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Abstlract

The interaction between migrating baroclinic waves and
stationary vortices produced by a simple-shape orography was
investigated through laboratory experiments uslng a rotating
annulus of fluid.

Investigation was made of the transition from an upper
symmetric to a wave regime. Examination was conducted of the
heat flux, the structure of stationary vortices and baroclinle
waves along with the time-dependent behavior of the baroclinic
waves. For a given zonal wavenumber the transition from an up-
per symmetric to a wave regime occurred at a lower thermal
Rossby number in the skewed fileld than In the axisymmetric
fleld. This exhibits the stabllizing effect of the orography,
which 1Is consistent with the results by Jonas (1981). The
structure of baroclinliec waves showed a dependence on the zonal
direction, that 1Is, amplification occurred on the lee side of

the obstacle, confirming the results of a linear theory by

Frederiksen (1979) and Niehaus (1980).




§ 1. Introduction

Baroclinic waves In a rotating annulus of fluid have been
studied both theoretically and experimentally by many research-
ers because of Its simple situation without loslng theilr essen-
tial qualities In studing some aspects of atmospheric and
oceanic flows. Placing an obstacle In a channel of the rotat-
ing annulus of fluid abruptly makes the problem complicated
owlng to the followlng: 1) the Interactlion between migrating
baroclinic waves and stationary vortices created by the orog-
raphy 2) baroclinic Instability In the skewed field or lee
cyclogenesis 3) formation of a Taylor column In the stratified
fluid and 4) trapping or shedding of vortices due to the orog-
raphy in the stratified fluid.

The effect of large scale mountalns on the general cir-
culation has been studied by Manabe and Terpstra (1974). Using
a general circulation model they found that a stationary trough
is formed on the lee side of large mountains, accompanied by an
increase of the kinetic energy of stationary disturbances and a
decrease of the kinetle energy of transient disturbances along
with lee cyclogenesis. Smith and Davies (1977), using a two-
layer, B -plane quasi-geostrophic model, obtained similar
results while also finding that the Kklnetle energy oscillate
with a perliod of about 5 days due to the Interaction between
baroclinie and stationary waves.

Frederiksen (1979) and Nlehaus (1980) have studied lee

cyclogenesls theoretically. Frederlksen used a linear, two-




layer quasi-geostrophic spherical model with a baslc state con-
sisting of a Jet at 30° N and an upper layer long planetary
wave while Niehaus (1980) used a continuously stratifled linear
model with a skewed basic fleld. In spite of the differences
in thelr models they obtalned the same results: the growth rate
of baroclinie waves barely changes and disturbances have thelr
maximum amplitude on the lee slide of the troughs. Nlehaus
(1980) further indicated that a distortion of the basic field
shifted the maxima In the growth rate to lower zonal wave-
numbers.

Wakata and Uryu (1984) have studied topographically forced
baroclinle waves In a contlnuous zonal flow. They showed that
a resonance occurs at the critical thermal Rossby number In a
constant shear flow that has a zero vertical mean. One of the
three equilibrium solutions Is stable near a resonant point.
Three equilibrium solutions also exist at a slightly off-
resonant condition about a baslic zonal flow. In this case,
trapping and traveling of forced baroclinlc waves occurs, ac-
cording to the height of the topography. When these baroclinlc
waves mlgrate, amplitude vacillation occurs because of the
stabllity change 1n the basic temperature fleld.

Since the works of Proudman (1916) and Taylor (1917) the
well-known Taylor-Proudman theorem was formulated and has been
studied by many reseachers. Huppert (1975) gave exact expres-
slons for Initiation of a Taylor column for both a homogeneous

and a stratified fluid. His results stated that the normallzed

obstacle helght divided by the Rossby number is an appropriate




measure for the Initiatlion of a Taylor column for both cases
and especially In the stratifled fluid If the obstacle iIs some-
where vertlical, a Taylor column iIs formed no matter how small a
height of an obstacle is. Huppert and Bryan (1976) studied the
interactlion between zonal currents and an Isolated topography
and found that a cold antlcycloniec vortex was formed over the
topography, while a warm cyclonle vortex was formed due to the
sinking of fluld after Interaction with the topography. The
cyvelonie vortex was shed when the zonal flow was strong or be-
came trapped near the topography when the zonal flow was weak.
Only a few studies of annulus experiments with bottom
topography have been conducted so far. Yeh and Chang (1974)
performed experliments to study the dynamical and heating effect
of the Tibetan Plateau on a barocliniec flow by iIntroducing a
half ellipsoidal obstacle with 1ts major axlis slightly shifted
with respect to the azimuthal direction. They were mainly con-
cerned with the heating effect of the topography. lowever,
while the heating was not strong enough to reverse the horizon-
tal temperature gradient, the heating effect was similar to a
dynamlcal effect of the topography except for its phase. Their
results showed that the baslc zonal flow was weakened by the
drag of the topography while a stationary anticyclonic vortex
was formed in the upper layer Jjust above the obstacle. Fur-
thermore, drifting cyclonle vortlces were split Iin the upper
layer while they iIntensified and expanded in the middle and
lower layer above the obstacle. Jonas (1981) studled the ef-

fect of topography on baroclinle waves In laboratory experl-




ments. He constructed the bottom topography to have a dominant
zonal wavenumber close to that of baroclinliec waves with no
topography and had an amplltude about 10% of the mean depth of
the fluid. His results showed that the transition from
barocliniecally stable to unstable flows Is stabillized in the
presence of topographlc forecing. On the other hand, Gent and
LLeach (1976) studied baroclinle Instabllity using an eccentric
annulus, whose thermal Rossby number changed gradually In the
azlmuthal direction. Their results revealed that baroclinic
instabllity is a local phenomenon.

More recently, Boyer and Chen (1987) have performed some
experimental simulation on the atmospheric flows In the North-
ern Hemisphere using a vertlcally stratified rotating fluid,
including a realistic large topography at the bottom. | A
noted that they have got somewhat similar flows to the real at-
mosphere Insplte of Including the mechanical effect only.

