
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Generalization and Predicate Invention in
Learning Logic Programs

石坂, 裕毅

https://doi.org/10.11501/3065651

出版情報：九州大学, 1992, 博士（理学）, 論文博士
バージョン：
権利関係：

Generalization and Predicate Invention in Learning

Logic Programs

Hiraki Ishizaka

International Institute for Advanced Study of Social Information Science (liAS-SIS)

FUJITSU LABORATORIES LTD.

140, Miyamoto, Numazu, Sbizuoka 410-03, Japan

E-mail : hiro@iias.flab.fujitsu.co.jp

Abstract

We consider the problem of learning logic programs from examples. In this thesis the problem

is treated as a model inference problem given by Shapiro. The theory of model inference is

known to be a very elegant framework for inductive inference over the first order predicate

logic. Since the class of logic programs is an instance of the first order predicate logic, the

theory is also applicable to inductive inference of logic programs. We reconsider the model

inference problem for logic programs from the following two viewpoints: using generalization

and inventing auxiliary predicates in learning logic programs.

In the first half of the thesis, the applicability of least generalizations in learning logic

programs is considered. One aspect of learning is to memorize a lot of experiences and

generalize them appropriately. Such an appropriate generalization over the domain of first

order words was given by Plotkin. We discuss the usage of the least generalization for

constructing part of a target logic program, that is, each head of clauses in the program.

Furthermore, we give an algorithm for learning the class of very restricted logic programs

called primitive Prologs using minimal multiple generalizations. The minimal multiple gen

eralization is a natural extension of the least generalization. The minimal multiple gener

alization generalizes given first order words by several words, while the least generalization

does by a single word. The property of the minimal multiple generalization makes it possi

ble to perform fine generalization and to construct the heads of several clauses in a target

program at the same time. One of the learning algorithm presented in this thesis constructs

the heads of a program using the minimal multiple generalization and will be shown to learn

the class of primitive Prologs efficiently.

The second half of the thesis is concerned with the problem of inventing auxiliary predi

cates in learning logic programs. In general, a logic program consists of several predicates.

However, the main concept to be defined by the program is represented by one of them. In

learning from examples, the given examples are focused on the main concept. Thus, another

predicates concerned with auxiliary concepts are not observed in the given examples, so that

the learning algorithm is obliged to invent such a predicate for itself if it is necessary.

In this thesis, we consider the problem in the framework of learning formal languages.

Formal languages such as regular languages can be represented by grammars or automata

and the grammar or the automaton can be represented as a very restricted logic program,

in which each predicate symbol corresponds to a nonterminal of the grammar or a state

of the automaton. That is, the problem of inventing predicates in learning logic programs

corresponds to that of inventing nonterminals or states in learning formal languages. We

shall present two algorithms for learning formal languages: one for regular languages and

the other for simple deterministic languages. For each algorithm, we develop methods for

inventing new states of an automaton and new nonterminals of a grammar respectively. Both

algorithms are shown to perform efficient learning with inventing states or nonterminals.

11

Acknowledgements

First and foremost, I am deeply grateful to my advisor Setsuo Arikawa of Kyushu University.

He directed my research during my last three years at Kyushu University and gave me

instructive suggestions and ceaseless encouragement. He was also willing to serve as my

thesis supervisor, wade through poorly written drafts, and offered numerous improvements

and suggestions. I would like to thank other members of my judging committee, Nagata

Furukawa, Yasuo Kawahara, and Hiroto Yasuura for their many valuable comments.

I also express my gratitude to Takeshi Shinohara for many discussions on inductive

inference and much helpful advice. In particular, the study developed in Chapter 4 was

conducted by him. T he chapter is also based on a joint work with Hiroki Arimura. Without

his elegant framework of the minimal multiple generalization, the content of the chapter will

not appear. Especially, the proofs of Lemma 4.5 and Lemma 4.6 are given by him. Akihiro

Yamamoto read the initial draft of Chapter 3 and made useful comments. I appreciate the

support from the people at RIFIS, Kyushu University, especially, Satoru Miyano and Ayumi

Shinohara.

Thanks to Makoto Haraguchi for introducing me to least generalization and analogical

reasoning. Takashi Yokomori directed my research during my first two years at Fujitsu.

Discussions with him contributed to the content of Chapter 6 and Chapter 7. Four years at

ICOT Research Center were also good experiences for me. I would like to thank Kazuhiro

Fuchi, the director of ICOT Research Center, Koichi Furukawa, and Ryuzo Hasegawa for

giving me the opportunity to conduct a part of this work into the Fifth Generation Computer

Systems Project. Conversations with David Haussler, Klaus Jantke, Philip Laird, Stephen

Muggleton, and Rolf Wiehagen during the course of my research were very helpful.

Thanks to the members of liAS-SIS, Fujitsu Laboratories Ltd .. I would like to thank

Toshio Kitagawa, the former president of liAS-SIS, Hajime Enomoto, the former director of

liAS-SIS, Shigeru Sato, the director of liAS-SIS, Mitsuhiko Toda, Kozo Sugiyama, Hajime

Sawamura, for giving me the opportunity to pursue this work and their warm encourage

ment. Discussions with the members of Machine Learning Group at liAS-SIS, Yuji Takada,

Yasubumi Sakakibara, Kunihiko Hiraishi, Masahiro Matsuoka, and Takeshi Koshiba were

iii

very fruitful. I am also grateful to all people at liAS-SIS for providing an environment of

friendship and stimulation.

Finally, I thank my parents.

lV

Contents

1 Introduction

1.1 Generalization .

1.2 Predicate Invention

1.3 Outline of Thesis

2 Preliminaries

2.1 Logic Programs

2.1.1 Basic definitions .

2.1.2 Model theory for logic programs .

2.1.3 Proof trees .

2.2 Model Inference . .

2.3 Formal Languages .

2.3.1 Finite-state automata and regular languages

2.3.2 Context-free grammars and languages . .

2.3.3 Model theory for context-free grammars

3 Least Generalization in Learning Logic Programs

3.1 Least Generalization

3.2 Model Preserving Instantiation

3.3 Program Heads and Least Generalizations

4 Learning Primitive Prologs from Positive Facts

4.1 Primitive Prologs and Model Inference from Positive Facts

4.2 Nlinimal Multiple Generalization

1

2

3

5

7

7

7

10

10

11

14

14

15

16

19

20

21

24

27

29

30

4.3 DMPLG's of Primitive Prologs

4.4 A Greedy Search Algorithm for the Body .

4.5 Polynomial Update Time Inferability from Positive Facts

5 Model Inference with Predicate Invention

5.1 An Extended Model Inference Problem

5.2 Problems in Extended Model Inference

5.3 A Simple Approach to the Problems .

5.3.1 When a new predicate is necessary

5.3.2 The model of a new predicate

5.4 Examples of Restricted Programs

5.4.1 DRLP

5.4.2 LMLP

5.4.3 SDG .

5.4.4 Simple recursive programs

6 Learning Regular Languages

7

8

6.1 Regular Model Inference Problem

6.2 An Extended Model of a Regular Model

6.3 A Regular Model Inference Algorithm .

6.4 Correctness of the Algorithm

6.5 Time Complexity of the Algorithm

Learning Simple Deterministic Languages

7.1 SDG and SDL

7.2 Learning via Queries

7.3 A Learning Algorithm for SDL.

7.4 Diagnosing an Incorrect Hypothesis

7.5 Generating Nonterminals and Productions

7.6 Correctness and Complexity

Conclusion

vi

35

41

44

49

51

52

54

54

55

56

56

57

58

59

63

64

68

70

74

81

83

85

86

88

89

91

93

97

Bibliography 103

vii

Chapter 1

Introduction

The problem of machine learning is one of the most important and difficult problems in

developing intelligent systems. In this thesis, we consider the problem of learning logic

programs from examples .. The theoretical framework concerned with the problem was first

given by Shapiro [Sha81] . He formalized the problem as an inductive inference over the first

order logic. Our framework of learning logic programs based on his formalization.

Here, we illustrate the framework of learning logic programs considered in this thesis. In

learning from examples, the example indicates an input-output example of the program. For

a logic program, such an example is represented by a ground atom. For example, suppose

the following simple logic program for appending two lists:

append([XIY], Z, [XIW]) +-- append(Y, Z, W).

append(0, X, X).

For the program, ground atoms such as

append([a, b], [c], [a, b, c]), append([a], [b], [a, b]), append([a], 0, [a])

are correct examples which are computed (or proved) by the above logic program and ground

atoms such as

append(0, [a],[]), append(0, 0, [a]), append([a, b], [c], [c, a, b])

are incorrect ones. The problem of learning logic programs considered in this thesis is

to construct a program as above from some information about its correct and incorrect

examples.

1

By the theory of logic programs, the set of all correct examples for a program can be

identified with the least Herbrand model of the program. Thus the learning logic programs

from examples is formalized as the problem to find a logic program from information about

the least Herbrand model of the program. Shapiro called such a problem a model infer

ence problem. In this thesis, we reconsider the problem from the two viewpoints: us1ng

generalization and inventing auxiliary predicates in learning logic programs.

1.1 Generalization

We often use our previous experience to solve the problem we are now faced with. The

behavior can be seen as a process to solve the problem using something learned from the

experiences. However, each individual knowledge obtained from the experiences seldom

completely match the situation of the current problem. The direct use of the collection of

individual knowledge is not so flexible to be applied to actual problem solving. Thus, the

knowledge should be generalized to be applicable even in a different situation. On the other

hand, every knowledge cannot be applicable to solve a problem. Thus, the generalization

should be made moderately.

Plotkin [Plo70] formalized such a moderate generalization over the domain of first order

words (a word is a term or an atom) as a least generalization. For example, suppose that

the following facts about the predicate append(_,_,_) are known:

append([a, b], [c], [a, b, c]), append([a], [b], [a, b]), append([a], 0, [a]), append([b], 0, [b]).

Then, the atoms append(X, Y, Z) or append([XjY], Z, W) are generalizations of them and

append([XIY], Z, [XjW]) is a least generalization, where X, Y, Z, W are variables. That

is, a generalization is obtained from the individual atoms by replacing each different term

occurring at the same position in the atoms by a different variable. On the other hand, the

least generalization is a generalization preserving the properties common to the all atoms as

much as possible.

We can find from the above example that the least generalization corresponds to the

head of a clause in the append program. This leads to one motivation of our study. That

2

is, we consider the applicability of the least generalization to construct a part of a target

program.

Recently, Arimura (AS091b] proposed the notion of minimal multiple generalization

which is a natural extension of the least generalization. The minimal multiple general

ization generalizes given ground atoms by several atoms, while the least generalization does

by a single atom. This extension realizes more flexible generalization. For example, suppose

the following correct examples of the append program.

append(0, 0, 0), append([a], 0, [a]), append(0, [b], [b]),

append([a], [b], [a, b]), append([a, b], [c], [a, b, c]).

Then a least generalization of them is append(X, Y, Z) . On the other hand, the prur

{append([], X, X), append([XIY], Z, [XIW])} of atoms is a minimal multiple generalization of

them. Although the least generalization represents all ground atoms with predicate symbol

append(_,_,_), the minimal multiple generalization represents more restricted ones. Thus, a

minimal multiple generalization is finer than a least generalization.

Furthermore, since a logic program consists of several clauses in general, it is preferable

to generalize ground atoms by several atoms. That is, we can expect to construct the several

heads of clauses at the same time by minimal multiple generalization. In fact, the above

minimal multiple generalization corresponds to the pair of heads of clauses in the append

program.

In Chapter 3 and Chapter 4, we discuss the problem of applicability of the least gener

alization and the minimal multiple generalization in learning logic programs.

