C � such that the trajectories starting 
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in V return to :E in a time T (13]. The map that associate points in V with 

their points of first return to :E is called the Poincare map, which is in terms 

of ¢( t, · ; J.L) denoted as follows, 

(2.3) 

where T(x) is the time of first return of the point x to�. ¢(T(x),x;J.L) is 

related with f( t, x; J.L) as 

{T(x) 
¢(T(x),x;J.L) == x + 

lo 
f(t,x(t);J.L)dt. (2.4) 

Here after the properties of (2.2) is only stated because of the remark men-

tioned above. 

2.2 Fixed points and their stability 

Consider a general D-dimensional difference equation 

x 1---+ g(x), x E RD. (2.5) 

When a point x0 is chosen, the orbit of x0 under the map (2.5) is given by the 

infinite sequence {- · · , f-n(xo), · · · , f-1(xo), Xo, · · · , fn(xo), · · · } ,  and fn(xo) 

is referred to as X
n
· An fixed point of (2.5) is a point x E RD such that 

x == g(x), (2.6) 

1.e., a solution which does not change in time. Then, roughly speaking, 

the fixed point x is stable if orbits {Xi} starting "close" to x at a given 

time remain close to x for later times. It is asymptotically stable if nearby 
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solutions actually converge to x as t � oo. A fixed point is unstable if it is 

not stable. If x is an unstable fixed point, then there exists at least an orbit 

{ Xn} starting close to x at a given time and escaping from x for later times. 

In order to determine the stability of x, we must understand the nature 

of solutions near x. Let x = x + y, and substituting it into (2.5) and Taylor 

expanding about x gives 

(2.7) 

in terms of x = g ( x ), where Dg is the derivative of g and 1·1 denotes a norm on 

RD. (2.7) from which higher order terms are removed describes the evolution 

of orbits near x. Dg ( x) is, in this case, a matrix with constant entries, and 

the solution of (2.7) through the point y0 of n = 0 can immediately be written 

as 

Y 
_ eDy(x)ny n- 0· (2.8) 

Namely, if the eigenvalues of the associated linear map have not moduli one, 

then the orbit structure near on the fixed point of the nonlinear map is 

essentially determined by the eigenvalues [13]. 

Let x be a fixed point of (2.5). Then x is called a hyperbolic fixed point 

if none of the eigenvalues of Dg( x) have Moduli one. A hyperbolic fixed 

point of the map is called a saddle if some, but not all, of the eigenvalues of 

the associated linearization have moduli greater than one and the rest of the 

eigenvalues have moduli less than one. If all of the eigenvalues have moduli 

less than one, then the hyperbolic fixed point is called a sink, and if all of the 
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eigenvalues have moduli greater than one, then the hyperbolic fixed point 

is called a source. If the eigenvalues have 1nodulus one, the nonhyperbolic 

point is called a center. It should be clear that the fixed point y == 0 of the 

linear map (2.7) is asymptotically stable if all the eigenvalues of Dg(x) have 

moduli strictly less than one, which means that x is a sink. On the other 

hand, if x is source or saddle, then the fixed point is unstable. 

2.3 Invariant manifolds 

We will see that invariant manifolds, in particular stable and unstable man­

ifolds, play an important role in the analysis of the structures of dynamical 

systems. We will restrict a discussion of these ideas only to a map (2.5). Let 

S C RD be a set. S is said to be invariant under the map x H g( x) if for any 

xo E S we have gn(x0) E S for all n. We remark that if g is noninvertible, 

then only n � 0 makes sense, although in some instances it may be useful to 

consider g-1. An invariant setS C Rn is said to be an invariant manifold if S 

has the structure of a differentiable manifold. Roughly speaking, a manifold 

is a set which locally has the structure of Euclidean space [14]. 

The stable and unstable manifold of a fixed point x, ws(x), wu(x) are 

defined by [30] 

W8(x) == {x E RDign(x)--? x as n--? +oo}, 

Wu(x) == {x E RDig-n(x)--? x as n--? -oo }, (2.9) 

respectively. It is easily shown in terms of the above definition that the set 

ws(x) is invariant under the map X H g(x). For any X E W8(x), gn 0 g(x) == 
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gn+1(x) � x as n � +oo, and so g(x) is also an element of W5(x), or equally 

g(W5(x)) is a subset of ws(x). We can also show that ws(x) is a subset of 

g(W8(x)) with the similar way. The two relations: g(Ws(x)) c ws(x) and 

ws(x) ::J g(Ws(x)), say that ws(x) = g(W5(x)). By repeating the above 

process, the relation is easily generalized to W5(x) == gn(W5(x)) for any n, 

and hence W5(x) is an invariant set. 

Two stable ( or unstable ) manifolds, ws(xl) and W5(x2) of distinct fixed 

points x1, x2 cannot intersect each other. If W8( xi) and W5( x2) intersect 

at a point x, then gn(x) � x1 in the limit n � oo since xis an element of 

W5(xl), at the same time, gn(x) � X2 in the limit n � oo since X is also 

an element of W8(x2). As a result, existence and uniqueness of solutions of 

(2 · 5) ensure that ws( xi) n ws( x2) == 0. On the other hand, intersections of 

stable and unstable manifolds of distinct fixed points can occur, and indeed, 

are a source of the complex structure of phase space found in dynamical 

systems. If there exists an intersection x of stable and unstable manifold 

ws(xl), wu(x2), then there also exist infinite intersections {gn(x)} for all n, 

since W5(xl) and wu(x2) are invariant under the map g. 

We then illustrate a separatrix as a simple example of ws(x) and wu(x). 

We limit, for simplicity, a system with one-degree of freedom i.e., a vector 

field on a two-dimensional phase space, that have a first integral that can be 

viewed as the sum of a kinetic and potential energy. As a preliminary step, 

the shape of the potential V( x) is assumed to be a double-well potential 

where a coordinate (x, y) == (0, 0) is the maximum. Now suppose that the 
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first integral is given by 

and then 

y = ±v'2Jh- V(x). (2.10) 

Our goal is to draw an orbit with h = 0. Imagine sitting at the point (0, 0), 

with h fixed. Now move toward the right, i.e., let x increase. Then, since 

y = + /2 J h - V ( x) and h is fixed, y must increase until the minimum of the 

potential is reached, and then it decreases until the boundary of the potential 

is reached. In the case that h is equal to the maximum value, all the points 

{x(t),y(t)} reach a fixed point {0,0} in the limit t ---t -oo; hence the set 

{x, -!2J-V(x)} is an unstable manifold wu(o, 0). Now y = +J2Jh- V(x) 

to -V2J h - V ( x) as time increases, and in the case of h = 0, the points 

{x(t), y(t)} also reach the fixed point {0, 0} in the limit t ---t oo; hence the 

set {x,/2J-V(x)} is also a stable manifold ws(O,O). Since wu(O,O) is 

accordance with W8(0, 0) in this case, wu(o, 0)( = ws(o, 0)) forms a loop 

including the fixed point {0, 0}. All the points on the loop reach {0, 0} in 

both the limit t ---t ±oo, and the orbit is sometimes called a separatrix, since 

it is a boundary between two distinctly different types of motions. Namely, 

if h is grater than the maximum value 0 of the potential energy V ( x), then 

the particle go around the right- and the left-well. For h < 0, within the 

potential well, the value of initial energy corresponds to bounded motion. 

The separatrices and the generalized ones will play an important role of 

analyzing the transport and the diffusion of tracer particles. 
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2.4 Pips and lobes 

Consider a two-dimensional map g with a control parameter f..L 

(2.11) 

with a hyperbolic periodic point Po, i.e., for some integer k � 1, gk(Po) =Po· 

Without loss of generality we can assume that k = 1 by applying our argu­

ment to gk rather than g. As an additional technical assumption we suppose 

that g is orientation preserving, i.e., detDg > 0. If g does not preserve orien­

tation, then we apply our argument to g2, which does preserve orientation. It 

is natural since Poincare maps arising from vector fields preserve orientation. 

We assume that an separatrix exists on some value of f..L. When 1-L is changed, 

the separatrix often separates into an unstable and a stable manifold of the 

fixed point Po, Wu(Po) and W8(Po) , respectively, and the manifolds often 

intersect transversely. We denote one of the intersection points as q, and the 

point is said to be homoclinic to Po or simply a homoclinic point. If W8(p0) 

and Wu(Po) are transversal at q, then q is called a transversal homoclinic 

point. Consider an orbit of q under g 

(2.12) 

Since q lies in both W8(p0) and wu(p0), and these manifolds are invariant, 

the infinite number of points in (2.12) must lie in both W8(p0) and wu(p0). 

Therefore, W8(p0) and wu(p0) must wind amongst each other intersecting 

along the infinite number of points given in (2.12). This geometrical structure 
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has been called a homoclinic tangle, and we now develop the concepts to 

describe it more quantitatively. 

