
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Generalization and Predicate Invention in
Learning Logic Programs

石坂, 裕毅

https://doi.org/10.11501/3065651

出版情報：九州大学, 1992, 博士（理学）, 論文博士
バージョン：
権利関係：

Chapter 5

Model Inference with Predicate

Invention

It seems that the theory of model inference is applicable to more practical problems such

as automated program synthesis. However, several problems in applying the theory to the

practical problems are also pointed out [AI87] . The most serious problem is that we need to

give in advance a first order language £with finitely many predicate symbols over which a

target model is described. Furthermore, the oracle which gives information about a target

model to an inference machine is assumed to be able to answer the truth of all elements in

B.c. In more practical setting such as in automated program synthesis, it seems difficult to

assume such a power on the oracle. The assumptions require a user of the synthesis system

to have too much knowledge about the target program.

Now, we consider, via a simple simulation, what will happen when the assumptions are

removed.

Suppose that an inexperienced programmer is going to make a program for the pred

icate reverse(listl, list2), where list2 is a reversed list of listl, using a system which is

an implementation of the model inference algorithm, e.g. Model Inference System (Sha82] .

Since he/she is inexperienced, he/she does not have enough knowledge to understand of an

algorithm for reversing a list or he/she understands an algorithm but he/she does not see

what kind of auxiliary predicates (e.g. concat(_, _, _) or append(_,_,_) etc.) are necessary

for the algorithm. So, he/she gives the first order language with only one predicate symbol

49

reverse(_,-) to the system, then he/she starts the task. He/She patiently continues to input

facts about reverse(_,_). However, if there is no program for reversing a list which consists

of only the predicate symbol, then his/her efforts will result in failure. On the other hand,

suppose that the system realizes the difficulty of the programming with only one predicate

reverse(_,_) and it introduces a new predicate as an auxiliary one. Since the programmer

has no interpretation for such a new predicate, he/she cannot answer the questions from

the contradiction backtracing algorithm which plays a central role in the model inference

algorithm. Hence he/she cannot continue the inference process anymore.

Thus, it seems that the purpose of the inexperienced programmer is not accomplished.

However, from the above simulation, the following two questions arise.

(1) Is there no list reversal program with only one predicate reverse(_,_).

(2) Is there no method for giving an interpretation, which reflects the programmer's in

tended model, to the new predicates introduced by the system.

For applying the theory of model inference to more practical problems such as automated

program synthesis, it seems very important to answer the above two questions. We leave

the first question open for researchers of the theory of logic programs. Here, we reconsider

the model inference from the point of view of the second question.

The predicates, which may be necessary to define a target predicate but are not directly

observable from the examples of the target predicate, are called theoretical terms [Sha81] .

Shapiro assumed that the theoretical terms and their intended interpretations necessary for

defining the target predicate are given to the inference algorithm. Recently, however, several

researchers are trying to develop a method for automatically inventing theoretical terms

[MB88, Mug90, Ban88, Lin89b, Lin89a]. In this chapter, we also consider the challenging

problem of inventing theoretical terms.

In Section 5.1, we extend the model inference problem so that it may include more practi

cal problems. In Section 5.2, we consider the problems caused in solving the extended model

inference problem, especially, in introducing new predicates. In Section 5.3, we propose an

easy approach to the problem. Several classes of programs for which the easy approach

might go well are introduced in Section 5.4.

This chapter is based on the paper [Ish88b] .

50

5.1 An Extended Model Inference Problem

In this section, we redefine a model inference problem so that it can include more practical

problems. We assume that a set of function symbols and a set of variable symbols are

common to all first order languages considered in this chapter. The set of predicate symbols

of a first order language £ is denoted by II (£) . For any first order language £, an extended

language £' of £ is a first order language such that II (£) � II(£') . If £' is an extended

language of £, then £ is called an restricted language of £'. Let P be a program over £'

that is an extended language of£. Then M(P).c denotes the set M(P) n B.c.

Let £ be a first order language and M be the least Herbrand model of an unknown

program over an extended language of £. An oracle for M over £ is a device that can

answer the membership of a E B.c in M. The answer is true if a EM, false otherwise. Note

that the oracle over £ answers the membership for only the elements of B.c. If a ground

atom {3 rf_ B.c is given, then the oracle is assumed to returns a special symbol l_ that means

"unknown".

An extended model inference problem is defined as follows:

Suppose that £ and an oracle for M over £ are given. Then infer a program P

over an extended language£' of£ such that M(P).c = M from the information

given by the oracle.

Example 5.1 Let£ be a first order language such that II (£) = {reverse(_, -)} and M =

{reverse(lr, l2) E B.c ll2 is the reversed list of a list fr}. An extended model inference prob

lem is to find a program such as

P=

reverse([XIY], Z) +- reverse(Y, Yi), concat(X, Yi, Z).

reverse(O, 0).
concat(X, [Y IZ], [Y IW]) +- concat(X, Z, W).

concat(X, 0, [X]).

only by using an oracle for M, that is, using information about reverse(_, _). In this case,

II (£')= II(£) U {concat(_, _, -)}.

In what follows, we distinguish the use of terms, predicate names, predicate symbols,

and predicates according to the objects indicated by them as follows. A predicate name

51

indicates just a string such as reverse, concat, etc. A predicate symbol indicates a pred

icate name with arity such as reverse(_,_), concat(_, _, _), etc. A predicate indicates a

predicate symbol concerned with its model, e.g. reverse(_,_) concerned with the model

{reverse(O, 0), reverse([a], [a]), reverse([a, b], [a, b])}.

5.2 Problems in Extended Model Inference

The most difficult problem for an algorithm to solve an extended model inference problem

is how to introduce an unknown predicate symbol in II(£') -II(£) when it is necessary. In

this section, we review recent two approaches to such an extended model inference problem.

One was given by Muggleton and Buntine [MB88] and another was given by Banerji [Ban88].

Through their approaches, we consider the essential problems in solving an extended model

inference problem.

M uggleton and Bun tine proposed a method called inverse resolution [MB88]. They im

plemented their method as a inductive logic programming system called CIGOL. Inverse

resolution is executed by three operators, truncation, absorption, and intra-construction.

The truncation constructs unit clauses from given positive facts using the least generaliza

tion algorithm. The absorption constructs non-unit clauses from unit clauses obtained by

the truncation. A new predicate symbol is introduced by the intra-construction. CIGOL re

quires a more powerful oracle than that we introduced in the previous section. For example,

the oracle can answer correctness of a general clause such as

reverse([XIY], Z) +- reverse(Y, Y1), concat(X, Yi, Z).

in a target model. Furthermore, although CIGOL invents predicate symbols, it does not

invent predicates. That is, assigning a model to a newly invented predicate symbol is left to

the oracle.

The following two problems should be considered for introducing new predicates in the

extended model inference.

1. When (or why) is it necessary to introduce a new predicate symbol?

2. How to define the model assigned to the new predicate symbol.

52

Although CIGOL avoids the second problem by oracle power, the problem is apparently

most essential in extended model inference.

The first problem is concerned with the convergency of an inference algorithm. For

example, CIGOL introduces a new predicate symbol in inferring a model

M = { arch(t) I tis a triplet (t1, beam, t1) and

t1 is a list (possibly empty) which consists of block and brick}.

The new predicate symbol corresponds to a predicate column(_) whose intended model is

{column(t) I tis a list consists of block and brick}. Of course, the predicate arch(_) can

be defined using column(_) as arch((X, beam, X)) � column(X). However, there exists a

program P such that M(P) = M and P:

arch(([blockiX], beam, [block IX])) � arch((X, beam, X)).

P = arch(([brickiX], beam, [brick IX])) � arch((X, beam, X)).

arch((O, beam, 0)).

which consists of only the predicate symbol arch(_). In order for the inference algorithm

to converge to some program, it should be very careful to introduce new predicates. If an

inference algorithm introduces new predicates immoderately, then it might diverge. In a

setting in which an inference algorithm infers not only a target model but also a language

for describing the model, it becomes difficult to ensure the convergency of the inference

process.

On the other hand, Banerji proposed a procedure called DREAM that produces a new

predicate [Ban88]. DREAM works as follows. Suppose that there exist two clauses p � A, D

and p � B, D in the current hypothesis, where D is a set of atoms appearing in both bodies

in common, and A and B are the sets of left atoms of the two bodies after removing the

common atoms. Then, DREAM replaces the two clauses by the following three clauses:

p � new(t1, ... , tn), D.

new(X1, ... , Xn) � A'.

new(X1, ... , Xn) � B'. ,

where t1, ... , tn are the terms in A and B, A' and B' are atoms obtained from A and B by

replacing t1 with Xi at every occurrence and new(_, ... ,_) is a new predicate symbol.

53

This method answers very clearly for the second problem we mentioned above. The model

of new(_, ... , -) is strictly defined according to the models of A' and B' that are already

known. However, for the first problem, the method seems to be problematic. Actually, as

Banerji noticed in his paper [Ban88] , this kind of new predicates may be useful for simplifying

programs. However, it is not necessary to introduce the new predicate. The predicate p had

been already defined by the clauses p +-- A, D and p +-- B, D.

Ling classified predicates to be invented into two categories called necessary intermediate

terms and useful intermediate terms [Lin89a] . A necessary intermediate term is a predicate

which is necessary to describe the target program. For example, the predicate such as

concat(_, _, _) in reverse program is a necessary intermediate term. On the other hand,

a useful intermediate term is a predicate which is useful for simplifying conjectures, but

not necessary for describing the target program. For example, both predicates, column(_)

introduced by CIGOL and new (_, . . . ,_) introduced by DREAM, are useful intermediate

terms. As mentioned in the introduction of this chapter, our interest is in invention of

necessary intermediate terms.

5.3 A Simple Approach to the Problems

It seems very difficult to develop a general strategy, which has plausible answers to the

two problems mentioned in the previous section, for introducing necessary intermediate

terms. However, if each model in the target class to be inferred can be represented by a

fairly restrictive program, it may be possible to develop a plausible strategy for introducing

necessary terms in inferring the class. In this section, we consider what kind of restrictions

on the program is preferable for such a strategy.

5.3.1 When a new predicate is necessary

First, we consider the situation in which a new predicate should be introduced. Let M be a

target model. In such a situation, the current conjecture must be inconsistent with at least

one fact known so far, for a new predicate becomes necessary. There are two possible cases.

One is when the conjecture P is too strong, that is, a E lvf(P) for some known negative

54

fact a rf. M. The other is when Pis too weak, that is, a rf. M(P) for some known positive

fact a E M. It follows from Corollary 3.3 that, for any too strong P, P has a false clause

in M. Hence, when P is too strong then it suffices to remove the false clause. Thus, a new

predicate is not necessary in this case.

On the other hand, when P is too weak then there exists some ground atom {3 E M

(possibly, {3 =a) such that {3 is not covered by any clause in P with respect to M. In such

a case, a clause which covers {3 with respect to M should be added to P. A new predicate

becomes necessary when there is no clause which consists of known predicates and covers {3

with respect toM.

Thus, in order to launch into the introduction of a new predicate, the inference sy stem

must be able to examine all the candidate clauses and recognize the point when such clauses

are exhausted. Hence, it is preferable that, for any positive fact a, the number of all possible

clauses which covers a in a target model is finitely bounded. Several types of restrictions for

bounding the number of possible clauses can be considered. At least the number of atoms

allowed to appear in the body and the depth of terms in the atoms should be bounded in

advance. It is preferable that the number or the depth are bounded as small as possible for

the efficiency of the inference algorithm.

5.3.2 The model of a new predicate

As mentioned in the previous subsection, a new predicate at first appears as an atom in

the body of a clause which covers a positive fact. The model of the new predicate should

closely be related to the models of other predicates in the clause. By using this property,

we may define the model of the new predicate. For example, suppose that a new predicate

new(_,_,_) is introduced with a clause

reverse([XjY], Z) +-- reverse(Y, Y1), new(X, Yi, Z).