1.2 Predicate Invention

In learning logic programs from examples, the most difficult problem is to find auxiliary

predicates which are necessary for a target program but not observed in examples of the

target program. For example, we know that a program for reversing a list can be written

3

using an auxiliary predicate concat(_, _, _) as follows:

reverse([XIY], Z) +-- reverse(Y, W), concat(X, W, Z).

reverse(O, 0).
concat(X, [YIZ], [YIW]) +-- concat(X, Z, W).

concat(X, [],[X]).

Of course, we can make another reverse program using different auxiliary predicates, e.g.

append(_,_,_). However, the important point is that no information about such auxiliary

predicates explicitly appears in the examples of reverse(_,_). Thus, in learning logic pro

grams in which an auxiliary predicate is essential, the learner has to invent the predicate for

itself.

Shapiro called such auxiliary predicates theoretical terms and assumed, in the theory

of model inference, that the information about them is also given to the learner. That is,

the given information in model inference is extended to the entire model of some specific

program but not focused on examples of some specific predicate in the program. From the

viewpoint of learning from examples, the assumption seems to be so restrictive. The problem

of inventing new predicates is inevitable in learning logic programs.

Recently, several researchers are try ing to solve this challenging problem [MB88, Mug90,

Ban88, Lin89b, Lin89a] . The second part of this thesis is also motivated by the problem.

Especially, in this thesis, we consider the problem in learning formal languages. Formal lan

guages such as regular languages can be represented by grammars or automata. A grammar

or an automaton can be represented as a restricted logic program, in which each predicate

symbol corresponds to a nonterminal of the grammar or a state of the automaton. The

restriction is helpful for us to overcome the difficulty of the problem.

In this thesis, we shall present two algorithms for learning formal languages. One is for

regular languages and another is for simple deterministic languages. For each algorithm, we

shall develop a method for inventing new states of an automaton and new nonterminals of

a grammar. We shall show that both algorithms perform efficient learning with inventing

states or nonterminals.

4

1.3 Outline of Thesis

In Chapter 2, we make preparations for the discussions developed in the succeeding chap

ters. First, we give definitions concerned with logic programs. Then we define the problem

of learning logic programs as a model inference problem. Basic notions and the notation

concerned with formal language theory are also introduced for the discussions in Chapter 6

and Chapter 7.

In Chapter 3, we discuss the applicability of the least generalization in learning logic

programs. We introduce a notion of d-model preserving instance of a logic program. The

d-model preserving instantiation is a kind of program transformation and shown to preserve

the least Herbrand model of an original program. We show a relation between a least

generalization and a d-model preserving instantiation.

In Chapter 4, we discuss the applicability of minimal multiple generalization in learning

logic programs. We show that a class of very restricted logic programs called primitive

Prologs is efficiently learned from only correct examples. The class of primitive Prologs

is a sub-class of k-clause linear Prologs which is known to be learnable from only correct

examples but not proven to be efficiently learnable. We present an algorithm which learns

the class of primitive Prologs efficiently. The algorithm constructs the heads of clauses in a

desired program using the minimal multiple generalization.

In Chapter 5, we discuss the problem of predicate invention in learning logic programs.

We consider what problem is essential in inventing new predicates. Then we propose several

classes of restricted logic programs for which the problem might be made clear. In fact, two

of them, the class of deterministic regular logic programs and the class of simple deterministic

grammars will be shown to be learned efficiently by overcoming the problem in the succeeding

two chapters.

In Chapter 6, we discuss the problem of learning regular languages. A regular language

can be represented by a very simple logic program, called a deterministic regular logic pro

gram, which exactly simulates a deterministic finite-state automaton. We give an algorithm

which efficiently learns any deterministic regular logic program. The algorithm is based on

the model inference algorithm given by Shapiro [Sha81, Sha82] . However, the presented

5

algorithm has the ability, which Shapiro's algorithm does not have, to invent new necessary

predicates (states) automatically. We develop a method for extracting the information about

the invented predicates from the information about one target predicate, which corresponds

to the initial state of the target automaton. We show the validity of the method and the

correctness of the algorithm. We also analyze the time complexity of the algorithm.

In Chapter 7, we extend the method in Chapter 6 for learning simple deterministic lan

guages. We give an algorithm for learning simple deterministic languages with inventing

necessary nonterminals. Angluin [Ang87a] showed that the class of k-bounded context-free

grammars is learnable in polynomial time using membership queries, nonterminal member

ship queries and equivalence queries. Contrastively, the algorithm presented in Chapter 7

acquires necessary nonterminals for itself. Hence it does not require the nonterminal mem

bership queries. We show the correctness of the algorithm and discuss its time complexity.

Finally, in Chapter 7, we conclude this thesis by summarizing the results presented in

this thesis and stating some future problems.

6

Chapter 2

Preliminaries

In this chapter, we give some basic notions and notational conventions needed in this thesis.

We use the fundamental concepts from first order logic and formal language theory. More

precise information on these concepts would be found in (CL 73, Lov78, Llo84, Har79) .

In Section 2.1, we give definitions concerned with logic programs. In Section 2.2, we

define a problem of learning logic programs according to Shapiro's theory of model inference

[Sha81, Sha82) . In Section 2.3, we introduce some definitions on formal language theory

necessary for the discussions in Chapter 6 and Chapter 7.

2.1 Logic Programs

2.1.1 Basic definitions

Let .C be a first order language. r, II, and X denote the set of function symbols, the set of

predicate symbols, and the set of variable symbols of£, respectively. We regard a constant

symbol as a 0-ary function symbol and assume that r has at least one constant symbol

throughout this thesis.

We adopt some informal notational conventions for the symbols. Variable symbols will

normally be denoted by the letters U, V, W, X, Y, and Z (possibly subscripted) . Constant

symbols, that is, 0-ary function symbols will normally be denoted by the letters a, b, and

c (possibly subscripted) . Other function symbols will normally be denoted by the letters

7

f, g, and h (possibly subscripted). Predicate symbols will normally be denoted by the letters

p, q, and r (possibly subscripted). Occasionally, it will not be convenient to apply these

conventions rigorously. In such a case, possible confusion will be avoided by the context.

A clause is a well-formed formula of the form:

where A1, ... , Am, B1, . .. , En are atoms and m, n s; 0. We denote the above clause by

The clause with m = n = 0 is called the empty clause and denoted by D.

A definite clause is a clause of the form:

A is called the head of the clause and the sequence B1, ... , Bm of atoms is called the body

of the clause. We mainly deal with definite clauses. So, hereafter, we call them just clauses.

For a clause C, the head of C is referred by head(C) and the body of C by body(C). A

clause with empty body, that is in the case n = 0, is called a unit clause. We identify a unit

clause A � with the atom A. A logic program (program, for short) is a finite set of clauses.

For a program P = { C1, ... , Cn}, the collection of head(Ci) (1 s; i s; n) is said to be the

program heads of P.

Example 2.1 The following is a typical program for appending two lists: { append(0, X, X). } P
=

append([XIY], Z, [XIW]) <- append(Y, Z, W). '

where 0 is a constant and [-1-J is a binary function interpreted as an empty list and a list

constructor, respectively. Usually, a list [a1J[a2J · ··[ani OJ···] is abbreviated as [a1, a2, ... , an]·

A word is either a term or an atom. An expression is either a word, a clause, or a program.

The size of an expression e, denoted by size(e), is the number of occurrences of symbols

appearing in the expression e. For a set S of expression, size(S) is defined as LeES size(e)

and lSI as the number of elements in S.

8

A (possibly empty) finite sequence of integers of the form (i1, ... , in) is called an index.

For a word W and each sub-word t of W, the index I of t in W is defined inductively as

follows:

1. If W = t, then I= () .

2. If W is of the form <p(t1, ... , tm) and tis the sub-word of ti such that the index oft in

ti is (j1, ... , Jn), then I= (i, J1, ... , Jn)·

Let I be the index of a sub-word in a word W. Then W(I) denotes the sub-word.

For an expression E, var(E) denotes the set of variables appearing in the expression E.

An expression with no variables is said to be ground. The Herbrand base of£, denoted by

B.c, is the set of all ground atoms over £. The set of all ground terms over £ is called the

Herbrand universe of£ and denoted by U.c,.

A substitution 8 is a finite set of the form { X1/t1, ... , Xn/tn}, where each Xi is a variable,

each ti is a term distinct from Xi and the variables X1, ... , Xn are mutually distinct. Each

element X.i/ti is called a binding for Xi. The set of variables {X1, ... , Xn} is called the

domain of the substitution 8 and denoted by dom (B) . A substitution 8 is called a ground

substitution if the t/s are all ground terms. For two substitution 8 = {X1/t1, ... , Xnftn}

and a = {Y1/ s1, ... , Ym/ sm}, the composition of 8 and a, denoted by Ba, is defined as the

substitution obtained from the set

by deleting any binding Xi/tia for which xi= tia and deleting any binding Y;/ Sj for which

Yj E dom (B) .

Let 8 = {X1/t1, ... , Xn/tn} be a substitution and E be an expression. Then EB, the

instance of E by 8, is the expression obtained from E by simultaneously replacing each

occurrence of the variable Xi by the term ti (1 � i � n) . If EB is ground, then EB is called

a ground instance of E and G (E) denotes the set of all ground instances of E. Let E and F

be expressions. E (F, respectively) is said to be a variant ofF (E, respectively) , denoted

byE= F, if there exist substitutions B and a such that EB = F and E = Fa.

Let S = { w1, . . . , wn} be a finite set of words. A substitution 8 is a unifier of S if

9

If there exists a unifier for S, then S is said to be unifiable. Also, a word wi is said to be

unifiable with a word w2 if the set {WI, w2 } is unifiable. For a unifiable set S, a unifier 8 of

S is called a most general unifier if, for every unifier (]" of S, there exists a substitution r

such that (]" = e,.

2.1.2 Model theory for logic programs

An Herbrand interpretation (interpretation, for short) is a subset of B.c. Let C = A +

BI, ... , En (n � 0) be a clause and M be an interpretation. A ground atom a is said to

be covered by C with respect to M if there exists a substitution 8 such that a = AB and

BiB E M for each i (1 � i � n) . When n = 0, the substitution 8 is sufficient to satisfy only

the first condition a= AB. The set of all ground atoms covered by C with respect to M is

called the derivative interpretation (d-interpretation, for short) of C with respect to M and

denoted by C(M). Note that, for a unit clause C, it holds that C(M) = G(C), since we do

not distinguish between the unit clause and the atom appearing in the head of the clause.

A clause C is said to be true in an interpretation M if C (M) � M, otherwise C is said

to be false. If every clause in a program P is true in M, then the program P is said to be

true in M and false otherwise. If a program P is true in an interpretation M, then M is

called an H erbrand model (model, for short) of P. When M is known to be a model of some

program, the above defined derivative interpretation of C with respect to M is restated as

the derivative model (d-model, for short) of C with respect toM.

Van Emden and Kowalski [vEK76) showed the model intersection property, that is ,the

intersection of models of a program P is also a model of P. The intersection of all models

of P is called the least Herbrand model of P and denoted by M(P). Mp will be often used

instead of lvf(P) to decrease the number of parentheses.

2.1.3 Proof trees

For a program P and a ground atom a, a derivation tree of a on P is a finite tree that

satisfies the following conditions:

1. Each node of the tree is a ground atom.

10

2. The root node is a.

3. For each internal node A and its children E1, ... , En (n > 1), A +- E1, ... , En is a

ground instance of a clause in P.

For a program P and a ground atom a, a proof tree of a on P is a derivation tree of a on P

such that each leaf of the tree is a ground instance of a unit clause in P.

For a ground atom a and a program P, P � a denotes that there exists a proof tree of

a on P and P � n a denotes that there exists such a proof tree with n nodes.