Let U[g-1(q), q] denotes the segment of wu(p0) with end points at g-1(q) 

and q. Then W8(p0) intersects U[g-1(q),q] at q and g-1(q) and also at k 

points in between q and g-1( q) with k � 1 for orientation preserving maps. 

Without loss of generality we can assume k = 1, and easily generalize our 

results for k > 1. We denote the segment of W8(p0) with endpoints at q 

and g-1(q) by S[g-1(q), q]. Here we call a special ty pe of homoclinic point 

q as a primary intersection point or pip defined as follows. Suppose q E 

ws(p0) n wu(Po). Then q is called a primary intersection point(pip) [15] if, 

other than Po, S[po, q] and U[po, q] intersect only in the point q. The following 

lemma [26], which is easily proved, is quite useful. 

Lemma. If q is a pip, then gk( q) is a pip for any k. 

Lemma determines how to iterate of U[g-1(q), q] and S[g-1(q), q] with 

g, and of a lobe L, which is defined as follows. Let q and q1 be two adja­

cent pips i.e., there are no other pips on U[q, q1] ( or equivalently S[q, q1] 

) between q and q1. Then we refer to the region bounded by U[q, q1] and 

S[q, q1] as a lobe. For any lobe L, f..L(L) will denote the area of L. From 

lemma and the invariance of W8(Po) and Wu(Po), it follows that, for any 

lobe L, gk(L) is also a lobe for any k. However, besides the pips, there are 

other secondary intersection points or sips which complicate matters further. 

Consider the lobes labeled £1 and £2 in Fig. 2. Then, for positive integers k 

and n sufficiently large, gk(LI) must cut through g-n(L2) as shown in Fig. 2. 

20 



Po 

, ,,',,.-····
; 

g-l(q) .. /./ 

' -...... _ ... .... ,- ,' ,' 
.--·/ Ll _../ , . , . 

R1g(L2,1 (1) ) ........ ..  L2 

. . . ·- - - . . . . .  .-:> _ _ _ _ _ _ _ _ _ _ _  .......... 

q 
g(L1,2(l)) 

Figure 2: Stable and unstable manifold, W5(p0), wu(p0) are shown with 
lobes £1, £2, g(£1,2(1)), g(L2,1(l)). 

21 



Let X = gk(LI) n g-n(£2) ;  then gn(X) = gn+k(£1) n £2 is contained in 

£2. Therefore, iterates of lobes will intersect other lobes. Here we note the 

main difference between pips and sips. Namely, once a pip enter a neigh­

borhood of the hyperbolic fixed point under iteration by g, it remains in the 

neighborhood. Sips, on the other hand, may enter and leave the vicinity 

of the hyperbolic fixed point many times before finally remaining near the 

hyperbolic fixed point under all forward ( or backward ) iterations by g. 

We then formulate the transport of particles in terms of the dynamics of 

the lobes. The term "separatrix" in the map having transversal homoclinic 

orbits is generalized as follows. Choose any pip q E W8(po) n wu(Po). Then 

the region bounded by U[p0, q] U S[p0, q] is referred to as a pseudoseparatrix 

[26]. Note that if W5(p0) n wu(p0) contains one pip, then it contains an 

infinity of pips. Therefore, there are infinitely many choices for the pseu­

doseparatrix. The obvious question thus arises as to which choice should be 

made. This depends on the context of the specific problem under consid­

eration. In dealing our problem, it is probably most natural to choose the 

pseudoseparatrix so that it is as close as possible to the separatrix in the 

associated integrable problem. 

We assume that the phase space is divided into two disjoint components, 

labeled R1 and R2, by choosing a pseudoseparatrix. The problem of transport 

in phase space that we shall study is concerned with how initial points in R1 

may enter R2. It will be shown that this is completely determined by the 

geometry and dynamics of the lobes. We suppose that S[g-1(q) , q] intersects 
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U[g-1
(q),q] in precisely one pip besides g-1(q) and q, as shown in Fig. 2. 

Then precisely two lobes are formed, one lying in R1 and the other lying in 

R2, which we denote by L1,2(1) and L2,1(1), respectively. Now g(L1,2(l)) and 

g(L2,1(1)) appear as in Fig. 2. Note that L1,2(1) enters R2 under one iteration 

by g, and L2,1(1) enters R1 under one iteration by g. This is the mechanism 

for transport across the pseudoseparatrix and appears to have been discussed 

explicitly for the first time by Channon, Lebowitz [16] and Bartlett [17]. The 

lobes bounded by U[g-1(q), q] U S[g-1(q), q] have been called a turnstile by 

Mackay, Meiss and Percival [35]. The mechanism for transport noted above 

reveals that initial points in � entering Rj on the n-th iterate of g must be 

in Li,j(l) on the (n -1) iteration of g, with i,j = 1,2. 

Now we can obtain an important quantity concerning the transport in 

phase space across the pseudoseparatrix . The area of phase space crossing 

the pseudoseparatrix from R1 into R2 under one iteration of g is given by 

p,(g( L1,2)). Thus, the total area of phase space crossing the pseudoseparatrix 

from R1 into R2 under n iterations of g is np,(g( L1,2)). The quantity we 

want to obtain is the area occupied by points that are in R1 initially ( i.e., 

at t = 0 ) that enter R2 on the n-th iteration by g. The quantity is not 

p,(g(L1,2)), because we are not just interested in arbitrary points crossing 

the pseudoseparatrix but, rather, in points which have a specified location 

initially. Thus, with each point in the plane it is important to keep track of 

whether it was in R1 or R2 initially. The points lying in Ri at t = 0 will be 

called � particles. Heuristically, we can think of R1 particles as black fluid 
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and R2 particles as white fluid, and we are interested in how the fluid mix 

amongst each other under the dynamics generated by g. We first establish 

some definitions. Let Li,j( n) denote the lobe that leaves � and enters Rj on 

the n-th iterate and let 

(2.13) 

thus we have 

(2.14) 

The main quantity that we wish to compute is a flux of Ri particles into Rj 

on the n-th iterate, which is given from these definitions by 

(2.15) 

Next we want to compute Li,2(k). Using an observation noted above, R1 par­

ticles can not enter R2 on the k-th iterate unless it is in £1,2(1) on the (k -1) 
iterate. Thus, points in g-k+1(L1,2(1)) enter R2 on the k-th iterate. However, 

g-k+1(L1,2(1)) may not contain only R1 particles, since g-k+1(L1,2(1)) may 

intersect g-1+1(£2,1(1)), l = 1,···,k, and, thus, lie in R2. Hence we have 

k-1 
Li_2(k) = g-k+1(L1,2(1))- U (g-k+1(L1,2(1)) n g-'(£2,1(1))). 

1=0 
Now, since the sets g-k+1(L1,2(1)) n g-1(£2,1(1)) are disjoint, we have 

k-1 
f1(gn(Li,2(k))) = f1(gn-k+1(L1,2(1)))- L J1(gn-k+1(L1,2(1)) n gn-l(£2,1(1))). 

l=O 
Thus the flux J1(gn(Li,2(n))) is obtained as [26] 

n-1 
J1(gn(Li,2(n))) = f-l(g(£1,2))- L f-l(g(£1,2(1)) n gn-k(£2,1(1)))). (2.16) 

k=O 
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We make an important remark that (2.16) has implications for all points in 

R1 but are obtained entirely by iterating the turnstile. The formula will be 

used in § 6 and play an important role of elucidating the diffusion process of 

the Rayleigh-Benard convection from a deterministic point of view. 

2.5 Dissipative and conservative systems 

The D-dimensional differentional equations dx / dt = f ( x ) are called dissipa­

tive systems when the phase space volume is continuously contracted with 

increasing time, and then the contraction rate is given by \7 · f < 0. This 

leads to contraction onto a surface of lower dimensionality than the original 

phase space, and the surface is referred to as the at tractor. For regular mo­

tion, the at tractor of the flow represents a simple motion such as a fixed point 

( sink ) or a singly periodic orbit ( limit cycle ). For flows in two-dimensions 

there are , in fact, the only possibilities. 

For three-dimensional regular flows, in addition to sinks and limit cycles, 

quesiperiodic orbits may be possible. In addition to these simple attrac­

tors, it has been shown that attractors exist for dissipative flows in three­

or more-dimensions that have very complicated geometric structures. These 

structures can be characterized as having a fractional dimension, and are usu­

ally called strange attractors. The rnotion on strange attractors is chaotic or 

critical. 

