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Chapter 5 

Model Inference with Predicate 

Invention 

It seems that the theory of model inference is applicable to more practical problems such 

as automated program synthesis. However, several problems in applying the theory to the 

practical problems are also pointed out [AI87] . The most serious problem is that we need to 

give in advance a first order language £with finitely many predicate symbols over which a 

target model is described. Furthermore, the oracle which gives information about a target 

model to an inference machine is assumed to be able to answer the truth of all elements in 

B.c. In more practical setting such as in automated program synthesis, it seems difficult to 

assume such a power on the oracle. The assumptions require a user of the synthesis system 

to have too much knowledge about the target program. 

Now, we consider, via a simple simulation, what will happen when the assumptions are 

removed. 

Suppose that an inexperienced programmer is going to make a program for the pred

icate reverse(listl, list2), where list2 is a reversed list of listl, using a system which is 

an implementation of the model inference algorithm, e.g. Model Inference System (Sha82 ] . 

Since he/she is inexperienced, he/she does not have enough knowledge to understand of an 

algorithm for reversing a list or he/she understands an algorithm but he/she does not see 

what kind of auxiliary predicates (e.g. concat(_, _, _) or append(_,_,_) etc. ) are necessary 

for the algorithm. So, he/she gives the first order language with only one predicate symbol 

49 



reverse(_,-) to the system, then he/she starts the task. He/She patiently continues to input 

facts about reverse(_,_). However, if there is no program for reversing a list which consists 

of only the predicate symbol, then his/her efforts will result in failure. On the other hand, 

suppose that the system realizes the difficulty of the programming with only one predicate 

reverse(_,_) and it introduces a new predicate as an auxiliary one. Since the programmer 

has no interpretation for such a new predicate, he/she cannot answer the questions from 

the contradiction backtracing algorithm which plays a central role in the model inference 

algorithm. Hence he/she cannot continue the inference process anymore. 

Thus, it seems that the purpose of the inexperienced programmer is not accomplished. 

However, from the above simulation, the following two questions arise. 

(1 ) Is there no list reversal program with only one predicate reverse(_,_). 

(2) Is there no method for giving an interpretation, which reflects the programmer's in

tended model, to the new predicates introduced by the system. 

For applying the theory of model inference to more practical problems such as automated 

program synthesis, it seems very important to answer the above two questions. We leave 

the first question open for researchers of the theory of logic programs. Here, we reconsider 

the model inference from the point of view of the second question. 

The predicates, which may be necessary to define a target predicate but are not directly 

observable from the examples of the target predicate, are called theoretical terms [Sha81] . 

Shapiro assumed that the theoretical terms and their intended interpretations necessary for 

defining the target predicate are given to the inference algorithm. Recently, however, several 

researchers are trying to develop a method for automatically inventing theoretical terms 

[MB88, Mug90, Ban88, Lin89b, Lin89a]. In this chapter, we also consider the challenging 

problem of inventing theoretical terms. 

In Section 5.1, we extend the model inference problem so that it may include more practi

cal problems. In Section 5.2, we consider the problems caused in solving the extended model 

inference problem, especially, in introducing new predicates. In Section 5.3, we propose an 

easy approach to the problem. Several classes of programs for which the easy approach 

might go well are introduced in Section 5.4. 

This chapter is based on the paper [Ish88b] . 
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5.1 An Extended Model Inference Problem 

In this section, we redefine a model inference problem so that it can include more practical 

problems. We assume that a set of function symbols and a set of variable symbols are 

common to all first order languages considered in this chapter. The set of predicate symbols 

of a first order language £ is denoted by II (£) . For any first order language £, an extended 

language £' of £ is a first order language such that II (£) � II(£') . If £' is an extended 

language of £, then £ is called an restricted language of £'. Let P be a program over £' 

that is an extended language of£. Then M(P).c denotes the set M(P) n B.c. 

Let £ be a first order language and M be the least Herbrand model of an unknown 

program over an extended language of £. An oracle for M over £ is a device that can 

answer the membership of a E B.c in M. The answer is true if a EM, false otherwise. Note 

that the oracle over £ answers the membership for only the elements of B.c. If a ground 

atom {3 rf_ B.c is given, then the oracle is assumed to returns a special symbol l_ that means 

"unknown". 

An extended model inference problem is defined as follows: 

Suppose that £ and an oracle for M over £ are given. Then infer a program P 

over an extended language£' of£ such that M(P).c = M from the information 

given by the oracle. 

Example 5.1 Let£ be a first order language such that II (£) = {reverse(_, -)} and M = 

{reverse(lr, l2) E B.c ll2 is the reversed list of a list fr}. An extended model inference prob

lem is to find a program such as 

P= 

reverse([XIY], Z) +- reverse(Y, Yi), concat(X, Yi, Z). 

reverse(O, 0). 
concat(X, [Y IZ], [Y IW]) +- concat(X, Z, W). 

concat(X, 0, [X]). 

only by using an oracle for M, that is, using information about reverse(_, _). In this case, 

II (£')= II(£) U {concat(_, _, -)}. 

In what follows, we distinguish the use of terms, predicate names, predicate symbols, 

and predicates according to the objects indicated by them as follows. A predicate name 
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indicates just a string such as reverse, concat, etc. A predicate symbol indicates a pred

icate name with arity such as reverse(_,_), concat(_, _, _), etc. A predicate indicates a 

predicate symbol concerned with its model, e.g. reverse(_,_) concerned with the model 

{reverse(O, 0), reverse([a], [a]), reverse([a, b], [a, b])}. 

5.2 Problems in Extended Model Inference 

The most difficult problem for an algorithm to solve an extended model inference problem 

is how to introduce an unknown predicate symbol in II(£') -II(£) when it is necessary. In 

this section, we review recent two approaches to such an extended model inference problem. 

One was given by Muggleton and Buntine [MB88] and another was given by Banerji [Ban88]. 

Through their approaches, we consider the essential problems in solving an extended model 

inference problem. 

M uggleton and Bun tine proposed a method called inverse resolution [MB88]. They im

plemented their method as a inductive logic programming system called CIGOL. Inverse 

resolution is executed by three operators, truncation, absorption, and intra-construction. 

The truncation constructs unit clauses from given positive facts using the least generaliza

tion algorithm. The absorption constructs non-unit clauses from unit clauses obtained by 

the truncation. A new predicate symbol is introduced by the intra-construction. CIGOL re

quires a more powerful oracle than that we introduced in the previous section. For example, 

the oracle can answer correctness of a general clause such as 

reverse([XIY ], Z) +- reverse(Y, Y1), concat(X, Yi, Z). 

in a target model. Furthermore, although CIGOL invents predicate symbols, it does not 

invent predicates. That is, assigning a model to a newly invented predicate symbol is left to 

the oracle. 

The following two problems should be considered for introducing new predicates in the 

extended model inference. 

1. When (or why) is it necessary to introduce a new predicate symbol? 

2. How to define the model assigned to the new predicate symbol. 
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Although CIGOL avoids the second problem by oracle power, the problem is apparently 

most essential in extended model inference. 

The first problem is concerned with the convergency of an inference algorithm. For 

example, CIGOL introduces a new predicate symbol in inferring a model 

M = { arch(t) I tis a triplet (t1, beam, t1) and 

t1 is a list (possibly empty) which consists of block and brick}. 

The new predicate symbol corresponds to a predicate column(_) whose intended model is 

{column(t) I tis a list consists of block and brick}. Of course, the predicate arch(_) can 

be defined using column(_) as arch((X, beam, X)) � column(X). However, there exists a 

program P such that M(P) = M and P: 

arch(([blockiX], beam, [block IX])) � arch((X, beam, X)). 

P = arch(([brickiX], beam, [brick IX])) � arch((X, beam, X)). 

arch((O, beam, 0)). 

which consists of only the predicate symbol arch(_). In order for the inference algorithm 

to converge to some program, it should be very careful to introduce new predicates. If an 

inference algorithm introduces new predicates immoderately, then it might diverge. In a 

setting in which an inference algorithm infers not only a target model but also a language 

for describing the model, it becomes difficult to ensure the convergency of the inference 

process. 

On the other hand, Banerji proposed a procedure called DREAM that produces a new 

predicate [Ban88]. DREAM works as follows. Suppose that there exist two clauses p � A, D 

and p � B, D in the current hypothesis, where D is a set of atoms appearing in both bodies 

in common, and A and B are the sets of left atoms of the two bodies after removing the 

common atoms. Then, DREAM replaces the two clauses by the following three clauses: 

p � new(t1, ... , tn), D. 

new(X1, ... , Xn) � A'. 

new(X1, ... , Xn) � B'. , 

where t1, ... , tn are the terms in A and B, A' and B' are atoms obtained from A and B by 

replacing t1 with Xi at every occurrence and new(_, ... ,_) is a new predicate symbol. 
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This method answers very clearly for the second problem we mentioned above. The model 

of new(_, ... , -) is strictly defined according to the models of A' and B' that are already 

known. However, for the first problem, the method seems to be problematic. Actually, as 

Banerji noticed in his paper [Ban88] , this kind of new predicates may be useful for simplifying 

programs. However, it is not necessary to introduce the new predicate. The predicate p had 

been already defined by the clauses p +-- A, D and p +-- B, D. 

Ling classified predicates to be invented into two categories called necessary intermediate 

terms and useful intermediate terms [Lin89a] . A necessary intermediate term is a predicate 

which is necessary to describe the target program. For example, the predicate such as 

concat(_, _, _) in reverse program is a necessary intermediate term. On the other hand, 

a useful intermediate term is a predicate which is useful for simplifying conjectures, but 

not necessary for describing the target program. For example, both predicates, column(_) 

introduced by CIGOL and new (_, . . . ,_) introduced by DREAM, are useful intermediate 

terms. As mentioned in the introduction of this chapter, our interest is in invention of 

necessary intermediate terms. 

5.3 A Simple Approach to the Problems 

It seems very difficult to develop a general strategy, which has plausible answers to the 

two problems mentioned in the previous section, for introducing necessary intermediate 

terms. However, if each model in the target class to be inferred can be represented by a 

fairly restrictive program, it may be possible to develop a plausible strategy for introducing 

necessary terms in inferring the class. In this section, we consider what kind of restrictions 

on the program is preferable for such a strategy. 

5.3.1 When a new predicate is necessary 

First, we consider the situation in which a new predicate should be introduced. Let M be a 

target model. In such a situation, the current conjecture must be inconsistent with at least 

one fact known so far, for a new predicate becomes necessary. There are two possible cases. 

One is when the conjecture P is too strong, that is, a E lvf(P) for some known negative 
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fact a rf. M. The other is when Pis too weak, that is, a rf. M(P) for some known positive 

fact a E M. It follows from Corollary 3.3 that, for any too strong P, P has a false clause 

in M. Hence, when P is too strong then it suffices to remove the false clause. Thus, a new 

predicate is not necessary in this case. 

On the other hand, when P is too weak then there exists some ground atom {3 E M 

(possibly, {3 =a) such that {3 is not covered by any clause in P with respect to M. In such 

a case, a clause which covers {3 with respect to M should be added to P. A new predicate 

becomes necessary when there is no clause which consists of known predicates and covers {3 

with respect toM. 