Then, the model of new(_,_,_):

{new(t1, t2, t3) I reverse([t1lt4], t3) EM and reverse(t4, t2) E .N/}.

can be defined in terms of the model M of reverse(_,_,_):

{reverse(t1, t2) I t2 is the reversed list of t1}.

55

Thus, the model is concerned with M through the shared variables in the clause.

In order for this simple method to work well, the following items should have been fixed

or bounded as tight as possible.

(a) The arity of a predicate symbol to be introduced.

(b) The possible form of atoms occurring in a clause.

(c) The possible form of terms occurring in the atoms.

It is difficult to fix these items when general programs are targeted. Conversely, if we restrict

the target to the class of programs for which the above matter can be fixed, then it may

be possible to develop a plausible strategy for introducing new predicates and solving an

extended model inference problem for the class of models described by the programs. In the

next section, we give some examples of such classes of programs.

5.4 Examples of Restricted Programs

In this section, we give some examples of the class of programs which have considerably

restricted syntax, and discuss the possibility of predicate invention in the extended model

inference.

5.4.1 DRLP

A det erministic regular logic program (DRLP, for short) is a program which is equivalent

to a deterministic finite automaton. Thus, the class of models described by DRLP's, called

regular models, is equivalent to the class of regular languages. A DRLP consists of clauses

of the following two forms:

qi([aiX]) +- qj(X).

qi ([]).

Furthermore, for each predicate symbol qi(-) and each constant symbol a (#- 0), a DRLP

has at most one clause whose head is qi([aiX]).

A DRLP is so restrictive as to satisfy the requirement mentioned in the previous section.

The model of a new predicate qj(-) introduced by a clause qi([aiX]) +- qj(X) can be defined

56

as { qj(w) I qi([alw]) E M}, where w denotes a ground list. In Chapter 6, we will discuss in

detail the extended model inference of regular models.

5.4.2 LMLP

A linear monadic logic program (LMLP, for short) is a program which is equivalent to a

deterministic tree automaton. A L:NILP consists of clauses of the following two forms:

qi(j(X1, ... , Xn)) +- qj1 (X1), ... , qin (Xn)·

qi(a).

where x1, . . . , Xn are mutually distinct variables. That is, the class of LMLP's is a natural

extension of that of DRLP's. Skakibara showed that the extended model inference problem

for the class of models of LMLP's can efficiently be solvable [Sak90) .

Since the syntax of LMLP's is fixed, they also satisfy the requirement mentioned in the

previous section. Furthermore, the atoms appearing in the body do not share a variable.

Thus, as in the case of DRLP, it seems that the model of a new predicate which is introduced

by a clause

can be defined as

However, for a LMLP, the uniqueness of a clause according to its structure is not assumed.

Hence, a LMLP is allowed to contain the following clauses:

ql (X v Y) +- ql (X), q2(Y).

q1 (X v Y) +- ql (X), q3(Y).

In such a case, it is impossible to distinguish the model of q2(_) from the model of q3(_).

Thus, for the programs containing such clauses, that is, for the programs which essentially

have OR-parallelism, the simple way of defining the model may not work well. Actually, the

efficient extended model inference algorithm by Sakakibara is based on a special strategy.

57

5.4.3 SDG

A LMLP has no shared variable in the body of each clause but may have clauses with

a common head. Conversely, a program introduced here has no other clauses than those

which have a common head but may have a shared variable in the body of a clause. This

class corresponds to that of simple deterministic grammars (SDG, for short) . An SDG is a

context-free grammar G = (N, :E, P, S) such that

if both A� aa and A--t a(3 are production rules in P then a= (3. (5.1)

A language generated by an SDG is called a simple deterministic language (SDL, for short) .

It is well known that every context-free grammar can be represented by a definite clause

grammar which is a kind of logic program. A definite clause grammar corresponding to an

SDG, denoted by SDDCG, consists of the following three types of clauses:

A([aiX], Y) t- B(X, Z), C(Z, Y).

A([aiX], Y) t- B(X, Y).

A([aiX], X) . ,

where each predicate name corresponds to a nonterminal of the SDG and a is a terminal

symbol of the SDG. Each predicate N(x, y) is interpreted as a predicate which is true if and

only the string represented by the differential list x - y1 can be generated from the nonter

minal N in the SDG. From the condition (5.1) on the production rules, for each predicate

symbol A(_,_) and each terminal symbol a, there exists at most one clause whose head is

an instance of A([aiX], Y). Thus, the problem as mentioned in the previous subsection does

not occur.

For SDDCG's, however, a new problem arises because a clause of the first type shares a

variable in its body. For example, the models M Band MC of the predicate symbols B(_, _)

and C(_, _) can be defined respectively as follows:

M B = { B(t1, t2) I A([alt1], t3) E lvf, C(t3, t2) E N/C},

MC = {C(t2,t2) I A([alt3],t2) E M,B(t3,t1) E lv!B}.

Since each model is defined mutually by its alternative's, the definitions are problematic.

1 For example, a differential list [a, b, c, d] - [c, d] represents the list [a, b].

58

Thus, for a program which needs a clause with shared variables in the body, when two

or more predicates are necessary to be introduced simultaneously by one clause, a problem

how to define the models of both predicate arises. For general programs, the problem may

be intractable. Fortunately, however, for an SDG G = (N, I:, P, S),it follows from the

condition 5.1 that

if A=}* wa and A=}* w{3 (A EN, wE r:+, {3 EN*) then a= {3.

Hence, for a clause of the form A([a!X], Y) +- B(X, Z) , C(Z, Y), if some positive fact

B([wju], u)2 is found, then the model MC of C (_, _) can uniquely be defined by Mas follows:

A positive fact about B(_, _) can be obtained as B([wlu], u) from a positive fact A([ax jy] , y)

such that xy = wu and w is a prefix of x.

In Chapter 7, we will discuss in detail the extended model inference problem for this

class. The algorithm described in there will use the above property and achieve an efficient

inference.

5.4.4 Simple recursive programs

Since each program introduced above is a direct representation of an automaton or a gram

mar, there exists a special pattern on the structure of a clause or the arity of a predicate

sy mbol appearing in the clause. It may be impossible to expect a class of general programs

to have such a pattern. However, it may also be a fact that we often make a program

by repeating some stereoty ped patterns. Here, we see such patterns found in some simple

programs called term-free transformations introduced by Shapiro [Sha81] .

Multiplication:

times(O, X, 0).

times(s(X), Y, Z) +- times(X, Y, U),plus(Y, U, Z) .

plus(O, X, X).

plus(s(X), Y, s(Z)) +- plus(X, Y, Z) .

2 As in the next chapter, we abbreviate a list [a1, ... , an I [b1, ... , bm]] as [wlu] where w = a1 a2 ···an and

U = b1�1 • • • bm.

59

Subset relation:

Insertion sort:

subset(O, X).

subset([XIY], Z) +-subset(Y, Z), member(X, Z).

member(X, [XIY]).

member(X, [YIZ]) +-member(X, Z).

sort([], 0).

sort([XIY], Z) +-sort(Y, Yi), insert(X, Yi, Z).

insert(X, 0, [X]).

insert(X, [YIZ], [X, YIZ]) +-X� Y.

insert(X, [YIZ], [YIZ1]) +-Y �X, insert(X, Z, Z1).

x�x.

X � s(Y) +-X � Y.

The list reversal program described in the introduction of this chapter is also a term-free

transformation. There are following properties common to these programs.

(1) There is at most one auxiliary predicate in the body of each clause.

(2) All arguments of the atoms appearing in the bodies are variables.

(3) No free-variable appears in the body, where a free-variable is a variable which appears

at most once only in the body of a clause.

(4) Each head has no common instance with other head.

These properties seem to be preferable for clearing the problems mentioned before. From the

property (1), we do not need to worry if several new predicates are introduced simultaneously

by one clause. By the propety (4), we can clear the problem mentioned in Section 5.4.2. By

the properties (2) and (3), we can restrict (b) and (c) in Section 5.3.2. Furthermore, there is

one more typical property common to the above programs, which may be useful for deciding

the arity of predicate to be introduced.

(5) Each variable processed recursively does not occur in each auxiliary predicate.

60

For example, the variable x in times(s(x), y, z) does not occur in plus(y, u, z) .

Thus, there may exist a plausible strategy to solve the extended model inference problem

such as in Example 1.1. It is a very interesting and challenging theme to develop such a

strategy.

In the following two chapters, we shall consider some concrete extended model inference

problems. One is concerned with inferring DRLP's and the other with inferring SDG's. In

both cases, we shall develop efficient inference algorithms. The existence of an effective

method for introducing predicate symbols and assigning appropriate models to the symbols

is essential for the efficiency.

61

62

Chapter 6

Learning Regular Languages

In this chapter, we consider a problem of inferring a class of restricted logic programs that

corresponds to the class of acceptors for regular languages. In our setting, a target logic

program is over a first order language £ with countably many unary predicate symbols:

q0, q1, q2, A given oracle is that for a model M0 over £0, the restricted language of £ in

which only one predicate symbol q0 is allowed. As mentioned in the previous chapter, in such

a setting, the oracle has no interpretation for predicates other than the predicate q0 . This

implies that we cannot take advantage of the contradiction backtracing algorithm which is

one of the most important part for the efficiency of Shapiro's model inference algorithm.

In order to overcome the disadvantage, we develop a method for giving an interpretation

for predicates other than the predicate q0, which is based on the idea of using the oracle for

M0 and a one to one mapping from a set of predicates to a set of strings. Furthermore, we

propose a model inference algorithm for regular languages using the method, then discuss

the correctness and the time complexity of the algorithm.

In Section 6.1, we define the problem of learning regular languages as an extended model

inference problem. In Section 6.2, we propose a key idea to solve the extended model

inference problem. We introduce a simple mapping, called a predicate characterization, by

which a model over £0 can be extended to a model over £. Then, we show some conditions

which the mapping should satisfy to perform an appropriate extension of the model. In

Chapter 6.3, we give an inference algorithm to solve the extended model inference problem.

The correctness of the algorithm is shown in Chapter 6.4, and time analysis of the algorithm

63

is made in Chapter 6.5.

This chapter is based on the paper [Ish88a].

6.1 Regular Model Inference Problem

We introduce a class of Herbrand models called regular models and show that the class is

equivalent to that of regular languages. Then a regular model inference problem, which is

an extended model inference problem, is defined.

Let .C be a first order language with countably many unary predicate symbols q0, q1, ... ,

a list constructor [-1-J, and finitely many constant symbols 0, a1, a2, ... , am. Since every

predicate symbol treated in this chapter is unary, we shall identify each predicate symbol qi(-)

with its predicate name qi for notational convenience. £0 denotes the restricted language of

£ in which only one predicate symbol q0 is allowed. Let P be a logic program over .C . .Cp

denotes the language with only predicate, function and constant symbols occurring in P,

IT (P) denotes the set of the predicate symbols.

Let :E denote the set { a1, a2, ... , am}· A string x = ai1 ai2 • • • ain E :E* is denoted using

list notation by [ai1, ai2, • • • , aiJ· Furthermore, the list [ai1, ai2, • • • , aiJ is abbreviated as

[ai1 ai2 • • • ain]. Thus the string x is represented as [x] in the following context of logic pro

grams. Note that, for the empty string, [c] is denoted by the empty list 0. For a program P

over .C, M (P)q, denotes the set {qi([x]) E M (P) I x E :E*}.

Definition 6.1 A deterministic regular logic program (DRLP, for short) P is the logic pro

gram over .C which satisfies the following conditions.

1) Each clause in P is of one of the following two forms:

qi([ak!X]) +-- qj(X),

qi([]).

2) For any qi E II(P) and ak E :E, there is at most one clause in P whose head is qi([ak!X]).

Definition 6.2 Let Mo � Bc0• We say M0 is a regular model if there exists a DRLP P such

that Nfo = NI(P)qo

64

Let L(Mo) denote the set {x E I:* I q0([x]) E M0}. Then we have the following theorem

which ensures that the class of regular models is equivalent to that of regular languages.

Theorem 6.1 For any M0 � l3.c0, M0 is a regular model if and only if L(Mo) is a regular

language.

Proof: First, we prove the only if direction. Let P be a DRLP such that M(P)qo = M0.