On the other hand, the differentional equations are called conservative 

systems or Hamiltonian systems when the phase space volume is conserved, 
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which satisfy the condition V' · f(x) = 0, or detDg = 1 in the case of a map 

g. If a 2n-dimensional equation is determined by a Hamiltonian function 

H(q,p, t) as 

BH/Bpi, i=1,···,n, (2.17) 

then the equations always satisfy the conservative condition as follows, 

v. f(x) = t�(-BH) + �(BH) = o. 
i=l Bpi Bqi Bqi Bpi 

Consider a time-independent Hamiltonian system H0(q,p) with n-degrees of 

freedom. If there exist n-independent invariants of the motion, then the 

system is called integrable. It is well known as the Arnold theorem that the 

flow of the integrable system with n-degrees of freedom forms n-dimensional 

tori. We then consider a 2n-dimensional integrable system that is perturbed 

slightly. If the perturbation is sufficiently small, the KAM theorem [18] 

guarantees the existence of invariant tori. The theorem says that if the 

linear independence condition of the frequencies is satisfied with over some 

domain of phase space, then the perturbed motion is much less than the 

unperturbed one and the invariant curves, which is called KAM-invariant 

curves, exist near the unperturbed orbits. In the region that the condition 

is not satisfied, chains of alternating elliptic and hyperbolic fixed points are 

found with regular phase space trajectories encircling the elliptic fixed points 

and invariant manifolds connecting to the hyperbolic points. The stochastic 

behavior of the map around the hyperbolic points is found and is understood 
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due to the sequential stretching- and folding processes in phase space, and 

the processes are visualized with the homoclinic (or heteroclinic ) tangles of 

the invariant manifolds. 

The transport property of particles are, as noted above, analyzed in terms 

of the lobe dynamics. The Hamiltonian system has neither sinks nor sources, 

and hence the lobe dynamics will be more simple [26]. We again limit to the 

map g with detDg == 1. In this case we have 

(2.18) 

and 

(2.19) 

Substituting (2.18) and (2.19) into (2.17), and reindexing gives 

f.l(Li 2(n)) ' 

n-1 
J-l(LI,2(1))- 2: J-l(LI,2(1) n gk(L2,1(1))), (2.20) 

k=l 

where we have used the fact that by construction L1,2(1) n L2,1(1) == 0. In 

words, the sets L1,2(1) n gk(L2,1(1)) are the points that leaves R1 and enter 

R2 under one iteration by g subject to the condition that they entered R1 

from R2 k iterations earlier. 
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3 An Experiment on Diffusion by Solomon 

and Gollub 

Solomon and Gollub have studied the transport of tracer particles in nearly 

two-dimensional, time-periodic Rayleigh-Benard convection experimentally 

and numerically [20] . In their paper qualitative observations of the transport 

rates are presented, along with quantitative measurements of the transport 

rates as a function of the strength of the time dependence. A simplified 

numerical model is discussed in which transport between convection rolls is 

caused by chaotic advection due to lateral oscillations of the roll boundaries. 

Then the model gives a semiquantitative account of the experimental results. 

3.1 Diffusion of tracer particles in Rayleigh-Benard 

convection 

The convection cell used in their experiments is a rectangular box with hor­

izontal dimensions 15cm ( along the x direction ) by 1.5cm ( the y direction 

) and a depth of 0.75cm ( z direction ) . The working fluid is water at an 

average temperature of 36 oc, where the Prandtl number is 4. 7. Convection 

patterns are established with rolls oriented parallel to the short side of the 

convection cell. To obtain spatial information about the flow it is necessary 

to collect velocity time series at locations along the convection cell. The 

time average value of the vertical velocity Vz at each location is then used to 

describe the spatial structure of the flow, and the standard deviation < e5 v > 

averaged over a wave-length of the flow is used as a measure of the local 
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amplitude of time dependence. After injection of an impurity, which is r -

ferred to as tracer particles elsewhere, one-dimensional concentration profiles 

c( x, t) averaged over y and z direction are measured at the midhight of the 

cell. An enhanced local-transport coefficient is defined using Fick's law for a 

coarse-grained concentration profile c(x, t): 

ac(x, t) 
F(x, t) == D(x, t) 

ax 
, (3.1) 

where F( X' t) is the flux of dye past the point X at t and acj ax is determined 

by measuring the slope of c( x, t) between the centers of adjacent convection 

rolls. The enhanced diffusion coefficient D(x, t) is determined by dividing 

F(x, t) by acjax. 

Transport experiments were performed at Rayleigh number R ranging 

from R/ Rc == 19 ( just above the onset of time dependence in this cell ) 

through R/ Rc == 32. Here Rc is the Rayleigh number corresponding to the 

onset of convection. Visual observation of the motion of an impurity injected 

through a small tube in the bottom corner of the cell clearly indicates the 

presence of advective transport between convection rolls. Small blobs of the 

impurity are pulled periodically from the corner of one roll into the next. 

Lines of impurity are stretched and folded repeatedly in the vicinity of the 

corners. Stretching and folding of this nature are common characteristics of 

chaotic maps in which a rectangle in phase space is stretched and folded onto 

itself. Within the rolls, impurity concentrations are found to homogenize very 

rapidly. This time is short compared to the typical time of approximately 

one-half day for the experiments. 
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Transport coefficients are measured for each run in terms of (3.1), which 

is found to be independent of time, within the resolution of the data. There 

is a monotonic relationship between D and < O"v > which we determined 

experimentally. Plots of D vs < O"v > are shown in Fig. 3 with open circles. 

An approximately linear relationship can be seen from these plots . 

3.2 Elucidation in terms of Lagrangian turbulence 

A simplified model of transport in time-periodic Rayleigh-Benard convection 

is, then, described. A Lagrangian approach is taken in which the trajecto­

ries of individual tracer particles are obtained by integrating the equations 

describing the velocity field. The system is Hamiltonian: dx ( x, z, t) / dt and 

dz(x, z, t)jdt are derived from a stream function 

\ll(x, z, t) = (A/k) sin{k[x + Bsin(wt)]}W(z), (3.2) 

where A is the maximum vertical velocity in the flow, k is the wave number 

2n-j)..., and W ( z) is an even function of z that satisfies the rigid boundary con­

dition at the top and bottom surfaces. W(z) is obtained by solving the hydro­

dynamic equations (1.2) strictly [28]. This stream function describes single­

mode two-dimensional convection with rigid boundary conditions. B = 0 

corresponds to the flow where the Rayleigh number R is below the onset of 

the time-dependent instability. To study the flow above the onset, the term 

B sin( wt) is inserted, and the term represents the lateral oscillation of the 

roll pattern with amplitude B and frequency w that is caused by the even 

oscillatory instability [19]. 
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Trajectories of particles near the separatrices are chaotic in this model. A 

quantitative comparison can be made between the model and the experimen­

tal transport data. Calculations of D as a function of B have been performed 

for the model. The parameters A and w are set to match the conditions of 

the experiment. One convection roll is filled uniformly with 10000 particles, 

and the trajectories of these particles are computed individually. After one 

complete period of oscillation, the number of particles that have been ex­

changed between adjacent rolls is counted to determine the net flux F(x, t)of 

tracer particles between rolls. The calculated flux of tracer particles and the 

difference in concentration between the rolls is inserted into Fick's law (3.1) 

to determine D. Values of D are determined numerically for amplitude of 

oscillation B such that 0 < 2B I A < 0 .1. 

For a proper comparison with the experimental data, the strength of the 

oscillation should be expressed in terms of< CJv >, not B. The convection 

between B and < CJv > is accomplished by expanding the fJz I &t equation 

for small B, determining CJ v ( x, z) at z == 0 and averaging over one complete 

wavelength of the roll pattern. 

It is numerically found that D depends linearly on B ( and < CJv > ) for 

small values of 2B I).. ( 0 ::; 0.1 ) .  A plot of D vs < CJv > is shown in Fig. 3. 

The results of the numerical model are presented along with the experimental 

data. For both the experimental and numerical data, D scales linearly with 

< CJv >. The slopes of the experimental and numerical data differ by about 

a factor of 2. 
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4 Some Characteristics of Diffusion Con-

stant 

The diffusion constant D measured by Solomon and Gollub is reflected only in 

properties of a few periods of motion, as reviewed in § 3. We now examine the 

long- time behaviors of tracer particles governed by the same stream function 

as Solomon and Gollub, which is nondimensionarized, to be invariant under 

the transformations { x, z} -+ { x ± 2, z} and { x, z} -+ { x ± 1, -z}. Using the 

well-known Poincare-section method we take the plots of the orbit {x(t), z(t)} 

of each particle at discrete time t = 0, ±1, ±2, · · · , which are denoted by 

Xt = { Xt, zt} with a two-dimensional Poincare map 

Xt+l = g(Xt). (t = 0, ±1, ±2, · · · ) ( 4.1) 

This system is equivalent to a Hamiltonian dynamical system with 1.5 degrees 

of freedom, exhibiting invariant tori, islands of tori, and chaotic seas [29, 30]. 

There is a widespread chaotic sea generated by the oscillating roll boundaries, 

in which tracer particles move from roll cell to roll cell successively [20, 21, 

22]. In the following we shall consider chaotic orbits of such particles in the 

widespread chaotic sea, and study what effects the islands of tori bring about 

on their diffusion and mixing. 