Thus, in order to launch into the introduction of a new predicate, the inference sy stem 

must be able to examine all the candidate clauses and recognize the point when such clauses 

are exhausted. Hence, it is preferable that, for any positive fact a, the number of all possible 

clauses which covers a in a target model is finitely bounded. Several types of restrictions for 

bounding the number of possible clauses can be considered. At least the number of atoms 

allowed to appear in the body and the depth of terms in the atoms should be bounded in 

advance. It is preferable that the number or the depth are bounded as small as possible for 

the efficiency of the inference algorithm. 

5.3.2 The model of a new predicate 

As mentioned in the previous subsection, a new predicate at first appears as an atom in 

the body of a clause which covers a positive fact. The model of the new predicate should 

closely be related to the models of other predicates in the clause. By using this property, 

we may define the model of the new predicate. For example, suppose that a new predicate 

new(_,_,_) is introduced with a clause 

reverse([XjY], Z) +-- reverse(Y, Y1), new(X, Yi, Z). 

Then, the model of new(_,_,_): 

{new(t1, t2, t3) I reverse([t1lt4], t3) EM and reverse(t4, t2) E .N/}. 

can be defined in terms of the model M of reverse(_,_,_): 

{reverse( t1, t2) I t2 is the reversed list of t1}. 
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Thus, the model is concerned with M through the shared variables in the clause. 

In order for this simple method to work well, the following items should have been fixed 

or bounded as tight as possible. 

(a) The arity of a predicate symbol to be introduced. 

(b) The possible form of atoms occurring in a clause. 

(c) The possible form of terms occurring in the atoms. 

It is difficult to fix these items when general programs are targeted. Conversely, if we restrict 

the target to the class of programs for which the above matter can be fixed, then it may 

be possible to develop a plausible strategy for introducing new predicates and solving an 

extended model inference problem for the class of models described by the programs. In the 

next section, we give some examples of such classes of programs. 

5.4 Examples of Restricted Programs 

In this section, we give some examples of the class of programs which have considerably 

restricted syntax, and discuss the possibility of predicate invention in the extended model 

inference. 

5.4.1 DRLP 

A det erministic regular logic program (DRLP, for short) is a program which is equivalent 

to a deterministic finite automaton. Thus, the class of models described by DRLP's, called 

regular models, is equivalent to the class of regular languages. A DRLP consists of clauses 

of the following two forms: 

qi([aiX]) +- qj(X). 

qi ([]). 

Furthermore, for each predicate symbol qi(-) and each constant symbol a (#- 0), a DRLP 

has at most one clause whose head is qi([aiX]). 

A DRLP is so restrictive as to satisfy the requirement mentioned in the previous section. 

The model of a new predicate qj(-) introduced by a clause qi([aiX]) +- qj(X) can be defined 
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as { qj( w) I qi([alw]) E M}, where w denotes a ground list. In Chapter 6, we will discuss in 

detail the extended model inference of regular models. 

5.4.2 LMLP 

A linear monadic logic program (LMLP, for short) is a program which is equivalent to a 

deterministic tree automaton. A L:NILP consists of clauses of the following two forms: 

qi(j(X1, ... , Xn)) +- qj1 (X1), ... , qin (Xn)· 

qi( a). 

where x1, . . . , Xn are mutually distinct variables. That is, the class of LMLP's is a natural 

extension of that of DRLP's. Skakibara showed that the extended model inference problem 

for the class of models of LMLP's can efficiently be solvable [Sak90) . 

Since the syntax of LMLP's is fixed, they also satisfy the requirement mentioned in the 

previous section. Furthermore, the atoms appearing in the body do not share a variable. 

Thus, as in the case of DRLP, it seems that the model of a new predicate which is introduced 

by a clause 

can be defined as 

However, for a LMLP, the uniqueness of a clause according to its structure is not assumed. 

Hence, a LMLP is allowed to contain the following clauses: 

ql (X v Y) +- ql (X), q2(Y). 

q1 (X v Y) +- ql (X), q3(Y). 

In such a case, it is impossible to distinguish the model of q2(_) from the model of q3(_). 

Thus, for the programs containing such clauses, that is, for the programs which essentially 

have OR-parallelism, the simple way of defining the model may not work well. Actually, the 

efficient extended model inference algorithm by Sakakibara is based on a special strategy. 
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5.4.3 SDG 

A LMLP has no shared variable in the body of each clause but may have clauses with 

a common head. Conversely, a program introduced here has no other clauses than those 

which have a common head but may have a shared variable in the body of a clause. This 

class corresponds to that of simple deterministic grammars (SDG, for short) . An SDG is a 

context-free grammar G = (N, :E, P, S) such that 

if both A� aa and A--t a(3 are production rules in P then a= (3. (5.1) 

A language generated by an SDG is called a simple deterministic language (SDL, for short) . 

It is well known that every context-free grammar can be represented by a definite clause 

grammar which is a kind of logic program. A definite clause grammar corresponding to an 

SDG, denoted by SDDCG, consists of the following three types of clauses: 

A([aiX], Y) t- B(X, Z),  C(Z, Y). 

A([aiX], Y) t- B(X, Y). 

A([aiX], X) . , 

where each predicate name corresponds to a nonterminal of the SDG and a is a terminal 

symbol of the SDG. Each predicate N(x, y) is interpreted as a predicate which is true if and 

only the string represented by the differential list x - y1 can be generated from the nonter

minal N in the SDG. From the condition (5.1) on the production rules, for each predicate 

symbol A(_,_) and each terminal symbol a, there exists at most one clause whose head is 

an instance of A([aiX], Y). Thus, the problem as mentioned in the previous subsection does 

not occur. 

For SDDCG's, however, a new problem arises because a clause of the first type shares a 

variable in its body. For example, the models M Band MC of the predicate symbols B(_, _) 

and C(_, _) can be defined respectively as follows: 

M B = { B(t1, t2) I A([alt1], t3) E lvf, C(t3, t2) E N/C}, 

MC = {C(t2,t2) I A([alt3],t2) E M,B(t3,t1) E lv!B}. 

Since each model is defined mutually by its alternative's, the definitions are problematic. 

1 For example, a differential list [a, b, c, d] - [c, d] represents the list [a, b]. 
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Thus, for a program which needs a clause with shared variables in the body, when two 

or more predicates are necessary to be introduced simultaneously by one clause, a problem 

how to define the models of both predicate arises. For general programs, the problem may 

be intractable. Fortunately, however, for an SDG G = (N, I:, P, S),it follows from the 

condition 5.1 that 

if A=}* wa and A=}* w{3 (A EN, wE r:+, {3 EN*) then a= {3. 

Hence, for a clause of the form A([a!X], Y) +- B(X, Z ) , C(Z, Y), if some positive fact 

B([wju], u)2 is found, then the model MC of C (_, _) can uniquely be defined by Mas follows: 

A positive fact about B(_, _) can be obtained as B([wlu], u) from a positive fact A( [ax jy] , y) 

such that xy = wu and w is a prefix of x. 

In Chapter 7, we will discuss in detail the extended model inference problem for this 

class. The algorithm described in there will use the above property and achieve an efficient 

inference. 

5.4.4 Simple recursive programs 

Since each program introduced above is a direct representation of an automaton or a gram

mar, there exists a special pattern on the structure of a clause or the arity of a predicate 

sy mbol appearing in the clause. It may be impossible to expect a class of general programs 

to have such a pattern. However, it may also be a fact that we often make a program 

by repeating some stereoty ped patterns. Here, we see such patterns found in some simple 

programs called term-free transformations introduced by Shapiro [Sha81 ] . 

Multiplication: 

times(O, X, 0). 

times(s(X), Y, Z ) +- times(X, Y, U),plus(Y, U, Z ) . 

plus(O, X, X). 

plus(s(X), Y, s(Z)) +- plus(X, Y, Z ) . 

2 As in the next chapter, we abbreviate a list [a1, ... , an I [b1, ... , bm]] as [wlu] where w = a1 a2 ···an and 

U = b1�1 • • • bm. 
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Subset relation: 

Insertion sort: 

subset(O, X). 

subset([XIY], Z) +-subset(Y, Z), member(X, Z). 

member(X, [XIY]). 

member(X, [YIZ]) +-member(X, Z). 

sort([], 0). 

sort([XIY], Z) +-sort(Y, Yi), insert(X, Yi, Z). 

insert(X, 0, [X]). 

insert(X, [YIZ], [X, YIZ]) +-X� Y. 

insert(X, [YIZ], [YIZ1]) +-Y �X, insert(X, Z, Z1). 

x�x. 

X � s(Y) +-X � Y. 

The list reversal program described in the introduction of this chapter is also a term-free 

transformation. There are following properties common to these programs. 

(1) There is at most one auxiliary predicate in the body of each clause. 

(2) All arguments of the atoms appearing in the bodies are variables. 

(3) No free-variable appears in the body, where a free-variable is a variable which appears 

at most once only in the body of a clause. 

( 4) Each head has no common instance with other head. 

These properties seem to be preferable for clearing the problems mentioned before. From the 

property (1), we do not need to worry if several new predicates are introduced simultaneously 

by one clause. By the propety ( 4), we can clear the problem mentioned in Section 5.4.2. By 

the properties (2) and (3), we can restrict (b) and (c) in Section 5.3.2. Furthermore, there is 

one more typical property common to the above programs, which may be useful for deciding 

the arity of predicate to be introduced. 

(5) Each variable processed recursively does not occur in each auxiliary predicate. 
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For example, the variable x in times(s(x), y, z) does not occur in plus(y, u, z) . 

Thus, there may exist a plausible strategy to solve the extended model inference problem 

such as in Example 1.1. It is a very interesting and challenging theme to develop such a 

strategy. 

In the following two chapters, we shall consider some concrete extended model inference 

problems. One is concerned with inferring DRLP's and the other with inferring SDG's. In 

both cases, we shall develop efficient inference algorithms. The existence of an effective 

method for introducing predicate symbols and assigning appropriate models to the symbols 

is essential for the efficiency. 
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Chapter 6 

Learning Regular Languages 

In this chapter, we consider a problem of inferring a class of restricted logic programs that 

corresponds to the class of acceptors for regular languages. In our setting, a target logic 

program is over a first order language £ with countably many unary predicate symbols: 

q0, q1, q2, . . . . A given oracle is that for a model M0 over £0, the restricted language of £ in 

which only one predicate symbol q0 is allowed. As mentioned in the previous chapter, in such 

a setting, the oracle has no interpretation for predicates other than the predicate q0 . This 

implies that we cannot take advantage of the contradiction backtracing algorithm which is 

one of the most important part for the efficiency of Shapiro's model inference algorithm. 

In order to overcome the disadvantage, we develop a method for giving an interpretation 

for predicates other than the predicate q0, which is based on the idea of using the oracle for 

M0 and a one to one mapping from a set of predicates to a set of strings. Furthermore, we 

propose a model inference algorithm for regular languages using the method, then discuss 

the correctness and the time complexity of the algorithm. 

In Section 6.1, we define the problem of learning regular languages as an extended model 

inference problem. In Section 6.2, we propose a key idea to solve the extended model 

inference problem. We introduce a simple mapping, called a predicate characterization, by 

which a model over £0 can be extended to a model over £. Then, we show some conditions 

which the mapping should satisfy to perform an appropriate extension of the model. In 

Chapter 6.3, we give an inference algorithm to solve the extended model inference problem. 

The correctness of the algorithm is shown in Chapter 6.4, and time analysis of the algorithm 
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is made in Chapter 6.5. 

This chapter is based on the paper [Ish88a]. 

6.1 Regular Model Inference Problem 

We introduce a class of Herbrand models called regular models and show that the class is 

equivalent to that of regular languages. Then a regular model inference problem, which is 

an extended model inference problem, is defined. 