Without loss of generality, we may assume that II(P) = { qo , q1, ... , qm}· Then, construct a

DFA A = (Q U { qm+1}, I:, 8, q0, F), where Q = II(P), qm+l is a predicate symbol which does

not appear in II(P), F = {qi E Q I qi([]) E P}, and

{ qj if qi([akiX]) � qj(X) E P,
8(qi, ak) =

qm+l otherwise.

Here, we show that 8(qi, x) E F if and only if qi([x]) E M(P) for any qi E II(P) and

x E I:* by induction on the length of x.

If lx I = 0, that is, x = c then it follows from the definition of A that

(6.1)

From Corollary 3.3, if qi([]) E P then qi([]) E M(P). Also, if qi([]) E M(P) then there exists

a clause C in P such that qi([]) E C(M(P)). Hence, it follows from the definition of DRLP's

that C is of the form qi([]). Thus it holds that qi(O) E P if and only if qi([]) E M(P). With

(6.1), this implies that 8(qi, c) E F if and only if qi([c]) E M(P).

Suppose that 8(qi, a) = qj. Since 8(qi, ax) = 8(8(qi, a), x), it holds that 8(qi, ax) E F

if and only if 8(qj, x) E F. From the induction assumption, it holds that 8(qj, x) E F if

and only if qj([x]) E M(P) for any qj E II(P) and any string x E I:* such that lxl � n for

some n � 0. On the other hand, from the definition of A, it holds that, for any a E I: and

qi E II(P),

Thus, it holds that

65

From Corollary 3.3, if qi([aiX]) � qj(X) E P and qj(x) E M(P), then qi([ax]) E M(P).

Also, if qi([ax]) E M(P), then there exists a clause C in P such that qi([ax]) E C(M(P)). It

follows from the definition of DRLP's that such C is unique if it exists. Hence, if qi([ax]) E

M(P) then there uniquely exists a clause qi([aiX]) � qj(X) in P such that qj(x) E M(P).

Thus, it holds that

b(qi, ax) E F iff qi([ax]) E M(P).

This completes the induction step of the proof. Hence, it holds that 8(qi, x) E F if and

only if qi([x]) E M(P) for any qi E IT(P) and x E E*. As a result, we obtain the following

relation:

b(qo, x) E F iff qo((x]) E M(P)qo iff qo((x]) E Mo.

Thus L(Mo) is a regular language.

Conversely, from a DFA which accepts L(M0), we can construct a DRLP and show that

the other direction in a similar fashion. D

Here we define the problem of learning regular languages as an extended model inference

problem. Let M0 (� B.c0) be a regular model. An oracle for M0 over C0 is the device which,

for any input a E B.c0, returns true if a E M0, false otherwise. Facts about M0 are pairs of

the form (a, V), where a E B.c0 and V E {true, f al se} is the output value of an oracle for

M0 on an input a. Ground atoms in M0 are called positive facts, while others negative facts.

An enumeration of M0 is an infinite sequence: F1, F2, F3, . • . , where each Fi is a fact about

M0 and every a E B.c0 occurs in a fact Fi = (a, V) for some i � 1. We assume the oracle

for M0 can give any enumeration of M0 to an inference algorithm.

The main problem considered in this chapter is as follows.

Suppose an oracle for some unknown regular model M0 over C0 is given. Find a

DRLP P such that M(P)qo =Mo.

In this chapter, the inference algorithm is allowed to use membership queries about a

target regular model M0• A membership query about M0 is to propose a ground atom

a E B.c0 and ask the oracle if a E lv/0. An inference process of the algorithm is as follows. At

each time, the algorithm reads one fact (ai, Vj) from a given enumeration of the target model

66

M0. Then it makes finitely many membership queries about M0. According to answers from

the oracle, the algorithm produces a DRLP Pi as a conjecture.

Although, the almost all definitions concerned with the behavior of an inference algorithm

are same as those defined in Chapter 2, we need to redefine the notion of identifiability. An

inference algorithm is said to identify a regular model M0 in the limit if it converges on every

enumeration of M0 given by the oracle to a conjecture P such that M(P)qo = M0. Figure 6.1

illustrates the framework of the regular model inference.

Figure 6.1: The framework of the regular model inference

(qo([xl]), Vl), (qo([x2]), V2), ... , (qo([x;]), Vi), .. . • I Oracle for M0 I

I Inference }algorithm I)
! Query: q0([x]) E Mo ?

P1, P2, ... , Pi, ... , Pn, Pn, Pn, ... : M(Pn)qo = Mo

In the framework of Shapiro's model inference [Sha81, Sha82] , a first order language

..C with finitely many predicate symbols is given in advance. The Model Inference System

(MIS, for short) based on the model inference algorithm requires an oracle for a model M

over£. Then MIS efficiently synthesizes a logic program P over ..C such that M(P) = M.

The model inference algorithm is equipped with the contradiction backtracing algorithm as

a sub-algorithm. The sub-algorithm plays the most important part for the efficiency of the

model inference algorithm. With the help of the given oracle, the contradiction backtracing

algorithm finds out a wrong clause in a hypothesis unsuitable for a conjecture by examining

falsity of clauses in the hypothesis. The examination is executed by making membership

queries about M, that is, by proposing a ground atom a E B.c and asking if a E M.

Note that, in the setting, hypotheses are logic programs over ..C and a target model M is a

Herbrand model over the same language ..C.

In our setting, however, the given oracle cannot answer membership queries for a E B.c

B.c,0• Thus, the oracle cannot be used directly to examine the falsity of clauses which contain

a predicate symbol except q0. In order to construct an efficient regular model inference

algorithm, we should develop some method for examining falsity of clauses over ..Cp for any

67

hypotheses P. In the next section, we shall argue such a method.

6.2 An Extended Model of a Regular Model

We introduce a mapping called a predicate characterization. W ith the mapping satisfying

some conditions, we can appropriately extend a regular model over £0 to a model over £p

for any DRLP P.

Definition 6.3 A predicate characterization for a DRLP P, denoted by CHp, is a one to

one mapping from Il (P) to I:*.

For any qi E Il(P) , CHp(qi) is called the characteristic string of qi with CHp.

Definition 6.4 Let M0 � B.c0 and CHp be a predicate characterization for a DRLP P. We

define an extended model of M0 with CHp, denoted by I(M0, CHp), as follows:

With the above extension of a model over £0, for the present, we can get a model over

£p. However, it is nonsense that a model over £0 is arbitrarily extended with a haphazard

predicate characterization. The extension should satisfy the following condition:

M(P) qo = Mo iff M(P) = I(Mo, CHp) .

We show that some restrictions on C H p lead to such an extension.

Definition 6.5 Let CHp be a predicate characterization for a DRLP P. The CHp is said

to be consistent if, for any qi E Il(P), there exists a derivation tree of q0([CHp(qi)]) on P in

which qi(O) appears.

Note that, for any DRLP P and any ground atom qi([x]) E B.cP, any possible derivation tree

of a on P is unique and is of the very simple form as in Figure 6.2. The above definition is

translated in terms of the theory of finite-state automata as follows. Let P be a DFA with

a transition function 8, CHp is consistent if and only if 8(q0, CHp(qi)) = qi for any state

qi in P.

68

Figure 6.2: A derivation tree on a DRLP

qi([a1a2a3 · · ·])
I

qi1 ([a2a3 · · ·])
I

qi2 ([a3 · · ·])
I

Lemma 6.2 For any DRLP P, if a predicate characterization CHp for P is consistent,

then it holds that M(P) = I(M(P)q0, CHp).

Proof: From the uniqueness of the derivation tree on a DRLP and the consistency of CHp,

for any qi E IT(P) and x E �*, it holds that

P � qi ([x]) iff P � qo ([C H p (qi) · x]).

Since PI- a if and only if a E M(P), it holds that

qi([x]) E M(P) iff qo([CHp(qi)·x]) E M(P)

iff qo([CHp(qi)·x]) E M(P)qo

iff qi([x]) E I(M(P)q0, CHp).

D

Theorem 6.3 Suppose CHp for a DRLP Pis consistent and CHp(q0) = c. Then, for any

Mo � B.c0, M(P)q0 = Mo if and only if M(P) = I(Mo, CHp).

Proof: Since the only if direction immediately follows from Lemma 6.2, it is sufficient to

prove the if direction. For any x E �*, it holds that

qo([x]) E Mo iff qo([CHp(qo) ·x]) E Mo (from CHp(q0) = c)

iff qo([x]) E J(Mo, CHp)

iff qo([x]) E lv!(P) (from the assumption)

iff qo([x]) E lvf(P)q0•

D

By the above theorem, the regular model inference problem can be restated as follows.

69

Suppose an oracle for some unknown regular model M0 is given. Find a DRLP

P such that M(P) = I(M0, CHp) , where CHp is consistent and CHp(q0) =c.

With such a predicate characterization, it is possible to take advantage of the contradiction

backtracing algorithm. Whenever the algorithm needs information about membership of

some ground atom qi([x]) E B.cp in an extended model I(lvf0, CHp) , it can get the informa

tion by making a query "q0([CHp(qi)·x]) E M0?'' to the given oracle.

6.3 A Regular Model Inference Algorithm

In this section, first we show that every clause in a DRLP P has a property called complete

ness with respect to M(P) . Then we give a regular model inference algorithm in which an

extended model of a target regular model is used for detecting incomplete clause in unsuitable

hypotheses with respect to the extended model.

Definition 6.6 Let M � B.c and C be a clause. Then Cis said to be sufficient in M if, for

every a EM such that head(C) t a, it holds that a E C(M).

Definition 6. 7 A clause Cis said to be complete in M if Cis both true and sufficient in M.

The following proposition directly follows from the above definitions.

Proposition 6.4 The following two statements are equivalent.

1. A clause qi([a!X]) +-- qj(X) is complete in a model M.

2. For any x E I:*, qi([ax]) E M if and only if qj([x]) E M.

For any DRLP Panda E M(P) , since there exists at most one clause which covers a in

M (P) , each clause in Pis sufficient in lvf. Thus we have the following proposition.

Proposition 6.5 For any DRLP P, every clause in Pis complete in M(P).

With Lemma 6.2, this implies the following proposition.

Proposition 6.6 Let CHp be a consistent predicate characterization for a DRLP P. If

lvf(P)qo = lvfo then every clause in Pis complete in I(lv/0, CHp).

70

By the above proposition, if there is a clause in P which is not complete in I(M0, CHp)

for some CHp, then .Nf(P)qo ::1 M0• Hence, whenever a clause which is not complete in

I(M0, CHp) exists in a hypothesis P, then the clause must be eliminated from P. Thus in

our setting, the clause that are not sufficient in an extended model are removed from an

unsuitable hypothesis, while, in Shapiro's model inference algorithm, only the clauses that

are not true in a target model are removed.

Algorithm 6.1: A regular model inference algorithm

Given: An oracle for a regular model M0 over £0.

Input: An enumeration about M0•

Output: A sequence of DRLP's.

Procedure:

P := ¢; CHp := {(q0, c-)}; Strue := ¢; Sfalse := ¢; State:= 0;

repeat

read the next fact (a, V); Sv := Sv U {a};
repeat

while there exists a E Sfalse such that a E M(P) do

let PTa be the proof tree of a on P;

C := contradiction_backtracing(PTa);

P := P- {C};

C' := next_clause(C);

P := P u {C'};

while there exists (3 E Strue such that (3 � M(P) do

(3' := uncovered_atom(/3);

C := search_clause(/3');

P := Pu {C};

until neither of the while loop is entered;

output P;

forever.

Now we state an outline of the algorithm mainly concentrating on the following two:

• how to modify hypotheses,

• how to construct a predicate characterization.

For the present, we assume that, at any time, the predicate characterization CHp constructed

by the algorithm is consistent and C H p (q0) = c.

71

Algorithm 6.2: Sub-procedures for modifying a too strong hypothesis

contradiction_backtracing:

Given: An oracle for a regular model M0 over £0.

Input: A proof tree of an atom qi([ax]) on P such that

qi([ax]) E M(P) but qi([ax]) rt I(M0, Clip).