The motion of each particle in this chaotic sea is characterized as a dif­

fusion process in the horizontal direction because the memory of its initial 

point is lost rapidly due to the mixing of particle orbits, and can be regarded 

34 



0.5 

0.4 

z 0.3 

0.2 

0.1 

0 

(a) 
. . ,. .: . .. _·, .. : ; . ·• '.· . . ,. . .. : . -�. - .: ::. :. . . 

_.,,'.:.· "' · · . .... :·:::.:..:-�... 
. . -·- -·- -·- --_,·' ,..- - ..---- : --- ...... 

-0.1 

-0.2 

-0.3 

-0.4 

·
· .. \\��;d�,' . · �· . �.j:,�;�� "��:

;:����a: ..•.. 
-0.5 

': .:.:. :. ·;·:. 

z 0.3 

0.2 

0 

(b) 

0.2 0.4 0.6 0.8 1 

X 

1.2 1.4 1.6 

_ _ ,,· 
· 
.... 

1.8 

a . ' .. o •, o • ... . - . · ·  
·., 

. ; . . . . . . � _ · _ _  :
· 

,/ /;.; . . - -- - · · ·- ---<<. ,··\ ... 

_::: . ' ('({�):)) · · . . .·: :: ':: \ . (\ i>�.J) ; . ·: 
. . . . · .. -.: . \,· -,s���-:<./,. . . . ·. · . .. ... 

. - . . . 

···· .. 

-0.2 

-0.3 . . '' .· r._.·,: 
-0.4 

-0.5 

. · · : . ·.: � . r·····..... . .  ........ ···) . . . : · . . . c�<:�::�-=:2�---) . . · .-·.· . .. 

2 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

X 

Figure 5: A widespread chaotic sea and two islands for (a) B = 0.01 and (b) 
B = 0.05. Scattered dots represent the chaotic sea. Each island consists of 
a complicated mixture of invariant tori and bounded chaotic regions, and is 
encircled by a critical torus. 

35 



as a stochastic process with the diffusion constant D defined by the variance 

< (xn- xo )2 >= 2Dn, (n >> 1) (4.2) 

where < · · · > denotes the ensemble average over the initial points of tracer 

particles concentrated in a small chaotic region of the chaotic sea. The dif­

fusion constant D is, in this definition, determined by long-time correlations 

of particles, and shows a different dependence on B from the definition (3.1). 

It is obvious that the two definitions are equivalent to each other if the equa­

tion of continuity holds and the system is a markov process. D is determined 

numerically for different values of B with 0 < B < 0.2. An example for 

< (xn - x0 )2 > vs n is shown in Fig. 6. The value of D is dependent on B 

and the graph of D vs B is shown in Fig. 4 [21]. This figure shows that D 

depends linearly on ffi globally but with some fine-grained peaks indicated 

by the arrows. 

The dependence can be understood from a simplified stochastic model as 

follows. Let the lateral transition probability of a chaotic orbit from the ith 

cell to the jth cell be Pji and suppose that 

P 

. .  -! 
f- 2p 

)1-
p 

0 

if j=i+ 1, 
if J=l, 
if j=i-1, 
otherwise, 

( 4.3) 

where Lj Pji = 1. Then ( 4.2) with n = 1 leads to D = (1/2) Lj(j- i)2 Pji = 

p. Let Ci be the widespread chaotic region of the ith cell Ri whose particles 

can be transported into its neighboring cells Ri±l, and !-l( Ci) be its area. The 

accelerator-mode islands will be included in Ci, in existing the islands. The 
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D � 0.095. 
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region into which Ci is mapped after one period of oscillation is denoted by 

F( Ci)· Then we have 

( 4.4) 

To estimate the denominator of ( 4.4), we suppose that the tori which are not 

destroyed for 1 � B > 0 do not change their shapes qualitatively from those 

for B = 0. This assumption is assured in terms of the KAM theorem. The z 

coordinate which separates the chaotic region from the tori at x = i + 0.5 is 

denoted by z*( rv 0.5) and the x coordinate which does at z = 0.0 is denoted 

by x*( rv 0). The time interval for which the test particles stay near the line 

x = 0 with velocity u = ±(t) in the x direction is denoted by bt. Then x* is 

related to B by x* rv f8tu(O,z(t),t)dt ex B forB� l,and z* is related to x* 

by 'l10(x*,O) = 'l10(0.5,z*). As lz*-0.51 � 1, we have W(z) rv (z*-0.5)2. 

These equations lead to lz*-0.51 ex VB so that the denominator is estimated 

as J-L( Ci) rv x* + lz* - 0.51 ()( B +VB. 

Next we estimate the numerator, which is supposed to be proportional 

to < lui > lz* - 0.51, where < lui > is the average velocity through the 

separatrices. The dependence of < lui > on B is given as follows. By 

definition, 

u = -8'l!(x,z,t)j8z rv Asin{1r(x + Bsin(21rt ) ) } (z- 0.5). (4.5) 

The maximum and minimum value of the probability density P(z) for z(t) 

in the widespread chaotic region with z* < z < 0.5 between separatrices are 

denoted by P max and P min, respectively. If P max -P min � P( z), then P( z) is 
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given by 1/(0.5- z* ) , leading to 

(0 .5 
< lui >r-v lz • (0.5- z)P(z)dz r-v (0.5- z*) r-v VB. ( 4.6) 

After all, 

D r-v p ex < lui > VB r-v VB. 
B+VB 

( 4.7) 

This result differs from that of Solomon and Gollub. Their result can 

be understood as follows. If one cell is filled uniformly with test particles 

as in their simulation, then the fact that the particles do not diffuse in tori 

has to be taken into account. We define the torus region Ti of the ith cell 

and its area p,(Ti). Then Ri, Ti and Ci are connected to each other with the 

relations of � = 7i U Ci and Ti n Ci = 0. The diffusion constant in Ci is 

denoted by De and the one in 7i by Dt. p,( Ci) and De are both proportional 

to VB, whereas p,(Ti) and Dt are proportional to 1-VB and 0, respectively. 

Then D = p,(Ti) · Dt + p,(Ci) · De r-v B, leading to their linear dependence 

on B. The diffusion constant, however, should be defined only for chaotic 

orbits in the widespread chaotic region. Another characteristics of Fig. 4 

is to have some fine-grained peaks which are not reported by Solomon and 

Gollub. Four remarkable peaks are found in Fig. 4 at B = 0.012, 0.045, 0.097 

and 0.1 6 as indicated by the arrows. These peaks of D will be referred to 

as the enhanced diffusion, whose extreme case will lead to accelerator-mode 

islands in a peak range of B, producing an anomalous diffusion with D = oo. 

These remarkable features will be characterized by certain structures of the 

invariant manifolds in fluid space. 
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5 Accelerator-mode Islands 

5.1 Existence of accelerator-mode islands 

There exist elliptic periodic points {it, Zt} with period Q, on which particles 

move as 

lit+Q -it! = z, zt+Q = zt, (t = 1, 2, .

. . , Q) (5.1) 

with mean speed Va = l I Q � 1 for a pair of positive integers l and Q. The Q 

main islands around {it, Zt} are referred to as the accelerator-mode islands 

with period Q and mean speed Va = l I Q. Indeed we shall show that such 

accelerator-mode islands appear around the oscillating roll boundaries in a 

peak range of B. Then there coexist two kinds of islands in the widespread 

chaotic sea; one is the normal islands with Va = 0, and the other is the 

accelerator-mode islands with Va > 0. The accelerator-mode islands in a 

peak range about B = 0.04 are investigated below. Indeed two main islands 

which have Q = 2 and Va = 1 appear around points { x = integers, z = 0} 

in the range 0.039783 < B < 0.041923, as shown in Fig. 7 for B = 0.0404. 

As shown in Fig. 8 where the rotation number p around the periodic points 

{it, Zt} is plotted against B, these islands become unstable at B = 0.041923 

with eigenvalue -1, where the rotation number becomes 112 in the unit of 

period two. Then four islands with period four appear, and similar situations 

continue from 2n-period to 2n+1-period, leading to a period-doubling tree 

which has been reported by Greene et al in a two-dimensional map [31] . 

Figure 9 shows the vertical component of the elliptic periodic points of the 
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0.04 0.041 
B 

0.042 

Figure 8: Rotation number p of the accelerator-mode islands vs B( = 

0.039783 rv 0.041923), which is obtained from the eigenvalue of the linearized 
equation of (2.17) 
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Figure 7: Phase-space portrait of the accelerator-mode islands with Q 2 

and Va = 1 forB= 0.0404, lying around the roll boundary W0. 
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Figur-e 9: Vertical component Zt of the elliptic periodic points vs B. This 

exhibits the period-doubling tree 2n from n = 1 to n = 3. 
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accelerator-mode islands as a function of B, exhibiting the period-doubling 

tree from n = 1 to n = 3. 