Let .C be a first order language with countably many unary predicate symbols q0, q1, ... , 

a list constructor [-1-J, and finitely many constant symbols 0, a1, a2, ... , am. Since every 

predicate symbol treated in this chapter is unary, we shall identify each predicate symbol qi(-) 

with its predicate name qi for notational convenience. £0 denotes the restricted language of 

£ in which only one predicate symbol q0 is allowed. Let P be a logic program over .C . .Cp 

denotes the language with only predicate, function and constant symbols occurring in P, 

IT (P) denotes the set of the predicate symbols. 

Let :E denote the set { a1, a2, ... , am}· A string x = ai1 ai2 • • • ain E :E* is denoted using 

list notation by [ai1, ai2, • • •  , aiJ· Furthermore, the list [ai1, ai2, • • •  , aiJ is abbreviated as 

[ai1 ai2 • • • ain]. Thus the string x is represented as [x] in the following context of logic pro

grams. Note that, for the empty string, [c] is denoted by the empty list 0. For a program P 

over .C, M (P)q, denotes the set {qi([x]) E M (P) I x E :E*}. 

Definition 6.1 A deterministic regular logic program (DRLP, for short) P is the logic pro

gram over .C which satisfies the following conditions. 

1) Each clause in P is of one of the following two forms: 

qi([ak!X] )  +-- qj(X), 

qi([] ). 

2) For any qi E II(P) and ak E :E, there is at most one clause in P whose head is qi([ak!X] ). 

Definition 6.2 Let Mo � Bc0• We say M0 is a regular model if there exists a DRLP P such 

that Nfo = NI(P)qo 
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Let L(Mo) denote the set {x E I:* I q0([x]) E M0}. Then we have the following theorem 

which ensures that the class of regular models is equivalent to that of regular languages. 

Theorem 6.1 For any M0 � l3.c0, M0 is a regular model if and only if L(Mo) is a regular 

language. 

Proof: First, we prove the only if direction. Let P be a DRLP such that M(P)qo = M0. 

Without loss of generality, we may assume that II(P) = { qo , q1, ... , qm}· Then, construct a 

DFA A = ( Q U { qm+1}, I:, 8, q0, F), where Q = II(P), qm+l is a predicate symbol which does 

not appear in II(P), F = {qi E Q I qi([]) E P}, and 

{ qj if qi([akiX]) � qj(X) E P, 
8(qi, ak) = 

qm+l otherwise. 

Here, we show that 8(qi, x) E F if and only if qi([x]) E M(P) for any qi E II(P) and 

x E I:* by induction on the length of x. 

If  lx I = 0, that is, x = c then it follows from the definition of A that 

(6.1) 

From Corollary 3.3, if qi([]) E P then qi([]) E M(P). Also, if qi([]) E M(P) then there exists 

a clause C in P such that qi([]) E C(M(P)). Hence, it follows from the definition of DRLP's 

that C is of the form qi([]). Thus it holds that qi(O) E P if and only if qi([]) E M(P). With 

(6.1), this implies that 8(qi, c) E F if and only if qi([c]) E M(P). 

Suppose that 8(qi, a) = qj. Since 8(qi, ax) = 8(8(qi, a), x), it holds that 8(qi, ax) E F 

if and only if 8(qj, x) E F. From the induction assumption, it holds that 8(qj, x) E F if 

and only if qj([x]) E M(P) for any qj E II(P) and any string x E I:* such that lxl � n for 

some n � 0. On the other hand, from the definition of A, it holds that, for any a E I: and 

qi E II(P), 

Thus, it holds that 

65 



From Corollary 3.3, if qi([aiX]) � qj(X) E P and qj(x) E M(P), then qi([ax]) E M(P). 

Also, if qi([ax]) E M(P), then there exists a clause C in P such that qi([ax]) E C(M(P)). It 

follows from the definition of DRLP's that such C is unique if it exists. Hence, if qi([ax]) E 

M(P) then there uniquely exists a clause qi([aiX]) � qj(X) in P such that qj(x) E M(P). 

Thus, it holds that 

b(qi, ax) E F iff qi([ax]) E M(P). 

This completes the induction step of the proof. Hence, it holds that 8( qi, x) E F if and 

only if qi([x]) E M(P) for any qi E IT(P) and x E E*. As a result, we obtain the following 

relation: 

b(qo, x) E F iff qo((x]) E M(P)qo iff qo((x]) E Mo. 

Thus L(Mo) is a regular language. 

Conversely, from a DFA which accepts L(M0), we can construct a DRLP and show that 

the other direction in a similar fashion. D 

Here we define the problem of learning regular languages as an extended model inference 

problem. Let M0 (� B.c0) be a regular model. An oracle for M0 over C0 is the device which, 

for any input a E B.c0, returns true if a E M0, false otherwise. Facts about M0 are pairs of 

the form (a, V), where a E B.c0 and V E {true, f al se} is the output value of an oracle for 

M0 on an input a. Ground atoms in M0 are called positive facts, while others negative facts. 

An enumeration of M0 is an infinite sequence: F1, F2, F3, . • .  , where each Fi is a fact about 

M0 and every a E B.c0 occurs in a fact Fi = (a, V) for some i � 1. We assume the oracle 

for M0 can give any enumeration of M0 to an inference algorithm. 

The main problem considered in this chapter is as follows. 

Suppose an oracle for some unknown regular model M0 over C0 is given. Find a 

DRLP P such that M(P)qo =Mo. 

In this chapter, the inference algorithm is allowed to use membership queries about a 

target regular model M0• A membership query about M0 is to propose a ground atom 

a E B.c0 and ask the oracle if a E lv/0. An inference process of the algorithm is as follows. At 

each time, the algorithm reads one fact (ai, Vj) from a given enumeration of the target model 

66 



M0. Then it makes finitely many membership queries about M0. According to answers from 

the oracle, the algorithm produces a DRLP Pi as a conjecture. 

Although, the almost all definitions concerned with the behavior of an inference algorithm 

are same as those defined in Chapter 2, we need to redefine the notion of identifiability. An 

inference algorithm is said to identify a regular model M0 in the limit if it converges on every 

enumeration of M0 given by the oracle to a conjecture P such that M(P)qo = M0. Figure 6.1 

illustrates the framework of the regular model inference. 

Figure 6.1: The framework of the regular model inference 

(qo([xl]), Vl), (qo([x2]), V2), ... , (qo([x;]), Vi), .. . • I Oracle for M0 I 

I Inference }algorithm I ) 
! Query: q0([x]) E Mo ? 

P1, P2, ... , Pi, ... , Pn, Pn, Pn, ... : M(Pn)qo = Mo 

In the framework of Shapiro's model inference [Sha81, Sha82] , a first order language 

..C with finitely many predicate symbols is given in advance. The Model Inference System 

(MIS, for short) based on the model inference algorithm requires an oracle for a model M 

over£. Then MIS efficiently synthesizes a logic program P over ..C such that M(P) = M. 

The model inference algorithm is equipped with the contradiction backtracing algorithm as 

a sub-algorithm. The sub-algorithm plays the most important part for the efficiency of the 

model inference algorithm. With the help of the given oracle, the contradiction backtracing 

algorithm finds out a wrong clause in a hypothesis unsuitable for a conjecture by examining 

falsity of clauses in the hypothesis. The examination is executed by making membership 

queries about M, that is, by proposing a ground atom a E B.c and asking if a E M. 

Note that, in the setting, hypotheses are logic programs over ..C and a target model M is a 

Herbrand model over the same language ..C. 

In our setting, however, the given oracle cannot answer membership queries for a E B.c

B.c,0• Thus, the oracle cannot be used directly to examine the falsity of clauses which contain 

a predicate symbol except q0. In order to construct an efficient regular model inference 

algorithm, we should develop some method for examining falsity of clauses over ..Cp for any 
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hypotheses P. In the next section, we shall argue such a method. 

6.2 An Extended Model of a Regular Model 

We introduce a mapping called a predicate characterization. W ith the mapping satisfying 

some conditions, we can appropriately extend a regular model over £0 to a model over £p 

for any DRLP P. 

Definition 6.3 A predicate characterization for a DRLP P, denoted by CHp, is a one to 

one mapping from Il (P) to I:*. 

For any qi E Il(P) , CHp(qi) is called the characteristic string of qi with CHp. 

Definition 6.4 Let M0 � B.c0 and CHp be a predicate characterization for a DRLP P. We 

define an extended model of M0 with CHp, denoted by I(M0, CHp ), as follows: 

With the above extension of a model over £0, for the present, we can get a model over 

£p. However, it is nonsense that a model over £0 is arbitrarily extended with a haphazard 

predicate characterization. The extension should satisfy the following condition: 

M(P) qo = Mo iff M(P) = I(Mo, CHp ) . 

We show that some restrictions on C H p lead to such an extension. 

Definition 6.5 Let CHp be a predicate characterization for a DRLP P. The CHp is said 

to be consistent if, for any qi E Il(P), there exists a derivation tree of q0([CHp(qi)]) on P in 

which qi(O) appears. 

Note that, for any DRLP P and any ground atom qi([x]) E B.cP, any possible derivation tree 

of a on P is unique and is of the very simple form as in Figure 6.2. The above definition is 

translated in terms of the theory of finite-state automata as follows. Let P be a DFA with 

a transition function 8, CHp is consistent if and only if 8(q0, CHp(qi)) = qi for any state 

qi in P. 
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Figure 6.2: A derivation tree on a DRLP 

qi([a1a2a3 · · ·]) 
I 

qi1 ([a2a3 · · ·]) 
I 

qi2 ([a3 · · ·]) 
I 

Lemma 6.2 For any DRLP P, if a predicate characterization CHp for P is consistent, 

then it holds that M(P) = I(M(P)q0, CHp ). 

Proof: From the uniqueness of the derivation tree on a DRLP and the consistency of CHp, 

for any qi E IT(P) and x E �*, it holds that 

P � qi ( [ x]) iff P � qo ( [ C H p ( qi) · x]). 

Since PI- a if and only if a E M(P), it holds that 

qi([x]) E M(P) iff qo([CHp(qi)·x]) E M(P) 

iff qo([CHp(qi)·x]) E M(P)qo 

iff qi([x]) E I(M(P)q0, CHp ). 

D 

Theorem 6.3 Suppose CHp for a DRLP Pis consistent and CHp(q0) = c. Then, for any 

Mo � B.c0, M(P)q0 = Mo if and only if M(P) = I(Mo, CHp ). 

Proof: Since the only if direction immediately follows from Lemma 6.2, it is sufficient to 

prove the if direction. For any x E �*, it holds that 

qo([x]) E Mo iff qo([CHp(qo) ·x]) E Mo (from CHp(q0) = c) 

iff qo([x]) E J(Mo, CHp) 

iff qo([x]) E lv!(P) (from the assumption) 

iff qo([x]) E lvf(P)q0• 

D 

By the above theorem, the regular model inference problem can be restated as follows. 
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Suppose an oracle for some unknown regular model M0 is given. Find a DRLP 

P such that M(P) = I(M0, CHp ) , where CHp is consistent and CHp(q0) =c. 

With such a predicate characterization, it is possible to take advantage of the contradiction 

backtracing algorithm. Whenever the algorithm needs information about membership of 

some ground atom qi([x]) E B.cp in an extended model I(lvf0, CHp ) , it can get the informa

tion by making a query "q0([CHp(qi)·x]) E M0?'' to the given oracle. 