In this thesis, we assume some effective procedure which, for any given ground atom a

and any given program P, constructs a proof tree of a on P if it exists. Such a procedure

can be implemented using SLD-resolution [Llo84]. From the equivalence between the declar

ative semantics of logic programs defined by the least Herbrand model and the procedural

semantics defined by SLD-resolution [Llo84] , it holds that a E M (P) if and only if P � a

for any ground atom a and a program P. Thus, the assumed procedure constructs a proof

tree of any a E M (P) on P. Conversely, if the procedure succeeds to construct a proof tree

of a E B.c of P, then it is ensured that a E M (P).

Unfortunately, for a ground atom a ¢. M (P) , it is not decidable whether a is in M (P)

in general. In other words, the membership problem of a ground atom in M (P) is semi

decidable. However, some restrictions on programs turn the problem to be decidable. Such

restrictions are found in [ASY89, Yam89, Shi91]. Especially, in his paper [Ari91] , Arimura

showed that the problem for the class of weakly reducing programs is decidable. Each class of

logic programs we shall discuss its learnability in this thesis is a sub-class of weakly reducing

programs. Thus, in this thesis, we assume some procedure which, for a given program P

and a ground atom a, returns a proof tree of a on P if a E M (P), and "No" otherwise.

2.2 Model Inference

The model inference problem and algorithm were originally introduced by Shapiro [Sha81] .

He formalized the learning problem on first order logic and gave some interesting learning

strategies that takes full advantage of sy ntactic and semantic properties of logic. In this

section, we review the model inference problem and algorithm for logic programs according

11

to [Sha82, IA91).

Let M be the the least Herbrand model of an unknown program. A fact about M is a

pair of the form (a, V) where a E Be and V ==true if a E M, V == false otherwise. The

atom a in a fact (a, V) is called a positive fact (negative fact) if V = true (V = false).

An enumeration of facts about M is an infinite sequence j1, !2, . . . where each fi is a fact

about M and, for any a E Be, a occurs in a fact ei == (a, V) for some i 2 1. Usually, we

assume some device called an oracle forM as a source of information about a target least

Her brand model M. The enumeration of facts about Mis given by the oracle. In Chapter 5,

Chapter 6, and Chapter 7, we assume an oracle which can give the information in different

way from an enumeration of facts.

Let £ be a first order language and M be the least Her brand model of an unknown

program over £. Then a model inference problem is defined as follows:

Suppose that £ and an oracle for M are given. Then infer a program P such

that M (P) == M from the information given by the oracle.

There are several criteria for success of inference and ways of giving information about

M. Actually, in Chapter 4, Chapter 6, and Chapter 7, we consider the model inference algo

rithms under three different situations in which the adopted criterion and the way of giving

information are different respectively. In this section, we give only the original situation in

which a model inference algorithm is defined.

A model inference algorithm (inference algorithm, for short) A is an algorithm that

iterates the process "input request --+ computation --+ output". Each output of A, called a

conjecture of A, is a program. During computing a conjecture, such an inference algorithm

usually produces several programs as candidates for the conjecture. Such candidate programs

are called hypotheses. Let P1, P2, . • . be a sequence of conjectures of A given an enumeration

of facts about the least Herbrand model of an unknown program as its input sequence. A

is said to converge to a program P for the enumeration if there exists an integer n 2 1

such that Pi == P for any i 2 n. A is said to identify the model M in the limit if A

converges to a program P such that lvf(P) = lvf for any enumeration of facts about Jv!. A

class M of least Herbrand models of logic programs is said to be inferable if there exists

an inference algorithm which identifies any model in M. Identification in the limit defined

12

above, originally given by Gold [Gol67], is a typical criterion for the success of inductive

inference. Figure 2.1 illustrates the framework of the model inference.

In this thesis, we treat the problem of learning logic program from examples as a model

inference problem. Hence, in what follows, we often use the terms "infer" or "inferable"

instead of the terms "learn" or "learnable". Furthermore, we often identify the class of

programs and the class of least Herbrand models of the programs. Hence, sometimes, we

say like "a class of programs is inferable".

Figure 2.1: The framework of the model inference

I Inference algorithm

�

Let P be a conjecture of an inference algorithm. Then P is said to be consistent with

a fact (a, V) if it holds that a E M (P) if and only if V = true. P is said to be consistent

with a set of facts if Pis consistent with every fact in the set. Let P1, P2, • . . be a sequence

of conjectures of A for an enumeration e1, e2, ... of facts about a model M and Si be the set

{ e1, e2, ... , ei}· The inference algorithm A is said to be consistent if Pi is consistent with Si

for any i 2 1. A is said to be conservative if � = Pi_1 for any i such that �-1 is consistent

with e i. A is said to be a polynomial update time inference algorithm if there exists some

polynomial f such that, for any stage i, after A feeds the input ei it produces the conjecture

�in f(size(Si)) steps.

Here, we give a general result on model inference obtained by Shapiro [Sha81, Sha82].

A program P is called h-easy if there exists a total recursive function h such that, for any

a E M(P), there exists a proof tree of a on P with at most h(size(a)) nodes. A model M

of a program is called h-easy if there exists an h-easy program such that M(P) = M.

Theorem 2.1 Let h be a total recursive function. Then there exists a consistent and con

servative inference algorithm that identifies any h-easy model in the limit.

13

A simple inference algorithm based on the identification by enumeration technique [Gol67]

supports the above theorem. Such an algorithm, however, is known to be too inefficient. In

order to improve the inefficiency, Shapiro developed an incremental inference algorithm.

Although his algorithm is essentially based on the enumeration technique, it can perform

fairly efficient enumeration by taking full advantage of several logical properties desirable for

inductive inference.

Shapiro gave two important sub-procedures for the incremental model inference. The one

is the contradiction backtracing algorithm that detects a false clause in a false hypothesis in

the target model M. The other is the refinement operator that enumerates clauses according

to the order from general to specific. The contradiction backtracing algorithm is also essential

in our algorithm given in Chapter 6 and Chapter 7.

2.3 Formal Languages

In this section, we introduce some basic definitions on formal language theory necessary for

the discussions in Chapter 6 and Chapter 7.

An alphabet is a finite non-empty set of distinct symbols. For a given alphabet X, the

set of all finite strings of symbols from X is denoted by X*. The empty string is denoted by

c. x+ denotes the set X*- { c }. For two string x and y, x · y denotes the concatenation of

x and y. We may often omit ·, that is, the concatenation of x and y is simply denoted by

xy. For a string x = a1a2 · · · an, Prei(x) denotes the string a1a2 • · • ai, and Su fi(x) denotes

the string ai+Iai+2 · · · an. For a string x, lxl denotes the length of x. If S is a finite set, then

l S I denotes the cardinality of S.

Let :E be an alphabet. A language L over :E is a subset of 2:*. For a string x in 2:* and a

language Lover :E, let xL = {y I xy E L} (Lx = {y I yx E L}) . The set xL (Lx) is called

the left{right)-derivative of L with respect to x.

2.3.1 Finite-state automata and regular languages

A deterministic finite-state automaton (DFA, for short) is a 5-tuple A

where

14

(Q, 2:, 8, qo, F),

1. Q is a finite non-empty set. Each element of Q is called a state.

2. I: is an alphabet such that Q n I: = cjJ.

3. b is a function from Q x I: into Q called the transition function.

4. q0 is an element of Q called the initial state.

5. F is a subset of Q called the final states.

The transition function 8 in the above definition can naturally be extended to the function

from Q x I:* into Q as follows:

b (q, c) = q and b (q, ax) = b (b (q, a), x).

The size of a DFA A, denoted by size(A), is defined as the number of states of A.

A string x E I:* is said to be accepted by a DFA A = (Q, I:, b, qo, F) if b(q0, x) E F.

The set of all strings accepted by the DFA A is denoted by L(A). That is, L(A) = {x E

I:* I b(q0, x) E F}. A language L � I:* is called regular if there exists a DFA A such that

L = L(A). For any regular language L, the minimum size DFA accepting L is unique up to

an isomorphism (i.e., a renaming of the states).

2.3.2 Context-free grammars and languages

A context-free grammar (CFG, for short) is a 4-tuple G = (N, I:, P, S), where

1. N is a finite non-empty set. Each element of N is called a nonterminal symbol.

2. .I: is an alphabet such that N n I: = c/J. Each element of .I: is called a terminal symbol.

3. S is an element of N called the start symbol.

4. P is a finite set of production rules of the form A � a, where A E Nand a E (N U .I:)*.

A CFG G is in Greibach normal form if each production rule of G is of the form A � aa,

where A E N, a E .I: and a E N*. Note that, in Chapter 7, we consider only c-free grammars

and languages. A CFG G is said to be in m-standard form if G is in Greibach normal form

and, for each production A -t aa of G, lal :::; m. The size of a grammar G, denoted by

size(G), is the sum of INI, 12:1, IPI, and the sum of the lengths of the right-hand sides of all

the productions in P.

15

For {3, r E (N U I:)*, binary relation * is defined as follows: {3 =* r if and only if there

exist 81, c52 E (Nul:)* and a production rule A� a E P such that {3 = 81A82 and r = c51ac52.

A derivation from {3 to r is a finite sequence of strings {3 = f3o, {31, · · · , f3n = r such that, for

each i, f3i =} f3i+1. If there exists a derivation from {3 to r, then we denote it by {3 * * r

and r is said to be generated from {3. That is, the relation =** is the reflexive and transitive

closure of *.

In each step of a derivation, if the left-most nonterminal occurrence in f3i is replaced,

then such a derivation is said to be a left-most derivation of r from {3. In what follows,

unless otherwise stated, {3 =** r denotes a left-most derivation of r from {3.

The language of a nonterminal A, denoted by L(A), is the set of all x E I:* such that

A =}* x. Similarly, for a E N*, L(a) denotes the set of all x E I:* such that a =}* x.

(To emphasize the grammar being used, we sometimes use the subscript G, e.g., S *a x

or L0(A).) The language of a grammar G, denoted by L(G), is just L(S), where Sis the

start symbol of G. A language L is called context-free if there exists a CFG G such that

L = L(G).

A derivation tree T of a grammar G = (N, l:, P, S) is a tree such that each internal node

of T is labeled with an element of N, each leaf of T is labeled with an element of I: and,

for each internal node labeled with A E N, there exists a production A � a in P , where

a E (N U I:)* is the concatenation of the labels of its children in left-to-right order. Let T

be a derivation tree of a grammar. The root label ofT is denoted by rt(T). The frontier of

T, denoted by fr(T), is the concatenation of the labels of its leaves in left-to-right order. A

derivation tree T illustrates a derivation from rt(T) E N to fr(T) E I:*.

2.3.3 Model theory for context-free grammars

As in the case of logic programs, we can define the notion of models for CFG's.

Let G = (N, l:, P, S) be a CFG. For each nonterminal A E N, a model of A, denoted

by M(A), is a subset of I:+. A modellvf for the grammar G consists of a model of each

non terminal.

A replacement is a finite tuple (possibly empty) of pairs of a terminal string y1 E I:* and

16

a nonterminal Ai E N:

Let p = ((Yll AI), ... , (Yn, An)) be a replacement and /3 be a string in (Nu�)*. pis said to be

compatible with f3 if there are finite strings x0, • • . , Xn E �* such that /3 = XoA1x1A2 · · · AnXn.

If pis compatible with /3, then the instance of f3 by p, denoted by p[/3], is the terminal string

obtained from /3 by replacing each occurrence of Ai in f3 by the terminal string Yi· An empty

replacement pis compatible with any terminal string x and p[x] = x.

Let M be a model for a grammar G. A production A -4 a is said to be incorrect for M if

there exists a replacement p = ((y1, A1), ... , (Yn, An)) that is compatible with a such that,

for each i, Yi E M(Ai)1, but p(a] <t M(A). A production is said to be correct for M if it is

not incorrect for M.