The present study Investigates the Interaction between
migrating baroclinic waves and statlionary vortices created by
orography. The description of the experimental apparatus and a
measurling technique are given In Sectlon 2, the transition from
a baroclinically stable to unstable flow, the heat flow mea-
surement and the observation of the surface flow pattern are
mentioned In Sectlon 3, while the meridional distribution of
the basle and perturbed temperature fleld is described in Sec-
tion 4. The azimuthal structure of the basic and perturbed
temperature field and the tlime-dependent behavior of each

Fourler mode 1s detalled In Sectlon 5. The structure of




forced baroclinlec waves based on a linear theory

orographically
is shown in Section 6 while the vertical structure of
barocllinliec waves is given In Section 7. The summary and dis-

follows In Section 8.

cusslion




§ 2. Experimental apparatus and measurlng technlique

The cross section of the

annulus

used Iin this study

Is

shown In Filg. 1. The working fluld Is contalned 1n the annular

reglon (experimental chamber)

cylinders, whose radil are 7.1 cm
is 10.0 em and the upper surface

temperature difference 1s Imposed

between

and

s free.

between

two concentric brass

16.7 em. The fluid depth

Constant horizontal

the outer and Inner

walls, each of which 1s malntalned at constant temperatures

within the accuracy of + 0.05C

by clrculating water from heat

baths. The entire system Is mounted on a turntable T, which
can be rotated at a uniform rotation rate Q@ by a continuously
variable-speed motor drive. A cylindrical obstacle, 5.0 cm in
diameter and with varying heights from 1 ecm to 10 cm with

increments of 1 ecm, Is settled at the bottom

of the channel. The surface

aluminum powder and streak photographs

flow

pattern

at the mean radlus
ls visuallized by

are taken by the camera

set on a sub-table, which 1s attached just above the turn table

with the same rotation axls and

To detect the baslic field and wave
are measured by three different

mometers whose dlameters are 0.15

ing of the array of probes will

of each related sectlion. Change of voltage

be

arrays of

disturbances,

rotates synchronously with

e
temperatures

thermistor ther-

cm. Detalls of the position-

electric resistance i1s transferred to

through a low-nolse slipring,

amplifiers and an A/D converter.

Wheatstone bridges,

Voltage

data are converted

described at the beginning
due to change 1in
a desk top computer

DLE s

to



temperature data by a callbration curve for each probe. Tem-
perature data thus obtalned have accuracles within + 0.001°C .
The data are simul taneously recorded by a chart recorder In or-
der to monltor the behavior of the temperature flield.

Notations which wlill appear hereafter are deflined In Ap-

pendlix A.



§ 3. Transition, heat flow mecasurement and surface [low pattern

Transition from an axisymmetric to a wave regime in a
rotating annulus with bottom topography has been discussed by
Jonas (1981). In thls case, the bottom topography was cycllec
and sinusoldal, having a wave length comparable with that of
the preferred baroclinic waves. The wave amplitude of the
topography was very small compared wlith the depth of the flulid.
His results are as follows: 1) the baroclinic flow was stabi-
lized In the presence of a small ampllitude topography and 2)
when baroclinle waves were present they were of shorter
wavelength and larger amplitude than those in flows driven by
similar temperature dlifferences In the absence of topographic
foreing.

In the present case, the zonal wavenumber of the orography
corresponds approximately to 7~ 8, larger than the preferred
baroclinic wavenumber. Since the orography Is of a single ob-
Ject, 1t contains a very wide range of Fourier components.
Further, the height of the orography varies from 1 to 10 cm,
which i1s comparable with the depth of the fluid layer.

In the transition experiments, the height of the obstacle
is varled from 1 to 10 cm, the Imposed horizontal temperature
difference AT is fixed for the two experiments at 5°C and 10°7C
, and the rotation rate Q@ 1is changed continuously from 0 to
0.4 rad/sec. Transltlon is jJjudged by the change of the surface
low pattern visualized by use of aluminum powder and the dis-

continuous change o’ the heat flow with Q . The results are




shown In Figs. 2(a) and 2(b), corresponding to the temperature
difference of 5C and 10°C, respectively. The numerals In the
figures are the preferred wavenumbers and K denotes the transl-
tion points after Kaiser (1970) whlle E(k) Is the Eady's
eriterlon (Eady, 1949) for wavenumber K. The Eady's criterlion
for a glven wavenumber 1s calculated uslng the corrected Brunt-
VHisdlld frequency & N, since this correction 1s needed because
of the formation of sidewall thermal boundary layers with a
very large temperature gradlent (Williams, 1967; MclIntyre,
1968: Kalser, 1969: Ketchum, 1972; Uryu et al., 1974). The
value of & 1s chosen to be 0.8 after Ketchum (1972) and from
the results of the present experiment. The transition curve
from an axisymmetric flow to wavenumber 1 Is shown by a dotted
line. Since the envelope of the wave does not extend through
the entire annulus but is rather locallized, the wavenumber
evaluated from 1ts horizontal scale corresponds to 2 or 3. The
streak photograph of wavenumber 1 1s shown in Photo. 1 and the
structure of it is discussed Iin Appendix B. Transition with
topography occurs at a larger thermal Rossby number 6 than
with no topography, showing the destablllizing effect of the
topography. This is especially true when the normalized helght
of the topography is 0.3 and 0.8. However, this destabilizing
effect Is due to the excltatlion of baroclinlec waves of wavenum-
ber 2, which are seldom observed with no topography. In con-
trast, as far as wavenumber 3 is concerned, the transition with
topography occurs at a smaller © than It does with no topog-

raphy, showing the stablllzing effect of the topography. The




above results are consistent with those of Jonas (1981).

[leat flow from the outer to Inner wall is determined by
use of two thermistor thermometers Ql and Q2 (see Fig. 1),
detecting the temperature difference between the Inflow and
outflow clrculating water In the cool bath C. The temperature
difference 1Is converted to heat flow by using a calibration
curve. This calibration curve Is obtalned as follows. An
electric heater, whose heating rate Is continuously varied by a
voltage regulator, is Inserted Iin the cool bath C and the heat-
ing rate 1s measured by a wattmeter. Simul taneously the tem-
perature difference is detected by two thermistor thermometers,
keeping the entlire system at a constant temperature. The above
procedure Is repeated at several heating rates from which the
calibration curve is obtalned. This technique is basically the
same as that adopted by Uryu et al. (1974).