6.3 A Regular Model Inference Algorithm 

In this section, first we show that every clause in a DRLP P has a property called complete

ness with respect to M(P) . Then we give a regular model inference algorithm in which an 

extended model of a target regular model is used for detecting incomplete clause in unsuitable 

hypotheses with respect to the extended model. 

Definition 6.6 Let M � B.c and C be a clause. Then Cis said to be sufficient in M if, for 

every a EM such that head(C) t a, it holds that a E C(M). 

Definition 6. 7 A clause Cis said to be complete in M if Cis both true and sufficient in M. 

The following proposition directly follows from the above definitions. 

Proposition 6.4 The following two statements are equivalent. 

1. A clause qi([a!X]) +-- qj(X) is complete in a model M.  

2. For any x E I:*, qi([ax]) E M if and only if qj([x]) E M. 

For any DRLP Panda E M(P) , since there exists at most one clause which covers a in 

M (P) , each clause in Pis sufficient in lvf. Thus we have the following proposition. 

Proposition 6.5 For any DRLP P, every clause in Pis complete in M(P). 

With Lemma 6.2, this implies the following proposition. 

Proposition 6.6 Let CHp be a consistent predicate characterization for a DRLP P. If 

lvf(P)qo = lvfo then every clause in Pis complete in I(lv/0, CHp). 
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By the above proposition, if there is a clause in P which is not complete in I(M0, CHp) 

for some CHp, then .Nf(P)qo ::1 M0• Hence, whenever a clause which is not complete in 

I(M0, CHp) exists in a hypothesis P, then the clause must be eliminated from P. Thus in 

our setting, the clause that are not sufficient in an extended model are removed from an 

unsuitable hypothesis, while, in Shapiro's model inference algorithm, only the clauses that 

are not true in a target model are removed. 

Algorithm 6.1: A regular model inference algorithm 

Given: An oracle for a regular model M0 over £0. 

Input: An enumeration about M0• 

Output: A sequence of DRLP's. 

Procedure: 

P := ¢; CHp := {(q0, c-)}; Strue := ¢; Sfalse := ¢; State:= 0; 

repeat 

read the next fact (a, V); Sv := Sv U {a}; 
repeat 

while there exists a E Sfalse such that a E M(P) do 

let PTa be the proof tree of a on P; 

C := contradiction_backtracing(PTa); 

P := P- {C}; 

C' := next_clause( C); 

P := P u {C'}; 

while there exists (3 E Strue such that (3 � M(P) do 

(3' := uncovered_atom(/3); 

C := search_clause(/3'); 

P := Pu {C}; 

until neither of the while loop is entered; 

output P; 

forever. 

Now we state an outline of the algorithm mainly concentrating on the following two: 

• how to modify hypotheses, 

• how to construct a predicate characterization. 

For the present, we assume that, at any time, the predicate characterization CHp constructed 

by the algorithm is consistent and C H p ( q0) = c. 
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Algorithm 6.2: Sub-procedures for modifying a too strong hypothesis 

contradiction_backtracing: 

Given: An oracle for a regular model M0 over £0. 

Input: A proof tree of an atom qi([ax]) on P such that 

qi([ax]) E M(P) but qi([ax]) rt I(M0, Clip). 

Output: A clause C E P which is false in I(M0, Clip). 

Procedure: 

let qj([x]) be the child of qi([ax]) in the proof tree; 

if qj([x]) E I(M0, Clip) then 

return qi([aiX]) *- qj(X); 

else 

let PT be the proof tree of qj([x]) on P; 

I* Such a proof tree can be obtained from the input 

proof tree by removing the root node *I 

return contradiction_backtracing( PT). 

next_clause: 

Input: A clause qi([aiX]) *- qj(X). 

Output: A clause qi([ajX]) *- qj+l (X). 

Procedure: 

if j = State then 

State := State+ 1; 

let x be the string such that ( qi, x) E C Hp; 

Clip:= Clip U {(qj+l, xa)}; 

return qi([a!X]) *- qj(X). 

There are following two cases in which a hypothesis P should be modified. 

(1) The hypothesis is too strong, that is, M(P) contains some negative fact (the first while 

loop in Algorithm 6.1) . 

(2) The hypothesis is too weak, that is, M(P) does not contain some positive fact (the 

second while loop in Algorithm 6.1) . 

In the first case, there exists at least one clause in P which is not true in I(M0, Clip) 

(this will be clear in the proof of Lemma 6.8 ) . The algorithm finds such a clause using the 

contradiction backtracing algorithm (procedure contradiction_backtracing). The clause 
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is removed from the hypothesis. Then an alternate clause constructed by a clause generator 

(procedure next_clause) is added to the hypothesis. 

In the procedures contradiction_backtracing and uncovered_atom, the examination 

of if statement "qj([x]) E J(M0, CHp )" is done by making a membership query proposing 

q0([CHp(qj)·x]). We do not consider the atom of the form qi([]) as an input for contradic

tion_backtracing. The reason be described after Proposition 6.7. 

Algorithm 6.3: Sub-procedures for modifying a too weak hypothesis 

undovered_atom: 

Input: An atom {3 such that {3 E J(M0, CHp) but {3 <$ M(P). 

Output: An atom in I(M0, CHp) which is not covered by any clause 

in P with respect to I(M0, CHp) 

Procedure: 

if there exists a clause qi([aiX]) f-- qj(X) E P such that 

qi([aiX])e = {3 for some substitution e then 

if qj(X)B E J(M0, CHp) then 

return uncovered_atom(qj(X)B); 

else return {3; 

else return {3. 

search_clause: 

Input: An uncovered atom qi([x]) which is returned by the above procedure. 

Output: A new clause C whose head is unifiable with qi([x]). 

Procedure: 

if x = c then 

return qi ( []); 

else let x = ax'; 

if there exists C E P such that head( C) = qi([aiX]) then 

p := p- {C}; 

return next_clause( C); 

else return qi([aiX]) f-- qo(X). 

In the second case, there exists a ground atom qi([x]) E I(lv£0, CHp) which is not covered 

by any clause in P with respect to I(lv£0, CHp) (this will be clear in the proof of Lemma 6.9). 

The procedure uncovered_atom finds out such an atom. Note that when the procedure is 
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called with an input qi([]), it always return the input. Because, if qi([]) � M(P), then it is 

immediately found that q1([]) is not covered by any clause in P with respect to any model. 

For such an uncovered atom, the following two cases are possible. 

(i) There is no clause in P whose head is unifiable with qi([x]). 

(ii) Although there is a clause C whose head is unifiable with qi([x]), C does not cover 

qi([x]) in I(M0, CHp ). 

In the case (i), if x = c, then the unit clause qi([]) is added to the hypothesis, and if x = aw 

(a E :E, w E :E*), then the clause qi([ajX]) � q0(X) is added to the hypothesis. In the case 

(ii), according to Proposition 6.6, Cis removed from the hypothesis, then an alternate clause 

is added to the hypothesis similarly in the case (1). The procedure search_clause works 

according to each case. 

In the algorithm, the predicate characterization is represented as a set of pairs of a predi

cate symbol and a string. The set is constructed as follows. Let P be the current hypothesis 

and CHp = {(q0, c) , (q1, x1), (q2, x2), ... , (qk, xk)} be the current predicate characterization. 

Now we assume that the algorithm finds out a clause C = qi([ajX]) � qk(X) in P which is 

not complete in I(M0, CHp ) . Then P is modified in the way mentioned above. Hence, Cis 

removed from P and an alternative constructed by the clause generator is added to P. Since 

the clause generator increases the index of qk, the alternative has a new predicate symbol 

qk+l which has never appeared in P before. When such a new predicate symbol is intro

duced, the algorithm adds a pair (qk+l, xia) to CHp, that is, a characteristic string of the 

new predicate symbol is determined by the head of the clause which caused the introduction 

of the new predicate symbol. 

Figure 6.3 illustrates the outline of modifying hypotheses mentioned above. The dotted 

line denotes the operation which is made in the case (2)-(i). The two solid lines denote the 

operations that are made simultaneously in the case (1) and (2)-(ii). 

6.4 Correctness of the Algorithm 

First, we give a simple proposition concerned with the property of predicate characterization. 

From the definition of an extended model, the following holds. 
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Figure 6.3: The outline of modifying hypotheses 

qo(O) 

qJ(O) 

qo([a IX]).- qo(X) 

qk([aiX]).- qo(X) 

-----------------

... 
' 

\ 

I 

A clause which is not 

complete in l(Mo, CHp) 

qi([a IX])+- qJ(X) 
The alternate clause 

qo(ia IX])+- ql(X)} qi([a IX])+- qJ+l(X) 

qk([a IX])+- Qz(X) �--+--

��� 

Proposition 6.7 Let P1 and P2 be any DRLP's such that II(P1) � II(P2). Suppose that 

CHp1(q) = CHp2(q) for any q E II(P1). Then, for any Mo � Bc0 and q([x]) E Bcp
1

, 

q([x]) E I(Mo, CHpJ if and only if q([x]) E J(M0, CHp2). 

The predicate characterization constructed by the algorithm changes with increase of its 

domain, the set of predicate symbols in hypotheses. This leads to the change of the extended 

model with the predicate characterization. However, from the way of constructing a predi

cate characterization, it is clear that the change of the predicate characterization caused by 

modifying hypotheses satisfies the premises of Proposition 6. 7. Hence the change of the ex

tended model with the predicate characterization satisfies the conclusion of Proposition 6.7. 

Thus, once a ground atom is true (false) in an extended model, the atom is still true (false) 

in subsequent models. 

In Algorithm 6.2, we do not consider the atom of the form qi([]) as an input for con

tradiction_backtracing. Because, at any time on the inference process, there is no case 

in which qi(O) is in M(P) but not in J(M0, CHp ) . The ground atom qi([]) is in M(P) if 

and only if there exists a unit clause qi([]) in P. The clause qi([]) is added to P after the 

procedure search_clause is called on the input qi([]). Let P' be the hypothesis for which 

the procedure call is occurred. Then qi([]) is in J(J\;!0, Cflp,). By Proposition 6.7, qi([]) is 
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ensured to be in I(M0, CHp) for any subsequent hy pothesis P. Hence, there is no case in 

which qi([]) is in M(P) but not in J(M0, CHp ) . 

Here we show the correctness of the sub-procedures contradiction_backtracing and 

uncovered_atom. 

Lemma 6.8 Suppose that the procedure contradiction_backtracing is called with the in

put proof tree of a ground atom a E M(P) such that a ¢ I(M0, CHp ) . Then the procedure 

returns a clause in P which is not true in I ( M0, C H p). 

Proof: Suppose that the procedure contradiction_backtracing given a proof tree of a 

ground atom qi([ax]) returns a clause qi([a!X]) � q1(X). Then it is ensured that qi([ax]) ¢ 

I(M0, CHp) but q1([x]) E J(M0, CHp ) . Hence the clause is ensured to be false in the 

extended model I(M0, CHp ) . Furthermore, since q1([x]) is the child of qi([ax]) in the input 

proof tree on P, the clause qi([aiX]) � q1(X) exists in P. 

On the other hand, every input proof tree has the leaf qk(O) for some qk(O) E P. From 

the discussion above, it is ensured that qk([]) E J(M0, CHp ) . Since the input proof tree of 

each recursive call clear the input condition, a clause which is false in J(M0, CHp) must be 

found eventually. D 

Lemma 6.9 Suppose that the procedure uncovered_atom is called with an input f3 E M0 

such that f3 ¢ M(P). Then the procedure returns some ground atom /3' E J(M0, CHp) such 

that f3' is not covered by any clause in P with respect to I(M0, CHp ) . 

