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Abstract. This paper deals with a q-analog of Painlevé III equation of type D
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1 Introduction

In the 1900s, Painlevé equations, PI, PII, . . . and PVI, are defined by P. Painlevé and B.

Gambier. In the recent research, PIII was divided into three equations, P
D

(1)
6

III , P
D

(1)
7

III and P
D

(1)
8

III .
Since the 1990s, discrete Painlevé equations have been studied actively from various points of
view. Painlevé and discrete Painlevé equations (Painlevé systems) are now regarded as one of
the most important classes of equations in the theory of integrable systems (see, for example,
[3]). In 2001, Sakai stated that Painlevé systems are classified by theory of rational surfaces and
the system of discrete Painlevé equations is constructed in a unified manner as the birational
action of a translation of the corresponding affine Weyl group on a certain family of rational
surfaces[15].

There are many kind of discrete Painlevé equations and some of them are regarded as the
discrete analog of Painlevé equations. We note here that a discrete analog of PX is a discrete
Painlevé equation which leads to PX by a continuous limit without loss of parameters. Most of

discrete analogs of Painlevé equations have been already found, but discrete analogs of P
D

(1)
7

III

and P
D

(1)
8

III were not known.
We show that the q-difference equation,

f(p2t)f(t) =
(f(pt) + p−1t−1)(f(pt) + p−1t−1α)

1 + f(pt)
, (1.1)

where α, t, p ∈ C×, is the first model of a discrete analog of P
D

(1)
7

III . In fact, by setting

(1 + α)t−1 = (1− p)4As, αt−2 = −(1− p)6s2, f(t) = (1− p)2X(s), (1.2)

and letting p→ 1, we obtain P
D

(1)
7

III ,

X ′′ =
(X ′)2

X
−
X ′

s
−
X2

s2
+
A

s
−

1

X
, (1.3)
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where X ′ = dX
ds . Therefore we call (1.1) a q-Painlevé III equation of type D

(1)
7 (q-P

D
(1)
7

III ). We
note here that (1.1) is obtained by substituting

β = α−1, γ = 1, (1.4)

and putting

q = p2, g(t) = f(q−1/2t), (1.5)

in a q-analog of PV (q-PV)[15],

g(qt)g(t) =
(f(t) + t−1)(f(t) + αt−1)

1 + γf(t)
, f(q−1t)f(t) =

(g(t) + q1/2αβt−1)(g(t) + q1/2β−1t−1)

1 + γ−1g(t)
,

(1.6)

where α, β, γ, t, q ∈ C× are parameters. This specialization is called a projective reduction[4].

It is well known that P
D

(1)
7

III has the following properties:

(i) existence of algebraic function solutions which are rational functions of s1/3;

(ii) irreducibility in the sense of P. Painlevé and H. Umemura.

The aim of this paper is to show that q-P
D

(1)
7

III has quite similar properties to the above.
This paper is organized as follows: in Section 2, we introduce a representation of the affine

Weyl group of type A
(1)
4 , and then derive q-P

D
(1)
7

III from the affine Weyl group. In Section 3,

we construct algebraic function solutions to q-P
D

(1)
7

III and show that each of them is expressed

as a ratio of Laurent polynomials in t1/3. In Section 4, we prove irreducibility of q-P
D

(1)
7

III in
the sense of decomposable extensions, which implies that any transcendental solution cannot
be algebraically expressed by solutions of linear difference equations and solutions of first order
algebraic difference equations. Concluding remarks are given in Section 5.

Throughout this paper, we use the following conventions of q-analysis with |q| < 1 (cf. the
books [2, 5]).
q-Shifted factorials:

(a; q)k =

k∏
i=1

(1− aqi−1), (a1, · · · , as; q)n =

s∏
j=1

(aj ; q)n (1.7)

(a; p, q)k =
k−1∏
i,j=0

(1− piqja), (a1, · · · , as; p, q)n =
s∏

j=1

(aj ; p, q)n. (1.8)

Jacobi theta function:

Θ(a; q) = (a; q)∞(qa−1; q)∞. (1.9)

It holds that

(qa; q)∞ =
(a; q)∞

1− a
, (1.10)

(pa; p, q)∞ =
(a; p, q)∞

(a; q)∞
, (1.11)

Θ(qa; q) = −
Θ(a; q)

a
. (1.12)
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2 Affine Weyl group of type A
(1)
4

2.1 Projective reduction to q-P
D

(1)
7

III

We formulate the family of Bäcklund transformations of q-PV, (1.6), as a birational representa-

tion of the affine Weyl group of type A
(1)
4 . We refer to [12] for basic ideas of this formulation.