Indeed Fig. 10 shows the four main islands of period four ( Q = 4) with 

Va = 1 at B = 0.04206. 

The horizontal displacement of a tracer particle for n iterates is denoted 

by 

(5.2) 

where Xn is the horizontal coordinate at iterate n of the tracer particle. The 

probability density of Un(Xo) is given by P(U; n) < b(Un(Xo) - U) >E, 

where b(g) denotes the b-function of g and< g(X0) >E denotes the ensemble 

average 

< g(Xo) >E - j g(Xo) P(Xo) dXo (5.3) 

with an initial density P(X0) of tracer particles. We here choose a uniform 

distribution P(X0) on the line x = 0 on which the accelerator-mode islands 

with Va = 1 exist. Then Un(Xo) = n for Xo lying on the islands so that 

P(U; n) has a sharp peak at U = n [32). This is clearly shown in Fig. 11 

with n = 100, 200, and 300, ensuring the existence of the accelerator-mode 

islands with Va = 1. 

A chaotic particle orbit in a chaotic sea sticks to a main island in the 

chaotic sea repeatedly. Hence the island is quantitatively characterized by 

the distribution function f( n) of sticking times n. A feature of f( n) is the 

power-law dependence 

f(n) ex n-l-!3, (1 < {3 < 2) 
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P(U; n) (a) 

10-z \:(U; n) (c) 

10-4 �� 

Figure 11: Probability density P(U; n ) of Un(Xo) == lxn -xol for (a) n == 100, 
(b) n == 200 and (c) n == 300. 100 tracer particles are used for the initial 
distribution P(X0) of (5.3). 
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Figure 10: Accelerator-mode islands of period four ( Q == 22) with Va == 1 for 

B == 0.04206596, lying around W0. Each of the four islands is formed by 300 
tracer points. 
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...... 

For a chaotic particle orbit Xt of the map ( 4.1), let u1(Xt) be the unit 

vector tangent to the local unstable manifold at Xt and DF(Xt) be the 

Jacobian matrix ofF at Xt. Then the local expansion rate .\1 (Xt) of nearby 

particle orbits at Xt is defined by [23] 

(5.9) 

Namely, .A.1(Xt) expresses the mean rate of expansion of nearby particle orbits 

for one iterate. We now take w(Xt) = .\1(Xt), which is one of the most 

important physical quantities for characterizing chaos. Then the long-time 

average of .\1(Xt) over n iterates, 
n-1 

An(Xo)- (1/n) L .\1(Xt), (5.10) 
t=O 

is called the coarse-grained expansion rate. The Liapunov exponent A 00 is 

given by (5.10) in the limit n � oo since Aoo(X0) =< .\1(X0) >. Each par-

ticle in the chaotic sea loses the memory of its initial point in about 1/ A 00 

iterates on the average due to the mixing of particle orbits caused by the 

stretching and folding of small cells [23]. The degree of the mixing is, there-

fore, quantified by A 00• Islands, however, produce a long-time correlation of 

particle orbits. Indeed, since .\1(Xt) � 0, �1(Xt) � -A00 I= 0 during the 

sticking to the islands, we have C� =< �1(Xn)�1(X0) >ex n-(/3-1). The sum 

S�(X0) = nAn(X0) with < S� >= nA oo, therefore, takes the form [34] 
n-1 

< (S�- < s� > )2 >= nCG + 2 'L(n- t)c; ex n( (5.11) 
t=1 

for large n, where 2 > ( = 3 - {3 > 1. This is in strong contrast to the 

dissipative dynamical systems for which 1 � ( � 0 [23]. Indeed Fig. 12 
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since the particle orbit spends a long time among the hierarchical structure 

of chains of small islands around the main island repeatedly [33]. The prob­

ability that an orbit segment sticks to the island longer than n is given by 

00 

W(n) = L tf(t) ex n-(!3-1) (5.5) 
t=n 

for large n. Let us apply this to the accelerator-mode islands of speed Va = 

l/Q # 0. Since Un(Xo) = nva during the sticking to the islands, we then 

have the variance [23] 

< (xn- xo? >� (nva?W(n) ex n3-f3, (2 > 3- f3 > 1) (5.6) 

for large n instead of ( 4.2). Since 3 - f3 > 1, this leads to the anomalous 

diffusion where the diffusion constant diverges ( D = oo) . 

5.2 Long-time correlations of particle orbits 

Let us take a time series of a physical quantity w; { w(X0), w(X1), · · · , w(XN_1) }. 

Then (5.5) leads to the power-law decay of the time-correlation function 

c:;: -< w(Xn)w(Xo) > if w(Xt) � C # 0 for Xt sticking to the islands, 

where w(Xn) = w(Xn)- < w(X0) > and < · · · > denotes the long-time 

average 
N-1 

< G(Xo) >- (1/ N) L G(Xt) (5.7) 
t=O 

with N -too. Indeed, c:;: is estimated as c:;: � C2W(n) ex n-(!3-1). Then 

the variance of the sum s:::(X0) = "Er�o1 w(Xt) takes the form 

n-1 
< (S�- < s� >? >= nC� + 2 L(n- t) C� ex n3-13. (5.8) 

t=1 
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shows the anomalous growth n( with ( � 1.37 forB = 0.0413782, leading to 

{3 � 1.63. 

There coexist two kinds of islands in the widespread chaotic sea; the 

accelerator-mode islands with Va > 0 and the normal islands with Va = 0. 

The anomalous diffusion (5.6) is produced by the accelerator-mode islands, 

whereas the anomalous mixing (5.11) is produced by any kind of islands. 

Indeed the anomalous mixing (5.11) with ( � 1.37 is produced by the co­

existing normal islands. It should be noted here that the accelerator-mode 

islands and the coexisting normal islands produce different values of expo­

nent {3, since their neighborhoods have different structures. Then the smaller 

{3 determines the variance (5.11), leading to a larger value of(, i.e., ( � 1.37. 
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Figure 12: Variance< (S� -nA 00 )2 > vs n ( = 10 rv 1600) forB= 0.0413782. 
The length N in the long-time average (5.7) is taken to be 50 x 105. This 

leads to ( � 1.37, {J � 1.63. 
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6 Diffusion and Accelerator-mode Islands 

in terms of the Lobes 

Here we attempt to elucidate and formulate the enhanced diffusion and the 

accelerator-mode islands from the structures of the unstable and stable man-

ifolds. 

6.1 Lobes and turnstiles in Rayleigh-Benard convec­

tion 

Let us first review the lobe dynamics for the map ( 4.1) briefly, starting from 

the unstable and stable fixed points PT = { x j, zj } on the rigid walls, where 

Xj == j, zj == ±0.5 with j == 0, ±1, ±2, · · · , as shown in Fig. 13 schemati­

cally. The full curves wu(pj) in this figure are the unstable manifolds which 

originate from pj with even j and pj with odd j, whereas the dotted curves 

W5(pf) are the stable manifolds which terminate at pjk with even j and pj 

with odd j. When B == 0 in (3.2), the straight lines connecting pj and pj 

are the separatrices, so that the particles in each roll cell divided by these 

separatrices cannot be transported to its neighboring cells. The unstable and 

stable manifolds of PT are separated for B > 0, and then the particles can 

be transported from cell to cell through the separated manifolds. 

As shown in Fig. 13 (a), we select one principal intersection point (pip) 

Co E wu(Po) n ws(Pt) and the line U[p()' co] u S[pt' co] as a pseudo-separatrix 

W0, as shown in Fig. 13 (b) (27]. The c0 is selected so that W0 resembles the 

original separatrix of B == 0 lying at x == 0. As the generalization of c0, Cj is 
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defined for j = 0, ±1, ±2, · · · by 

( 4. 1) 

from the symmetry of (3 .2) , where the suffices x and z indicate the x and z 

components, respectively. As shown in Fig . 13 (b), pseudo-separatrices Wi 

are also defined similarly, representing the oscillating roll boundaries at time 

t = 0, ±1, ±2, ···,and the fluid space is divided into cells Ri bounded by Wi 

and wj+1· 

S[F-1(cj), cj] intersects U[F-1(cj), cj] at precisely one pip besides F-1(cj) 

and Cj for the map ( 4.1), and the pip is referred to as s j. Hence there are two 

lobes between Cj and F-1(cj) which are formed by U[cj, si] U S[cj, si] and 

U[sj, F-1(cj)] U S[sj, F-1(cj)], respectively. The particles in Rj_1 are never 

transported to Rj except the particles lying on one of these two lobes, and 

the particles lying on another lobe are transported from Rj to Rj_1. The 

lobe whose particles are transported from Rj_1 to Rj is referred to as Lj-1,j, 

and another lobe as Lj,j-1, which are turnstiles (35]. The turnstiles L_1,0, 

Lo,-1, £0,1, and £1,0 are shown in Fig. 13( a) . The turnstiles Lj,j±1 lie in the 

cell Ri, as shown in Fig.  13 (b) . Figure 13 (b) also shows the lobes L_1,0, 

F L_1,0 and F2 L_1,0 schematically, where F2 L_1,0 is stretched over the turn­

stile £0,1 which is mapped into F L0,1 in R1. This indicates how fluid particles 

are transported from Ro to R±1, R±2, • · • successively through the turnstiles . 