Proof: Since the procedure examines if q1(X)B E J(M0, CHp) before calling itself recur

sively, every input q1(X)B for its recursive call is ensured to be in I(M0, CHp ) . On the other 

hand, if an input for its recursive call is in M(P), then the input has a proof tree on P. 

This implies that all ancestors of the input have also proof trees on P. This contradicts that 

f3 ¢ M(P), that is, the initial input of the procedure has no proof tree on P. Thus every 

input for its recursive call is not in Jvf(P). 

Since qi([]) is not unifiable with any qi([a!X]), the procedure called with an input of the 

form qi([]) returns the input directly. Since qi([]) ¢ lvf(P), it holds that qi([]) rt P. For any 

clause in a DRLP, a ground atom qi([]) is covered only by the clause qi([]). Thus, if the 
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procedure is called with the input qi([]), then it immediately follows that qi([]) is not covered 

by any clause in P with respect to J(M0, CHp ). 

For an input of the form qi([ax]), if there is no clause whose head is unifiable with 

qi([ax]), it is clear that qi([ax]) is not covered by any clause in P. Since a clause of the 

form qi([ajX]) +---qj+1(X) is introduced into a hypothesis after the clause qi([ajX]) +---%(X) 

is removed from the hypothesis, there is at most one clause whose head is unifiable with 

qi([ax]). Thus if qi([ax]) is not covered such a clause, there is no other clause which can 

cover qi([ax]) with respect to J(M0, CHp ). Thus, if the procedure make an output, then the 

output is ensured to satisfy the claim of the lemma. 

On the other hand, the size of each input qj([X])B for the recursive call is decreasing one 

by one. Thus, even if in the worst case, the procedure will encounter an input of the form 

qi([]) and terminate. This completes the proof of the lemma. D 

Next, we show the justification of the way of constructing a predicate characterization. 

We can restate Proposition 6. 7 as follows. 

Proposition 6.10 Let P1 and P2 be any DRLP's such that IT(P1) � II(P2). Suppose that 

CHp1 (q) = CHp2(q) for any q E II(P1). Then, for any Mo � B.c0 and C E P1, C is complete 

in I(M0, CHpJ if and only if C is complete in I(M0, CHp2). 

Lemma 6.11 Let P be a DRLP. Suppose CHp(qj) = CHp(qi)·a, where a E I: and qi, qj E 

IT(P). Then, for any M0 � B.c0, the clause qi([ajX]) +---qj(X) is complete in I(M0, CHp ). 

Proof: By the definition of the extended model, for any x E I:*, it follows that 

qi([ax]) E J(Mo, CHp) iff qo([CHp(qi)·ax]) E Mo 

iff qo([CHp(qj) ·x]) E Mo 

iff qj([x]) E J(M0, CHp ). 

Hence, from Proposition 6.4, qi([a!X]) +--- qj(X) is complete in J(M0, CHp ). D 

Theorem 6.12 The predicate characterization C H p constructed by the algorithm is, at any 

time, consistent and CHp(q0) =c. 



Proof: It is clear that CHp(q0) =E. 

Let P be a hypothesis constructed by the algorithm. From the way of constructing 

the predicate characterization, for any qj E IT(P) (j � 1), there exists a predicate symbol 

qi E IT(P) such that CHp(qj) = CHp(qi)·a for some a E �. On the other hand, in defining 

the characteristic string CHp(qj) = CHp(qi) ·a, the clause qi([aiX]) +---- qj(X) is added 

to the hypothesis simultaneously. Since Lemma 6.11 ensures the clause being complete in 

J(M0, CHp ), it is never removed from the hypothesis. Hence, for any qj E IT(P) (j � 1), 

there exist clauses in P that are necessary for constructing such a derivation tree as in 

Definition 6.5. 

Since CHp(q0) = E, q0([CHp(q0)]) = q0((c]) = q0([]) itself gives a derivation tree as in 

Definition 6.5. This holds even if P is empty. Thus, the theorem holds. D 

Now we show the correctness of the algorithm. That is, for any regular model M0, the 

algorithm identifies M0 in the limit. Since the conjectures of Algorithm 6.1 are consistent 

with known facts, it is sufficient to show the followings: 

• The algorithm produces an infinite sequence of conjectures. 

• The infinite sequence of the conjectures converges a DRLP. 

For the former, we must show that the inner repeat loop of Algorithm 6.1 terminates 

finitely. For the latter, we must show that there are at most finitely many occasions in which 

hypotheses are modified. F inally, it is sufficient to show that the bodies of the two while 

loops are executed at most finitely many times in total. 

When the target model is empty, the bodies of the while loops are never executed, 

because the initial hypothesis is empty. Thus, in the following, we assume that the target 

regular model l\1!0 is not empty. 

Lemma 6.13 Let P be any hypothesis and C Hp be the predicate characterization for P 

constructed by Algorithm 6.1. For any qi E IT( P)) there exists a string x E �· such that 

qo([CHp(qi)·x]) E Mo. 

Proof: First, we show that, for any non-unit clause qk([aiX]) +---- qj(X) E P, there exists a 

string x E L:"' such that qk([ax]) E I(l'vf0, CHp ). 
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The clause whose head is qk([aiX]) first appears in a hypothesis after executing the last 

else statement in the procedure call of search_clause on the input qk([ax]). Let P' be the 

algorithm's hypothesis at that time. Then qk([ax]) E J(M0, CHp,) and qk([ax]) rf_ lvf(P'). 

By Proposition 6.7, for any subsequent CHp, it holds that qk([ax]) E I(lv10, CHp ) . Thus, 

for any non-unit clause qk([aiX]) � qj(X) E P, there exists a string x E 2:* such that 

qk([ax]) E J(Mo, CHp ). 

On the other hand, for any qi E II(P) (i � 1) , there exists a predicate symbol qk E 

II(P) such that CHp(qi) = CHp(qk)·a for some a E 2:. By the argument in the proof of 

Theorem 6.12, there exists a clause qk([aiX]) � qi(X) E P. By the above discussion, there 

exists a string x E 2:* such that qk([ax]) E J(M0, CHp ) , that is, qo([CHp(qk) ·ax]) E M0. 

Hence, for any qi E II(P) (i;?: 1) , there exists a string x E �* such that q0([CHp(qi)·x]) E M0 • 

For the predicate q0, since M0 is not empty, there exists a string x E 2:* such that 

D 

In the following lemma, we consider the DRLP P with the minimum number of predicate 

symbols satisfying M0 = M(P)qo· Such a DRLP can be constructed, by a similar method in 

the proof of Theorem 6.1, from the minimum size DFA which accepts L(M0). 

Lemma 6.14 Let P be a DRLP with the minimum number of predicate symbols such that 

M0 = M(P)qo. Let P be an arbitrary hypothesis constructed by the algorithm. Then it 

follows that III(P)I:::; III(P)I. 

Proof: Let C H p be the predicate characterization for P constructed by the algorithm. 

From Lemma 6.13, for any qi E II(P), there exists a string x E 2:* such that q0([CHp(qi) · 

x]) E M0. Since M0 = M(P)q0, there uniquely exists a proof tree of qo([CHp(qi)·x]) on P. 

Hence, for any qi E II(P), there uniquely exists a predicate symbol qi E II(F) such that 

qi([]) appears in the derivation tree of q0([CHp(qi)]) on f>. For such qi, it holds that, for any 

string x E 2:*, 

Now we consider the mapping T from II(P) to II(F) such that T(qi) = qi. For the proof 

of the lemma, it is sufficient to show that T is injective. 
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Suppose that T( qi) = T ( qj) for some i < j. Then, for any string x E E*, it holds that 

qo([CHp(qi)·x]) E M(F) iff qi([x]) E M(F) (from (*)) 

iff qj([x]) E M(F) (from the assumption) 

iff q0([CHp(qj)·x]) E lv!(F). (from (*)) 

Hence, we obtain the following relation: 

Since 0 � i < j, there exists a predicate symbol qk E II(P) (k < j) such that CHp(qj) = 

CHp(qk) ·a for some a E E. Hence, for any x E E*, the following relation holds. 

As a result, it holds that 

qi([x]) E J(M0, CHp) iff qk([ax]) E J(M0, CHp ). 

Hence, it follows from Proposition 6.4 that the clause C = qk([aiX]) +--- qi(X) is complete 

in J(M0, CHp ). Since i < j, C is generated by the procedure next_clause and added to 

the hypothesis before the clause qk([a!X]) +--- qj(X). From Proposition 6.10, C is complete 

in any extended model subsequently. Thus Cis never removed from subsequent hypotheses. 

This contradicts that CHp(qj) = CHp(qk)·a. D 

Theorem 6.15 For any regular model M0) Algorithm 6.1 identifies M0 in the limit. 

Proof: It is clear that the procedures next_clause and search_clause terminate finitely 

and return the desired output. It follows from Lemma 6.8 and Lemma 6.9 that the pro

cedures contradiction_back-tracing and uncovered_atom terminate finitely and return 

the desired output. Hence, each computation in the bodies of the two while loops termi

nates finitely and a operation corresponding to either the two solid lines or the dotted line in 

Figure 6.3 is executed. The operation is executed at most once for each clause enumerated 

in the left hand of Figure 6.3. Hence, if only finitely many clauses are generated, then the 

bodies of the two while loops are executed at most finitely many times in total. 

80 



On the other hand, by Proposition 6.10 and Lemma 6.11, once a predicate symbol is 

introduced into a hypothesis, the symbol never disappears from the subsequent hypothe

ses. Hence, by Lemma 6.14, only finitely many predicate symbols are introduced into the 

hypotheses. Thus the number of clauses generated is at most finite. 

From the discussion preceding Lemma 6.13, this completes the proof of the theorem. 0 

6.5 Time Complexity of the Algorithm 

We assume that the given oracle answers each membership query immediately. Thus, the 

examination if qi([x]) E J(M0, CHp) is done in one step. 

Let M0 be a target regular model and P be a DRLP with a minimum number of predicate 

symbols such that M0 = M(F)qo· 

Theorem 6.16 At any stage in inferring M, after Algorithm 6.1 reads a fact, it outputs a 

conjecture in time polynomial in size(S), 1�1, and III(F)I, where S is the set of all positive 

and negative facts given so far, that is, S = Strue U Sjalse· 

Proof: For notational convenience, we denote lSI by £, lEI by k, III(F)I by n, and the 

maximum size of any element inS by m. Note that size(S) ::; m£. Let P and CHp be the 

hypothesis and the predicate characterization in the algorithm. Then, it follows from the 

argument in the previous section that !PI ::; n(k + 1) and ICHpl ::; n. 

The both procedure next_clause and search_clause just make a simple search in CHp 

and P respectively. Thus the time required in each procedure call is bounded by a linear in 

n(k + 1) . 

From the structure of a derivation tree on a DRLP, the input proof tree of some negative 

fact a for the procedure contradiction_backtracing can be treated as a sequence with 

length at most size(a). The procedure just traces the sequence from the root to the leaf. 

Thus the procedure terminates and find a false clause in time linear in size( a) ::; m. 

For an input ground atom /3, the procedure uncovered_atom searches a clause in P 

whose head is unifiable with /3. If such a clause found then it calls itself recursively with 

input /3' such that size(/3') = size(f3) - 1. Otherwise, it returns the input directly. Since the 
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main operation executed in the procedure is to search the clause, the time required in the 

procedure call is bounded by a linear in size(f3) x IPI � mn(k + 1). 