The heat flow results are shown In Flgs. 3(a), (b) and
(c). When there is no obstacle, the heat flow decreases almost
linearly with rotation rate Q 1In an axlisymmetric regime, as
was polnted out previously by a number of researchers (Bowden
and Eden 1965, Kaiser 1971 and Uryu et al. 1974)*. When topog-
raphy exlists In a channel, the heat flow behaviors can be
separated Into two kinds, depending on the height of the topog-
raphy. 1In the state of low topography (Fig. 3a), the heat flow
1. Thlis experimental result is very old, but it should be em-

phasized because it is not yet solved|




scarcely changes, compared with that of no topography. In the
state of high topography (Fig. 3b, 3c¢), the amount of heat flow
increases according to the increase of the height of topography

and the dependence of the heat flow on the rotation rate Q be-

comes week. This tendency becomes more promlinent as the topog-
raphy Is ralsed. When the normallzed height of the topography
exceeds 0.7, the heat flow hardly changes with Q . These

results indicate that there 1s a critical height of the
topography; under which the heat Is transported by a stationary
vortex caused by the orography, the radlal temperature gradient
is reduced, the activity of the transient baroclinic waves
decreases and the total heat flow both by a statlonary eddy and
transient waves remains almost constant as a result. When the
helight of the topography exceeds the critical value, the sta-
tionary eddy transfer so much heat that the decrease of the
heat flow by transient waves cannot compensate the excess,
This result Is consistent with that obtalned by Cehelsky and
Tung (1987) using a two-layer model. Manabe and Terpstra
(1974) pointed out that the sum of the statlionary and transient
eddy kinetic energy 1Is only slightly affected by mountains
since they cause a remarkable Increase in the kinetic energy of
stationary disturbances but simultaneously show a decrease in
that of the transient eddies. It seems that in their case the
helight of mountains was under the critical value.

Photo. 2(a), 2(b) and 2(c) show the surface flow patterns

when the baroclinlec wave of wavenumber 3 appears. It 1s ob-

served that when the baroclinlic wave passes through the




obstacle, the wave length becomes short on the upstream side of

the obstacle and becomes long on the lee side of it. The

mechanism of

this phenomenon will be discussed in Section 8.




§ 4. Meridional distribution of the baslc and perturbed tem-

perature field

Meridional distributions of the baslec and perturbed tem-
perature flelds are measured by the array of probes shown In
Fig. 4. Flve probes are placed on the downstream side of the
obstacle at 6 = 30° and r = 8.1, 10.0, 11.9, 13.8 and 15.7 cm,
respectlively. Three probes are set Just above the obstacle at
g = 0> and = 8.1, 11.9 and 16,7 ocm. The last three probes
are positioned on the upstream side of the obstacle at 6 =-30°
and r'= 8,%1; 11.9 and 15.7 an: Initially all these probes are
set at z = 9.0 em , and they are moved down vertically at in-
tervals of 1 cm.

The Imposed temperature difference A T Is fixed at 5C ,
the normalized height of the obstacle Hi/d Is 0.5 and the rota-
tion rates Q ware 0.0, 8.08x 102, 1.508% 10~*, 2.027x 10~%,
2.561x 107" and 2.907x 10~* rad/s. When Q 1Is greater than 2.0
X 10" rad/s, baroclinic waves appear with a preferred wavenum-
ber of 3. In Figs. 5(a)-(e), the basic temperature fields at
the three different azimuthal positions and for the five Q are
shown. On the upstream slde of the obstacle (6 = -30° ), the
horizontal gradient of the basic temperature 1s almost identi-
cal to that for the case of no topography for all values of Q
On the other hand, the horizontal temperature gradient on the
downstream side of the obstacle (6 = 30° ) appears to decrease.

In Fig. 6, Fourler components of the normalized tempera-

ture perturbation are shown for the case of no obstacle. For

e



the ground mode, the maximum temperature deviation exists in
the middle layer. The axis of the maximum deviation inclines
slightly from the upper Inslde to the lower outside region in
the meridional plane. The maxima of the second harmonlc exist
In the upper layer and In the lower layer and the axis of the
maximum devliation has the same tendency as the ground mode.
The third harmonic has two maxima whose values are very small.
The amplitudes of the sideband modes are also small.

In Filgs. 7(a)-(c), the meridional distributions of the
normalized temperature perturbatlons are shown at three dif-
ferent azimuthal positions, that is 6 = -30° , 0° , 30° . The
gross features of the ground mode Fourier component on the
upstream side of the obstacle (8 = -30° ) are similar to those
of no topography, except that the axls of the maximum deviation
becomes vertical In the lower layer. Just above the obstacle (
@ = 0° ), the value of the maxlimum increases slightly. On the
downstream side of the obstacle (8 = 30° ), the value of the
maximum Increases by about 20%. Its position shifts to the
center of the fluid layer and the axls of the maximum deviation
becomes vertical in the upper and middle layers. The second
harmonlc shows two maxima, appearing at 6 = -30° as in the case
of no obstacle. At 6 = 30° , the maximum in the upper layer
shifts downward with Its value diminlshing while the second
maxlmum which 1s found in the lower layer dlsappears.

Flgs. 8(a)-(c) are the same as Figs. T(a)-(c) but for Q =
2.561x 10°* rad/s. They are shown for comparison with the pre-

vious set of figures, which resemble In detalled features.

16




§ 5. Azimuthal structure ol the baslic¢c and perturbed temperature

fields and the time-dependent behavior of each Fourier mode

Fig. 9 shows the second array of probes arranged to
measure the azlmuthal dlstribution of the basliec and perturbed
temperature flelds and the time-dependent behavior of each
Fourier component. Twelve thermlstor thermometers used in this
array are set at the center of the channel at every 30° in the
azimuthal direction with the first probe set at 8 = 15° . Ini-
tially they are positioned at z = 9.0 ecm and can be moved down

vertically at intervals of 1 cm.