Example 2.2 Consider the CFG G = ({ S, A, B, C}, {a, b }, P, S) with

P = {S -4 aA,A -4 b,A -4 aB,B -4 aBC,B -4 bC,C -4 b}.

Let M be a model such that, for each nonterminal X E N, M(X) = L(X), that is,

M = { M(S) = {ambm 11 � m}, M(A) = {am-lbm 11 � m},

M(B) = {am-2bm I 2 � m}, M(C) = {b} }.

Then, a production A -4 aBC is incorrect for M, because there exists a replacement p =

((bb, B), (b, C)) that is compatible with aBC such that bb E M(B), bE M(C), but the string

p[aBC] = abbb is not in M(A).

More generally, we have the following proposition.

Proposition 2.2 Let G = (N, �' P, S) be a CFG and M be a model for G such that, for

each nonterminal A EN, M(A) = L(A). Then every production in P is correct forM.

1 When a:: has no non terminal, then this condition is not necessary.

17

18

Chapter 3

Least Generalization in Learning

Logic Programs

Generalization is one of the most important concepts in learning. Theoretical studies on a

generalization over words are found in [Plo70, Ley70, JLMM88) .

By Plotkin's definition, a word w1 is more general than a word w2 if w2 is an instance

of w1. For any clause C, since any ground atom a which is covered by C is an instance

of the head of C, the head is a generalization of ground atoms in C(Mp) . Although, there

exist several generalizations for a set of ground atoms, a typical generalization called a least

generalization exists uniquely modulo = and can be computed in time polynomial in the size

of the set. However, in general, the head of a clause C is not always the least generalization

of C(Mp) . The problem considered in this chapter is, preserving the least Her brand model

of a program P, whether each clause C in P can be replaced by C' whose head is a least

generalization of C (M p).

In order to answer the problem, we introduce a notion of d-model preserving instanti

ation. A d-model preserving instantiation is a kind of program transformation and shown

to preserve the least Herbrand model of an original program. We show that a substitution

defined as the difference between the head of an original clause C and the alternative head

obtained by the least generalization of C(lvlp) gives the d-model preserving instantiation.

That is, for any program P, there exists an instance P' of P such that M (P) == M (P') and

each instance C' E P' of C E P has a least generalization of C(Mp) as its head.

19

In Section 3.1, we review the least generalization according to [Plo70) . In Section 3.2,

we introduce a d-model preserving instance of a program and show that the instantiation

preserves entire model of a program, that is, the least Herbrand model of the program.

In Section 3.3, we show that a least generalization of C (Mp) brings a d-model preserving

instantiation.

This chapter is based on the paper [Ish88a) .

3.1 Least Generalization

For two words w1 and w2, w1 is said to be more general than w2, denoted by w1 t w2, if

w2 is an instance of w1, that is, there exists a substitution e such that w1B = w2. Note that

if w1 t w2 and w2 t w1, then it holds that w1 = w2. If w1 t w2 but w1 � w2, then it is

denoted by w1 >- w2• For a set S of words, a generalization of S is a word w such that, for

any u E S, w t u.

Definition 3.1 For a set S of words, a least generalization of S, denoted by lg(S), is a

generalization w of S such that, for any generalization u of S, u t w

From the above definition, if w1 and w2 are any two least generalizations, then it holds

that w1 = w2• That is, lg(S) is unique modulo = if it exists.

Example 3.1 For the set

S = {append([a, b), [c), [a, b, c]), append([a], [b], [a, b]) , append([a], 0, [a])},

append(X, Y, Z) or append([XIY], Z, W) are generalizations of S and append([aiX], Y, [aiZ])

is a least generalization of S.

Two words are said to be compatible if they are both terms or have the same predicate

symbol. A set S of words is said to be compatible if any two words in S are compatible.

Theorem 3.1 (Plotkin [Plo70]) Every non-empty finite setS of words has a least gener

alization if and only if S is compatible.

20

Sub-words t1 of a word w1 and t2 of w2 such that t1 ::/: t2 are said to be replaceable if they

satisfy the following two conditions:

1. The index of t1 in w1 is equal to the index t2 in w2.

2. t1 and t2 begin with different function symbols or at least one of them is a variable.

Algorithm 3.1 given by Plotkin [Plo70] computes a least generalization of two compatible

words w1, w2.

Algorithm 3. 1: A least generalization algorithm

Input: Compatible words w1, w2.

Output: lg({ w1, w2}).

Procedure:

wl :== wl; w2 := w2;

while there exist t1 and t2 replaceable in Vi, V2 do

choose a variable x which does not occur in V1, V2;

while there exists an index I such that Vi(I) = t1, Y;(I) = t2 do

vl (I) := x; Y;(I) :=X

output Vi (= V2)

For any finite compatible set S = { w1, w2, ... , wn} of words, the least generalization

lg(S) can be computed by applying the above algorithm n - 1 times iteratively, that is,

lg(S) = lg(w1, lg(w2,lg(... , lg(wn_1, wn) · · ·))) . Since the above algorithm runs in time

polynomial in size(w1) +size(w2), lg(S) can be computed in time polynomial in size(S).

3.2 Model Preserving Instantiation

In this section, we consider a d-model preserving instance of a program P which is a kind

of program transformation. We show that the transformation preserves the least Herbrand

model of an original program.

Let P be a program and C be a clause.

21

Definition 3.2 A d-model preserving instance (DMP, for short) of C with respect to P is

an instance CB of C such that, for any lvf � M(P), CB(M) = C(M).

Definition 3.3 A d-model preserving instance (DMP, for short) of P, denoted by dmp(P),

is a program obtained from P by replacing C E P with its d-model preserving instance with

respect to P.

Example 3.2 Consider the program P = { C0, C1} where

C0 = member(X, [XIY]),

C1 = member(X, [YIZ]) +- member(X, Z).

Let M be any subset of M(P) and C� be the clause

member(X, [Y, ZIW]) +-member(X, [ZIW]).

Then, for any element member(t, list) of M, the length of the list is at least 1. Hence, any

ground atom covered by C1 with respect toM is also covered by C� with respect toM, that

is, C� (M) :2 C1 (M). Since C� is an instance of C1, it is clear that C� (M) � C1 (M). Thus,

the program P' = { C0, C�} is a DMP of P.

A similar notion to the DMP has been introduced by Marriott et al. [MNL88J. They

called the notion a more specific version. A more specific version of a clause C is an instance

of C that preserves all successful derivations concerned with C on a program P. That is,

they defined the notion from the point of view of procedural semantics of logic programs.

Since our definition seems to be more restrictive than that of Marriott's, the two notions

may not be identical. However, the above definition of a DMP is sufficient and comfortable

for our discussion below.

In the following, we show that a DMP of a program P has the same least Herbrand

model as P's. In order to show the equivalence between two least Herbrand models, we use

the mapping Tp which gives the fixpoint semantics of logic programs [vEK76, Llo84]. For a

program P, the mapping Tp : 2Bc -+ 28£, where 28£ is the power set of the Her brand base,

is defined by

Tp(!) = U C(I).
CEP

22

For a mapping f : 28.c � 28.c, I E 28.c is said to be a fixpoint of f if f(I) = I. The least

fixpoint of j, denoted by lfp(f), is a fixpoint I E 28.c off such that I � I' for any fixpoint

I' of f.

Let n be a non-negative integer and w be the set of all non-negative integers. Then

T p j n and T p j w are defined as follows:

Tp j 0 = ¢

Tp j n =Tp(Tp j (n-1))

T p i w = UnEw T p in

The following theorem gives the equivalence between model theoretic semantics and fixpoint

semantics of logic programs.

Theorem 3.2 (van Emden and Kowalski [vEK76]) For any program P, there exists

lfp(Tp) and M(P) = lfp(Tp) = Tp j w.

Corollary 3.3 For any program P, it holds that M(P) = UcEP C(M(P)).

Here we show that a d-model preserving instantiation preserves the least Her brand model.

Theorem 3.4 For any program P, it holds that M(P) = M(dmp(P)).

Proof: Suppose that P consists of clauses Ci (1 � i � m) and dmp(P) consists of clauses

C� (1 � i � m) where C�(M) = Ci(M) for any M � M(P). We show by induction that

Tdmp(P) j n = Tp j n for any non-negative integer n.

For n = 0, Tdmp(P) jO = ¢ = Tp jO.

Suppose that Tdmp(P) j n = Tp j n for some non-negative integer n > 0. From Theo

rem 3.2, it holds that Tp j n � M(P). On the other hand, since C�(M) = Ci(M) for any

M � M(P), it holds that

Thus it holds that

Tdmp(P) j (n + 1) = U c:(Tdmp(P) jn) = U Ci(Tp jn) = Tp j (n + 1).
C�Edmp(P) CiEP

Hence, it holds that Tdmp(P) j n = Tp j n for any non-negative integer n. With Theo-

rem 3.2, this proves the theorem. D

23

3.3 Program Heads and Least Generalizations

For a clause C and a set of ground atoms M, from the definition of C(M), it is clear

that head(C) is a generalization of M. Hence, for a program P and C E P, head(C) is

a generalization of C(lvlp) . Our interest in this section is whether head(C) can be a least

generalization of C(Mp), that is, preserving the least Her brand model of a program P,

whether each clause C in P can be replaced by C' whose head is lg(C(Mp)).

In general, program heads are not always the least generalizations lg(C(Mp)) . For ex

ample, consider the following well-known program that reverses a list:

P=

reverse([XIY], Z) � reverse(Y, Z1), concat(X, Z1, Z).

reverse(O, 0).
concat(X, [Y IZ], [YIW]) � concat(X, Z, W).

concat(X, 0, [X]).

Let C be the first clause in the above program. Then C(Mp) consists of ground atoms of

the form reverse(listl, list2) where listl f []. Since the length of list2 is equal to that of

listl, it must be greater than 1. Hence, it holds that lg(C(Mp)) ::S reverse([XIY], [ZIW])-<

head(C).

Here, we show the validity of inferring program heads as least generalizations by showing

the substitution e such that lg(C(Mp)) = head(C)B derives a d-model preserving instantia

tion. That is, even if each clause C in an original program is replaced by ce whose head is

a least generalization of C(Mp), the least Her brand model of the program is preserved.

Lemma 3.5 Let P be a program and C E P be a clause. Fo r the substitution e such that

lg(C(Mp)) = head(C)B, CB is a DMP ofC with respect toP.

Proof: Suppose C be a clause of the form:

and A' be a least generalization of C(lvlp). Without loss of generality, we may assume that

A' does not share variables with A and e operates only the variables occurring in A, that is,

do m(B) � var(A).

24

We show that CB(M) = C(M) for any Nf � NI (P) .

For any a E C(M), there exists substitution (]" such that a = A(]" and Bi(]" E lvf for

1 ::=:; i ::::; n, where we may assume that dam((]") � var(C). From the definition of C(M),

if M1 � M2 then C(Jvii) � C(M2). Hence, it holds that C(M) � C(Mp) . Since A' is

a least generalization of C(Mp), there exists a substitution 77 such that a = A'77 = A877

and dom(77) � var(A'). Thus we have a = A(]" = A877 for any a E C(M). From the

assumption on the domains of 8, (]", and 77, there exists a substitution 77' such that 87777' = (]".

Such a substitution 77' can be obtained from(]" by deleting the binding Xjt for each variable

X E var(A). Hence, there exists a substitution 87777' such that, for any a E C(M), a = A87777'

and Bi87777' E M for (1 � i � n). Thus, it holds that a E CB(M) for any a E C(M) and

M � M (P).

Conversely, for any a E CB(M), there exists a substitution O" such that a = ABO" and

BiBO" E M for (1 :::; i :::; n) . Thus a E C(M) for any set Jvf of ground atoms and a E CB(M).