As a result, the time required in an execution of the body of each while loop is bounded 

by a linear in mn(k + 1). 

Each examination of if a E M(P) in the condition of two while loops of Algorithm 6.1 

can be done by a similar procedure to uncovered_atom. By replacing the inner if-then

else block by the recursive call uncovered_atom(qj(X)B), we can obtain a simple resolution 

prover for DRLP's. Thus the examination also terminates in time linear in size( a) x IPI � 

mn(k + 1). In the worst case, the examination is done for every element in Strue or Sfalse· 

Hence, the time required in each iteration of the while loops is bounded by a linear in 

fmn(k + 1). On the other hand, from the argument in the previous section, each while loop 

is entered at most kn2 +n times. Where kn2 +n is the number of possible clauses of a DRLP 

constructed from at most n predicates. 

Consequently, the amount of the time required in each iteration of the outer repeat loop 

is at most O((kn2 + n)(fmn(k + 1)) = O(k2fmn3). D 
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Chapter 7 

Learning Simple Deterministic 

Languages 

In this chapter, we consider the problem of learning simple deterministic languages using 

membership queries and extended equivalence queries. The discussion in this chapter will 

be made in terms of formal language theory, because a logic program corresponding to a 

context-free grammar uses the technique of differential lists which are too complicated to 

make the discussion clear. 

A simple deterministic language (SDL, for short) is a language that is accepted by a 

1-state deterministic push-down automaton by empty store. The class of SDL's is a proper 

sub-class of deterministic languages. The SDL's may also be characterized as the languages 

that are generated by context-free grammars in a special form of Greibach normal form, 

called simple deterministic grammars (SDG's, for short) . 

Angluin [Ang87a] shows that the class of k-bounded context-free grammars is learnable in 

polynomial time using membership queries, nonterminal membership queries and equivalence 

queries. The algorithm described in this chapter is based on her algorithm. Both algorithms 

are essentially based on Shapiro's model inference algorithm (Sha82] . Our setting, however, 

differs from Angluin's and Shapiro's in the types of queries that are available to the learning 

algorithm. That is, the algorithm is allowed to use membership queries but not nonterminal 

membership queries. This difference leads to the problem of introducing new nonterminals 

that are not observed in interactions between the oracle and the inference algorithm. As 
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discussed in Chapter 5, this relates to the problem of inventing necessary predicates 1n 

learning logic programs. 

Another feature of our setting is that the algorithm is allowed to use extended equivalence 

queries. The equivalence query defined in [Ang88] is allowed to conjecture only elements 

of the original hypothesis space. For example, if the target class1 of learning is a set of 

concept representations R = {r1, r2, • . .  }, then any equivalence query made by the learning 

algorithm must be with some ri from R. We lift this restriction in this chapter. In particular, 

the learning algorithm described in this chapter is allowed to make an equivalence query 

conjecturing any grammar in 2-standard form; not necessarily simple deterministic. Hence, 

each intermediate hypothesis conjectured by an extended equivalence query might define a 

general context-free language. 

Yokomori [Yok88] gives another algorithm for learning SDL's in polynomial time. Our 

setting also differs from his, as will be described at the end of Section 7.6. Berman and Roos 

[BR87] show that the class of deterministic one-counter languages is learnable in polynomial 

time using membership queries and equivalence queries. The class of one-counter languages 

is incomparable with the class of SDL's. For example, the language { { anbn I n � 1 }c} + is 

not simple deterministic, but deterministic one-counter. On the other hand, the language 

{ ambncanbm I m, n � 1} is not deterministic one-counter, but simple deterministic. However, 

there is an interesting similarity that both are classes with decidable equivalence problems. 

In the next section, we give the definition of simple deterministic grammars and lan

guages. We also give several properties of the grammars which will be necessary for our 

discussions. In Section 7.2, we define the two types of queries by which a learning algorithm 

obtains the information about a target language. In Section 7.3, we give the learning al

gorithm and the main result of this chapter. In Section 7.4, we describe how to diagnose 

an incorrect hypothesis. The diagnosis method is essentially same as that of the procedure 

contradiction_backtracing given in the previous chapter. In Section 7.5, we describe how 

to generate nonterminals with appropriate intended models. The correctness and the time 

complexity of the algorithm will be discussed in Section 7.6. 

1 The target class is a class of representations that define the class of concepts to be learned by the 

algorithm (see, e.g., (Pit89]). 
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This chapter is based on the paper (Ish89b, Ish90] . 

7.1 SDG and SDL 

First, we define simple deterministic grammars and languages. 

Definition 7.1 A context-free grammar in Greibach normal form G is simple deterministic 

if the following condition holds: for any A E N, a E .E, a, f3 E N*, if there exist productions 

A ---* aa and A ---* af3 in P, then a = {3. 

Definition 7.2 A language L is simple deterministic if there exists an SDG G such that 

L(G) = L. 

Example 7.1 The grammar G = ( {S, A, B, C}, {a, b }, P, S), where 

P = {S---* aA,A---* b,A---* aB,B---* aBC,B---* bC,C---* b}, 

is one of the SDG's that generates an SDL { ambmll � m }. 

The following propositions (see, e.g., (Har79] )  provide properties of SDG's and SDL's 

that are useful for our purpose. 

Proposition 7.1 For any SDG G = (N, .E, P, S), G is unambiguous, that is, for any w E 

L( G), there is a unique left-most derivation of w from S. 

Proposition 7.2 Let G = (N, .E, P, S) be an SDG. For any A EN, x E I:+ and a EN*, if 

there exists a derivation A=>* xa, then L(a) = xL(A). 

Proposition 7.3 Let G = (N, .E, P, S) be an SDG. For any A EN, L(A) is prefix-free, that 

is, ifx E L(A), then, for any y E _E+, xy rJ. L(A). 

Proposition 7.4 For any SDG G, there exists an equivalent SDG G' that is in 2-standard 

form, i.e., there exists an SDG G' = (N', .E, P', S) such that 

(1) L(G) = L(G'); 
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(2) Each production in P' is of one of the following forms: A--+ a, A--+ aB, A--+ aBC, 

where A,B,C E N',a E E. 

Proposition 7.4 allows us to consider only (c-free) context-free grammars in 2-standard 

form as the hypotheses of the learning algorithm. 

We will analyze the complexity of the learning algorithm given in this chapter on two 

types of complexity measures: one is the length of the given example strings and the other is 

the number of nonterminals of a minimal SDG for the target language. Let L be an SDL. A 

minimal SDG for L is an SDG G = (N, :E, P, S) in 2-standard form satisfying the following 

conditions: 

1. L(G) = L; 

2. For any SDG G' = (N', :E, P', S') in 2-standard form such that L(G') = L, INI :S IN' I· 

7.2 Learning via Queries 

In this chapter, we consider the problem of learning SDL's under the framework called 

learning via queries which is rather different form that of identification in the limit. In the 

framework, the learning algorithm can actively get information about a target SDL L by 

making queries to the oracle. The criterion for success of learning is to terminate finitely 

and output a grammar G such that L( G) = L. According to Angulin's fashion [Ang87b], in 

this chapter, we call an oracle for L a  teacher for L. Figure 7.2 illustrates the framework of 

learning via query. 

Let L be the target SDL to be learned by our learning algorithm. We assume that the 

teacher for L can answer the following two types of queries. 

Definition 7.3 A membership query proposes a string x E E+ and asks whether x E L. The 

reply is either yes or no. 

Definition 7.4 An extended equivalence query conjectures a grammar G in 2-standard form 

and asks whether L = L( G). The reply is either yes or no. If it is no, then a counterexample 

is also provided. A counterexample is a string x in the symmetric difference of L and L( G). 
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Figure 7.1: The framework of learning via query 

I Teacher for L I 
Query 11 .lJ. Answer 

Learning algorithm 

.lJ. 

G: L(G)=L 

If x E L - L( G), x is called a positive counterexample, and if x E L( G) - L, x is called a 

negative counterexample. The choice of a counterexample is assumed to be arbitrary. 

Note the difference between the extended equivalence query and the equivalence query 

defined in [Ang88]. The equivalence query is only allowed to conjecture members of the 

target class. Thus, in learning SDL's, any hypothesis conjectured by the algorithm would 

have to be a grammar generating an SDL. In contrast, the hypothesis conjectured by an 

extended equivalence query does not have to generate an SDL. 

A teacher who answers equivalence queries and membership queries was called a min

imally adequate teacher [Ang87b]. We call a teacher who answers extended equivalence 

queries and membership queries an extended minimally adequate teacher. 

The notion of the extended equivalence query corresponds to the notion, in the context of 

the PAC-learning model, of learning the target class R in terms of the class of representations 

R', not necessarily identical to R (see, e.g., [PW88]). Informally, R is said to be PAC

learnable in terms of R' if there exists a polynomial time algorithm A such that for any 

target concept (description) r E R, if A is given randomly chosen examples of r, A outputs, 

with high probability, a concept (description) r
' E R' that approximates the target concept 

r. In our setting, R corresponds to the class of SDG's (or SDL's) and R' corresponds to the 

class of CFG's in 2-standard form. In general, such a relaxation of the learnability criterion 

enriches the learnable classes of concepts. For example, the class of k-term DNF's is not 

PAC-learnable in terms of itself unless RP = NP, but the class is learnable in terms of the 

class of k-CNF's. For the result given in this chapter, however, the learnability of SDG 's in 

terms of itself (the learn ability of SDG's from a minimally adequate teacher) is still open. 
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7.3 A Learning Algorithm for SDL 

Let L be the unknown SDL to be learned by the algorithm and G 0 = (N0, 1:, P0, S) be a 

minimal SDG for L. We assume that the terminal alphabet 2: and start symbol S are known 

to the learning algorithm, but that N- { S}, the set of nonterminals except S, and P, the 

set of productions, are unknown. 

The main result of this chapter is as follows. 

Theorem 7.5 For any SDL L, Algorithm 7.1 outputs a grammar G in 2-standard form 

such that L( G) = L using extended equivalence queries and membership queries. Moreover, 

at any point during the run, the time used by the algorithm to that point is bounded by some 

polynomial in INoL the number of nonterminals of a minimal SDG for L, and the length of 

the longest counterexample returned by any equivalence query seen to that point. 

Note that the grammar learned by the algorithm may not be SDG. The grammar is 

simply in 2-standard form. 

Here, we describe the outline of Algorithm 7.1. The details concerning how to diagnose 

hypotheses and how to introduce new nonterminals will be described in the succeeding two 

sections. 

First, the algorithm initializes N to { S}, and P to the set of all productions containing S 

as the only non terminal. As a model M for G, we initially consider { M ( S) = L}. Models for 

any other nonterminals introduced by the algorithm will be defined in Section 7.5. Then the 

algorithm iterates the following loop: An extended equivalence query is made, conjecturing 

G. If the reply is yes, then the algorithm outputs G and halts. Otherwise, a counterexample 

w is returned. The algorithm tries to find a derivation tree T of G such that rt(T) = S and 

fr(T) = w. If it exists, that is, when w is a negative counterexample, the algorithm diagnoses 

G on T and finds an incorrect production for M .  The incorrect production is removed from 

P. Otherwise, that is, when w is a positive counterexample, new nonterminals are introduced 

and all new productions constructed from them are added to P. 