§ 8 5.1. Azimuthal structure of the basic and perturbed tem-

perature lields

In this serles of experiments, the horizontal temperature
difference AT is fixed at 5.0°C , the normalized helghts of the
obstacle 1I/d are 0.3, 0.5 and 0.7 and the rotation rates Q are
8.00x 107* , 1.50x 10~*, 2.00x% 10~*, 2.50% 10~* and 3.00x 10-*
rad/s. When the rotation rate Q are 2.50x 10°* and 3.00x 10-*
rad/s, the flow is baroclinlcally unstable and the preferred
wavenumbers are 2 and 3, respectively.

In Flg. 10(a), the stationary temperature perturbation in

zonal-helght sections for Ii/d

[}

0.3 and the flve different Q
are shown. The statlionary temperature perturbation Is obtained
as follows. The time mean temperature <T>. of each probe 1is

calculated, and then a space mean <T>.s consisting of the

17




twelve <T>¢ 1Is made at each level. When <T>:.e 1s subtracted
from <T>., the statlonary temperature perturbation <T-<T>e >+
is obtained. When the flow Is baroclinically stable, a posi-
tive deviation appears on the windward side of the obstacle
with a negative devliatlion on the lee slde of the obstacle. The
formation of this temperature deviation Is caused by forced
baroclinie waves, which will be discussed In Section 6. The
stationary vortex remalins trapped In the present parameter
range, which Is consistent with the numerical simulation by
Huppert and Bryan (1976). When the flow becomes baroclinically
unstable and baroclinic waves develop, the magnitude of the
temperature deviation around the obstacle becomes small.

When H/d = 0.5, the structure of the stationary tempera-
ture devliation Is not very different from that of H/d = 35
which Is shown In Fig. 10(b). The horizontal extent of the
temperature deviation increases, corresponding to Rossby's
deformation radlius (Lr = NH/T). It 1s reasonable that the
horizontal extent of the deviation Increases, accompanied by
the increase of the height of the obstacle (see Flg. 10c).

In the next set of figures (Fig. 11), the amplitudes of
the Fourier components of transient baroclinic waves for three

obstacle heights (H/d

0.3, 0.5 and 0.7) and for two rotation
rates (Q = 2.50x 10°* and 3.00x 10" rad/s) are shown in
azlmuth-helght sectlons.

Fig. 11(a) 1s for H/d = 0.3, Q = 2.50x 10-2 rad/s and k =
2, whose basle fleld was shown In the fourth panel of Fig.

10(a). For the ground mode, the maxima appear downstream near

18




the helght of the obstacle (8 = 50° , z/d = 0.4) and at the
farthest distance from the obstacle In the middle layer (6 =
180> . =Zfd = 0.8). The vertlical proflle of the ground mode is
shown at two different azlmuthal angles (68 = 45° and 315° ).
Amplification of the ground mode at 8 = 45° and at the
obstacle helght Is apparent when the profile Is compared wlith
that of @ = 315° , which has almost the same vertical profile
as that of no obstacle. The second harmonic shows no change in
Its structure over all @ , but small maxlma are observed on the
lee side and at the top of the obstacle and also at about @ =
90° at the obstacle height. The third harmonic has its maximum
in the upper layer and on the upstream side of the obstacle (
g = 2T0" ., =fd = Ou8). However, the amplitude of the third
harmonic is not large enough so that the dependence on 6 1is
obscure.

Fig. 11(b) 1s the same as Fig. 11(a) but for H/d = 0.5,
the baslc fleld of which is shown in the fourth panel of Fig.
10(b). The gross features are almost the same as those for
Fig. 11(a), but the area where amplification of the ground mode
occurs extends to the leeward of the obstacle and the magnitude
of the amplification Increases.

Flg. 11(c) 1s the same as Flg. 11(a) but for H/d = 0.7.
The area In which amplification of the ground mode occurs ex-
tends further, but in this case the magnitude of the amplifica-
tlon decreases. The amplitude of higher harmonics Increases
compared with those for the case of H/d = 0.5.

Filg. 12 1s the same as Flg. 11, but with a rotation rate

19




of @ = 3.00x 10 * rad/s and the preferred wavenumber k = 3.
[n this flgure, the ground mode of mlgrating baroclinlc waves
is amplified near the top and on the lee side of the obstacle.
The vertlical proflle of the ground mode has two maxlima on the
lee side of the obstacle (6 = 45° ). Notably, when the normal-
ized helight of the obstacle 1s greater than 0.5, the magnltude
of the lower maximum becomes larger than the upper maximum.
When H/d = 0.7, the area where the ampliflication occurs extends
upstream at the lower half of the obstacle height. The second
harmonic Is also amplified near the top and on the lee side of
the obstacle as It was In the case of preferred wavenumber 2.

Fig. 13 shows the dependence of the normalized temperature
variation of the flrst 15 Fourler components on the azimuthal
angle @& at the obstacle height, with the parameters belng Q
= 8.0 10°* rad/s, HfQ = 0.5 and k = 3. Amplification of the
ground mode and second harmonic on the lee side of the obstacle
Is eclearly shown in this figure. The temperature deviation
mainly consists of the ground mode and Its higher harmonics
while the contribution of the sideband modes Is negligibly
small.

FFig. 14 shows the dependence of the normalized temperature
deviation of the first 15 Fourler components on height at the
azimuthal angle of 6 = 45° , with the parameters being Q =
3.0 10" *rad/s, H/d = 0.5 and kK = 3. The maximum of the ground
mode Is found near the obstacle helght (z/d= 0.4), which ap-
peared In the upper layer with no topography as was mentlioned

In Section 4. The structure of the second harmonic iIs somewhat

20




compllicated. In the case of no obstacle, there were two max-
ima, one in the upper layer the other In lower layer, with the

magnitude of the former larger than the latter.

§ § 5.2. Time-dependent behavior of each Fourler mode

The time-dependent behavlior of the zonal mean temperature,
amplitude and phase of each Fourlier component are shown in Flg.
15. Temperature data detected 1 cm above the height of the
obstacle are used In this figure.

When the rotation rate Q 1Is 2.50x 10-* rad/s and the
preferred wavenumber k is 2 (Fig. 15a), both the zonal mean
temperature and the amplltude of the Fourler component reveal a
vacillatlon cycle with very short period (2~ 3 rotations).
This perlod is much shorter than the period reported by pre-
vious researchers (e.g. Pfeffer et al., 1980). This short
period vaclllation seems to have suffered from a long term
modulation. The variation of the zonal mean temperature shows
a negative correlation with that of the amplitude of each
Fourlier mode. The frequency of the second harmonic is almost
twice as long as that of the ground mode, or the phase
velocities of the ground mode and the second harmonic are al-
most the same. The Phase veloclty of the second harmonic be-
comes negative at some point In time, meaning that the second
harmonic retrogrades at that tlime.