D

Corollary 3.6 Let P = { C1, ... , Cm} be a program and ()i be a substitution such that

lg(Ci(M(P))) = head(Ci)()i (1 � i � m). Then, the program P' = {C181, ... , CmBm} is

a DMP of P.

We call the DMP of P defined in the above corollary as the d-model preserving instance

by least generalization (DMPLG, for short) and denote it by dmplg(P).

Theorem 3.7 For any program P, M(P) = M(dmplg(P)).

Proof: The theorem follows immediately from Theorem 3.4 and Corollary 3.6. D

By the above theorem, for each clause C E P, lg(C(Mp)) can be the head of a clause in a

program equivalent toP. On the other hand, from the argument about a least generalization

of an infinite set [JLMM88], the following proposition holds.

Proposition 3.8 For any set S of words, there exists a finite subset S' of S such that

lg(S) =: lg(S').

25

With Corollary 3.3 this implies that each program head is inferable as a least generalization

of an appropriate finite subset of positive facts. This suggests applicability of the least

generalization to inferring program heads in learning logic programs.

Especially, for a deterministic program P in which Ci (N! P) n C1 (N! p) = ¢ for any two

clauses in P such that i f. j, the corresponding program heads

can be obtained as a partition of sufficiently large given positive facts. At each step of

inference, since there are only finitely many positive facts, all candidates of such a partition

is effectively computable.

Of course, since the number of all partitions increases exponentially, such a naive search

strategy is useless for an efficient model inference algorithm. Recently, however, a very

useful notion and algorithm for the problem were given by Arimura [AS091b] . The notion

is called a minimal multiple generalization and the algorithm to calculate minimal multiple

generalizations finds the program heads like lg(C1(Mp)), ... ,lg(Cm(Mp)) more directly and

efficiently. In the next chapter, we give an inference algorithm equipped with the minimal

multiple generalization algorithm.

26

Chapter 4

Learning Primitive Prologs from

Positive Facts

In this chapter, we consider the problem of efficient inductive inference of primitive Prologs

from positive facts. A primitive Prolog is a very restricted logic program. It has at most

two clauses that consist of one unary predicate symbol. The class of primitive Prologs is

a sub-class of k-clause linear Prologs that is known to be inferable from only positive facts

but not proven to be polynomial update time inferable [Shi90]. One aim of this study is to

investigate what sub-class of linear Prologs is inferable in polynomial update time.

On the other hand, Arimura [AS091 b, AS091a] gave a notion of minimal multiple gener

alization that is a natural extension of Plotkin's least generalization. While a least general

ization precisely covers a given set of words by one word, an minimal multiple generalization

minimally covers the set by several words. For example, suppose that

M = { app(O, 0, []), app([a], 0, [a)), app(O, [b] , [b]),

a pp ([a J , [b J , [a, b J), a pp ([a, b] , [c J , [a, b , c]) , ... }

is the least Herbrand model of a program for appending lists app(X, Y, Z). Then a least

generalization of M is app(X, Y, Z). On the other hand, the pair

{ app(0, X, X), app([XIY] , Z, [XIl-V])}

of atoms is a minimal multiple generalization of M. Note that the pair corresponds to the

heads of clauses in a normal append program.

27

In some inductive inference algorithms for logic programs such as GEMINI [Ish88a) or

CIGOL [MB88), the least generalization plays a very important role in inferring heads of

clauses. However, in general, a program consists of several clauses. In order to infer several

heads using least generalizations, inference algorithm has to divide at first a given set of

positive examples (finite subset of the least Her brand model of a target program) into several

appropriate subsets then it can get candidates for heads of clauses by computing a least

generalization of each subset. This process, that is, dividing a set of positive examples

appropriately and then generalizing each obtained subset of examples, exactly corresponds to

the calculation of a minimal multiple generalization. Hence, minimal multiple generalization

is more useful than least generalization in inductive inference of logic programs. Another aim

of this study is to investigate an effective application of the minimal multiple generalization

to inductive inference of logic programs.

As described in the previous chapter, appropriate program heads can be obtained only

from positive facts. On the other hand, in this chapter, we develop an algorithm to search

for an appropriate body of a clause under the situation in which only positive facts are given.

The algorithm takes full advantage of properties of the DMPLG of a primitive Prolog P.

In Section 4.1, we introduce the definition of primitive Prologs and an additional defi

nition for model inference from positive facts. In Section 4.2, we introduce the notion of a

minimal multiple generalization. Then, we discuss the properties of minimal multiple gen

eralizations of a least Herbrand model of a primitive Prolog and show that the heads of a

DMPLG of the program is contained in the minimal multiple generalizations for a sufficiently

large set of positive facts. In Section 4.3, we show some properties of a DMPLG of a prim

itive Prolog. The properties are useful for an algorithm which searches for the body of the

DMPLG. In Section 4.4, we give the greedy search algorithm for the body of a D:NIPLG. If

the algorithm is given the heads of the DMPLG and a sufficiently large set of positive facts,

then it can reconstruct the DMPLG. Two model inference algorithms for primitive Prologs

from positive facts are given in Section 4.5. One is a consistent and conservative polynomial

update time inference algorithm which requires a unit clause in a target program as a hint.

The other is a consistent but not conservative polynomial update time inference algorithm

which requires no hint.

28

This chapter is based on the paper [IAS92, AIS92, AIS092].

4.1 Primitive Prologs and Model Inference from Pos

itive Facts

First, we give the definition of primitive Prologs.

Definition 4.1 A primitive Prolog P is a program that satisfies the following conditions:

(a) Only one unary predicate symbol appears in P.

(b) P consists of at most two clauses.

(c) If P consists of two clauses, then both heads of the clauses have no common instance.

(d) Atoms appearing in the body of a clause are most general atoms, as p(X).

(e) Variables appearing in the body of a clause are mutually distinct and also appear in

the head of the clause.

In a word, a primitive Prolog is a program of the form:

p(t[X1, ... , Xm]) +- p(X1), ... ,p(Xm)·

p(s).

where G(t[X1, ... , Xm]) n G(s) = ¢. We use t[X1, ... , Xm] to denote a term which con

tains mutually distinct variables X1, • • . , Xm. Note the difference between the notations

t[X1, ... , Xm] and t(X1, ... , Xm)· While the latter denotes the term whose principal func-

tor is t and its arguments are X1, ... , Xm, the former may denote any term which con-

tains mutually distinct variables X1, ... , Xm. For example, t[X, Y, Z] may denote a term

f(X, f(X, Y, j(Y, Z, U)) , Z) or a list [X, Y, U, U, Z].

In this chapter, we consider the polynomial update time inferability from only positive

facts. The difference between the original model inference defined by Shapiro and the model

inference considered here is just the way of giving information about lvf. In model infer ence

from positive facts, given information about M to an inference algorithm are restricted to

only positive facts. A sequence a1, a2, ... , of the elements of a model lvf is said to be an

enumeration of lvf if, for any a E lvf, there exists i � 1 such that a = ai. The inference

29

algorithms described in this chapter is assumed to be given any enumeration of M instead of

any enumeration of facts about M. Other definitions, e.g. identifiability or consistency of an

inference algorithm etc., are the same as those defined in Chapter 2. Figure 4.1 illustrates

the framework of the model inference from positive facts.

Figure 4.1: The framework of the model inference from positive facts

a1, a2, ... , ai, . . . E M

�
Inference algorithm

4.2 Minimal Multiple Generalization

In this section, first we review the results on Arimura's minimal multiple generalization

[AS091b, AS091a]. Then we will give some properties of minimal multiple generalizations

for the least Herbrand model of a primitive Prolog. We fix a first order language £ and

denote the set of function symbols in £by r throughout this chapter.

Let k be a fixed integer and S be a set of ground words. A k-multiple generalization of S

is a set of words { w1, w2, ... , wm} such that m � k and S � G(w1) U G(w2) U · · · U G(wm) ·

Definition 4.2 For a fixed integer k and a set S of ground words, a k-minimal multiple

generalization (k-MMG, for short) of S is a k-multiple generalization { w1, ... , wm} of S

such that G(u1) U · · · U G(un) cf_ G(w1) U · · · U G(wm) for any k-multiple generalization

{ U1, . . . , Un} of S.

Example 4.1 Let S be the set

{reverse([a], [a]), reverse([a, b], [a, b]), reverse(O, 0), reverse([c, b], [b, c])}.

Then, the pair {reverse(X, X), reverse([XIY], [ZIW])} of atoms is a 2-multiple generaliza

tion of S and the pair {reverse(O, []), reverse([XIY], [ZIW])} is a 2-1v1MG of S.

30

Here, we introduce some results from [JLMM88, AS091 b, AS091a] that are necessary

for our discussion. From Theorem 4.2, the minimal multiple generalization defined above

can be understood as a natural extension of a least generalization. The property shown

in Theorem 4.3 is called compactness of unions of tree pattern languages [AS091a]. The

property is very useful for proving not only the following Theorem 4.4 but also several

theorems given in this chapter.

Theorem 4.1 (Lassez et al. [JLMM88]) Suppose that jfj � 2. Then) for any word w)

it holds that lg(G(w)) = w.

Theorem 4.2 (Lassez et al. [JLMM88]) Suppose that jfj � 2. Then) for any two words

WI and w2J it holds that G(wi) � G(w2) if and only if WI :::S w2.

Theorem 4.3 (Arimura et al. [AS091b]) Suppose that lfl � k+l. Let w, ui, u2, • • • , uk

be words. If G(w) � G(ui) U G(u2) U · · · U G(uk)J then G(w) � G(ui) for some 1 :::; i :::; k.

Theorem 4.4 (Arimura et al. [AS091a]) Let k be any fixed integer and S be a set of

ground words. If jfj � k + 1) then a k-MMG of S is computable in polynomial time of

size(S).

Algorithm 4.1: A 2-mmg algorithm

Input:A set S of ground words

Output:A set of 2-MMG's of S

Procedure:

Ans := ¢;

for each ordered pair (wi, w2) of elements in S do

Let W be the set of all maximal words consistent with (wi, w2);

for each U E W do

V := lg(S- G(U));

if the pair U, V of words are reduced then

Ans := Ans u { {V, lg(S- G(V))}}

if Ans # ¢ then output Ans

else output Ans := {lg(S)}

31

In general, a k-MMG of S is not unique. In fact, for the set S in Example 1.1, the pair

{reverse(X, X) , reverse([c, b], [b, c))} of atoms is also a 2-MMG of S. Arimura's algorithm

[AS091b] to compute a k-MMG of S is not exhaustive for all k-MMG's of S. However, it is

ensured that when the algorithm is given a set S of ground words for its input, it finds out

at least one k-MMG of S in time polynomial in size(S) and it outputs only k-MMG of S.

We denotes the set of all possible outputs of the algorithm for an input S by k-mmg(S). In

what follows, since we apply the k-mmg algorithm to infer the program heads of a primitive

Prolog, we fix k to 2. Algorithm 4.1 is a slightly modified version of the original algorithm

in [AS091b] to output 2-mmg(S) directly. It is ensured that the modified algorithm still

work in time polynomial in size(S).

Let S be a set of ground words. Two words w1, w2 are said to be reduced with respect to

S if S � G(w1) U G(w2) but S c:f: G(wi) (i = 1, 2) . For an ordered pair (w1, w2) of words,

a word w is said to be consistent with (w1, w2) if w1 E G(w) but w2 tf_ G(w). A maximal

word consistent with (w1, w2) is a maximally general word w consistent with (w1, w2), that

is, w -1< u for any word u consistent with (w1, w2). For example, f (X, a) and f (X, X) are

maximal words consistent with an ordered pair (f (a, a), f (a, b)).

Here we give the properties of 2-mmg(S) for a subset of the least Herbrand model of a

primitive Prolog.