The turnstiles Lj-1,j and Lj,j-l lie around the roll boundary Wi, and their 

dynamics produces the widespread chaotic sea extending over all the cells 

Ro, R±1, R±2, · · •. The dynamics of lobes is, therefore, very important for 
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studying the diffusion of tracer particles from the viewpoint of dynamical 

systems. 

6.2 Elucidation of enhanced diffusion and accelerator­

mode islands 

We now discuss how the enhanced diffusion and the forn1ation of the accelerator-

mode islands can be elucidated in terms of the lobe dynamics. The particles 

lying in the widespread chaotic region C0 at t == 0 is called the Ro particles 

as before. We suppose that the tracer particles are put on the region C0 

uniformly at time t == 0, and first derive the concentration of the Ro particles 

on Cj, (j i- 0) after n iterates, Ti(n) = p(Ci n pnc0), in terms of a few 

lobes and their dynamics. All the regions occupied by those particles which 

escaped from Ro for n iterates are given by Uk=1 Fk(Lo,1 U Lo,-I) in terms of 

L0,1 and Lo,-1. The particles entering Cj at iterate n must be contained in 

Lj-1,j or Li+1,j at iterate n- 1. Hence L�_1,i(n) = Lj-1,j n pn-1C0, (j i- 0) 

gives a subregion of C0 which enters Ci at iterate n by passing through Li-1,i 

at iterate n -1, and p(L�_1,j(n)) denotes the amount of the Ro particles en­

tering Ci at iterate n through Li-1,i. Then, using only 4 + 1 lobes and their 

dynamics and applying the formula (2.20) , we obtain 

n-1 
J-L(L}-1,j(n)) == 8j,1J-L(Lo,I) + L L [p(Lj-1,j n pk Lo,i)- p(Lj-1,j n pk Li,o)], 

k=1i=±1 
(6.1 ) 

where 8i,j is the Kronecker 8. The first terms of the summand give the area 

of the region whose particles once have been on C0 and enter Ci at iterate 
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n. Such particles which are not the Ro particles but entered C0 from the 

outside through L1,0 or L_1,0 have been subtracted by the second terms of 

the summand. A total flux Jj-1,j(n) of the R0 particles from Rj-1 to Rj 

across wj at iterate n is given by 

(6.2) 

where the first term is a flux from Rj_1 to Rj and the second is a flux from 

Ri to Ri_1. The particle concentration Ti ( n) = p,( Ci n pnc0) is related to 

this Jj-1,j( n) by the continuity equation as 

(6.3) 

Therefore, Tj( n) is easily obtained by integrating this equation as 

n 

Ti(n) = L {Jj-l,j(m) + Jj+l,j(m)} for j =/: 1, (6.4) 
m=l 

so that Ti( n) can be written only in terms of 8 lobes and their dynamics 

through (6.2). The region Co is given by Co= Ron U�o Fk(Lo,1 u Lo,-d in 

terms of the lobes . 

Since all the initial points of the tracer particles are put on C0, the trans­

port probability of the tracer particles from Rj to Ri+l at iterate n is given 

by Ji,i+l(n)/ p,(C0). Let t8 denote the first visit time [27], i.e., the minimum 

time in which an appreciable ratio of the R0 particles is transported from R±1 

to R±2; in other words, the minimum time in which an appreciable amount 

of the lobes F Lo,±l enters the turnstiles L±1,±2. Here the translational and 

time-reversal symmetries of the system have been taken into account. Let Ts 
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be the mixing time in which the lobes Fk L0,1 and Fk L2,1, (k = 1, 2, · · · , TB ) 

fill C1 nearly uniformly in a coarse-grained scale so that the initial memory 

of the lobes F Lo,l and F L2,1 is lost in TB . We may have t B rv TB for the 

normal diffusion outside the peak range of the enhanced diffusion, since the 

mixing of the lobe F Lo,1 in C1 supplies the Ro particles to the turnstile L1,2 

through which the transport from R1 to R2 occurs. Thus the diffusion of 

the R0 particles consists of two processes; one is the mixing of the lobes 

F Lj�l,j in Cj to eliminate the initial memory and another is the transport 

of the R0 particles from Lj�l,j to Lj,j±l· The mixing may be related to the 

intracellular correlation of chaotic particle orbits within one cell, whereas the 

transport can produce an intercellular correlation of particle orbits between 

different cells, as can be seen in the case of the enhanced diffusion and the 

accelerator-mode islands. 

Let us first consider the normal diffusion where the mixing dominates 

over the transport. Then, the flux J±j,±(j+I)( n) would be locally related to 

the concentration Tj ( n - 1) for j � 1 by 

with n � J TB + 1, which corresponds to Fick's law. Here n >> J TB + 1 

is required in order to ensure that the R0 particles are sufficiently mixed 

in each cj so that their spatial distribution within cj is nearly uniform 

and their flux Jj ,j + 1 ( n ) is locally determined by Tj ( n - 1) like ( 6. 5). This 

is the coarse-graining in space. D can be written as D = J.1(L0,1)/J.1(C0), 

as will be shown in Appendix. Since J.1(L0,1) <X .B [27] and J.l( C0) <X VB 
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case appears in a peak range of B with B�in < B�in < B < B�ax < B�ax· 

Then it becomes possible that F Lj,j+l is stretched over Lj+l,j+2 so that an 

appreciable amount of the Ro particles can move with velocity v = 1, leading 

to FJ R0 n Rj =/= 0 for j >> 1, as indicated by Fig. 11. Then the number of cells 

invaded by the R0 particles grows linearly in time [26, 27], and those particles 

which invade cells infinitely are the particles lying in the accelerator-mode 

islands. The number of cells invaded by other than these particles grows as 

na with 1 > a= (3- {3)/2 > 0.5, as indicated by (5.6). 

As discussed above, the stretching of the lobe F Lj,j+l over the turnstile 

Lj+l,j+2 in a few iterates is possible in various ways, so that various fine 

peaks of D and accelerator-mode islands can appear as B is changed. The 

situation may be similar to the standard map [32]. 

Let Aj denote all the regions of the accelerator-mode islands in Ci so that 

the particles lying in A� are transported to x = ±oo with definite velocity 

±va through the turnstiles Lj,j±l, (j = 0, ± 1, ±2, · · · ) . Further let us write 
I 

as 

CJ = 1/va = Qjl = qjp 2:: 1, (6.6) 

where p = 1 if CJ is an integer and qfp is a reduced fraction otherwise. Then 

we have 

A±.= p±qiA± (,; 0 ±1 ±2 ) · pt 0' (, = ' ' , .. . ' (6.7) 

namely, q iterates give a displacement of Aj in j by p. If Va 1, then 

p = q = 1, AJ = p±iA� C Lj,j±l· If Va = 2/3, then p = 2, q = 3, 

A� = p±3i A�. In general, at least one of the Q main islands of Aj must lie 
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, as shown previously [21), this leads to D ex: v'f3 in agreement with the 

statistical-mechanical definition of D by ( 6.3). Then the nu1nber of cells 

invaded by the R0 particles grows like n112. Applying (6.4) and (6.5) to 

[Ti(n+ts)-Ti(n)]/ts and replacing it by 8Ti(n)/8n, we obtain the diffusion 

equation 8Ti(n)/8n == D82Tj(n)/8j2 in the limit ts/n--? 0, where j >> 1, 

n � 1. This leads to the Gaussian distribution Tj(n) ex: n-1/2 exp( -j2 /4Dn). 

When B is in the peak range of the enhanced diffusion with B�in < B < 

B�ax' the lobe F Lo,1 is stretched over the turnstile £1,2 in a few iterates 

similarly to Fig. 13 (b), so that the first visit time t B becomes small with 

ts << Ts and the transport of the R0 particles from R1 to R2 becomes 

large [21]. Such a coherent transport from Rj+l to Rj+2 occurs over several 

cells, say, up to j == jy. After that, however, the Ro particles lying on the 

lobe F Li,i+l become very small, being supplied only by the mixing in the 

preceding cells, so that many repetitions of the transport from Rj+1 to Ri+2 

through Li+1,j+2 are needed to transport an ·appreciable amount of the R0 

particles. This leads to a diffusion process. Then ( 4 · 6) would also be valid 

for j > jy > 1 with D = (Ts/ts)Dm and Dm = J.l(Lo,l)/J.l(Co), leading to 

the peaks of D in Fig. 4. 