When the rotation rate Q |is 3.00Xx 10°* rad/s and the

preferred wavenumber k is 3 (Flg. 15b), the zonal mean tempera-
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ture and the amplitude of the Fourler component show a more
regular vaclllation cycle compared with the case of wavenumber
i The zonal mean temperature shows a negatlve correlation
with the ampllitude of the ground mode and a poslitive correla-
tlon with phase veloclty of the ground mode.

From Flg. 5, 1t can be seen that an Increase in the zonal
mean temperature corresponds to the Increase of horizontal tem-
perature gradient at the mld channel. Therefore, it 1is
reasonable that the horlzontal temperature gradient has a nega-
tive correlation with the amplltude of the ground mode and a
negative correlation with the phase velocity of the ground
mode . This type of vacillation was reported by Smith and
Davies (1977) and Wakata and Uryu (1984). In the numerical
model of Smith and Davies (1977), the variatlion of eddy kinetlc
energy and zonal kinetic energy osclllated with a perlod of

about 5 days and were negatively correlated.
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§ 6. Forced baroclinic waves due to orography: linear thcory

The structure of forced barocllinle waves 1s discussed with
|l inear perturbation theory and Is compared with the experimen-
tal results. Consldering an Incompressible Boussinesq fluid on
a f-plane with bottom topography, the hydrostatic and the
quasli-geostrophle flow approximation are made. For simplicity,
it Is assumed that the topography 1Is independent of the
meridional dlirection. Then, conservatlon of potential vor-
ticity leads to the following perturbatlion equation for pres-

sure p:

d (5} d=p. Ns_9=p @%p
( =173 o= o = o = 0, (1)
at ad x Qizzs =gt ayE

with the boundary conditions

| 0 9p 30 . 1 dU3p 1 2y A 2p
pPoN?20z Ot ad x poN?dz O x fipo A

UGH

) — 2)
ad X (
at z=0, and

ad ap ap dU ap
)i " =

== (.__+ —=
dz dt d x dz dx (3)

at z=d, with

[)=() (4)
at y=0,D,
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where

gd(p)

Po dz

N?

is the Brunt-Vilisldlid frequency.

The boundary condlitions (2),(3) and (4) are chosen in order to
be simlilar to the experlmental conditlions, l.e. the top bound-
ary Is free and the bottom and sidewall boundaries are rigid.
Ekman pumping and the orography with wavenumber k. are assumed

at the bottom boundary. If the sinusoidal solution of the form
A . my .
p = p(z) .sm(—D—) exe (ikx) (5)

Is assumed, Eq. (1) can be rewritten

d2p N2 : g
{“?-i-ié( k=312 Jp = 0 (19

where 1= g7 /D.
The solution of Eq. (1') with the boundary conditions (2)

and (3) Is readily obtalined as

4kU (0)f kA D,
p — (= ——5s/nh (Ad)+i—(k?2+12) costh (Ad))
,()nl N? f
cosh A(d—2) sin (ly) exe (ikx), (6)
where
. N2
A? = —( k2412 ) ,
f!
v
Dl = —— ,
f

=



and

Dy

I = lexp (Ad)+exp (- Ad)) lﬁ' (k*+12))

| kA
t (exp (Ad)—exp (— Ad)) ( )?
{)(1"

The density perturbation can be calculated from the pres-

sure perturbation by making use of the hydrostatlic relation as

4k AU(CO)H k A Dy
0 (—=——3sriah (AXd)+1i—=(k®*+12) cosh ( Ad))
P oyl N? f
sinh A(d—2) sin (ly) exe (ikx) . (7)

The rectangular shaped bottom topography Is analyzed by a
Fourier serles up to the 150th component. The contribution to
the pressure and density perturbation of each Fourier component
are calculated by Eq. (6) and (7), forming a summation to the
150th component. The Brunt-VHAis#li frequency N is obtained,
based on the temperature measurement assuming a linear depen-
dence of density with helght z. The zonal velocity U(z) is ob-
tained, based on the temperature measurement and surface flow
veloclty assuming a linear dependence of density Iin the
meridional direction while making use of the thermal wind rela-
tion and the hydrostatic approximation. A few examples of the
results given by this calculation are shown in Fig. 16 for a
horizontal temperature difference of AT = 5C , Coriolis
parameter f = 0.16, 0.3, 0.4, 0.5 and 0.6 and the nondimen-
sional obstacle height 1/d = 0.5. This figure can be compared
with Flg. 10(b). When f = 0.16 and 0.3, a warm reglon 1is
formed on the upstream side of the obstacle while a cold region

Is formed on the lee side of and above the obstacle (Fig. 16a,
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§ 7. Vertical structure

Fig. 17 shows the placement of the third array of

tor thermometers for measuring the vertical structure

thermis-

angle @

time sequence of barocliniec waves. Twelve probes are separated
into four groups, which are placed at the azimuthal
-45° , =15 , 15° and 45° along the mean radius. Each

conslists of three probes, which are set at the nondimensional

heights z/d = 0.2, 0.5 and 0.8. The vertical resolution

this array 1Is not sufficient enough, but does satisfy
talning of a rough vertical structure.

Fig. 18(a) shows the phase line of the ground

the ob-

second harmonic of the temperature deviation at the four dif-

ferent azimuthal angles relatlive to the obstacle,

rotation rate Q = 2.50x 10°* rad/s and the preferred wave num-

ber k = 2. The upper panel of this filgure Is the case of

obstacle and azimuthal angle 6 only shows the relative posli-

tion of each thermistor group. The vertical structure of the

ground mode shows a typical structure of baroclinically

unstable waves, but that of second harmonic does not.

means that the second harmonic is not baroclinlcally unstable

but is forced by the ground mode. One of the experimental

results by Rao and Ketchum (1975) also has the same structure

as the present case, namely the phase lines of the ground mode

and the second harmonlic show an eastward tilt contrary to those

of the third and the fourth harmonic which show a

tIlt. On the upstream side of the obstacle (0 = -15°

27
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the ground mode has almost the same structure as that of

obstacle , except that the tilt of the phase line becomes steep

in the lower layer for the case of H/d = 0.7 and 6 = -15°

the downstream side of the obstacle, as the helght

obstacle Increases the extent of the deformed area

becomes

larger. For Instance, the vertlcal structure almost recovers

at 8 = 45° for the case of H/d = 0.3, but when H/d = 0.7

not recovered yet at 8 = 45° and phase line tilts westward.