In this chapter, we assume a parsing sub-procedure that runs in time polynomial in 

the size of a grammar G and lwl, e.g., Angluin's (Ang87a] parsing procedure2• In the 

2Since G is in 2-standard form, Lemma 3 and Lemma 4 in [Ang87a] hold. In fact, the procedure returns 

88 



Algorithm 7.1: An algorithm for learning SDL's 

Given: An extended minimally adequate teacher for L and a terminal alphabet E. 

Output: A grammar G = (N, E, P, S) in 2-standard form such that L( G) = L. 
Procedure: 

N := {5}; P := {S--+ aSS, S--+ aS, S--+ aia E E}; G := (N, E, P, S); 
repeat 

make an extended equivalence query with G; 

if the reply is a positive counterexample then 

introduce new nonterminals with their models; 

put all candidate productions into P; 

else if the reply is a negative counterexample, then 

diagnose G; 

remove the incorrect production returned 

by the diagnosis routine from P; 

until the reply is yes. 

Output G. 

following two subsections, we describe the diagnosis routine and how new nonterminals and 

productions are generated. Then, in the third subsection, we show the correctness and 

characterize the complexity of the entire algorithm. 

7.4 Diagnosing an Incorrect Hypothesis 

The diagnosis routine finds an incorrect production for M on an input derivation tree T 

of G such that fr(T) <f. M(rt(T)). It is essentially same as the procedure contradic

tion_backtracing given in the previous chapter and each of them is a special case of the 

contradiction backtracing algorithm given by Shapiro [Sha81] . 

For a given input derivation tree T, the diagnosis routine considers, in turn, each child 

of the root of T. If the child is labeled with a nonterminal and T' is the sub-tree rooted 

at the child, then the diagnosis routine inquires whether fr(T') E NI(rt(T')). If fr(T') <f. 

lvf(rt(T')), then it calls itself recursively with T'. Otherwise, it goes on to the next child of 

a parse-DAG (directed acyclic graph) instead of a derivation tree. Our discussion, however, is not affected 

by the difference. 
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the root ofT. If there is no nonterminal child such that fr(T') � M (rt (T')), for the sub-tree 

T' rooted at the child, then the diagnosis routine returns the production rt (T) � a E P, 

where a is the concatenation of the labels of the children of the root of T in left-to-right 

order. 

For example, consider the derivation tree in F igure 7.4 for a negative counterexample 

abbb. 

Initially, abbb � M(S) = L. F irst, the child labeled with A generating the string bb is 

considered. The diagnosis routine inquires whether bb E M(A). If bb � M(A), then it calls 

itself recursively with the sub-tree rooted at the child. If bb E M(A), then it goes to the 

next child labeled with B and makes a similar inquiry. If b � M (B), then it returns the 

production B �b. Otherwise, it returns the productionS� aAB. 

Figure 7.2: An example of an input for the diagnosis routine 

s 

a A 

� 
b c 

I 
b 

B 

I 
b 

In [Ang87a] , such a diagnosis is made through nonterminal membership queries of the 

type "bb E L(A) ?". In our approach, it is performed through membership queries only. The 

next section shows how to introduce new nonterminals and replace nonterminal membership 

queries by membership queries. 

Lemma 7.6 Suppose that the diagnosis routine is given as its input a derivation tree T of 

G such that f r (T) � M(rt(T)). Then it returns a production in P that is incorrect forM. 

Proof: Since each recursive call is with a proper sub-tree of its input derivation tree, the 

diagnosis routine must eventually terminate and output some production in P (since each 

sub-tree is also a derivation tree of G, the output production is a member of P). 

Let A � a be the returned production. For each nonterminal occurrence X in the pro

duction, let Tx be the sub-tree ofT that is rooted at the corresponding node labeled with X 
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in T. From the input condition, it holds that fr(TA) ¢ M(A). If a contains no nonterminal, 

then the empty replacement p satisfies p(a] = a = fr(TA) ¢ M(A). Otherwise, from the 

termination condition of the procedure, for each Bi appearing in a, fr(TsJ E M(Bi)· Thus 

there exists a replacement p = ((fr(TsJ, B1), ... , (fr(Tsn), Bn)) that is compatible with a 

such that, for each i, fr(TsJ E M(Bi), but p(a] = fr(TA) ¢ M(A). So A __, a is incorrect 

forM. D 

Note that, at the initial call to the diagnosis routine, the input derivation tree Tis for a 

negative counterexample w. Since fr(T) = w ¢ L = M(S) = M(rt(T)), the input condition 

is satisfied initially. 

7.5 Generating Nonterminals and Productions 

The key idea of the nonterminal-generating routine has its roots in an extension of a model 

described in [Ish89a]. First, we show an important feature of SDG's for describing the 

nonterminal-generating routine. 

Lemma 7.7 Let G = (N, �' P, S) be an SDG. Suppose that A=?* rEa for A, B EN, a E 

N*, r E �+, and that tis a string in L(a) such that Sufj(t) ¢ L(a) for any j (1 ::=:; j ::=:; itl -1) 

(if a = £  then t =c) . Then, for any x E �+, x E L(B) if and only if (i) rxt E L(A) and 

(ii) r Prei(x )t ¢ L(A) for any i (1 ::=:; i ::=:; lxl - 1). 

Proof: Suppose x E L(B). Then A =?* r Ba =?* rxa =?* rxt. Thus, rxt E L(A). Since 

L(B) is prefix-free, Prei(x) ¢ L(B) for any i (1 ::=:; i ::=:; lxl- 1). Hence, if rPrei(x)t E L(A), 

that is, Prei(x)t E rL(A) = L(Ba), then there exists j (1 ::::; j ::=:; i tl - 1) such that 

Prei(x)Pre1(t) E L(B) and Suf1(t) E L(a). This contradicts the fact that Suf1(t) ¢ L(a) 

for any j (1 ::=:; j ::=:; It I - 1 ). Thus, r Prei(x )t ¢ L(A) for any i (1 ::=:; i ::=:; lxl - 1 ) . 

Conversely, assume that (i) and (ii) hold. From (i), it follows that xt E rL(A) = L(Ba). 

Since there is no proper suffix oft in L(a), there exists j (1 ::=:; j ::=:; lxl) such that Pre1(x) E 

L(B) and Suf1(x)t E L(a). On the other hand, from (ii), Prei(x)t ¢ L(Ba) for any 

i (1 ::=:; i ::=:; lxl- 1). Hence, for any i (1 ::=:; i ::=:; lxl- 1) , Prei(x) ¢ L(B). Thus, j = lxl. This 

shows that Prelxl(x) = x E L(B). D 
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In the learning algorithm, new nonterminals are introduced whenever there is a positive 

counterexample w. The nonterminal-generating routine constructs nonterminals with their 

appropriate models from w. 

Let w be a positive counterexample such that lwl � 2. 

Definition 7.5 A Nonterminal generated from a positive counterexample w is a triplet (r, s, t) 

of strings such that r st = w where r, s E :E+ and t E :E*. The set of all non terminals generated 

from w is denoted by N ( w). 

Example 7.2 Let w = aabb, then 

N(w) = {(a,abb,c),(a,ab,b),(a,a,bb),(aa,bb,c),(aa,b,b),(aab,b,c)} 

For each triple (r, s, t ) E N(w), let <p(r, s, t) denote the shortest suffix of t in rsL, i.e., 

<p(r, s, t) = Sufi(t) where i = �ax {j I Sufj(t) E rsL} . 
O:S;:Sitl-1 

The intended model of each non terminal in N ( w) is defined as follows. 

Definition 7.6 For each triple (r, s, t) E N(w), define 

M((r, s, t)) = {x E :E+ I rx<p(r, s, t) ELand 

rPrei(x)<p(r, s, t) ¢. L for any i (1 ::; i::; lxl- 1)}. 

Let w be a newly given positive counterexample at a stage of learning. Then N is set 

to NUN( w ). Let PN(w) be a set of all productions in 2-standard form constructed from 

N that have never appeared in P, that is, for each a E :E, PN(w) contains productions 

A� aa such that Aa E N+, Ia I ::; 2 and Aa contains at least one element of N( w ). Then 

P is set to P U PN(w)· Note that, at any point during the learning, P contains at most 

INI x I:EI x (INI + 1)2 productions for N generated by the algorithm to that point. 

Lemma 7.8 Let N be the set of known non terminals. Suppose that w is a new positive 

counterexample. Then the time required for generating nonterminals and computing new 

productions is bounded by a non-decreasing polynomial in INI and lwl. 
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Proof: There are at most lwl(lwl-1)/2 nonterminals in N(w), and N(w) is computable in 

time polynomial in jwj. For each (r, s, t) in N(w), the string <p(r, s, t) is computed by making 

at most ltl membership queries with the strings rsSufj(t) (0 � j � jtj-1). Moreover the set 

PN(w) is computable in time polynomial in INI and jN(w)j. These facts prove the lemma. D 

Lemma 7.9 Let L be an SDL, w be a string in L, and G = (N, L:, P, S) be an SDG such 

that L( G) = L. For any A E N - { S} that appears in the derivation S =* * w, there exists a 

nonterminal (r, s, t) E N(w) such that L(A) = M((r, s, t)). 

Proof: Suppose that S =** rAa =** rsa =** rst = w. Then, from the definition of N(w), 

the triple (r, s, t) is in N(w). (Since G is an SDG and A=/= S, neither r nor s is c. ) Since 

L(S) = L(G) = L, by Proposition 7.2, L(a) = rsL(S) = rsL. By the definition of <p(r, s, t), 

<p(r, s, t) E L(a) and Sufj(<p(r, s, t)) � L(a) for any j (1 � j � j<p(r, s, t)l-1). Hence, by 

Lemma 7.7 and the definition of M((r, s, t)), L(A) = M((r, s, t)). D 

The above lemma ensures that if the learning algorithm is given a positive counterex

ample w, then it can make all nonterminals with appropriate models that are necessary for 

generating w. As a result, nonterminal membership queries used by Angluin's [Ang87a] or 

Shapiro's [Sha82] algorithm can be replaced by membership queries. For any x E I:* and 

A E N( w ), the diagnosis routine can accomplish each inquiry as to whether x E M(A) by 

making jxj membership queries. 

7.6 Correctness and Complexity 

In what follows, let G = (N, I:, P, S) be the current hypothesis of the algorithm and 

be the model for G defined in the previous section. 

Lemma 7.10 At any point during the learning, the time required by the diagnosis routine 

on an input derivation tree for a negative counterexample w is bounded by a non-decreasing 

polynomial in lwl and fp, where fp is the length of the longest positive counterexample returned 

by any equivalence query seen to that point. 
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Proof: Since G is in 2-standard form, there are at most lwl occurrences of nonterminals in 

the derivation tree. Thus, the number of inquiries made by the diagnosis routine is at most 

jwj. For each inquiry as to whether x E M(A) or not, if A = S, then only one membership 

query "x E L ?" is made. Otherwise, that is, if A = (r, s, t), the routine makes at most 

lxl membership queries "rPrei (x )<p(r, s, t) E L ?" for 1 � i � lxl . Since xis a sub-string 

of w, the total number of queries made in a diagnosing process is at most lwl2• Since the 

main operations performed in the diagnosis routine are forming strings r Pre i (x )<p (r, s, t) and 

making membership queries, it is clear that the claim of the lemma holds. D 

Lemma 7.11 Let G0 = (N0, �' P0, S) be a minimal SDG for the target language L. The 

total number of given positive counterexamples is bounded by INol· 

Proof: Let Wn be the nth positive counterexample given to the learning algorithm. We 

define No( wn) and Po( wn) as follows: 

n 
Po(wn) = {A-t aa E Po I a E �' Aa E (U No(wi))+}. 

i =l 

When Wn is given, the learning algorithm computes N( wn) and sets N to NUN( wn)· 

Then it computes all new candidate productions and adds them to P as described in the 

previous section. 