Lemma 4.5 Suppose that lfl 2: 3. Then) for any primitive Prolog P = {Co, C1}J there

exists a finite set S � Mp that satisfies the following two conditions for any St:::.. such that

S � St:::.. � Mp.

(1) {lg(C0(Mp)),lg(C1(Mp))} E 2-mmg(St:::..).

(2) For any pair of atoms {q0, q1} E 2-mmg(Sf::l.)J either

(i) qo t lg(C0(Mp)) and ql j lg(C1(Mp)) or

(ii) ql t lg(C0(Mp)) and qo j lg(C1(Mp))

holds.

To prove the above lemma, we need the following lemma.

32

Lemma 4.6 Suppose that 1r1 � 2. Then, for any word w, there exists a finite setS� G(w)

such that, for any words w0, w1 and for any St::. where S � St::. � G(w), if St::. � G(w0)UG(w1)

then St::. � G(wi) for some i E {0, 1 }.

Proof: As in the same way of defining the set 80(p) in the proof of Theorem 3 in [AS091b],

we can construct a finite subset 80(w) of G(w). The finite subset satisfies the condition of

S in the lemma. D

Proof of Lemma 4.5: Without loss of generality, we may assume that C0 is a unit clause,

that is, Co(Mp) = G(Co).

Proof of (1): From Proposition 3.8, there exist finite sets S0 � C0(Mp) and S1 � C1 (Mp)

such that lg(Si) = lg(Ci(Mp)) (i = 0, 1). Furthermore, from the assumption that C0(Mp) =

G(C0), there exists a finite set Sb � C0(Mp) that satisfies the condition in Lemma 4.6. Let

S be the union S0 U S1 U Sb of the finite sets. By Corollary 3.3, S is ensured to be a finite

subset of Mp. For the set S, the following two propositions hold.

(a) lg(S n C0(Mp)) _lg(C0(Mp)) and lg(S n C1(Mp)) = lg(C1(Mp)).

(b) If S n C0(Mp) � G(q0) U G(q1) then S n C0(Mp) � G(qi) for some i E {0, 1}.

From the definition of a primitive Prolog, it holds that C0(Mp) n C1 (Mp) = cjJ. Hence it

holds that S- C0(Mp) = S n C1(Mp) and S- C1(Mp) = S n Co(Mp).

Let w0 and w1 be elements of S such that w0 E C0(Mp) and w1 E C1(Mp). Since each

head(Ci) is a generalization of Ci(Mp), it holds that head(Ci) t lg(Ci(Mp)) (i = 0, 1). From

Theorem 4.2, it holds that G(head(Ci)) :2 G(lg(Ci(Mp))) (i = 0,1). On the other hand,

since it follows from the definition of a primitive Prolog that G(head(C0))nG(head(C1)) = cjJ,

G(lg(C0(Mp))) n G(lg(C1(Mp))) is also empty. As a result, lg(C1(Mp)) is consistent with

the ordered pair (w1, w0). Hence, there exists a maximal word u consistent with (w1, w0)

such that u t lg(C1 (Mp)) . Such u appears as U in the inner for loop of the algorithm

computing 2-mmg(S).

Here, let v = lg(S-G(u)). Since S :2 G(u)uG(v), it holds that SnC0(Mp) � G(v)uG(u).

Hence, from the condition (b) on S, either SnC0(Mp) � G(v) or SnC0(Mp) � G(u) holds.

By the assumption for u, since w0 � G(u), the latter case is impossible. Thus, it follows

33

from the condition (a) on S and Theorem 4.1 that

lg(C0(Mp)) =: lg(S n C0(Mp)) � lg(G(v)) = v.

Furthermore, since C1 (Mp) � G(u) by the assumption for u, it holds that S- G(u) �

S- C1 (Mp). Since S- C1 (Mp) = S n C0(Mp), it holds that S- G(u) � S n C0(Mp). Hence

it follows from Theorem 4.2 and the condition (a) that

v = lg(S- G(u)) � lg(S n C0(Mp)) = lg(C0(Mp)).

Thus v = lg(C0(Mp)) holds.

Since G(lg(C0(Mp))) � G(head(C0)) and G(head(C0)) n C1(Mp) = ¢, it holds that

G(v) n cl (Mp) = ¢ and G(v) � S. On the other hand, since Wo tf_ G(u), it also holds that

G(u) � S. Since S � G(u) U G(v), two words u and v are reduced with respect to S. Hence,

the algorithm adds the pair {v,lg(S- G(v))} to Ans.

From the first assumption that C0(Mp) = G(C0) and Theorem 4.1, lg(C0(lv!p)) =

lg(G(C0)) = C0 holds. Hence, it holds that

lg(S- G(v)) =: lg(S- G(lg(C0(Mp)))) = lg(S- G(Co)) = lg(S- C0(Mp)).

Since S- C0(Mp) = S n C1(Mp), it holds that

lg(S- G(v)) =: lg(S- C0(Mp)) =: lg(S n C1(Mp)) = lg(C1(Mp)).

As a result, we have {lg(C0(Mp)),lg(C1(Mp))} = {v,lg(S- G(v))} E 2-mmg(S).

Proof of (2): For any {q0, q1} E 2-mmg(S), since S � G(q0) U G(q1), it holds that S n

Co(Mp) � G(q0) U G(q1). Hence, from the condition (b), either S n C0(Mp) � G(q0) or

S n C0(Mp) � G(q1) holds. It is sufficient to show the case (i) by assuming S n C0(Mp) �

G(qo).

From the condition (a) on S, Theorem 4.2, and Theorem 4.1, it holds that

lg(C0(Mp)) =: lg(SnC0(Mp)) � lg(G(qo)) = qo.

On the other hand, from the way of calculation in the algorithm, q1 = lg(S- G(q0)) holds.

Since S n C1(Mp) = S- C0(Mp) 2 S- G(q0), it holds that

34

This completes the proof of Lemma 4.5. D

Lemma 4.5 ensures that, for any given enumeration of positive facts in the target model,

the pair of atoms lg(C0(Mp)), lg(C1(lv!p)) can be found in the limit using the 2-mmg algo

rithm. As described in the previous chapter, the pair lg(C0(Mp)), lg(C1(Mp)) are the heads

of dmplg(P) such that M(P) = M(dmplg(P)). Hence, the lemma suggests applicability of

the 2-mmg algorithm to infer heads of clauses of the target program.

4.3 DMPLG's of Primitive Prologs

In this section, we show the properties of a dmplg(P) for a primitive Prolog P. The target

properties we would like to show will appear in Lemma 4.14 and Lemma 4.15. They ensure

that, for the given heads lg(C0(Mp)) and lg(C1(Mp)) of the dmplg(P), any hypothesis H

obtained by adding any inappropriate body to the heads has a positive counter-example, that

is, there exists a positive fact a E M (P) such that a <f. M (H). An appropriate body means

just the body of the dmplg(P). As a result, if the heads of a dmplg(P) are known then the

dmplg(P) can be reconstructed from only positive information. Furthermore, Lemma 4.10

gives a basic strategy for searching for the body of a dmplg(P). By the lemma, each atom

appearing in the body of the dmplg(P) is ensured to be a variant of a least generalization

of the heads of the dmplg(P). With Lemma 4.5, these lemmata complete preparation for

constructing an inference algorithm from positive facts.

Let P = { C0, C1} be a primitive Prolog, where

Co=p(s),

C1 = p(t [X1, ... ,Xm]) +-- p(Xr), ... , p(Xm) ·

Lemma 4.7 Suppose that lfl 2: 2. Then, dmplg(P) is of the form {C0,C1B} where 8 =

{X1/r1, . . . , Xm/rm } ·

Proof: Since C0 is a unit clause, C0(lv!p) = G(C0). Hence, it follows from Theorem 4.1

that lg(C0(lv!p)) = lg(G(C0)) = C0.

Let Vhead be the set of variables in C1 appearing only in head(C1), that is, Vhead =

var(CI) - {X1, ... , Xm } · If Vhead =</;then there is nothing to be proved. Thus we assume

35

that Vhead # ¢. Let a be a substitution such that lg(C1(Mp)) = head(C1)a and r be a

ground substitution such that dom(r) � var(C1) and p(Xi)r E M(P) for any 1 � i � m.

Note that head(Cl)r E C1(Mp) holds.

Suppose that, for some Y E Vhead, a contains a binding Y It for a non-variable term t.

From the assumption that jfj � 2, there exists a ground term a whose principal functor

differs from that oft. Let Y I (3 be the binding in rand r' be the ground substitution obtained

from r by replacing the binding Yl (3 by Yl a. Then, since p(Xi)r1 = p(Xi)r E lVI(P) for

any 1 � i � m, it holds that head(Cdr' E C1 (Mp). On the other hand, head(C1)r is not

an instance of head(C1)a, because the principal functor of t differs from that of a. Hence

head(C1)r1 (j. C1a(Mp). This contradicts Lemma 3.5.

Now, suppose that, for some Y E Vhead, a contains a binding Y I X for some variable

X E C1. Let Xla1 and Yla2 be the bindings in r· If a1 # a2 then it immediately follows

that head(C1)r is not an instance of head(C1)a. Otherwise, there exists a ground term

(3 # a1 = a2 from the assumption that lfl � 2. Let r' be the substitution obtained from r

by replacing the binding Y/ a2 by Yl (3. Then it holds that head(C1)r' is in C1 (Mp) but not

an instance of head(C1)a. Consequently, both cases contradict Lemma 3.5.

A similar argument leads the same contradiction for the case in which a contains bindings

��X and ��X for Yi, � E Vhead (Y1 # �) and any variable X. Thus, if a contains a binding

Y It for some Y E Vhead, then t must be a variable which does not occur in C1 and occurs

in a at most once, that is, Ylt is just renaming of variable Y. Hence, C10" = C1B. This

completes the proof of the proposition. D

Co= p(s),

cle = p(t[rl, ... ,rm]) +-- p(rl), ... ,p(rm)·

Lemma 4.8 lg({s, t[r1, ... , rm]}) >- s and lg({s, t[r1, ... , rm)}) >- t[r1, ... , rm]·

Proof: If lg({ s, t[r1, ... , r m]}) = s, then s t t[r1, ... , r m]. This contradicts the condition

of a primitive Prolog: G(s) n G(t (X1, ... , Xm]) = ¢. A similar argument for the alternate

claim completes the proof of the lemma. D

36

Lemma 4.9 For any 1 ::; i ::; m, p(ri) = lg(lv!p).

Proof: Assume that, for some 1 ::; i ::; m, p(ri) >f_ lg(Mp) . Then, there exists p(j3) E

Mp such that p(ri) >f_ p(j3). On the other hand, there exists a substitution r such that

p(t[j3, ... , f3])r E C1 (lvf p). Since p(ri) >f_ p(j3) for some 1 ::; i ::; m, it holds that head(C1 B) =

p(t[r1, ... , rm]) >f_ p(t[j3, .. . , {3])[. Hence, p(t[j3, ... , f3])r rt C1B(Mp). This contradicts the

fact that C1B(Mp) = C1 (Mp) . Thus p(ri) � lg(Mp) for any 1 ::; i ::; m.

Now, assume that p(ri) >- lg(Mp) for some 1 ::; i::; m. Let p(T) = lg(Mp) and CJ =

{Xi/T}. For any a E C1(Mp), there exists a ground substitution 77 such that a = head(C1)TJ

and p(Xj)17 E Mp for any 1 ::; j ::; m. Let Xi/ j3 be the binding in 'TJ. Note that p(j3) E Mp.