For the second harmonle, deformation of the vertlcal

occurs on the downstream side of the obstacle, but the

structure

deforma-

tion is small and does not appear as essential as that of the

ground mode.

Fig. 18(b) 1s the same as Flg. 15(a) but for the rotation

rate of Q@ = 3.00x 10°* rad/s and preferred wave number k

Variation In the vertlcal structure passing around the obstacle

is almost the same as that of the previous case.

Fig. 19 presents an example of time sequence of a phase

line where the parameters are Q = 3.00x 10°* rad/s,

H/d = 0.5. The ground mode and the second harmonic

change thelr vertical structure and appear to have

constant frequency. From this flgure, 1t can be concluded that

the vertical structure shown In Fig. 18 is not temporal

almost steady one.
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§ 8. Summary and discussions

The mechanlsm of the ampliflcation of baroclinic

the lee slde of the obstacle Is dlscussed more preclsely

followlng. Flg. 20 shows the schematic plan view of the ideal-

lzed baslc temperature fleld based on the results of the

laboratory experliments and the linear theory. The amplitude of

the skewed baslie fleld due to the obstacle Is settled on

the horizontal temperature difference, which is the reasonable

value compared with the experimental results. As the result of

the deformation of the basic temperature field, two regions

which have large horlzontal temperature gradient (region

B) are produced. The region A located in the northwest part of

the obstacle 1s characterized by the Increased horlizontal tem-

perature gradlent and the diminished static stability,

the reglon B located In the southeast part of the obstacle

characterlzed by the Iincreased horizontal temperature gradient

and the Increased statlc stablility. The growth rates and phase

velocities of baroclinic waves at these regions

and the

reference area S, not disturbed by forced baroclinic waves,

calculated using the following formulae deduced by the linear

perturbation theory:

k A I e
Koy == |1—- — — Ad coth (Ad)
A 4

u_(n)*_u(d)_
- .

Cr =
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where U(0) and U(d) are the basic zonal velocity at the bottom
and the upper boundary. The results are shown In Fig. 21, In
which the fleld values N, f and A 1in the expressions (8) and
(9) are based on the results of laboratory experiments. The
magnltude of the temperature deviation around the obstacle 1s
assumed to be 40% of the horlzontal Internal temperature dif-
ference, which 1s somewhat overestimated on the upstream side
of the obstacle. The growth rates of the region A and B become
1.54 and 1.28 times of that of the reference region S, respec-
tively. This remarkable change of the growth rate around the
obstacle clearly shows the mechanlism of lee cyclogenesis. The
most preferred wavenumber of the region A shifts to the higher
wavenumber than that of the region S, while the most preferred
wavenumber of the reglon B shifts to the lower wavenumber. The
change of the wavenumber around the obstacle agrees qualita-
tively well with the behavior of observed baroclinic waves,
namely the elongation of baroclinic waves occurs on the lee
side of the obstacle and shortening occurs on the upstream side
of the obstacle.

Now the results of the preceding sections are summarize as
follows: 1) The topography in a baroclinic flow causes fTorced
barocliniec waves accompanied by a skewed basic temperature
field. 2) The temperature structure of stationary vortices has
a warm region formed on the upstream side of the obstacle with
a cold region located on the lee side of the obstacle. 3) The
statlonary vortex transfers heat from the outer to the inner

wall and as a result It moderates the horlzontal temperature

30




gradient. 4) For the marginal wavenumber with no topography,
the transition from a baroclinically stable to unstable flow
occurs at a lower thermal Rossby number, that is, the topog-
raphy has a stabllizing efflect. 5) In the present experiment,
the cylindrical obstacle causes barocliniec waves with wavenum-
ber 1, which do not appear without the obstacle. The thermal
Rossby number at which they appear Is larger than the critical
thermal Rossby number with no topography. 6) Due to the skewed
temperature Tleld or enhanced baroclinlicily, the growth rate of
barocliniec waves increases around the obstacle and the
amplification of baroclinic waves 1is observed on the lee side
of the obstacle. This phenomenon of lee cyclogenesis in the
skewed baslc temperature fleld Is consistent with the theories

of Niehaus (1980) and Frederiksen (1979).
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Appendix A

Notations

a inner radius of the annulus

b outer radlus of the annulus

d fluld depth of the workling fluld

Q rotation rate

4 (=2Q ) Coriolis parameter

AT Imposed horizontal temperature difference
To mean temperature between outer and Inner walls
k preferred wavenumber

Ko wavenumber of the obstacle

I helght of the obstacle

Hep helght of thermistor thermometers

(r,6 ,z) cyllndrical coordinate

6 = 0 1s taken at the center of the obstacle
m m-th Fourler component of baroclinle waves
<T>m zonal mean temperature
4 iy temperature deviation from <T>e
<T>, time mean temperature
A1 temperature deviation from <T>.

T*=T/A T normalized temperature
P o mean density of the worklng fluid
<p >e zonal mean density
A p denslity dlfference corresponding to AT

p density deviation from <p >e

kinematiec viscosity of the worklng fluld at Te



I thermal conductivity of the working fluld at To
X thermal diffusivity of the working fluld at To
g gravitational acceleratlion
Q heat flow from outer to inner wall

Apg
N (= —— ) Brunt-Vdisdld frequency

Nopoed

U(z) zonal velocity

du ;
A (= ) vertical shear of zonal velocity

dz

And nondimensional parameters constructed from dimensional

parameters above are as follows:

A p gd

(S ( : =) thermal Rossby number
Pofl?(b—a)?

4Q?(b—a)®

Ta : ) Taylor number
v “d
v
Pr (= - ) Prandtl number
K
Q

Nussel t

number.