Output: A clause C E P which is false in I(M0, Clip).

Procedure:

let qj([x]) be the child of qi([ax]) in the proof tree;

if qj([x]) E I(M0, Clip) then

return qi([aiX]) *- qj(X);

else

let PT be the proof tree of qj([x]) on P;

I* Such a proof tree can be obtained from the input

proof tree by removing the root node *I

return contradiction_backtracing(PT).

next_clause:

Input: A clause qi([aiX]) *- qj(X).

Output: A clause qi([ajX]) *- qj+l (X).

Procedure:

if j = State then

State := State+ 1;

let x be the string such that (qi, x) E C Hp;

Clip:= Clip U {(qj+l, xa)};

return qi([a!X]) *- qj(X).

There are following two cases in which a hypothesis P should be modified.

(1) The hypothesis is too strong, that is, M(P) contains some negative fact (the first while

loop in Algorithm 6.1) .

(2) The hypothesis is too weak, that is, M(P) does not contain some positive fact (the

second while loop in Algorithm 6.1) .

In the first case, there exists at least one clause in P which is not true in I(M0, Clip)

(this will be clear in the proof of Lemma 6.8) . The algorithm finds such a clause using the

contradiction backtracing algorithm (procedure contradiction_backtracing). The clause

72

is removed from the hypothesis. Then an alternate clause constructed by a clause generator

(procedure next_clause) is added to the hypothesis.

In the procedures contradiction_backtracing and uncovered_atom, the examination

of if statement "qj([x]) E J(M0, CHp)" is done by making a membership query proposing

q0([CHp(qj)·x]). We do not consider the atom of the form qi([]) as an input for contradic

tion_backtracing. The reason be described after Proposition 6.7.

Algorithm 6.3: Sub-procedures for modifying a too weak hypothesis

undovered_atom:

Input: An atom {3 such that {3 E J(M0, CHp) but {3 <$ M(P).

Output: An atom in I(M0, CHp) which is not covered by any clause

in P with respect to I(M0, CHp)

Procedure:

if there exists a clause qi([aiX]) f-- qj(X) E P such that

qi([aiX])e = {3 for some substitution e then

if qj(X)B E J(M0, CHp) then

return uncovered_atom(qj(X)B);

else return {3;

else return {3.

search_clause:

Input: An uncovered atom qi([x]) which is returned by the above procedure.

Output: A new clause C whose head is unifiable with qi([x]).

Procedure:

if x = c then

return qi ([]);

else let x = ax';

if there exists C E P such that head(C) = qi([aiX]) then

p := p- {C};

return next_clause(C);

else return qi([aiX]) f-- qo(X).

In the second case, there exists a ground atom qi([x]) E I(lv£0, CHp) which is not covered

by any clause in P with respect to I(lv£0, CHp) (this will be clear in the proof of Lemma 6.9).

The procedure uncovered_atom finds out such an atom. Note that when the procedure is

73

called with an input qi([]), it always return the input. Because, if qi([]) � M(P), then it is

immediately found that q1([]) is not covered by any clause in P with respect to any model.

For such an uncovered atom, the following two cases are possible.

(i) There is no clause in P whose head is unifiable with qi([x]).

(ii) Although there is a clause C whose head is unifiable with qi([x]), C does not cover

qi([x]) in I(M0, CHp).

In the case (i), if x = c, then the unit clause qi([]) is added to the hypothesis, and if x = aw

(a E :E, w E :E*), then the clause qi([ajX]) � q0(X) is added to the hypothesis. In the case

(ii), according to Proposition 6.6, Cis removed from the hypothesis, then an alternate clause

is added to the hypothesis similarly in the case (1). The procedure search_clause works

according to each case.

In the algorithm, the predicate characterization is represented as a set of pairs of a predi

cate symbol and a string. The set is constructed as follows. Let P be the current hypothesis

and CHp = {(q0, c) , (q1, x1), (q2, x2), ... , (qk, xk)} be the current predicate characterization.

Now we assume that the algorithm finds out a clause C = qi([ajX]) � qk(X) in P which is

not complete in I(M0, CHp) . Then P is modified in the way mentioned above. Hence, Cis

removed from P and an alternative constructed by the clause generator is added to P. Since

the clause generator increases the index of qk, the alternative has a new predicate symbol

qk+l which has never appeared in P before. When such a new predicate symbol is intro

duced, the algorithm adds a pair (qk+l, xia) to CHp, that is, a characteristic string of the

new predicate symbol is determined by the head of the clause which caused the introduction

of the new predicate symbol.

Figure 6.3 illustrates the outline of modifying hypotheses mentioned above. The dotted

line denotes the operation which is made in the case (2)-(i). The two solid lines denote the

operations that are made simultaneously in the case (1) and (2)-(ii).

6.4 Correctness of the Algorithm

First, we give a simple proposition concerned with the property of predicate characterization.

From the definition of an extended model, the following holds.

74

Figure 6.3: The outline of modifying hypotheses

qo(O)

qJ(O)

qo([a IX]).- qo(X)

qk([aiX]).- qo(X)

...
'

\

I

A clause which is not

complete in l(Mo, CHp)

qi([a IX])+- qJ(X)
The alternate clause

qo(ia IX])+- ql(X)} qi([a IX])+- qJ+l(X)

qk([a IX])+- Qz(X) �--+--

���

Proposition 6.7 Let P1 and P2 be any DRLP's such that II(P1) � II(P2). Suppose that

CHp1(q) = CHp2(q) for any q E II(P1). Then, for any Mo � Bc0 and q([x]) E Bcp
1

,

q([x]) E I(Mo, CHpJ if and only if q([x]) E J(M0, CHp2).

The predicate characterization constructed by the algorithm changes with increase of its

domain, the set of predicate symbols in hypotheses. This leads to the change of the extended

model with the predicate characterization. However, from the way of constructing a predi

cate characterization, it is clear that the change of the predicate characterization caused by

modifying hypotheses satisfies the premises of Proposition 6. 7. Hence the change of the ex

tended model with the predicate characterization satisfies the conclusion of Proposition 6.7.

Thus, once a ground atom is true (false) in an extended model, the atom is still true (false)

in subsequent models.

In Algorithm 6.2, we do not consider the atom of the form qi([]) as an input for con

tradiction_backtracing. Because, at any time on the inference process, there is no case

in which qi(O) is in M(P) but not in J(M0, CHp) . The ground atom qi([]) is in M(P) if

and only if there exists a unit clause qi([]) in P. The clause qi([]) is added to P after the

procedure search_clause is called on the input qi([]). Let P' be the hypothesis for which

the procedure call is occurred. Then qi([]) is in J(J\;!0, Cflp,). By Proposition 6.7, qi([]) is

75

ensured to be in I(M0, CHp) for any subsequent hy pothesis P. Hence, there is no case in

which qi([]) is in M(P) but not in J(M0, CHp) .

Here we show the correctness of the sub-procedures contradiction_backtracing and

uncovered_atom.

Lemma 6.8 Suppose that the procedure contradiction_backtracing is called with the in

put proof tree of a ground atom a E M(P) such that a ¢ I(M0, CHp) . Then the procedure

returns a clause in P which is not true in I (M0, C H p).

Proof: Suppose that the procedure contradiction_backtracing given a proof tree of a

ground atom qi([ax]) returns a clause qi([a!X]) � q1(X). Then it is ensured that qi([ax]) ¢

I(M0, CHp) but q1([x]) E J(M0, CHp) . Hence the clause is ensured to be false in the

extended model I(M0, CHp) . Furthermore, since q1([x]) is the child of qi([ax]) in the input

proof tree on P, the clause qi([aiX]) � q1(X) exists in P.

On the other hand, every input proof tree has the leaf qk(O) for some qk(O) E P. From

the discussion above, it is ensured that qk([]) E J(M0, CHp) . Since the input proof tree of

each recursive call clear the input condition, a clause which is false in J(M0, CHp) must be

found eventually. D

Lemma 6.9 Suppose that the procedure uncovered_atom is called with an input f3 E M0

such that f3 ¢ M(P). Then the procedure returns some ground atom /3' E J(M0, CHp) such

that f3' is not covered by any clause in P with respect to I(M0, CHp) .

Proof: Since the procedure examines if q1(X)B E J(M0, CHp) before calling itself recur

sively, every input q1(X)B for its recursive call is ensured to be in I(M0, CHp) . On the other

hand, if an input for its recursive call is in M(P), then the input has a proof tree on P.

This implies that all ancestors of the input have also proof trees on P. This contradicts that

f3 ¢ M(P), that is, the initial input of the procedure has no proof tree on P. Thus every

input for its recursive call is not in Jvf(P).

Since qi([]) is not unifiable with any qi([a!X]), the procedure called with an input of the

form qi([]) returns the input directly. Since qi([]) ¢ lvf(P), it holds that qi([]) rt P. For any

clause in a DRLP, a ground atom qi([]) is covered only by the clause qi([]). Thus, if the

76

procedure is called with the input qi([]), then it immediately follows that qi([]) is not covered

by any clause in P with respect to J(M0, CHp).

For an input of the form qi([ax]), if there is no clause whose head is unifiable with

qi([ax]), it is clear that qi([ax]) is not covered by any clause in P. Since a clause of the

form qi([ajX]) +---qj+1(X) is introduced into a hypothesis after the clause qi([ajX]) +---%(X)

is removed from the hypothesis, there is at most one clause whose head is unifiable with

qi([ax]). Thus if qi([ax]) is not covered such a clause, there is no other clause which can

cover qi([ax]) with respect to J(M0, CHp). Thus, if the procedure make an output, then the

output is ensured to satisfy the claim of the lemma.

On the other hand, the size of each input qj([X])B for the recursive call is decreasing one

by one. Thus, even if in the worst case, the procedure will encounter an input of the form

qi([]) and terminate. This completes the proof of the lemma. D

Next, we show the justification of the way of constructing a predicate characterization.

We can restate Proposition 6. 7 as follows.

Proposition 6.10 Let P1 and P2 be any DRLP's such that IT(P1) � II(P2). Suppose that

CHp1 (q) = CHp2(q) for any q E II(P1). Then, for any Mo � B.c0 and C E P1, C is complete

in I(M0, CHpJ if and only if C is complete in I(M0, CHp2).

Lemma 6.11 Let P be a DRLP. Suppose CHp(qj) = CHp(qi)·a, where a E I: and qi, qj E

IT(P). Then, for any M0 � B.c0, the clause qi([ajX]) +---qj(X) is complete in I(M0, CHp).

Proof: By the definition of the extended model, for any x E I:*, it follows that

qi([ax]) E J(Mo, CHp) iff qo([CHp(qi)·ax]) E Mo

iff qo([CHp(qj) ·x]) E Mo

iff qj([x]) E J(M0, CHp).

Hence, from Proposition 6.4, qi([a!X]) +--- qj(X) is complete in J(M0, CHp). D

Theorem 6.12 The predicate characterization C H p constructed by the algorithm is, at any

time, consistent and CHp(q0) =c.

Proof: It is clear that CHp(q0) =E.

Let P be a hypothesis constructed by the algorithm. From the way of constructing

the predicate characterization, for any qj E IT(P) (j � 1), there exists a predicate symbol

qi E IT(P) such that CHp(qj) = CHp(qi)·a for some a E �. On the other hand, in defining

the characteristic string CHp(qj) = CHp(qi) ·a, the clause qi([aiX]) +---- qj(X) is added

to the hypothesis simultaneously. Since Lemma 6.11 ensures the clause being complete in

J(M0, CHp), it is never removed from the hypothesis. Hence, for any qj E IT(P) (j � 1),

there exist clauses in P that are necessary for constructing such a derivation tree as in

Definition 6.5.

Since CHp(q0) = E, q0([CHp(q0)]) = q0((c]) = q0([]) itself gives a derivation tree as in

Definition 6.5. This holds even if P is empty. Thus, the theorem holds. D

Now we show the correctness of the algorithm. That is, for any regular model M0, the

algorithm identifies M0 in the limit. Since the conjectures of Algorithm 6.1 are consistent

with known facts, it is sufficient to show the followings:

• The algorithm produces an infinite sequence of conjectures.