By Lemma 7.9, for each nonterminal A E N0( wn), there exists a nonterminal A' E N( wn) 

such that L(A) = M(A'). Under this correspondence of A and A', for every production in 

P0( wn), a corresponding production is added to P at least once. By Proposition 2.2, these 

corresponding productions are correct for M. Since correct productions are never removed 

from P, whenever the n + 1st positive counterexample is given, there exists at least one 

nonterminal A E N0 such that 

n 
A E No(wn+I) and A <f. U No(wi)· 

i=l 

Thus, the number of given positive counterexamples is at most INol· D 
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Lemma 7.12 At any point during the learning, the number of nonterminals introduced by 

the learning algorithm is bounded by INoiRP(Rp - 1)/2, where fp is the length of the longest 

positive counterexample returned by any equivalence query seen to that point. 

Proof: For each positive counterexample wi, IN(wi)l is at most lwil(lwil- 1)/2 as stated 

in the previous section. By Lemma 7.11, the total number of nonterminals introduced by 

the algorithm is bounded by INolfp(fp- 1)/2. D 

Proof of Theorem 7.5: From the method of introducing new productions and Lemma 7.12, 

the total number m of productions introduced into P is at most 

By Lemma 7.6, for each given negative counterexample, at least one incorrect production is 

found and it is removed from P. With Lemma 7.11, this implies that, after given at most 

INol positive counterexamples and at most m negative ones, the learning algorithm outputs 

a grammar G such that L( G) = L. 

By Lemma 7.12, at any point during the learning, the size of G is bounded by a non

decreasing polynomial in !No! and £, where f is the length of the longest counterexample 

given to that point. From the assumption on the parsing sub-procedure, the algorithm can 

determine whether a given counterexample is positive or negative in time polynomial in INa I 

and f. The total number of given counterexamples is at most INa I +m. With Lemma 7.8 and 

Lemma 7.10, this proves the claim, made in Theorem 7.5, on the complexity of the learning 

algorithm. D 

Yokomori [Yok88] gives another algorithm for learning SDL's in polynomial time. His al

gorithm conjectures only SDG's. In his setting, however, a very powerful teacher is assumed. 

The teacher can answer the following two types of queries: prefix membership queries and 

derivatives equivalence queries. A prefix membership query is an extension of the member

ship query. A derivatives equivalence query proposes two pairs of strings (ui, wi), (u2, w2) 

and asks whether uiLwi = u2Lw2, where L is the target language. It is clear that deriva

tives equivalence queries can be used, in our algorithm, to test whether two candidate non

terminals are identical. For example, for two non terminals ( ui, vi, WI ) and ( u2, v2, w2), if 
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u1Lw1 = u2Lw2, then they are identical. Thus, the number of nonterminals generated by 

our algorithm will be reduced. The relationship between the power of the teacher and the 

efficiency of the learning algorithm remains an interesting open question. 

96 



Chapter 8 

Conclusion 

We briefly summarize the results presented in this thesis with some future problems. 

In Chapter 3, we introduced a d-model preserving instance of a program and show that 

the instantiation preserves the least Herbrand model of the program. We showed that a 

substitution defined as the difference between the head of an original clause C and the head 

obtained by the least generalization of C(Mp) gives the d-model preserving instantiation. 

The result suggests the applicability of the least generalization to inferring program heads. 

In Chapter 4, we presented two inference algorithms which identify the class of primitive 

Prologs in the limit from positive data. The first is a consistent and conservative polynomial 

update time algorithm that, given the unit clause of the target program, identifies the class 

in the limit from positive facts with polynomial time updating hypotheses. The second is a 

consistent but not conservative polynomial update time algorithm that identifies the class in 

the limit from positive facts. The second inference algorithm employing a natural technique, 

that is, the 2-mmg algorithm to infer heads of clauses in a target program. The technique 

is considered as an extension of the method proposed by Ishizaka in [Ish88a] . 

For the second type of polynomial update time inference algorithms, there is a problem 

pointed out by Pitt [Pit89] . That is, lacking one of the two conditions, consistency and con

servativeness, allows the existence of an tricky polynomial update time inference algorithm. 

If one of the two is not required, then any exponential update time inference algorithm 

can perform polynomial update time inference. The tricky algorithm continues to output 

dummy conjectures to postpone outputting a genuine conjecture until they have enough size 
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of examples. It is our future work to realize a consistent and conservative polynomial update 

time inference algorithm that identifies the class of primitive Prologs without hint. 

The difficulty of accomplishing conservativeness of the inference algorithm using 2-mmg 

essentially originates in non-uniqueness of 2-mmg for the entire model M(P) of a primitive 

Prolog P. For example, consider the following primitive Prolog P. 

For the least Herbrand model 

p([a, b, a]). 

p([biX]) � p(X). 

M(P) = {p([a, b, a]),p([b, a, b, a]),p([b, b, a, b, a]),p([b, b, b, a, b, a]), ... }, 

there exist two kinds of 2-mmg of M(P): 

{p([a, b, a]), p([b, X, Y, ZIW]) } and {p([b, a, b, a]), p([X, b, YIZ ]) }. 

Actually the former is an instance of the heads of the program P. For any non-empty finite 

subset S of M(P), it holds that 

P(S, (p([a, b, a]), p([b, X, Y, ZIW]))) = { p([a, b, a]). 

p([b, X, Y, ZIW]) � p([X, Y, ZIW]).} 

P(S, (p([b, a, b, a]), p([X, b, YIZ]))) = { p([b, a, b, a]). 

p([X, b, YIZ ]).}. 

Hence, an inference algorithm that uses the 2-mmg algorithm and Algorithm 4.2 as its 

sub-procedures has a chance to meet the former correct instance of P. Since we know the 

target program P, we know the former is correct but the latter is overgeneralized. However, it 

seems difficult for the algorithm to decide which is better, because the algorithm is given only 

positive examples and both candidates are consistent with all of them. If the algorithm can 

efficiently (that is, in polynomial time) decide which of competitive hypotheses has a smaller 

model, then it may avoid producing an overgeneralized hypothesis and achieve consistent 

and conservative polynomial update time inference. However, it is still open whether a model 

containment problem for primitive Prologs is solved efficiently. 
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Contrastively, in [AIS92] , we introduced another sub-class of linear Prologs of which ele

ment has only one 2-mmg of its model and presented a consistent and conservative polyno

mial update time inference algorithm for the class. The class is also a sub-class of context-free 

transformations that was originally introduced by Shapiro in his study on MIS [Sha81 ] . Al

though the sub-class is so restrictive, it can be shown that the sub-class still includes several 

non-trivial programs in context-free transformations such as append, plus, prefix etc. For 

the class of primitive Prologs, it is still open if there exists a consistent and conservative 

polynomial update time inference algorithm. 

In Chapter 5, we discussed the problems in extended model inference, especially, the 

problems concerned with inventing new predicates. We also proposed a very simple approach 

to the problems. 

Because of the strict restrictions on syntax, the expressive power of the programs intro

duced in Section 5.4 are restricted to some particular domain. Conversely, however, if an 

domain can be represented by some particular representation which overcomes the problems 

mentioned in the chapter, then we might develop a method for an efficient inductive learning 

over the domain. On the other hand, some kind of programming patterns can be found in 

practical programs. By combining some patterns which have the properties mentioned in 

Section 5.4.4, it will be possible to construct programs with more flexible syntax. 

As another approach to inventing new necessary predicates, it can be considered to use 

some kind of analogy with known programs. It may be helpful for inventing new predicates 

to see how auxiliary predicates are used in the known programs. Since we also refer to several 

known programs when we make a program, such an approach seems to be more natural. 

The problem of inventing new predicates seems to concern with an essential part of 

intelligent information processing that human beings do. It is certainly important for many 

intelligent AI systems to overcome the problem. 

The main idea presented in Chapter 6 and Chapter 7 was how to introduce necessary 

predicates (states) or nonterminals with their appropriate models (interpretations) . The 

problem of introducing new, unobserved sub-concepts that are necessary for representing 

a target concept is one of the most important and difficult problems in machine learning. 

Although there have been several approaches to this problem [Ban88, MB88] , it seems that 
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none of the solutions proposed to date is satisfactory. Our results presented in the chapters 

are not exceptions. The class shown to be learnable is too restricted for many practical ap

plications. The presented methods depend heavily upon the structural properties of DRLP's 

or SDG's. For example, the uniqueness of a left-most derivation is one of them. Hence, the 

methods are not directly applicable to (at least) the target class containing an ambiguous 

grammar. It is one of the most important future works to find more general and practical 

solutions to this challenging problem. 

In Chapter 6, we considered the problem of regular languages. We proposed an inference 

algorithm for the class of regular models that performs polynomial update time inference 

using membership queries. 

Shapiro [Sha81] treated the problem of model inference for regular languages by using 

the following type of program as a finite representation of a regular language. 

in( D). 

in([O, OIX]) �in( X). 

in([1, 1IX]) � in(X). 

in( [O, 1, OIX]) � in( [1IX]). 

in([o, 1, 1IX]) � in( [OIX]). 

in([1, 0, OIX]) � in([1IX]). 

in([1, o, 1IX]) � in([OIX]). 

The program corresponds to the acceptor of strings over {0, 1} with an even number of O's 

and an even number of 1 's. If the target program to be inferred is such a program with only 

one predicate symbol, then it is sufficient that the given oracle can answer the truth about 

only the predicate symbol. Therefore, as mentioned in the introduction of Chapter 5, it is 

also important in considering extended model inference problems to investigate the power of 

logic programs with only one predicate symbol or with fully restricted number of predicate 

symbols. 

Shapiro [Sha84] showed that an arbitrary alternating Turing machine can be simulated 

by a logic program with only one 3-ary predicate symbol. In such a logic program, however, 

the information of each state of the alternating Turing machine is embedded in one of the 

arguments of the predicate. Therefore, the problem of inferring such a program results in 
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that of inferring program over the language with countably many predicate symbols. Of 

course, this kind of reduction on the number of predicate symbols is out of our interest. We 

are interested in the essential relation between the power of logic programs and the number 

of predicate symbols allowed. 

In Chapter 7, we considered the problem of learning SDL's. The efficiency of the algo

rithm given in the chapter might not be optimal. As shown in the proof of Theorem 7.5, 

it is ensured that the algorithm runs in time polynomial in I No I and .e. The polynomial 

has a rather high degree. The polynomial is larger than, at least, the size of the largest 

hypothesis, O(INoi3P6). If we can set each intermediate hypothetical grammar to an SDG, 

we may decrease the degree. While a grammar G in 2-standard form has, in the worst case, 

INI x IL:I x (INI + 1)2 productions, an SDG G has at most INI x IL:I productions. Since 

the operation performed most frequently by the algorithm is to parse given counterexamples 

on each hypothesis G, this reduction in size of each hypothetical grammar will decrease the 

complexity of the learning algorithm. Obviously, such a restriction on hypothetical gram

mars also results in the development of an algorithm that produces an SDG as its output 

using normal equivalence queries and membership queries. The efficient learnability of SDL's 

from a minimally adequate teacher is still open. 
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