AppendIix B

The structure of waves with wavenumber 1

The structure of waves consisting of the wavenumber 1 com-

ponent was measured using the same system as described in Sec-

tion 7. Experlmental parameters are as follows: AT = 5.13C .
Q =2.218%x 10* rad/s, H/d = 0.8, © = 1.824 and Ta = 1.313x
{1 From Fig. 2(a), 1t 1s apparent that thls parameter range

corresponds to the domaln which quasi-stationary waves of
wavenumber 1 most frequently appear. Filg. Bl shows the
amplitude and the phase line for each Fourler component (from
the ground mode to the fourth harmonic) of the temperature
deviation at a given Instance. Both the amplitude and the
phase llne show the characteristic structure of unstable
baroclinic waves, f.e. the maximum amplitude occurring at mid
depth and the forward tilt of the phase 1line. iy sEdps. B2 1k
is shown that this vertical structure is not temporal but
quasl-stationary. This Is especlally true for the structure of
the ground mode and the second harmonic which dose not change
throughout the experiment. However, the third harmonic does

show a temporal change of 1ts structure.
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Fig. 4 The array of thermistor thermometers arranged for
measuring the meridional distribution of the basic and the per-
turbed temperature field. Eleven probes are divided to three
groups, the filrst group of flve probes iIs set on the lee side
of the obstacle at ¢ = 30° and r = 8.1, 10.0, 11.9, 13.8 and
15.7 em, the second group of three probes is placed just above
the obstacle at ¢ = 0° and r = 8.1, 11.9 and 15.7 cm, and the

third group of three probes Is located on the upstream side of

the obstacle at 8 = -30° and r = 8.1, 11.9 and 15.7 cm.
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Fig. 5(a) Normalized tlime-mean temperature at three different

azimuthal positions (@8 = -30° , 0° , 30° ) for the rotation _
rates Q@ = 8.08x 102 rad/s with To as the reference tempera- .
ture. Numerals In the flgures are <T>"¢-T"oc multiplied by 100.
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10(a) but for H/d
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61




m=2 - 0=315"
10 -
e M = | P }
z — N ——
—40— ==
& N
51 -
4 __.—--'—'_'_-__._—‘\ L
\ i
—_— 40— _r,/ /
?“‘ ) E————
0 i i | L |
mab 0 05
10 -
Z 4-—-———!"”_"““5‘“;,____205;: I \\
P S— /
5“\_{/‘-15,___ _‘__‘_h-__h_"__—'— —_— = 4
> COI5 /_ \\ = 87
‘Ifxlo-’ Qo> i |'
m=6
10
: ‘ K//F_K aiss, .
5 4
j O, ™
5 i
—l ) _ __‘/ |'
. (=)
1 1 1 5
m=8 f
10 i
: 5 A\
= ity e SR i |
| <50 ) |
4 Qp I
Z |
‘1 [ ;.
‘| 1 i SRR SIS S I

0* 90° 180° 270° 360° 0 05
5] T(°C)

Fig. 11(a) The azimuth-height distribution of the amplitude of i

Fourler modes for H/d = 0.3, Q = 2.5x 10°* rad/s and k

2
The vertical profiles of them at 6 = 45° and 315° are also |
shown on the right panels. Unit of numerals In the filgure is

17100 Q@ . !




‘(’
—— 0=45°
m=2 -- 9=3i5°
10 _
Z e e o
i 40 NN
50 I
b4 B ; \
55 R
{' J, s .“. /
30 £ IS 8
5 20 ! , 20 b
m=4 0 0.5

[
. )')'/
io.—-’"‘_""-- .\.“\
O 1 L A o 1
10 e
| 5 5 \
* Oio '1/
: _)
: 5\——-.._\ S\
0 i A i A
m=8 0 05
10 =
- /
] 5 J.
- -I.i\‘
5 1 E;’
] I
0 ' i i I I i P |
0° 90° 180° 270° 360° 0 05
o T(C)

Fig. 11(b) Same as Fig. 11(a) but for H/d = 0.5.




Fig.

m=8

11(c) Same as Fig.

11(a) but for

270°

/d

= 0.

360°

1

ka1
0 05
il
!
[/
/
\
i
Lh-

T(°C)

0.5




——

.
oy B:AS"
‘ m=3 ---- ©=315°
10 -
/A q\f\—go_/"_—ﬁ L &\
d’\_——N‘—AO L
:] 50 40 1 /
| /\ { /‘
3 z
1 el = 20/,- i
0 1 = 1 g __a i e 1
10 p

: 5
51 OO0 ¥/>
o

0° 90° 180° 270° 360° 0 05 !
(6] T¢C) |
Fig. 12(a) Same as Filg. 11(a) but for @ = 3.0%X 10~ rad/s and

k = 3.




= e :45°
----- ©=315°

—

| Jo=
——— e i

T v
e

.

(0 90° 180° 270° 360° 05
© T(°C)

O r~—r

Fig. 12(b) Same as Filg. 11(b) but for @ = 3.0 10~* rad/s and
k = 3.




~v—
'—-—6:45"
Med = 2@ == 0=315°
10 i
1 SNy — r \‘
30 —~
_‘ W \/ \

10 it

A i — 1 i
Waw
')
e T

O15 <
Il G b LR :
0 1 1 L A 1 1
m=9 0 05
10 *
25| |\
e O10 4
. » i/
4 D5 iﬁ
: [
l A
! = i
0 L 1 1 1 T |
0° 90° 180° 270° 360° 0 05
0 T(°C)
|
i
Fig. 12(c) Same as Flg. 11(¢) but for Q@ = 3.0 10> rad/s and

k = 3. 2




<]
360

Iigh =9

J

8. .
| -
[ (&)
B &

12
<

I + o
l_

B
"‘“ 1 i
{ 2

- \

Ul ININOdWO3 "Y3IdNod

Fig. 13 The dependence of the normallized temperature variation
of the flrst 15 Fourler modes on the azimuthal angle 6 , where

2 = 3.0% 10~* radss, H/A = 0.5, Hefd = 0.5 andg ik = 3.

Numerals In the flgure are T*" multiplied by 100.