We next examine the formation of the accelerator-mode islands. As an 

extreme case of the enhanced diffusion, let us consider the limit jy --? oo 

where the coherent transport of an appreciable amount of the R0 particles 

from Rj+l to Ri+2 by the stretching of the lobe F Li,i+l over Lj+1,j+2 in a 

few iterates occurs over all the cells j == 0 rv oo. Indeed such an extreme 
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in Lj,j±1· If Va -=/: 1 so that p < q, however, at least one of the Q main islands 

must lie outside Lj,j±1. Furthermore we have Ro n p1=qi Rpi -=/: 0 and 

00 00 

A� == n p1=qi Rpi == n p±qi R_pi' 
i=O i=O 

(6.8) 

where, if Va == 1, then Rpi, R_pi can be replaced by Li,i±1, L-i,-i±1 , respec-

tively. Equation (6.8) represents the limit of the coherent transport. Thus 

the cell Ro contains a region At with a nonzero area p.(At) whose particles 

pass through Lj,j+1, (j == 0, 1, 2, · · ·) successively and do move to +oo with a 

definite velocity. This is the accelerator-mode islands described in terms of 

the lobe dynamics. Thus, we obtain 

Lemma: accelerator-mode islands with Va == 1 must exist in the turnstiles 

Lj,j±1, (j == 0, ±1, ±2, ···)for the peak range of B. 

Figure 14 shows the accelerator-mode islands with Q == 2 and Va == 1 at B == 

0.0404411, lying in L_1,0, £0,1 and £1,2, and four invariant manifolds wu(p0), 

Ws(Pt), Wu(P2), W5(Pt). It is also shown that Aj c Lj,j+1 with j == -1, 

0, 1. F L_1,0 and p-1 £1,2 are stretched over £0,1, justifying At C F L-1,0 n 

p-1 £1,2. It may easily be understood that At == limj-oo pi L-j,-(j-1) n 

p-i Li,i+l· 

6.3 Long-time correlation due to accelerator-mode 

islands 

Finally we consider the chaos border in the neighborhood of AJ=, and relate 

the lobe dynamics to (5.5) or the exponent {3. Hereafter we pay attention to 
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Figure 14: Accelerator-mode islands with Q == 2 and Va == 1, lying in the 

lobes £_1,0, £0,1 and £1,2 around the roll boundaries, and four invariant 

manifolds Wu(p0), W8(pt), Wu(p2) and Ws(Pt). Wu(p0) is obtained by 

putting 5000 tracer particles uniformly from Po along Wu(p0), and iterating 

7 times. £0,1 lies at x == 1.0 with shape similar to L_1,0. This justifies 

At c F L-1,0 n p-
1 

£1,2 and the Lemma. 
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the islands A� with mean velocity Va == pj q which are characterized by 

pqiC0 n Rpi ___,A� for i ___, oo. (6.9) 

The chaotic R0 particles which lie outside At but stick to A� longer than qi 

also contribute to pqiC0 n Rpi, so that (5.5) leads to the power-law decay 

(6.10) 

where p(A�) == p(At) and C is a constant. The second term gives a long­

range correlation of chaotic particle orbits between different cells. If Va == 1 

so that p == q == 1' then pica n Ri == pi Lo,l n Ri for i 2:: 1. Even when Va -.:/: 1 

so that some islands of At lie outside La,1, these islands enter La,1 within 

Q iterates just before entering R1. Therefore, (6.10) relates the turnstile 

L0,1 to {3. As shown in (5.6), this power-law decay leads to the anomalous 

diffusion with D == oo. It should be also noted that if there are no visible 

accelerator-mode islands, then p( pita C0 n Ri) ex rita for j >> 1, where r is 

a number less than unity. 

The neighborhood of the main islands around the periodic points (xt, Zt ) 

has a hierarchical structure of chains of small islands [33]. Chaotic particles 

sticked to the main islands are trapped by this structure and spend long 

times before the escape from the neighborhood, leading to the power-law 

decay (6.10). Each of Aj contains such a hierarchical structure of chains of 

small islands. In order to characterize this hierarchical structure of islands 

more directly, we introduce the measure 

i 
( .) - ( U pq(i-k)R p-qkR ) ma z = 1-l 

-
p(i-k) n pk ' 

k=O 
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where Ro n p-qk Rpk -:/= 0. Here pq(i-k) R-p(i-k) n p-qk Rpk means the region of 

At and its neighborhood whose particles are trapped at least by A� 's with 

j = - (i-k), -(i- k) +1, · · · , k, successively. Hence llmcr(i) = mcr(i)-J-L(At) 

means the measure of the region around these islands whose particles stick to 

the islands at least for qi iterates. Hence (5.5) leads to llmcr(i) ex (qi)-(/3-l) 

for i � oo in agreement with (6.10). The measure of a chaos-border region, 

whose particles stick to the islands just for qi iterates and then escape inside 

the chaotic sea, is given by 

(6.12) 

In order to study the hierarchical structure of the chaos border, we have to 

take i � oo. Then 8mcr(i) ex i-/3 fori � oo. If Va = 1 so that p = q = 1, 

then Rpk can be replaced by Lk,k+l and (6.11) can be written as 

j 
mcr(j) = 11{ U pU-k) Lk-j,k-i+l n p-k Lk,k+l}, 

k=O 
j 

11{ U tk[F-k(Fj L-i,-i+l n Lo,I)]} 
k=O 

(6.13) 

with tk(�] = {(x,z)l(x0,z) E �,x = xo + k, k E Z}. Then only two lobes 

and their dynamics are required to determine mcr(j) for j � oo. It should 

be also noted that the result 8mcr(j) ex j-!3 for the chaos border gives the 

minimum value of f3 with f3 > 1, because if f3 = 1, then the area of the chaos 

border diverges as E�1 8mcr(j) 1"'-J limj-+oo log j = oo. 
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7 Distribution of Coarse-grained Expansion 

Rates and its Anomalous Scaling 

In § 6, we have noted that a particle orbit in the chaotic sea loses the memory 

of its initial point in about TB iterates due to the mixing of particle orbits 

caused by the stretching and folding of the lobes, but the intermittent sticking 

to islands causes the long-time correlation Cf = < �1(Xt)�1(X0) >ex t-({3-1), 

(2 > (J > 1). This suggests that the probability density of An(X0) defined by 

P(A; n) < b(An(Xo)- A)> (7.1) 

is different from the Gaussian distribution, since the sum (5.10) does not 

satisfy the central limit theorem. It is related to the exponent ( � 1.37 of 

the anomalous mixing ( 5.11). Indeed the Gaussian distribution is not valid 

for the hamiltonian dynamical systems with a few degrees-of-freedom, since 

they have the long-time correlation and the tangency points of the unstable 

and stable manifolds. Then it is convenient to introduce the expansion-rate 

spectrum [23] 

1/Jn(A) -(1/n) log { P (A; n)j P(A00; n)} (7.2) 

for large n, which may be assumed to become independent of n as n ----? 

oo. The 1/Joo(A) is a concave function of A with minimum value 1/Joo(A 00) = 

0. Figure 15 shows 1/Jn(A) with n = 100, 200, 400, 800 and 1600 at B = 

0.0413782, where the length N in the long-time average ( 5. 7) is taken to 

be 2 x 10 7. This figure reveals that in the limit n ----? oo 1/Jn (A) = 0 for 
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Figure 15: Expansion-rate spectrum '1/Jn(A) for B = 0.0413782, where five 

plots for n = 100, 200, 400, 800, 1600 are shown with N = 5 x 105. We have 

A oo � 0.919. Two linear parts with slope 0 and -2 are visible as n increases. 
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0 <A< A00 and 7/Jn(A) ex (A-A00)11°, 1/8 > 2 for A> A00 [21, 34]. This 

feature of 7/Joo(A) for A > 0 comes from the long-tin1e correlation of c; noted 

above. Indeed the fact that 7/Joo(A) = 0 for 0 < A < A 00 comes from the 

orbits Xt sticking to the islands for long times, where An(Xt) � 0. Since 

P(A � 0; n) ex l:�n(t- n + 1)f(t) = W(n), (7.2) leads to 

7/Jn(A � 0) ex -(1/n) log W(n) ex (1/n) log n, (7.3) 

so that 7/Jn(A � 0) ---+ 0 as n ---+ oo, leading to 7/Joo(A) = 0 for 0 < A <A 00• 

We then use an anomalous scaling law for A > 0 to extract further in­

formation on the probability density P(A; n). Indeed Feller's theorem [37] 

of recurrent events suggests that a rescaled distribution function 9(3( x) exists 

and leads to [38] 

P (A; n) / P (A 00; n) ---+ 9 f3 (-en ° A) as n ---+ oo ( 7.4) 

with 8 = ({3- 1)/{3 and P(A00;n) rv n°, where A_ A- A00 and cis a 

positive constant. We have 9(3( x) ex x-f3-l for x � 1. Figure 16 shows the 

plot of P(A; n)/P(A00; n) vs n°1A-A001 for 0 <A< A00 with n = 400, 800, 

1600 at B = 0.0413782, where 8 = 0.387, {3 + 1 = 2.63 from {3 = 1.63. This 

justifies the scaling (7.4) and captures the weaker n-dependence of P(A;n) 

to complement 7/Joo(A) = 0 for 0 <A <A 00. 