• The infinite sequence of the conjectures converges a DRLP.

For the former, we must show that the inner repeat loop of Algorithm 6.1 terminates

finitely. For the latter, we must show that there are at most finitely many occasions in which

hypotheses are modified. F inally, it is sufficient to show that the bodies of the two while

loops are executed at most finitely many times in total.

When the target model is empty, the bodies of the while loops are never executed,

because the initial hypothesis is empty. Thus, in the following, we assume that the target

regular model l\1!0 is not empty.

Lemma 6.13 Let P be any hypothesis and C Hp be the predicate characterization for P

constructed by Algorithm 6.1. For any qi E IT(P)) there exists a string x E �· such that

qo([CHp(qi)·x]) E Mo.

Proof: First, we show that, for any non-unit clause qk([aiX]) +---- qj(X) E P, there exists a

string x E L:"' such that qk([ax]) E I(l'vf0, CHp).

78

The clause whose head is qk([aiX]) first appears in a hypothesis after executing the last

else statement in the procedure call of search_clause on the input qk([ax]). Let P' be the

algorithm's hypothesis at that time. Then qk([ax]) E J(M0, CHp,) and qk([ax]) rf_ lvf(P').

By Proposition 6.7, for any subsequent CHp, it holds that qk([ax]) E I(lv10, CHp) . Thus,

for any non-unit clause qk([aiX]) � qj(X) E P, there exists a string x E 2:* such that

qk([ax]) E J(Mo, CHp).

On the other hand, for any qi E II(P) (i � 1) , there exists a predicate symbol qk E

II(P) such that CHp(qi) = CHp(qk)·a for some a E 2:. By the argument in the proof of

Theorem 6.12, there exists a clause qk([aiX]) � qi(X) E P. By the above discussion, there

exists a string x E 2:* such that qk([ax]) E J(M0, CHp) , that is, qo([CHp(qk) ·ax]) E M0.

Hence, for any qi E II(P) (i;?: 1) , there exists a string x E �* such that q0([CHp(qi)·x]) E M0 •

For the predicate q0, since M0 is not empty, there exists a string x E 2:* such that

D

In the following lemma, we consider the DRLP P with the minimum number of predicate

symbols satisfying M0 = M(P)qo· Such a DRLP can be constructed, by a similar method in

the proof of Theorem 6.1, from the minimum size DFA which accepts L(M0).

Lemma 6.14 Let P be a DRLP with the minimum number of predicate symbols such that

M0 = M(P)qo. Let P be an arbitrary hypothesis constructed by the algorithm. Then it

follows that III(P)I:::; III(P)I.

Proof: Let C H p be the predicate characterization for P constructed by the algorithm.

From Lemma 6.13, for any qi E II(P), there exists a string x E 2:* such that q0([CHp(qi) ·

x]) E M0. Since M0 = M(P)q0, there uniquely exists a proof tree of qo([CHp(qi)·x]) on P.

Hence, for any qi E II(P), there uniquely exists a predicate symbol qi E II(F) such that

qi([]) appears in the derivation tree of q0([CHp(qi)]) on f>. For such qi, it holds that, for any

string x E 2:*,

Now we consider the mapping T from II(P) to II(F) such that T(qi) = qi. For the proof

of the lemma, it is sufficient to show that T is injective.

79

Suppose that T(qi) = T (qj) for some i < j. Then, for any string x E E*, it holds that

qo([CHp(qi)·x]) E M(F) iff qi([x]) E M(F) (from (*))

iff qj([x]) E M(F) (from the assumption)

iff q0([CHp(qj)·x]) E lv!(F). (from (*))

Hence, we obtain the following relation:

Since 0 � i < j, there exists a predicate symbol qk E II(P) (k < j) such that CHp(qj) =

CHp(qk) ·a for some a E E. Hence, for any x E E*, the following relation holds.

As a result, it holds that

qi([x]) E J(M0, CHp) iff qk([ax]) E J(M0, CHp).

Hence, it follows from Proposition 6.4 that the clause C = qk([aiX]) +--- qi(X) is complete

in J(M0, CHp). Since i < j, C is generated by the procedure next_clause and added to

the hypothesis before the clause qk([a!X]) +--- qj(X). From Proposition 6.10, C is complete

in any extended model subsequently. Thus Cis never removed from subsequent hypotheses.

This contradicts that CHp(qj) = CHp(qk)·a. D

Theorem 6.15 For any regular model M0) Algorithm 6.1 identifies M0 in the limit.

Proof: It is clear that the procedures next_clause and search_clause terminate finitely

and return the desired output. It follows from Lemma 6.8 and Lemma 6.9 that the pro

cedures contradiction_back-tracing and uncovered_atom terminate finitely and return

the desired output. Hence, each computation in the bodies of the two while loops termi

nates finitely and a operation corresponding to either the two solid lines or the dotted line in

Figure 6.3 is executed. The operation is executed at most once for each clause enumerated

in the left hand of Figure 6.3. Hence, if only finitely many clauses are generated, then the

bodies of the two while loops are executed at most finitely many times in total.

80

On the other hand, by Proposition 6.10 and Lemma 6.11, once a predicate symbol is

introduced into a hypothesis, the symbol never disappears from the subsequent hypothe

ses. Hence, by Lemma 6.14, only finitely many predicate symbols are introduced into the

hypotheses. Thus the number of clauses generated is at most finite.

From the discussion preceding Lemma 6.13, this completes the proof of the theorem. 0

6.5 Time Complexity of the Algorithm

We assume that the given oracle answers each membership query immediately. Thus, the

examination if qi([x]) E J(M0, CHp) is done in one step.

Let M0 be a target regular model and P be a DRLP with a minimum number of predicate

symbols such that M0 = M(F)qo·

Theorem 6.16 At any stage in inferring M, after Algorithm 6.1 reads a fact, it outputs a

conjecture in time polynomial in size(S), 1�1, and III(F)I, where S is the set of all positive

and negative facts given so far, that is, S = Strue U Sjalse·

Proof: For notational convenience, we denote lSI by £, lEI by k, III(F)I by n, and the

maximum size of any element inS by m. Note that size(S) ::; m£. Let P and CHp be the

hypothesis and the predicate characterization in the algorithm. Then, it follows from the

argument in the previous section that !PI ::; n(k + 1) and ICHpl ::; n.

The both procedure next_clause and search_clause just make a simple search in CHp

and P respectively. Thus the time required in each procedure call is bounded by a linear in

n(k + 1) .

From the structure of a derivation tree on a DRLP, the input proof tree of some negative

fact a for the procedure contradiction_backtracing can be treated as a sequence with

length at most size(a). The procedure just traces the sequence from the root to the leaf.

Thus the procedure terminates and find a false clause in time linear in size(a) ::; m.

For an input ground atom /3, the procedure uncovered_atom searches a clause in P

whose head is unifiable with /3. If such a clause found then it calls itself recursively with

input /3' such that size(/3') = size(f3) - 1. Otherwise, it returns the input directly. Since the

81

main operation executed in the procedure is to search the clause, the time required in the

procedure call is bounded by a linear in size(f3) x IPI � mn(k + 1).

As a result, the time required in an execution of the body of each while loop is bounded

by a linear in mn(k + 1).

Each examination of if a E M(P) in the condition of two while loops of Algorithm 6.1

can be done by a similar procedure to uncovered_atom. By replacing the inner if-then

else block by the recursive call uncovered_atom(qj(X)B), we can obtain a simple resolution

prover for DRLP's. Thus the examination also terminates in time linear in size(a) x IPI �

mn(k + 1). In the worst case, the examination is done for every element in Strue or Sfalse·

Hence, the time required in each iteration of the while loops is bounded by a linear in

fmn(k + 1). On the other hand, from the argument in the previous section, each while loop

is entered at most kn2 +n times. Where kn2 +n is the number of possible clauses of a DRLP

constructed from at most n predicates.

Consequently, the amount of the time required in each iteration of the outer repeat loop

is at most O((kn2 + n)(fmn(k + 1)) = O(k2fmn3). D

82

Chapter 7

Learning Simple Deterministic

Languages

In this chapter, we consider the problem of learning simple deterministic languages using

membership queries and extended equivalence queries. The discussion in this chapter will

be made in terms of formal language theory, because a logic program corresponding to a

context-free grammar uses the technique of differential lists which are too complicated to

make the discussion clear.

A simple deterministic language (SDL, for short) is a language that is accepted by a

1-state deterministic push-down automaton by empty store. The class of SDL's is a proper

sub-class of deterministic languages. The SDL's may also be characterized as the languages

that are generated by context-free grammars in a special form of Greibach normal form,

called simple deterministic grammars (SDG's, for short) .

Angluin [Ang87a] shows that the class of k-bounded context-free grammars is learnable in

polynomial time using membership queries, nonterminal membership queries and equivalence

queries. The algorithm described in this chapter is based on her algorithm. Both algorithms

are essentially based on Shapiro's model inference algorithm (Sha82] . Our setting, however,

differs from Angluin's and Shapiro's in the types of queries that are available to the learning

algorithm. That is, the algorithm is allowed to use membership queries but not nonterminal

membership queries. This difference leads to the problem of introducing new nonterminals

that are not observed in interactions between the oracle and the inference algorithm. As

83

discussed in Chapter 5, this relates to the problem of inventing necessary predicates 1n

learning logic programs.

Another feature of our setting is that the algorithm is allowed to use extended equivalence

queries. The equivalence query defined in [Ang88] is allowed to conjecture only elements

of the original hypothesis space. For example, if the target class1 of learning is a set of

concept representations R = {r1, r2, • . . }, then any equivalence query made by the learning

algorithm must be with some ri from R. We lift this restriction in this chapter. In particular,

the learning algorithm described in this chapter is allowed to make an equivalence query

conjecturing any grammar in 2-standard form; not necessarily simple deterministic. Hence,

each intermediate hypothesis conjectured by an extended equivalence query might define a

general context-free language.

Yokomori [Yok88] gives another algorithm for learning SDL's in polynomial time. Our

setting also differs from his, as will be described at the end of Section 7.6. Berman and Roos

[BR87] show that the class of deterministic one-counter languages is learnable in polynomial

time using membership queries and equivalence queries. The class of one-counter languages

is incomparable with the class of SDL's. For example, the language { { anbn I n � 1 }c} + is

not simple deterministic, but deterministic one-counter. On the other hand, the language

{ ambncanbm I m, n � 1} is not deterministic one-counter, but simple deterministic. However,

there is an interesting similarity that both are classes with decidable equivalence problems.

In the next section, we give the definition of simple deterministic grammars and lan

guages. We also give several properties of the grammars which will be necessary for our

discussions. In Section 7.2, we define the two types of queries by which a learning algorithm

obtains the information about a target language. In Section 7.3, we give the learning al

gorithm and the main result of this chapter. In Section 7.4, we describe how to diagnose

an incorrect hypothesis. The diagnosis method is essentially same as that of the procedure

contradiction_backtracing given in the previous chapter. In Section 7.5, we describe how

to generate nonterminals with appropriate intended models. The correctness and the time

complexity of the algorithm will be discussed in Section 7.6.

1 The target class is a class of representations that define the class of concepts to be learned by the

algorithm (see, e.g., (Pit89]).

84

This chapter is based on the paper (Ish89b, Ish90] .

7.1 SDG and SDL

First, we define simple deterministic grammars and languages.

Definition 7.1 A context-free grammar in Greibach normal form G is simple deterministic

if the following condition holds: for any A E N, a E .E, a, f3 E N*, if there exist productions

A ---* aa and A ---* af3 in P, then a = {3.

Definition 7.2 A language L is simple deterministic if there exists an SDG G such that

L(G) = L.

Example 7.1 The grammar G = ({S, A, B, C}, {a, b }, P, S), where

P = {S---* aA,A---* b,A---* aB,B---* aBC,B---* bC,C---* b},

is one of the SDG's that generates an SDL { ambmll � m }.

The following propositions (see, e.g., (Har79]) provide properties of SDG's and SDL's

that are useful for our purpose.