10

(cm)

i.8

3.4

1.8
— é— —_—
3.2
e
HEIGHT Z

S B e S e e e e S e L L o [
n o i9) (= .
~A ~—

w ININOdWO3 d3Idnod

Flg. 14 The dependence of the normalized temperature variation
of the flrst 15 Fourler components on helght z, where Q@ = 3.0

X 10 rad/s, H/d = 0.5 and k = 3. Numerals In the figure are

multiplied by 100. ‘l




:l
L=
-7
i
1
‘!
o R
4
=
(=]
— [
m —_—
§ Le OE"
@ = =
<< :
[ =]
4
S W T— 'ﬂ_
"
i I 1 i X i L 1 s 1 =
- e . 3 ™
I S & e e EE e e 5] = (= e
(3,) dwa| ueay (1,) apnj1duy aseyq

Fig. 15(a) The time-dependent behavior of the zonal mean tem-
perature, amplitude and phase of each Fourier component, where
= 2.50x10"* rad/s, H/d = 0.5, Hx/d = 0.6 and k = 2. Nota-
tions in the figure, for example A(2) and ¢ (4), denote the

amplitude of second harmoniec and the phase of fourth harmonie,

respectively.




__ L _—?
.l[ 5
| 5
(=13
f’ r‘: :
0 2
! oS = e S w
: E
=
& =
< <
) |
{
.'" :
‘t
1 1 |"' 1 1 i 1 1 1 .I-'I 1 >
$ = ¢ ] 2% 2 8 s~ & = § I&
(,) dway ues (2.)3pnynduy aseyq
I
|
Fig. 1b5(b) Same as Fig. 15(a) but for Q@ = 3.0x 10~ rad/s,

H/d = 0.5, 0.6

Hr/d =

‘

and 'k = 3.




180°

120°

180°

120°

4.43x1074

-1.62x107*

80°

ol

-80°

1
-120°

o
i

-180°

(W3) LIHOI3H

1
80*

Fig.

baroclinic waves

parameters

16(a)

The

are

f = 0.

denslty and

from the

the

linear

0.26

o
a
< @-a a
Fs
,/J
-t
(- =]
D. -
I —c
©
I
\ -
o
—~Q0d
-—
1
o
T @
o Te] ch
—
(W3) LIH9I3H
pressure perturbation of forced

and A

theory.

llere the

= 9.26x 10™%

external

cm/s.




__//
4.63x107

180°

l
120°

T
60°

-

- -]

N @

'\\ ]

\\h
-‘\‘h\
—

-

o

ety

-~

|

-

o

T [+ 0]

o Te} o 'l"
-

(W3) LHIIIH

Fig. 16(b) Same as Fig.

Xx 10°% ecm/s.

16(a)

180°

T
120°

T
80*

.
'---...____._.--"""’f’ //”(
: <
w
S\
\\Hb
~ @
e T
"-——_-""""---..
1// MEM""\\_{
o
~Qd
~—
1
o
T (e ]
o Te] Q‘[‘
-—d
(wd) IHI9I3H
but for £ = 0.3 and A = 4.94



087 .owﬁ .mm % .mml bwﬁl 081~
0
V//INTIR
@ ,”\\ \
60" | m/m\.— ._. /f
] \ \
- \ /. \ |D
e \ \
P ey
i/ N
> _,\.__\k\'l./rr 3 /— / Q.“
d
.Qm.ﬂ -QN.“ -Dm _-Q 08~ -ON.“I -Omﬂl
1 1 1 : \\\\ | — ] Q
. _WWW\ s/
v-0LX0L ¥ f/\\ \L__ \\
e |\ /r-0Lxb2 p-
~ o // //l\\\ -9
P %
N\
\ //f \u\l\\\l\\
e /_ > \.\\ Q.“

(W3) LH9I3H

(W3) LHII3H

C Uy £

0.4 and A =

For i

16(a) but

Fig. 16(c) Same as Fig.

X 1002 cm/s.

T4




\\//

v-01X0E" V-

LS

08~ 0CT- 087~
1 1 O
ﬁmo ﬂ : \
821>
N/
\\ 5 i
A
[y . ~
/ 8072\ / mm;mz/// £ %
[ L7 AN 1
.Owﬂl
ﬁ 0
,-01XES"S

0t

(W3) IH9I3H

(W3) IH9I3H

96

2.

and A

= 0.5

r

for

16(a) but

Pig.

16(d) Same as

Fig.

= lcm/ 8.

x 10°




087 027 08- 027~ 087~ <
_ w7 T __. /(\ _ 0 .
gyl ( / i
m <
\ @
- ..._ .Im — (<]
/ m.. o
\\l/ ._/ w "
GL T e
s AN o ]
d i
-Qm.ﬂ .Q—N_ﬁ qo_m -—Q ooml .Q_Nﬁlo -Omﬂl m
_ 0 =
To:_m_.m @ ﬂﬂ\ fr\ \ r\ / h ..x »
f D:f_ m- / \ / = 5
§iF= /| / m o
\ \ / / / —~ =
- \/« I \\ ID T \n....u.. .M.
y / / / ~ S 5
[ /=~ / 3 S
7231 A PR
N oy &\\\l/yi Q.n N x

| |




HE
~

0.16¢

: !‘f ;f'b“.

THERMISTOR .
THERMOMETER | ACRYLIC LID

RN

WARM WATER

COOL WATER

AUITIIIIIIIITIIITITIHHIHIIITII I i

+—7.1— ACRYLIC BASE
18. 7 -

Fig. 17 The array of thermistor thermometers arranged for
measuring the vertical structure of baroclinic waves. In this
array, four groups of probes are set at the mean radius and at

8 = -45° , =15 , 15° and 45° with each group consisting of

three thermistor thermometers set at z/d = 0.2, 0.5 and 0.8.
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Photo. 1 The streak photograph
baroclinle wave with wavenumber |50
second; AT = 3.2°€., B/d = 5/8, Q

2.210 and Ta = 1.216x 107.
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Photo. 2 The streak photographs of the surface flow of

barocllinic waves with wavenumber 3, where the exposure time is
l second, AT = 9.0C, H/d = 3/8, 0 = 3.180%X 10> rad/s, 6 =

1.933 and Ta = 5.285% 107.
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