Since p(T) = lg(Mp), there exists a substitution CJ1 such that p(T)CJ' = p(j3). Hence there

exists a substitution 77' such that CJCJ1171 = 'TJ. Such 77' can be obtained from 77 by deleting the

binding Xi/ {3. Thus it holds that a = head(CI)CJCJ117'· Since, for each a E C1 (Mp) , there

exist substitutions cl and 77' such that a = head(C1)CJCJ1r7', head(C1)CJ is a generalization of

cl (Mp) . On the other hand, it follows from ri >- T that

that is, head(C1)CJ >f_ head(C1)B. Since head(C1)CJ is a generalization of C1(Mp), this con

tradicts that head(C1)B is a least generalization of C1 (Mp).

Thus the lemma has been proved. D

The following Lemma 4.10 ensures that, for the pair {p(s), p(t')} of heads of clauses

in dmplg(P), each atom appearing in the body of a clause in dmplg(P) is of the form

lg({p(s),p(t')}). A greedy search algorithm for the body of a clause given in the next

section is based on this property.

Lemma 4.10 For any 1::; i::; m, p(ri) = lg({p(s),p(t[r1, ... ,rm])}).

Proof: From our definition,

lg({p(s),p(t[r1, ... , rm])}) = lg({lg(Co(lv!p)), lg(C1(Mp))}).

Since C0(Mp) u C1 (lv!p) = lv!p, from Lemma 4 in [JLMM88] , it follows that

Thus, from Lemma 4.9, it holds that lg({p(s),p(t[r1, ... , rm])}) = p(ri)· D

The following propositions and lemmata are useful in proving validity of the greedy search

for the body of a clause. Since the algorithm is required to find an appropriate body from only

positive data, it has to avoid constructing an overgeneralized hypothesis. Proposition 4.13

says that a hypothesis with an appropriate body that corresponds to a subset of the body

of the dmplg(P) is consistent with all positive examples. On the other hand, Lemma 4.14

and Lemma 4.15 ensure that, for any hypothesis with an inappropriate body, there exists a

positive counter example, even if the body consists of only one atom.

Proposition 4.11 For any 1 � i =/:. j � m, var(ri) n var(rj) = ¢.

Proof: Assume that var(ri) n var(Tj) =/:. ¢ for some i =/:. j. Then, there exist indexes I and

J such that p(ri)(I) = p(rj)(1) =X, where X is a variable. Since p(ri) = lg(Mp) , for any

p(a) E Mp, p(a)(I) is well-defined as a ground term.

Let a and b be different ground terms. Suppose that there exist atoms p(a) and p(/3)

in Mp such that p(a)(J) = a and p(/3)(1) = b. Since the variables X1, ... , Xm in the

clause C1 = p(t[X1, ... , Xm]) +-- p(X1), ... ,p(Xm) differs from each other, for p(t')

p(t[X1, ... ,Xm]){Xi/a,Xj//3}, there exists a ground substitution r such that dom(r) C

var(p(t')) and p(t')r E C1(Mp). For C18, since p(ri)(I) = p(rj)(1) =X, there is no sub

stitution (]"such that p(ri)(]" = p(a) and p(rj)(]" = p(/3). This means that p(t')r <{_ C1B (Mp)

and contradicts the fact that dmplg(P) = {C0, C18}. Hence, such a, f3 do not exist, that is,

p(a)(I) = p(/3)(1) for any p(a),p(/3) E Mp.

Here, suppose again that there exist p(a),p(a') E Mp such that p(a)(I) =/:. p(a')(I).

Then there exists p(/3) E Nip such that p(/3)(1) = p(a)(I) =/:. p(a')(I). This contradicts

the above consequence. Thus there exists a ground term a such that p(a)(J) = a for any

p(a) E lv!p. Hence p(ri) = lg(Mp)(I) = a for some ground term a. This contradicts the

first assumption that p(ri)(I) is a variable. D

A similar discussion as above leads the next proposition.

Proposition 4.12 For any 1 � i # j � m,

38

Proposition 4.13 Let P' == { C0, C�} where

Then i t holds that M(P) � M(P').

Proof: It is clear from the definition of C� that C1B(M) � C� (M) for any set M of ground

atoms. Hence, we can show that Tdmplg(P) j w � Tp, j w along the same line of argument as

in the proof of Theorem 3.4. Thus, it holds that Jvf(dmplg(P)) == M(P) � M(P'). D

Lemma 4.14 Suppose that jrj � 3. Let P' == { C0, C�} where C� == p(t[r1, ... , rm]) +-- p(r')

and r' is a sub-term of t[r1, ... , rm] such that r' = ri (1 ::; i ::; m) and r' tJ. {r1, ... , rm}·

Then it holds that M(P) - M(P') =I=¢.

Proof: From Proposition 4.11, Proposition 4.12, and the condition on r', it follows that

var(r') n var(ri) == ¢ (1 ::; i ::; m). Hence, for any ground substitution (J such that

dom((J) � var(r'), there exists a ground substitution 1 such that dam(!)� p(t[r1, ... ,rm])(J

and p(t[r1, ... , rm]) (J! E M(P).

For proving the lemma, it is sufficient to show that there exists a ground substitution (J

such that dam((J) � var(r') and

(4.1)

Since it follows that p(r')(J tJ. M(P') from (4.1), p(t[r1, ... , rm]) (J! tJ. M(P') for any substi

tution '"'(. With the above fact, this implies an existence of a substitution 1 such that

Since r' = ri, from Lemma 4.8, it holds that r' >- s and r' >- t[r1, ... , rm]· In what

follows, t[r1, ... , r m] is abbreviated as t.

Since r' >- s, the following two cases are possible:

(1) There is an index I such that r'(I) ==X and s(I) == u where X is a variable and u is

a non-variable term.

(2) There are indexes 11 and 12 such that r' (11) == X, r' (12) == Y, s(II) == Z and s(I2) == Z

where X, Y, Z are mutually distinct variables.

39

-----...

Furthermore, since r' = lg (s, t), these cases can be divided into the following four cases:

(1-1) There exists an index I such that r' (J) = X, s(I) = u and t(J) = v where X is a

variable and u , v are non-variable terms with different principle functors.

(1-2) There exists an index I such that r'(I) =X, s(I) = u and t (I) = Y where X, Y are

variables and u is a non-variable term.

(2-1) There exist indexes JI and 12 such that r' (II) =X, r' (I2) = Y , s(II) = Z, s(I2) = Z,

t(II) = u and t(I2) = v where X, Y, Z are mutually distinct variables and u , v are

mutually distinct terms such that at least one of them is not variable.

(2-2) There exist indexes JI and 12 such that r' (II) = X , r' (I2) = Y , s(II) = Z, s(I2) = Z,

t(JI) =XI and t (J2) = YI where X, XI, Y, YI, Z are mutually distinct variables.

Case (1-1): From the assumption that 1r1 2 3, there exists a ground term w whose principle

functor differs from neither u's nor v's. For any ground substitution (]" that binds X with w,

(4.1) holds.

Case (1-2): Since r' >-- t, there are two possible cases:

(1 ') There exists an index I' such that r' (I') = X' and t(I') = u' where X' is a variable

and u' is a non-variable term.

(2') There exist indexes J� and J� such that r
' (JD = X', r

' (J�)

t(I�) = Z' where X', Y', Z' are mutually distinct variables.

Y', t (I�) Z' and

In the case (1 ') , it holds that X # X11• Let (]"be a ground substitution that binds X with a

ground term w whose principle functor differs from that of u and X' with a ground term w
'

whose principle functor differs from that of u'. Then(]" satisfies (4.1). In the case (2'), let WI

be a ground term whose principle functor differs from u's and w2 be a different ground term

from wi. Then (4.1) holds for any ground substitution(]" that binds X with wi, X' with one

of which WI or w2 and Y' with the other
2

.

Case (2-1): Without loss of generality, we may assume that u is not a variable. Let WI be

a ground term whose principle functor differs from u's and w2 be a different ground term

1The term t(I) is a variable and the term t(I') is a non-variable. Thus, if X =X', then r' 'f t.
2When X, X', Y' differs from each other this choice of bindings can be arbitrary. When X is the same

as X', bind Y' with w2. When X is the same as Y', bind X' with w2.

40

from w1. Then (4.1) holds for any ground substitution O" that binds X with w1 andY with

Case (2-2): Similarly for the case (1-2), there are two possible cases (1') and (2') . The case

(1') for the case (2-2) is the same as the case (2') for the case (1-2). In the case (2') , let w

and w' be different ground terms. Since X # Y and X' # Y', it suffices to consider a ground

substitution that binds X, X' with one of which w1 or w2 andY, Y' with the other. D

Lemma 4.15 Let P = {Cb, head(C1B)} where Cb = p(s) +- p(r') and r' is a sub-term of s

such that r' = ri (1 � i � m). Then it holds that M(P)- M(P') # ¢;.

Proof: Since G(p(s)) � M(P) and r
' is a sub-term of s, for any ground substitution O" such

that dom(O") � var(r'), there exists a ground substitution r such that dom(r) � var(p(s)O")

and p(s)O"r E M(P). Hence, the lemma can be proven along the same line of argument as

in the proof of the previous lemma.

4.4 A Greedy Search Algorithm for the Body

D

In this section, we describe an algorithm that, for a set S of ground atoms and an ordered

pair (p(s),p(t)) of atoms such that S � G(p(s))uG(p(t)) and G(p(s))nG(p(t)) =¢;,searches

for a program P = { C0, C1} where

Co=p(s),

cl = p(t) +- p(ul), ... ,p(uk),

and P satisfies the following conditions:

1. S � M(P):

2. Each ui is a proper sub-term oft such that ui = lg(t, s) (1 � i � k) and var(ui) n

var(uj) = ¢; (i ::j: j).

3. Let t'[X1, ... , Xk] be the term that obtained from t by replacing each occurrence of ui

by xi (1 � i � k) where xi (1 � i � k) is a variable that does not appear in t and

Xi# Xj (i # j). Then it holds that G(t'[X1, ... , Xk]) n G(s) = ¢;.

41

4. The body of C1 is maximal one in such bodies satisfying the above conditions. That is,

for any other sub-term uk+I oft that satisfies the condition 2 and for the clause C ==

p(t) � p(u1) , • . • , p(uk) , p(uk+1) , C does not satisfy the condition 3 or S 2: M({ C0, C}).

We denote a program that satisfies the above conditions by P(S, (p(s),p(t))). While, in

general, there may exist several P(S, (p(s), p(t))) 's, one of them can be found in polynomial

time by simple greedy search.

Algorithm 4.2: A greedy search algorithm for P(S, (p(s),p(t)))

Input: A set of positive examples S and a tuple of atoms (p(s),p(t)) such that

S r:;_ G(p(s)) u G(p(t)) and G(p(s)) n G(p(t)) = ¢.

Output: P(S, (p(s),p(t)))

Procedure:

Let SUB(t) be the set of proper sub-terms of t, that are variant of lg({ s, t}),

Body := ¢; Pat := t;

H := {p(t) � Body.,p(s).};

for each T E SUB(t) s.t. var(T) n var(Body) ==¢do

H :== {p(t) �Body u {p(T)}.,p(s).};

if S 2: M(H) then

H := {p(t) r- Body.,p(s).};

else Let Pat' be the term which is obtained from Pat by replacing

the all occurrences ofT in Pat with a new variable X;

if G(Pat') n G(s)-/= ¢then H :== {p(t) r- Body.,p(s).};

else Body :== Body U {p(T) };

Pat:= Pat';

Output H and halt;

Lemma 4.16 For a set S of ground atoms and an ordered pair (p(s),p(t)) of atoms such that

S � G(p(s)) U G(p(t)) and G(p(s)) n G(p(t)) ==¢,Algorithm 4.2 outputs a P(S, (p(s),p(t)))

in time polynomial in size(S U {p(s),p(t)}).

Proof: A least generalization lg(t, s) is computable in time polynomial in size({ t, s}).