Proposition 7.1 For any SDG G = (N, .E, P, S), G is unambiguous, that is, for any w E

L(G), there is a unique left-most derivation of w from S.

Proposition 7.2 Let G = (N, .E, P, S) be an SDG. For any A EN, x E I:+ and a EN*, if

there exists a derivation A=>* xa, then L(a) = xL(A).

Proposition 7.3 Let G = (N, .E, P, S) be an SDG. For any A EN, L(A) is prefix-free, that

is, ifx E L(A), then, for any y E _E+, xy rJ. L(A).

Proposition 7.4 For any SDG G, there exists an equivalent SDG G' that is in 2-standard

form, i.e., there exists an SDG G' = (N', .E, P', S) such that

(1) L(G) = L(G');

85

(2) Each production in P' is of one of the following forms: A--+ a, A--+ aB, A--+ aBC,

where A,B,C E N',a E E.

Proposition 7.4 allows us to consider only (c-free) context-free grammars in 2-standard

form as the hypotheses of the learning algorithm.

We will analyze the complexity of the learning algorithm given in this chapter on two

types of complexity measures: one is the length of the given example strings and the other is

the number of nonterminals of a minimal SDG for the target language. Let L be an SDL. A

minimal SDG for L is an SDG G = (N, :E, P, S) in 2-standard form satisfying the following

conditions:

1. L(G) = L;

2. For any SDG G' = (N', :E, P', S') in 2-standard form such that L(G') = L, INI :S IN' I·

7.2 Learning via Queries

In this chapter, we consider the problem of learning SDL's under the framework called

learning via queries which is rather different form that of identification in the limit. In the

framework, the learning algorithm can actively get information about a target SDL L by

making queries to the oracle. The criterion for success of learning is to terminate finitely

and output a grammar G such that L(G) = L. According to Angulin's fashion [Ang87b], in

this chapter, we call an oracle for L a teacher for L. Figure 7.2 illustrates the framework of

learning via query.

Let L be the target SDL to be learned by our learning algorithm. We assume that the

teacher for L can answer the following two types of queries.

Definition 7.3 A membership query proposes a string x E E+ and asks whether x E L. The

reply is either yes or no.

Definition 7.4 An extended equivalence query conjectures a grammar G in 2-standard form

and asks whether L = L(G). The reply is either yes or no. If it is no, then a counterexample

is also provided. A counterexample is a string x in the symmetric difference of L and L(G).

86

Figure 7.1: The framework of learning via query

I Teacher for L I
Query 11 .lJ. Answer

Learning algorithm

.lJ.

G: L(G)=L

If x E L - L(G), x is called a positive counterexample, and if x E L(G) - L, x is called a

negative counterexample. The choice of a counterexample is assumed to be arbitrary.

Note the difference between the extended equivalence query and the equivalence query

defined in [Ang88]. The equivalence query is only allowed to conjecture members of the

target class. Thus, in learning SDL's, any hypothesis conjectured by the algorithm would

have to be a grammar generating an SDL. In contrast, the hypothesis conjectured by an

extended equivalence query does not have to generate an SDL.

A teacher who answers equivalence queries and membership queries was called a min

imally adequate teacher [Ang87b]. We call a teacher who answers extended equivalence

queries and membership queries an extended minimally adequate teacher.

The notion of the extended equivalence query corresponds to the notion, in the context of

the PAC-learning model, of learning the target class R in terms of the class of representations

R', not necessarily identical to R (see, e.g., [PW88]). Informally, R is said to be PAC

learnable in terms of R' if there exists a polynomial time algorithm A such that for any

target concept (description) r E R, if A is given randomly chosen examples of r, A outputs,

with high probability, a concept (description) r
' E R' that approximates the target concept

r. In our setting, R corresponds to the class of SDG's (or SDL's) and R' corresponds to the

class of CFG's in 2-standard form. In general, such a relaxation of the learnability criterion

enriches the learnable classes of concepts. For example, the class of k-term DNF's is not

PAC-learnable in terms of itself unless RP = NP, but the class is learnable in terms of the

class of k-CNF's. For the result given in this chapter, however, the learnability of SDG 's in

terms of itself (the learn ability of SDG's from a minimally adequate teacher) is still open.

87

7.3 A Learning Algorithm for SDL

Let L be the unknown SDL to be learned by the algorithm and G 0 = (N0, 1:, P0, S) be a

minimal SDG for L. We assume that the terminal alphabet 2: and start symbol S are known

to the learning algorithm, but that N- { S}, the set of nonterminals except S, and P, the

set of productions, are unknown.

The main result of this chapter is as follows.

Theorem 7.5 For any SDL L, Algorithm 7.1 outputs a grammar G in 2-standard form

such that L(G) = L using extended equivalence queries and membership queries. Moreover,

at any point during the run, the time used by the algorithm to that point is bounded by some

polynomial in INoL the number of nonterminals of a minimal SDG for L, and the length of

the longest counterexample returned by any equivalence query seen to that point.

Note that the grammar learned by the algorithm may not be SDG. The grammar is

simply in 2-standard form.

Here, we describe the outline of Algorithm 7.1. The details concerning how to diagnose

hypotheses and how to introduce new nonterminals will be described in the succeeding two

sections.

First, the algorithm initializes N to { S}, and P to the set of all productions containing S

as the only non terminal. As a model M for G, we initially consider { M (S) = L}. Models for

any other nonterminals introduced by the algorithm will be defined in Section 7.5. Then the

algorithm iterates the following loop: An extended equivalence query is made, conjecturing

G. If the reply is yes, then the algorithm outputs G and halts. Otherwise, a counterexample

w is returned. The algorithm tries to find a derivation tree T of G such that rt(T) = S and

fr(T) = w. If it exists, that is, when w is a negative counterexample, the algorithm diagnoses

G on T and finds an incorrect production for M . The incorrect production is removed from

P. Otherwise, that is, when w is a positive counterexample, new nonterminals are introduced

and all new productions constructed from them are added to P.

In this chapter, we assume a parsing sub-procedure that runs in time polynomial in

the size of a grammar G and lwl, e.g., Angluin's (Ang87a] parsing procedure2• In the

2Since G is in 2-standard form, Lemma 3 and Lemma 4 in [Ang87a] hold. In fact, the procedure returns

88

Algorithm 7.1: An algorithm for learning SDL's

Given: An extended minimally adequate teacher for L and a terminal alphabet E.

Output: A grammar G = (N, E, P, S) in 2-standard form such that L(G) = L.
Procedure:

N := {5}; P := {S--+ aSS, S--+ aS, S--+ aia E E}; G := (N, E, P, S);
repeat

make an extended equivalence query with G;

if the reply is a positive counterexample then

introduce new nonterminals with their models;

put all candidate productions into P;

else if the reply is a negative counterexample, then

diagnose G;

remove the incorrect production returned

by the diagnosis routine from P;

until the reply is yes.

Output G.

following two subsections, we describe the diagnosis routine and how new nonterminals and

productions are generated. Then, in the third subsection, we show the correctness and

characterize the complexity of the entire algorithm.

7.4 Diagnosing an Incorrect Hypothesis

The diagnosis routine finds an incorrect production for M on an input derivation tree T

of G such that fr(T) <f. M(rt(T)). It is essentially same as the procedure contradic

tion_backtracing given in the previous chapter and each of them is a special case of the

contradiction backtracing algorithm given by Shapiro [Sha81] .

For a given input derivation tree T, the diagnosis routine considers, in turn, each child

of the root of T. If the child is labeled with a nonterminal and T' is the sub-tree rooted

at the child, then the diagnosis routine inquires whether fr(T') E NI(rt(T')). If fr(T') <f.

lvf(rt(T')), then it calls itself recursively with T'. Otherwise, it goes on to the next child of

a parse-DAG (directed acyclic graph) instead of a derivation tree. Our discussion, however, is not affected

by the difference.

89

the root ofT. If there is no nonterminal child such that fr(T') � M (rt (T')), for the sub-tree

T' rooted at the child, then the diagnosis routine returns the production rt (T) � a E P,

where a is the concatenation of the labels of the children of the root of T in left-to-right

order.

For example, consider the derivation tree in F igure 7.4 for a negative counterexample

abbb.

Initially, abbb � M(S) = L. F irst, the child labeled with A generating the string bb is

considered. The diagnosis routine inquires whether bb E M(A). If bb � M(A), then it calls

itself recursively with the sub-tree rooted at the child. If bb E M(A), then it goes to the

next child labeled with B and makes a similar inquiry. If b � M (B), then it returns the

production B �b. Otherwise, it returns the productionS� aAB.

Figure 7.2: An example of an input for the diagnosis routine

s

a A

�
b c

I
b

B

I
b

In [Ang87a] , such a diagnosis is made through nonterminal membership queries of the

type "bb E L(A) ?". In our approach, it is performed through membership queries only. The

next section shows how to introduce new nonterminals and replace nonterminal membership

queries by membership queries.

Lemma 7.6 Suppose that the diagnosis routine is given as its input a derivation tree T of

G such that f r (T) � M(rt(T)). Then it returns a production in P that is incorrect forM.

Proof: Since each recursive call is with a proper sub-tree of its input derivation tree, the

diagnosis routine must eventually terminate and output some production in P (since each

sub-tree is also a derivation tree of G, the output production is a member of P).

Let A � a be the returned production. For each nonterminal occurrence X in the pro

duction, let Tx be the sub-tree ofT that is rooted at the corresponding node labeled with X

90

in T. From the input condition, it holds that fr(TA) ¢ M(A). If a contains no nonterminal,

then the empty replacement p satisfies p(a] = a = fr(TA) ¢ M(A). Otherwise, from the

termination condition of the procedure, for each Bi appearing in a, fr(TsJ E M(Bi)· Thus

there exists a replacement p = ((fr(TsJ, B1), ... , (fr(Tsn), Bn)) that is compatible with a

such that, for each i, fr(TsJ E M(Bi), but p(a] = fr(TA) ¢ M(A). So A __, a is incorrect

forM. D

Note that, at the initial call to the diagnosis routine, the input derivation tree Tis for a

negative counterexample w. Since fr(T) = w ¢ L = M(S) = M(rt(T)), the input condition

is satisfied initially.

7.5 Generating Nonterminals and Productions

The key idea of the nonterminal-generating routine has its roots in an extension of a model

described in [Ish89a]. First, we show an important feature of SDG's for describing the

nonterminal-generating routine.

Lemma 7.7 Let G = (N, �' P, S) be an SDG. Suppose that A=?* rEa for A, B EN, a E

N*, r E �+, and that tis a string in L(a) such that Sufj(t) ¢ L(a) for any j (1 ::=:; j ::=:; itl -1)

(if a = £ then t =c) . Then, for any x E �+, x E L(B) if and only if (i) rxt E L(A) and

(ii) r Prei(x)t ¢ L(A) for any i (1 ::=:; i ::=:; lxl - 1).

Proof: Suppose x E L(B). Then A =?* r Ba =?* rxa =?* rxt. Thus, rxt E L(A). Since

L(B) is prefix-free, Prei(x) ¢ L(B) for any i (1 ::=:; i ::=:; lxl- 1). Hence, if rPrei(x)t E L(A),

that is, Prei(x)t E rL(A) = L(Ba), then there exists j (1 ::::; j ::=:; i tl - 1) such that

Prei(x)Pre1(t) E L(B) and Suf1(t) E L(a). This contradicts the fact that Suf1(t) ¢ L(a)

for any j (1 ::=:; j ::=:; It I - 1). Thus, r Prei(x)t ¢ L(A) for any i (1 ::=:; i ::=:; lxl - 1) .

Conversely, assume that (i) and (ii) hold. From (i), it follows that xt E rL(A) = L(Ba).

Since there is no proper suffix oft in L(a), there exists j (1 ::=:; j ::=:; lxl) such that Pre1(x) E

L(B) and Suf1(x)t E L(a). On the other hand, from (ii), Prei(x)t ¢ L(Ba) for any

i (1 ::=:; i ::=:; lxl- 1). Hence, for any i (1 ::=:; i ::=:; lxl- 1) , Prei(x) ¢ L(B). Thus, j = lxl. This

shows that Prelxl(x) = x E L(B). D

91

In the learning algorithm, new nonterminals are introduced whenever there is a positive

counterexample w. The nonterminal-generating routine constructs nonterminals with their

appropriate models from w.