For A> A00, (7.4) leads to 9(3(x) ex exp [- lx l 11° ] for -x >> 1 (39]. This 

leads to [38] 
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0 

{P(A; n)/ Pmax(n)}-1 

0 

0 0 0 

Figure 16: {P(A;n)/Pmax(n)}-1 vs n8IA- A001 forB== 0.0413782 with D == 
0.387, where three plots for n == 400, 800, 1600 are shown with N == 5 x 105. 
This justifies the asymptotic form (7.4) with exponent (3 + 1 == 2.63. 
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where B( x ) is the step function taking 1 for x > 0 and 0 for x < 0, and 

(+ == 2(1- 8) == 2/ {3. Since 2/ f3 < ( == 3- {3, the conditional variance (7.6) is 

masked in the variance (5.11) by the fluctuations in the region 0 < A< A 00. 

Figure 17 justifies (7.6) numerically, where (+ = 1.23 from f3 = 1.63. Figure 

15 is consistent with (7.5) numerically with 1 j 8 � 2.58, as shown in Fig. 18. 

For 0 > A > Amin, Fig. 15 leads to (38] 

'1/Jn(A) == -2A. (7.7) 

It has been shown that such a linear part with slope -2 for A < 0 is a 

universal feature of hamiltonian dynamical systems which arises from the 

dynamics of the tangency points of the unstable and stable manifolds. 

Such features of the spectrum '1/Joo(A) and the probability density P(A; n ) 

are quite different from those of the dissipative dynamical systems (23], and 

characterize the mixing of the hamiltonian dynamical systems clearly. 
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Figure 17: < B(S�- nA00)(S�- nA00)2 > vs n ( == 10 r'-.J 1600) forB == 

0.0413782 with N == 5 x 105. This justifies (7.6) with (+ == 2/ {3 == 1.23 and 
{3 == 1.63. 
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Figure 18: log �n(A) vs log( A- A 00 ) for A> A 00 with n == 800, N == 5 x 105, 
where the slope agrees with 1/ o == 2.58. 
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8 Summary 

In this paper we have discussed anomalous behaviors of tracer particles and 

stable accelerator-mode islands in an oscillating laminar Rayleigh-Benard 

convection, and we compared with Solomon and Gollub's experitnents. They 

determined the diffusion constant Din terms of (3.1), by taking only short 

time characteristics of particle trajectories. 

Their experiments were performed for 19 < R/ Rc < 32, and the diffusion 

constants are measured for each run as a function of the standard deviation 

< av > of the vertical velocity Vz. An approximately linear relationship 

between D and < a v > is found experimentally. They further ensured the 

relation numerically by solving the equation of motion of tracer particles. 

One convection roll is filled uniformly with 10000 particles, and the trajec­

tories of these particles are computed individually for one complete period 

of oscillation, determining the diffusion constants. A plot of D vs < av > 

reveals that D depends linearly on < a v > for small values of < a v >. 

We, on the other hand, determined D in term of the variance ( 4.2) where 

the initial points of particles are put in a small chaotic region of the chaotic 

sea. We can see that D depends linearly on VB for small values of B with 

several fine-grained peaks. The dependence D ex VB is different from that 

of Solomon and Gollub's, which comes from that the area of the torus re­

gion J-L(rn ) depends on B. The peaks are due to an interceller correlation 

of particle orbits between different roll cells. In the peak range of B there 

exists stable accelerator-mode islands around the roll boundaries, leading to 
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an anomalous diffusion of tracer particles where the diffusion constant de­

termined from ( 4.2) diverges. These islands exhibit even period doubling. 

Where the accelerator-mode islands exist, the statistical properties of the 

coarse-grained horizontal velocity vn(X0) = (xn - xo)/n is characterized by 

the intermittent sticking of tracer particles to the islands through the long­

time correlation of particle orbits Cn ex n-(!3-1), (1 < f3 < 2). The probability 

density P(v; n) =< b(vn(Xo)- v) >must obey the anomalous scaling law 

[25) 

(8.1) 

with b = (/3- 1 )/ /3 < 1/2, where p(x) is an even function of x and decays as 

lxl-(1+{3) for lxl >> 1. However, we could not succeed in obtaining the result 

of the anomalous diffusion numerically, because of too small tracer particles 

in our simulation. If their number is increased much more, or experiments 

are performed for real fluids where the number of tracer particles is N rv 1023, 

then the anomalous diffusion will be observed. 

We then attempted to elucidate and formulate the diffusion of fluid par­

ticles, including the enhanced diffusion and the formation mechanism of the 

accelerator-mode islands from the structures of unstable and stable mani­

folds. The accelerator-mode islands A� in C0 and the area of the region 

around these islands whose particles stick to the islands just fori iterates are 

obtained in terms of the turnstiles and their dynamics in the case Va = 1. 

We have revealed that the unstable and stable manifolds are infinitely accu­

mulated around the accelerator-mode islands. 
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The mixing in a widespread chaotic sea is characterized in terms of the 

spectrum '1/J( A) and the probability density P( A; n) of the coarse-grained 

expansion rates An of nearby particle orbits. The spectrum '1/Joo(A), defined 

by (7.2), has two linear parts with slope zero for 0 <A< A00 and slope -2 

for 0 > A > Amin· The slope zero is produced by the long-time correlation of 

particle orbits due to the intermittent sticking to islands, whereas the slope 

-2 is caused by the dynamics of the tangency points of the unstable and 

stable manifolds. Then the probability density P(A; n) for A > 0 obeys an 

anomalous scaling law P(A;n) = n8p(n8A.) for n � 1 with 8 = (/3 -1)//3 < 

1/2, A= A-A 00, where p(x) decays as lxl-(l+,B) for -x � 1 and exp[-ax118], 

(a > 0) for x � 1. This is due to the coexisting normal islands so that the 

value of 8 is different from that of 8 in (8.1). These remarkable features 

of the mixing have been justified for the oscillating Rayleigh-Benard flow 

numerically. 

The results of§ 5 and § 7 have been found also for the standard map. [25, 

34, 38] Therefore, it turns out that these results give the universal features 

which are generally valid for the widespread Lagrangian turbulence of fluids 

as well as the widespread chaos of the two-dimensional periodic maps such as 

the standard map, and they can be formulated in terms of the lobe dynamics 

from the viewpoint of dynamical systems. 
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Appendix A 

D == J-L(Lo,1)/ f.-L(Co) for the Diffusion Constant 

Using (6.2), we rewrite (6.5) as 

for j � 1, j > )r, where n � jrs + 1. 

First consider L�,i+1(n) = Lj,j+1 n pn-1C0 introduced just above (6.1). 

The R0 particles which lie on Li,i+1 at iterate n- 1 must pass through Li-1,j 

until t = n- 2. Therefore we may write as 

n-1 
L�,i+1(n) = Li,i+1 n { U pn-m L�_1,i(m)} (A.2) 

m=1 
for j � 1. The R0 particles which lie on Ci, (j � 1) at iterate n - 1 must 

pass through Lj-1,j until t = n - 2, so that we have 

n-1 
Ci n pn-1Co = Ci n { U pn-mL�-1,j(m)} (A.3) 

m=1 
for j � 1. For simplicity let us put 

n Kj(n) = U pn-m+l L�-1,j(m). (A.4) 
m=1 

Then (A.3) and (A.2) lead to 

(A.5) 

(A.6) 

Since n � jrs + 1, the R0 particles are sufficiently mixed in each Ci so 

that their spatial distribution within Cj is nearly uniform except a few lobes 
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such as F Li::r-l,j and their particle concentration Ti ( n) is slowly varying in 

j. Then the initial memory of the R0 particles is lost in Ki ( n - 1) so that 

J.L( L�,j+l ( n)) is locally determined by Tj ( n - 1), leading to the local relation 

(A.7) 

with 'T} = J.L(Li,i+l)/J.L(Cj) = J.L(Lo,l)/J.L(Co). This relation means that the 

amount of the R0 particles which enter Ci+l at iterate n by passing through 

Li,i+l at iterate n- 1 is proportional to their particle concentration of Ci at 

iterate n- 1, and its transfer rate is given by the ratio TJ. This is physically 

reasonable. Inserting (A.7) into the left-hand side of (A.1), we obtain D = 

'T} = J.L( Lo,l) / J.L( Co) which is the relation proposed for D. 
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