SUB(t) is computable in time polynomial in size(t) and jSUB(t)j::; size(t). The number

of execution of the body of the for loop is at most SU B(t) ::; size(t) and the examination

42

whether var(T) n var(Body) =¢or not is done in time polynomial in size(t) x !SU B(t)! �

size(t)2. The main operations performed in each execution of the for loop are testing two

if statements. Since each 7i in a recursive clause p(t) � p(T1), ... , p(Tj) of H is a proper

sub-term oft, testing whether S � .NI(H) or not can be done in time polynomial in size(S).

For testing the second if statement, since it suffices to verify the unifiability of Pat' with s,

it takes at most time polynomial in size({ s, t}). Hence, Algorithm 4.2 terminates in time

polynomial in size(S U {p(s), p(t)}).

It is clear that the output of the algorithm is a P(S, (p(s),p(t))). D

Let P(S, (p(s),p(t))) = {C0, C1} be an output of Algorithm 4.2 where C0 = p(s) and

C1 = p(t) � p(u1), . . . , p(um) · Let C� be the clause which obtained from C1 by replacing each

occurrence of ui by Xi (1 � i � m) where X1, ... , Xm are mutually distinct variables that do

not occur in C1. Since no ui contains other uj as its sub-term, C� is well-defined and obtained

from C1 in time polynomial in size(t). We denotes {C0, Ci} by pr(P(S, (p(s),p(t)))).

Lemma 4.17 The program pr(P(S, (p(s),p(t)))) is a primitive Prolog which has the same

least Herbrand model as that of P(S, (p(s),p(t))).

Proof: We abbreviate P(S, (p(s),p(t))) asP. From the way of constructing P, it is clear

that pr(P) is a primitive Prolog. Thus, we show that M(P) = M(pr(P)).

Since C1 is an instance of C�, clearly, it holds that M(P) � M(pr(P)).

In order to show the converse, we show that Tpr(P) In � Tp In for any integer n by

induction on n.

For n = 1, clearly Tpr(P) IO = G(p(s)) = Tp 10.

Suppose that Tpr(P) In� Tpln for some n (� 2). Let p(t') be the head of C�. For any

a E Tpr(P) I (n + 1), there exists a substitution (]"such that

a= p(t')a and p(Xi)a E Tpr(P) In (1 ::; i::; m) .

Here we can divide the substitution (]" into two substitutions b and 1 such that a = 10

where 8 operates only variables in {X1, ... , Xm} and 1 operates only variables in var(t') -

{X1, ... Xm}· From the induction hypothesis, p(Xi)(]" E Tpln (1::; i::; m) . Since p(ui) =

lg({p(s),p(t)}), for any p(_)(i)(]" E Tp In, there exists a ground substitution bi such that

43

p(Xi)a = p(u i)8i . Since {X1, • . . , Xm} n var(u i) = var(ui) n var(uj) = ¢ (1 � i I= j � m),

for 8' = 81 · · · 8m, it holds that a= p(t)r8' and p(ui)r8' E Tp jn (1 � i � m). Thus it holds

that a E T p i (n + 1) . D

4.5 Polynomial Update Time Infer ability from Posi

tive Facts

In what follows, let P = { C0, C1} be any primitive Prolog where

Co= p(s),

C1 = p(t[X1, ... , Xm]) � p(X1), ... , p(Xm),

and dmplg(P) = {Co, C1B}, where B = {X1/r1, ... , Xm/rm}· For notational convenience,

we abbreviate t[X1, ... , Xm] as t and t[r1, ... , rm] as tr. Let e1, e2, ... be any enumeration

of M(P) and Si be a set { e1, ... , ei} of first i elements in the enumeration.

Theorem 4.18 There exists an integer N such that, for any integer n 2:: N, Algorithm 4.2

outputs dmplg(P) for given Sn and (p(s),p(tr)) as its inputs.

Proof: Let T1, ... , Tk be all sub-terms of tr such that Ti rJ. {r1, ... , rm} and p(Ti) =

lg({p(s),p(t r)}) . From Lemma 4.14, for any Ti (1 � i � k), a program Pri = {Co,p(tr) �

p(Ti)} has a positive counter example Ci E M(P) such that Ci rf_ M(PrJ. Thus, for any

input Sn such that { c1, ... , ck} � Sn, Algorithm 1 outputs a program P = { C0, C�} where

C� = p(tr) � p(riJ, ... ,p(ri;) and {ri1, • • • ,rij} � {r1, ... ,rm}· On the other hand, from

Proposition 4.13 and maximality of the body of the clause in P(S, (p(s), p(tr))) (the condition

4 in the definition of P(S, (p(s),p(tr)))), there is no case in which {ri1, • • • ,rij} is a proper

subset of {r1, ... , rm}· D

By Theorem 4.18, if we assume that a unit clause C0 = p(s) is given to an inference

algorithm as a hint, we can easily construct a consistent and conservative polynomial update

time inference algorithm that identifies the class of models of primitive Prologs in the limit.

44

Algorithm 4.3: A consistent and conservative polynomial update time

inference algorithm with a hint

Given: The unit clause p(s) of a target program P.
Input: An enumeration of M(P): e 1, e 2,

Output: A sequence of primitive Prologs: P1, P2,

Procedure:

S := {}; H := {p(s)};
Read the next example e; S := S U { e};
if e E M(H) then output H;

else S_ := S- G(p(s));

Compute P(S, (p(s),lg(S_))) using Algorithm 1;

H := pr(P(S, (p(s), lg(S_)))) ; output H;

Theorem 4.19 Suppose that jrj � 2. Then, for any primitive Prolog P, Algorithm 4.3

identifies M(P) in the limit. Furthermore, Algorithm 4.3 is a consistent and conservative

polynomial update time inference algorithm.

Proof: Since S_ = S- G(p(s)) � C1(Mp) for any S � M(P), it holds that lg(S_) �

lg(C1(Mp)) = p(tr)· From Proposition 3.8, there exists a finite subsetS* of C1(Mp) such

that lg (S*) = p(tr) . Hence, for any integer n such that S* � Sn, it holds that lg(S_) = p(tr) .

With Lemma 4.17 and Theorem 4.18, this proves that the algorithm identifies M(P) in the

limit.

The initial hypothesis {p(s)} is a primitive Prolog. From the facts that Mp = C0(Mp) U

C1 (Mp) = G(p(s)) u C1 (Mp), S � Mp, and G(p(s)) n G(p(t)) = ¢>, it holds that S_ = S

G(p(s)) � C1(Mp) � G(p(t)). Hence, it holds that G(p(s)) n G(lg(S_)) = ¢>. From Lemma

4.17, every hypothesis His also primitive Prolog. Hence, it can be decided in time polynomial

in size(e) whether e E M(H) or not. S_ and lg(S_) is computable in time polynomial in

size(S). Since p(s) is a unit clause, for any a E M(P), it holds that size(p(s)) � size(a),

that is, size(p(s)) � size(S). Also it holds that size(lg(S_)) � size(S). Thus, from Lemma

4.16 and Lemma 4.17, P(S, (p(s),lg(S_))) and pr(P(S, (p(s),lg(S_)))) is also computable

in time polynomial in size(S). Hence Algorithm 3 is a polynomial time inference algorithm.

45

From Lemma 4.16 and Lemma 4.17, it is clear that the algorithm is consistent. Since the

algorithm does not change H when e E M(H), conservativity of the algorithm is also clear.

D

From the above theorem, if the inference algorithm can find a unit clause in some way,

the algorithm identifies a target model efficiently. In general, there is no way to find a

unit clause from arbitrary enumeration of a model in bounded finite time. However, there

is a way to identify it in the limit (unbounded finite time) using the 2-mmg algorithm.

Finally, we describe a polynomial update time inference algorithm that is consistent but not

conservative.

Let P = { C0, C1} be a primitive Prolog where C0 is a unit clause. If C1 has nonempty

body, then it holds that min{size(a) I a E C0(Mp)} < min{size(f3) I f3 E C1(Mp)}. On

the other hand, from Lemma 4.5, for any {q0, q1} E 2-mmg(S), either qo t Co or q1 t C0

holds in the limit. In both case, C0 is less general. Thus, to identify a unit clause C0, an

inference algorithm have only to keep a minimal size example given so far and find a less

general atom, that coves the example, in atoms contained outputs produced by the 2-mmg

algorithm.

Algorithm 4.4: A consistent poly nomial update time inference algorithm

using the 2-mmg algorithm

Input: An enumeration of M(P): e1, e 2,

Output: A sequence of primitive Prologs: P1, P2, . • • •

Procedure:

S := {}; Size := +oo;

Read the next example e; S := S U { e};

if size(e) < Size then

Min := e; Size := size(e)

Let H be the set of all {q0, q1} E 2-mmg(S) such that G(q0) n G(ql) = cj;;

if there exists an atom h� appearing in H such that

lvfin E G(h�) and h� 'f q for any q appearing in H then

Compute P(S, (h�, h�)) using Algorithm 4.2 where { h�, h�} E H.

Output pr(P(S, (h�, h�)))

else output lg(S)

46

Theorem 4.20 Suppose that 1r1 2:: 3. Then, for any primitive Prolog P, Algorithm 4.4

identifies lvf(P) in the limit. Furthermore, Algorithm 4.4 is a consistent polynomial update

time inference algorithm.

Proof: If a target program consists of only unit clauses, then the problem is just the same

as one for inferring unions of tree pattern languages [AS091 b] and it is easily shown that

the sequence of outputs produced by Algorithm 4.4 converges to a primitive Prolog H such

that M(H) = M(P).

Thus, we assume that a target program consists of a unit clause C0 and a non-unit

clause C1. From (1) in Lemma 4.5, there exists a finite subset S of Mp such that, for any

S � SA � Mp, {lg(Co(Mp)),lg(C1(Mp))} E 2-mmg(SA)· Furthermore, lg(C0(Mp)) =

C0 and lg(C1(Mp)) is an instance of head(C1). Since G(C0) n G(head(C1)) is empty,

G(lg(C0(Mp))) n G(lg(C1(Mp))) is also empty. Thus, after the algorithm has fed all el

ements inS, the pair of atoms {lg(C0(Mp)),lg(C1(Mp))} is always contained in H.

On the other hand, from (2) in Lemma 4.5, for any atom q appearing in 2-mmg(S/:}.),

either q t lg(C0(Mp)) or q � lg(C1(Mp)) holds. Since G(lg(C0(Mp)))nG(lg(C1(Mp))) = ¢,

for any atom q � lg(C1 (Mp)), it holds that q -b. lg(C0(Mp)). Hence, for any atom q appearing

in 2-mmg(SA), it holds that lg(C0(Mp)) >f q.

Let a be a minimal size element of Mp. Since a E C0(Mp) = G(lg(C0(Mp))) and

G(lg(C0(Mp))) n G(lg(C1(Mp))) =¢,it holds that a tf_ G(lg(C1(Mp))) and also a tf_ G(q)

for any q � lg(C1 (Mp)) .

Thus, after the algorithm has fed all elements in S and a, the atom h� in the algorithm

is always found and satisfies that h� = lg(C0(Mp)). From the way to calculate 2-mmg(SA)

[AS091b] where SA 2 S, for any pair {h�, h�} E 2-mmg(SA), it necessarily holds that

h� = lg(C1 (Mp)). Hence, after the algorithm has fed all elements in S and a, it continues

to output pr(P(Su {a}, (lg(C0(lv!p)), lg(C1(Mp))))). With Lemma 4.17 and Theorem 4.18,

this proves that the algorithm identifies Mp in the limit.

Clearly, the algorithm is consistent, because it outputs either pr(P(S, (h�, h�))) or lg(S).

Since 12-mmg(S)I is bounded by a polynomial in size(S), we can show that the algorithm

produces each output in time polynomial in size(S) by a similar argument to the proof of

the previous theorem. D

47

48