Let w be a positive counterexample such that lwl � 2.

Definition 7.5 A Nonterminal generated from a positive counterexample w is a triplet (r, s, t)

of strings such that r st = w where r, s E :E+ and t E :E*. The set of all non terminals generated

from w is denoted by N (w).

Example 7.2 Let w = aabb, then

N(w) = {(a,abb,c),(a,ab,b),(a,a,bb),(aa,bb,c),(aa,b,b),(aab,b,c)}

For each triple (r, s, t) E N(w), let <p(r, s, t) denote the shortest suffix of t in rsL, i.e.,

<p(r, s, t) = Sufi(t) where i = �ax {j I Sufj(t) E rsL} .
O:S;:Sitl-1

The intended model of each non terminal in N (w) is defined as follows.

Definition 7.6 For each triple (r, s, t) E N(w), define

M((r, s, t)) = {x E :E+ I rx<p(r, s, t) ELand

rPrei(x)<p(r, s, t) ¢. L for any i (1 ::; i::; lxl- 1)}.

Let w be a newly given positive counterexample at a stage of learning. Then N is set

to NUN(w). Let PN(w) be a set of all productions in 2-standard form constructed from

N that have never appeared in P, that is, for each a E :E, PN(w) contains productions

A� aa such that Aa E N+, Ia I ::; 2 and Aa contains at least one element of N(w). Then

P is set to P U PN(w)· Note that, at any point during the learning, P contains at most

INI x I:EI x (INI + 1)2 productions for N generated by the algorithm to that point.

Lemma 7.8 Let N be the set of known non terminals. Suppose that w is a new positive

counterexample. Then the time required for generating nonterminals and computing new

productions is bounded by a non-decreasing polynomial in INI and lwl.

92

Proof: There are at most lwl(lwl-1)/2 nonterminals in N(w), and N(w) is computable in

time polynomial in jwj. For each (r, s, t) in N(w), the string <p(r, s, t) is computed by making

at most ltl membership queries with the strings rsSufj(t) (0 � j � jtj-1). Moreover the set

PN(w) is computable in time polynomial in INI and jN(w)j. These facts prove the lemma. D

Lemma 7.9 Let L be an SDL, w be a string in L, and G = (N, L:, P, S) be an SDG such

that L(G) = L. For any A E N - { S} that appears in the derivation S =* * w, there exists a

nonterminal (r, s, t) E N(w) such that L(A) = M((r, s, t)).

Proof: Suppose that S =** rAa =** rsa =** rst = w. Then, from the definition of N(w),

the triple (r, s, t) is in N(w). (Since G is an SDG and A=/= S, neither r nor s is c.) Since

L(S) = L(G) = L, by Proposition 7.2, L(a) = rsL(S) = rsL. By the definition of <p(r, s, t),

<p(r, s, t) E L(a) and Sufj(<p(r, s, t)) � L(a) for any j (1 � j � j<p(r, s, t)l-1). Hence, by

Lemma 7.7 and the definition of M((r, s, t)), L(A) = M((r, s, t)). D

The above lemma ensures that if the learning algorithm is given a positive counterex

ample w, then it can make all nonterminals with appropriate models that are necessary for

generating w. As a result, nonterminal membership queries used by Angluin's [Ang87a] or

Shapiro's [Sha82] algorithm can be replaced by membership queries. For any x E I:* and

A E N(w), the diagnosis routine can accomplish each inquiry as to whether x E M(A) by

making jxj membership queries.

7.6 Correctness and Complexity

In what follows, let G = (N, I:, P, S) be the current hypothesis of the algorithm and

be the model for G defined in the previous section.

Lemma 7.10 At any point during the learning, the time required by the diagnosis routine

on an input derivation tree for a negative counterexample w is bounded by a non-decreasing

polynomial in lwl and fp, where fp is the length of the longest positive counterexample returned

by any equivalence query seen to that point.

93

Proof: Since G is in 2-standard form, there are at most lwl occurrences of nonterminals in

the derivation tree. Thus, the number of inquiries made by the diagnosis routine is at most

jwj. For each inquiry as to whether x E M(A) or not, if A = S, then only one membership

query "x E L ?" is made. Otherwise, that is, if A = (r, s, t), the routine makes at most

lxl membership queries "rPrei (x)<p(r, s, t) E L ?" for 1 � i � lxl . Since xis a sub-string

of w, the total number of queries made in a diagnosing process is at most lwl2• Since the

main operations performed in the diagnosis routine are forming strings r Pre i (x)<p (r, s, t) and

making membership queries, it is clear that the claim of the lemma holds. D

Lemma 7.11 Let G0 = (N0, �' P0, S) be a minimal SDG for the target language L. The

total number of given positive counterexamples is bounded by INol·

Proof: Let Wn be the nth positive counterexample given to the learning algorithm. We

define No(wn) and Po(wn) as follows:

n
Po(wn) = {A-t aa E Po I a E �' Aa E (U No(wi))+}.

i =l

When Wn is given, the learning algorithm computes N(wn) and sets N to NUN(wn)·

Then it computes all new candidate productions and adds them to P as described in the

previous section.

By Lemma 7.9, for each nonterminal A E N0(wn), there exists a nonterminal A' E N(wn)

such that L(A) = M(A'). Under this correspondence of A and A', for every production in

P0(wn), a corresponding production is added to P at least once. By Proposition 2.2, these

corresponding productions are correct for M. Since correct productions are never removed

from P, whenever the n + 1st positive counterexample is given, there exists at least one

nonterminal A E N0 such that

n
A E No(wn+I) and A <f. U No(wi)·

i=l

Thus, the number of given positive counterexamples is at most INol· D

94

Lemma 7.12 At any point during the learning, the number of nonterminals introduced by

the learning algorithm is bounded by INoiRP(Rp - 1)/2, where fp is the length of the longest

positive counterexample returned by any equivalence query seen to that point.

Proof: For each positive counterexample wi, IN(wi)l is at most lwil(lwil- 1)/2 as stated

in the previous section. By Lemma 7.11, the total number of nonterminals introduced by

the algorithm is bounded by INolfp(fp- 1)/2. D

Proof of Theorem 7.5: From the method of introducing new productions and Lemma 7.12,

the total number m of productions introduced into P is at most

By Lemma 7.6, for each given negative counterexample, at least one incorrect production is

found and it is removed from P. With Lemma 7.11, this implies that, after given at most

INol positive counterexamples and at most m negative ones, the learning algorithm outputs

a grammar G such that L(G) = L.

By Lemma 7.12, at any point during the learning, the size of G is bounded by a non

decreasing polynomial in !No! and £, where f is the length of the longest counterexample

given to that point. From the assumption on the parsing sub-procedure, the algorithm can

determine whether a given counterexample is positive or negative in time polynomial in INa I

and f. The total number of given counterexamples is at most INa I +m. With Lemma 7.8 and

Lemma 7.10, this proves the claim, made in Theorem 7.5, on the complexity of the learning

algorithm. D

Yokomori [Yok88] gives another algorithm for learning SDL's in polynomial time. His al

gorithm conjectures only SDG's. In his setting, however, a very powerful teacher is assumed.

The teacher can answer the following two types of queries: prefix membership queries and

derivatives equivalence queries. A prefix membership query is an extension of the member

ship query. A derivatives equivalence query proposes two pairs of strings (ui, wi), (u2, w2)

and asks whether uiLwi = u2Lw2, where L is the target language. It is clear that deriva

tives equivalence queries can be used, in our algorithm, to test whether two candidate non

terminals are identical. For example, for two non terminals (ui, vi, WI) and (u2, v2, w2), if

95

u1Lw1 = u2Lw2, then they are identical. Thus, the number of nonterminals generated by

our algorithm will be reduced. The relationship between the power of the teacher and the

efficiency of the learning algorithm remains an interesting open question.

96

Chapter 8

Conclusion

We briefly summarize the results presented in this thesis with some future problems.

In Chapter 3, we introduced a d-model preserving instance of a program and show that

the instantiation preserves the least Herbrand model of the program. We showed that a

substitution defined as the difference between the head of an original clause C and the head

obtained by the least generalization of C(Mp) gives the d-model preserving instantiation.

The result suggests the applicability of the least generalization to inferring program heads.

In Chapter 4, we presented two inference algorithms which identify the class of primitive

Prologs in the limit from positive data. The first is a consistent and conservative polynomial

update time algorithm that, given the unit clause of the target program, identifies the class

in the limit from positive facts with polynomial time updating hypotheses. The second is a

consistent but not conservative polynomial update time algorithm that identifies the class in

the limit from positive facts. The second inference algorithm employing a natural technique,

that is, the 2-mmg algorithm to infer heads of clauses in a target program. The technique

is considered as an extension of the method proposed by Ishizaka in [Ish88a] .

For the second type of polynomial update time inference algorithms, there is a problem

pointed out by Pitt [Pit89] . That is, lacking one of the two conditions, consistency and con

servativeness, allows the existence of an tricky polynomial update time inference algorithm.

If one of the two is not required, then any exponential update time inference algorithm

can perform polynomial update time inference. The tricky algorithm continues to output

dummy conjectures to postpone outputting a genuine conjecture until they have enough size

97

of examples. It is our future work to realize a consistent and conservative polynomial update

time inference algorithm that identifies the class of primitive Prologs without hint.

The difficulty of accomplishing conservativeness of the inference algorithm using 2-mmg

essentially originates in non-uniqueness of 2-mmg for the entire model M(P) of a primitive

Prolog P. For example, consider the following primitive Prolog P.

For the least Herbrand model

p([a, b, a]).

p([biX]) � p(X).

M(P) = {p([a, b, a]),p([b, a, b, a]),p([b, b, a, b, a]),p([b, b, b, a, b, a]), ... },

there exist two kinds of 2-mmg of M(P):

{p([a, b, a]), p([b, X, Y, ZIW]) } and {p([b, a, b, a]), p([X, b, YIZ]) }.

Actually the former is an instance of the heads of the program P. For any non-empty finite

subset S of M(P), it holds that

P(S, (p([a, b, a]), p([b, X, Y, ZIW]))) = { p([a, b, a]).

p([b, X, Y, ZIW]) � p([X, Y, ZIW]).}

P(S, (p([b, a, b, a]), p([X, b, YIZ]))) = { p([b, a, b, a]).

p([X, b, YIZ]).}.

Hence, an inference algorithm that uses the 2-mmg algorithm and Algorithm 4.2 as its

sub-procedures has a chance to meet the former correct instance of P. Since we know the

target program P, we know the former is correct but the latter is overgeneralized. However, it

seems difficult for the algorithm to decide which is better, because the algorithm is given only

positive examples and both candidates are consistent with all of them. If the algorithm can

efficiently (that is, in polynomial time) decide which of competitive hypotheses has a smaller

model, then it may avoid producing an overgeneralized hypothesis and achieve consistent

and conservative polynomial update time inference. However, it is still open whether a model

containment problem for primitive Prologs is solved efficiently.

98

Contrastively, in [AIS92] , we introduced another sub-class of linear Prologs of which ele

ment has only one 2-mmg of its model and presented a consistent and conservative polyno

mial update time inference algorithm for the class. The class is also a sub-class of context-free

transformations that was originally introduced by Shapiro in his study on MIS [Sha81] . Al

though the sub-class is so restrictive, it can be shown that the sub-class still includes several

non-trivial programs in context-free transformations such as append, plus, prefix etc. For

the class of primitive Prologs, it is still open if there exists a consistent and conservative

polynomial update time inference algorithm.

In Chapter 5, we discussed the problems in extended model inference, especially, the

problems concerned with inventing new predicates. We also proposed a very simple approach

to the problems.

Because of the strict restrictions on syntax, the expressive power of the programs intro

duced in Section 5.4 are restricted to some particular domain. Conversely, however, if an

domain can be represented by some particular representation which overcomes the problems

mentioned in the chapter, then we might develop a method for an efficient inductive learning

over the domain. On the other hand, some kind of programming patterns can be found in

practical programs. By combining some patterns which have the properties mentioned in

Section 5.4.4, it will be possible to construct programs with more flexible syntax.

As another approach to inventing new necessary predicates, it can be considered to use

some kind of analogy with known programs. It may be helpful for inventing new predicates

to see how auxiliary predicates are used in the known programs. Since we also refer to several

known programs when we make a program, such an approach seems to be more natural.

The problem of inventing new predicates seems to concern with an essential part of

intelligent information processing that human beings do. It is certainly important for many

intelligent AI systems to overcome the problem.

The main idea presented in Chapter 6 and Chapter 7 was how to introduce necessary

predicates (states) or nonterminals with their appropriate models (interpretations) . The

problem of introducing new, unobserved sub-concepts that are necessary for representing

a target concept is one of the most important and difficult problems in machine learning.

Although there have been several approaches to this problem [Ban88, MB88] , it seems that

99

none of the solutions proposed to date is satisfactory. Our results presented in the chapters

are not exceptions. The class shown to be learnable is too restricted for many practical ap

plications. The presented methods depend heavily upon the structural properties of DRLP's

or SDG's. For example, the uniqueness of a left-most derivation is one of them. Hence, the

methods are not directly applicable to (at least) the target class containing an ambiguous

grammar. It is one of the most important future works to find more general and practical

solutions to this challenging problem.

In Chapter 6, we considered the problem of regular languages. We proposed an inference

algorithm for the class of regular models that performs polynomial update time inference

using membership queries.

Shapiro [Sha81] treated the problem of model inference for regular languages by using

the following type of program as a finite representation of a regular language.

in(D).

in([O, OIX]) �in(X).

in([1, 1IX]) � in(X).

in([O, 1, OIX]) � in([1IX]).

in([o, 1, 1IX]) � in([OIX]).

in([1, 0, OIX]) � in([1IX]).

in([1, o, 1IX]) � in([OIX]).

The program corresponds to the acceptor of strings over {0, 1} with an even number of O's

and an even number of 1 's. If the target program to be inferred is such a program with only

one predicate symbol, then it is sufficient that the given oracle can answer the truth about

only the predicate symbol. Therefore, as mentioned in the introduction of Chapter 5, it is

also important in considering extended model inference problems to investigate the power of

logic programs with only one predicate symbol or with fully restricted number of predicate

symbols.

Shapiro [Sha84] showed that an arbitrary alternating Turing machine can be simulated

by a logic program with only one 3-ary predicate symbol. In such a logic program, however,

the information of each state of the alternating Turing machine is embedded in one of the

arguments of the predicate. Therefore, the problem of inferring such a program results in

100

that of inferring program over the language with countably many predicate symbols. Of

course, this kind of reduction on the number of predicate symbols is out of our interest. We

are interested in the essential relation between the power of logic programs and the number

of predicate symbols allowed.

In Chapter 7, we considered the problem of learning SDL's. The efficiency of the algo

rithm given in the chapter might not be optimal. As shown in the proof of Theorem 7.5,

it is ensured that the algorithm runs in time polynomial in I No I and .e. The polynomial

has a rather high degree. The polynomial is larger than, at least, the size of the largest

hypothesis, O(INoi3P6). If we can set each intermediate hypothetical grammar to an SDG,

we may decrease the degree. While a grammar G in 2-standard form has, in the worst case,

INI x IL:I x (INI + 1)2 productions, an SDG G has at most INI x IL:I productions. Since

the operation performed most frequently by the algorithm is to parse given counterexamples

on each hypothesis G, this reduction in size of each hypothetical grammar will decrease the

complexity of the learning algorithm. Obviously, such a restriction on hypothetical gram

mars also results in the development of an algorithm that produces an SDG as its output

using normal equivalence queries and membership queries. The efficient learnability of SDL's

from a minimally adequate teacher is still open.

101

102

Bibliography

[AI87]

[AIS92]

Setsuo Arikawa and Hiraki Ishizaka. Program synthesis by inductive inference.

Journal of Information Processing Society of Japan, 28(10):1312-1319, 1987. (In

Japanese).

Hiraki Arimura, Hiraki Ishizaka, and Takeshi Shinohara. Polynomial time infer

ence of a subclass of context-free transformations. In Proceedings of 5th Workshop

on Computational Learning Theory, 1992.

[AIS092] Hiraki Arimura, Hiraki Ishizaka, Takeshi Shinohara, and Setsuko Otsuki. A

generalization of the least general generalization. Technical Report RIFIS-TR

CS-63, Kyushu University, 1992.

[Ang87a] Dana Angluin. Learning k-bounded context-free grammars. Research Report

557, Yale University Computer Science Dept., 1987.

[Ang87b] Dana Angluin. Learning regular sets from queries and counterexamples. Infor

mation and Computation, 75:87-106, 1987.

[Ang88) Dana Angluin. Queries and concept learning. Machine Learning, 2 (4) :319-342,

1988.

[Ari91] Hiraki Arimura. Completeness of depth-bounded resolution for weakly reduc

ing programs. In Ikuo Nakata and Masami Hagiya, editors, Software Science

and Engineering, pp. 227-245. World Scientific, 1991. World Scientific Series in

Computer Science, Vol. 31.

103

[AS091a] Hiraki Arimura, Takeshi Shinohara, and Setsuko Otsuki. A polynomial time

algorithm for finite unions of tree pattern languages. In Proc. of the 2nd Inter

national Workshop on Nonmonotonic and Inductive Logics, 1991. To appear in

LNCS.

[AS091 b) Hiraki Arimura, Takeshi Shinohara, and Setsuko Otsuki. Polynomial time in

ference of unions of tree pattern languages. In S. Arikawa, A. Maruoka, and

T. Sato, editors, Proc. ALT '91, pp. 105-114. Ohmsha, 1991.

[ASY89) Setsuo Arikawa, Takeshi Shinohara, and Akihiro Yamamoto. Elementary formal

system as a unifying framework for language learning. In Proceedings of the Sec

ond Annual Workshop on Computational Learning Theory, pp. 312-327. Morgan

Kaufmann, 1989.

[Ban88]

[BR87)

[CL73)

[Gol67)

[Har79)

[IA91)

Ranan B. Banerji. Learning theories in a subset of a polyadic logic. In Proc.

Computational Learning Theory '88, pp. 281-295, 1988.

Piotr Berman and Robert Roos. Learning one-counter langugaes in polynomial

time. In Proceedings of the Twenty-Eighth IEEE Symposium on Foundations of

Computer Science, pp. 61-67, New York, 1987. The Institute of Electrical and

Electronics Engineers.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and Mechanical

Theorem Proving. Academic Press, 1973.

E Mark Gold. Language identification in the limit. Information and Control,

10:447-474, 1967.

Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,

1979.

Hiraki Ishizaka and Setsuo Arikawa. Model inference. Journal of Information

Processing Society of Japan, 32(3):236-245, 1991. (In Japanese).

104

[IAS92]

[Ish88a]

[Ish88b]

[Ish89a]

[Ish89b)

[Ish90]

Hiraki Ishizaka, Hiraki A rimura, and Takeshi Shinohara. Efficient inductive in

ference of primitive prologs from positive data. InS. Doshita, K. Furukawa, and

T. Nishida, editors, Proc. ALT '92, pp. 135-146, 1992.

Hiraki Ishizaka. Model inference incorporating generalization. Journal of Infor

mation Processing, 11(3):206-211, 1988.

Hiraki Ishizaka. A note on predicate invention. Technical Memorandum TM-

0631, ICOT, 1988. (In Japanese).

Hiraki Ishizaka. Inductive inference of regular languages based on model infer

ence. International journal of Computer Mathematics, 27:67-83, 1989.

Hiraki Ishizaka. Learning simple deterministic languages. In Proceedings of the

2nd Annual Workshop on Computational Learning Theory, pp. 162-174. Morgan

Kaufmann, 1989. To appear in Machine Learning.

Hiraki Ishizaka. Polynomial time learnability of simple deterministic languages.

Machine Learning, 5(2):151-164, 1990.

[JLMM88] J-L.Lassez, M. J. Maher, and K. Marriott. Unification revisited. In J. Minker,

editor, Foundations of Deductive Databases and Logic Programming, pp. 587-625.

Morgan Kaufmann, 1988.

[Ley70] J. C. Leynolds. Transformational systems and the algebraic structure of atomic

formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pp.

135-152. Edinburgh University Press, 1970.

[Lin89a] Xiaofeng Ling. Inventing theoretical terms in inductive learning of functions -

search and constructive methods. In Zbigniew W. Ras, editor, Methodologies for

Intelligent Systems, 4, pp. 332-341. North-Holland, October 1989.

[Lin89b) Xiaofeng Ling. Learning and invention of horn clause theories - a constructive

method. In Zbigniew W. Ras, editor, Methodologies for Intelligent Systems, 4,

pp. 323-331. North-Holland, October 1989.

105

[Llo84)

(Lov78]

[MB88)

John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

Donald W. Loveland. Automated Theorem Proving: A Logical Basis. North

Holland, 1978.

Stephen M uggleton and Wray Bun tine. Machine invention of first-order predi

cates by inverting resolution. In Proc. 5th International Conference on Machine

Learning, pp. 339-352, 1988.

[MNL88) K. Marriott, L. Naish, and J-L. Lassez. Most specific logic programs. In Logic

Programming: Proceedings of the Fifth International Conference and Symposium,

pp. 910-923. MIT Press, 1988.

[Mug90) Stephen Muggleton. Inductive logic programming. In S. Arikawa, S. Goto,

S. Ohsuga, and T. Yokomori, editors, Proc. ALT '90, pp. 42-62. Ohmsha, 1990.

[Pit89) Leonard Pitt. Inductive inference, dfas, and computational complexity. In K. P.

Jantke, editor, Proc. AI! '89, LNAI 397, pp. 18-44. Springer-Verlag, 1989.

[Plo70) Gordon D. Plotkin. A note on inductive generalization. In B. Meltzer and

D. Michie, editors, Machine Intelligence 5, pp. 153-163. Edinburgh University

Press, 1970.

[PW88) Leonard Pitt and Manfred K. Warmuth. Prediction preserving reducibility. Tech

nical Report UCSC-CRL-88-26, University of California, Santa Cruz, November

1988. Preliminary version appeared in Proceedings of the 3rd Annual IEEE

Conference on Structure in Complexity Theory, pp.60-69, June, 1988.

[Sak90]

[Sha81)

(Sha82)

Yasubumi Sakakibara. Inductive inference of logic programs based on algebraic

semantics. New Generation Computing, 7:365-380, 1990.

Ehud Y . Shapiro. Inductive inference of theories from facts. Technical Report

192, Yale University Computer Science Dept., 1981.

Ehud Y. Shapiro. Algorithmic program debugging. PhD thesis, Yale University

Computer Science Dept., 1982. Published by MIT Press, 1983.

106

[Sha84] Ehud Y. Shapiro. Alternation and the computational complexity of logic pro

grams. J. Logic Programming, 1:19-33, 1984.

[Shi90] Takeshi Shinohara. Inductive inference of monotonic fomal systems from positive

data. In S. Arikawa, S. Goto, S. Ohsuga, and T. Yokomori, editors, Proc. ALT

'90, pp. 339-351. Ohmsha, 1990.

[Shi91 J Takeshi Shinohara. Inductive inference of monotonic formal systems from positive

data. New Generation Computing, 8:371-384, 1991.

[vEK76) M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a

programming language. Journal of ACM, 23(4) :733-742, 1976.

[Yam89) Akihiro Yamamoto. Studies on Unification in Logic Programming, 1989. Doctor

thesis, Kyushu Univeristy.

[Yok88) Takashi Yokomori. Learning simple languages in polynomial time. In Proc. of

SIG-FAI, pp. 21-30. Japanese Society for Artificial Intelligence, June 1988.

107

- - -- -� -- - --- --�- --� -- . ----:::..