We define the transformations si (i = 0, 1, 2, 3, 4), σ, and ι on variables fj (j = 0, 1, 2, 3, 4)
and parameters ak (k = 0, 1, 2, 3, 4) by

si(aj) = ajai
−aij , si(fi+2) =

ai+3ai+4(aiai+1 + ai+3fi)

ai+1
2fi+3

, si(fi+4) =
ai+4(ai+2 + ai+4aifi+1)

aiai+1ai+2
2fi+3

,

si(fj) = fj (j ̸= i+ 2, i+ 4), σ(ai) = ai+1, σ(fi) = fi+1, i ∈ Z/5Z,
ι : (a0, a1, a2, a3, a4, f0, f1, f2, f3, f4) 7→ (a0

−1, a4
−1, a3

−1, a2
−1, a1

−1, f1, f0, f4, f3, f2).

Here the symmetric 5× 5 matrix

A = (aij)
4
i,j=0 =


2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

 , (2.1)

is the Cartan matrix of type A
(1)
4 . Note that fi’s have the conditions

ai+3
2ai+4fi = ai+1(aiai+1fi+2fi+3 − ai+3ai+4) (i ∈ Z/5Z). (2.2)

Proposition 2.1. The group of birational transformations ⟨s0, s1, s2, s3, s4, σ, ι⟩ forms the af-

fine Weyl group of type A
(1)
4 , denoted by W̃ (A

(1)
4 ). Namely, the transformations satisfy the

fundamental relations

si
2 = 1, (sisi±1)

3 = 1, (sisj)
2 = 1 (j ̸= i± 1), σ5 = 1, σsi = si+1σ,

ι2 = 1, ιs0 = s0ι, ιs1 = s4ι, ιs2 = s3ι, i ∈ Z/5Z.

In general, for a function F = F (ai, fj), we let an element w ∈ W̃ (A
(1)
4 ) act as w.F (ai, fj) =

F (w.ai.w, fj), that is, w is an injective homomorphism. Note that q = a0a1a2a3a4 is invariant
under any action of ⟨s0, s1, s2, s3, s4, σ⟩. We define the translations Ti (i = 0, 1, 2, 3, 4) by

T0 = σs4s3s2s1, T1 = σs0s4s3s2, T2 = σs1s0s4s3, T3 = σs2s1s0s4, T4 = σs3s2s1s0. (2.3)

Their actions on ai’s are given by

T0 : (a0, a1, a2, a3, a4) 7→ (qa0, q
−1a1, a2, a3, a4),

T1 : (a0, a1, a2, a3, a4) 7→ (a0, qa1, q
−1a2, a3, a4),

T2 : (a0, a1, a2, a3, a4) 7→ (a0, a1, qa2, q
−1a3, a4),

T3 : (a0, a1, a2, a3, a4) 7→ (a0, a1, a2, qa3, q
−1a4),

T4 : (a0, a1, a2, a3, a4) 7→ (q−1a0, a1, a2, a3, qa4).

Note that Ti’s commute with each other and T0T1T2T3T4 = 1. We introduce α, β, γ, t, f , and
g by

α = a4
−1, β = a2

1/2a4
1/2, γ = q−1/4a2

1/4a3
1/2a4

1/4, t = q−1/4a0a2
1/4a3

1/2a4
1/4,

(2.4)

f = q−3/4a2
3/4a3

3/2a4
3/4f0, g = q3/4a2

−3/4a3
−3/2a4

−3/4f2. (2.5)
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Then the action of T0 on f and g are expressed as

T0(g)g =
(f + t−1)(f + αt−1)

1 + γf
, T0

−1(f)f =
(g + q1/2αβt−1)(g + q1/2β−1t−1)

1 + γ−1g
, (2.6)

which is equivalent to q-PV, (1.6). We regard T0 and Ti (i = 1, 2, 3, 4) as the time evolution and
Bäcklund transformations of q-PV, respectively.

In order to derive q-P
D

(1)
7

III , we introduce the transformations R0 and R13 defined by

R0 = σ3s2s1, R13 = σs0s4s2. (2.7)

Note that R0 and R13 commute with each other. The transformations are not translations but
their squares are translations,

R0
2 = T0, R13

2 = T1T3. (2.8)

Considering the projection of the action of R0 and R13 on the subspace of the parameter space
β = α−1 and γ = 1 (or, a0a1 = a3 and a2 = a4), we have

R0 : (α, t) 7→ (α, q1/2t),

R13 : (α, t) 7→ (q1/2α, t).

Then the action of R0 can be expressed as

R0(f) =
(f + t−1)(f + αt−1)

g(1 + f)
, R0

−1(f) = g, (2.9)

which is equivalent to q-P
D

(1)
7

III , (1.1). We regard R0 as the time evolution of q-P
D

(1)
7

III . The action
of R13 can be expressed as

R13(f) =
q1/2α+ q1/2αtf + tg

t2fg
, R13

−1(f) =
q1/2α+ q1/2tf + αtg + αtfg

q1/2tf(tf + α)
, (2.10)

which is a Bäcklund transformation of (2.9) because of commutative property between R0 and
R13. Therefore we obtain the following proposition:

Proposition 2.2. Transformations T and T−1,

T : (α, t, f(t)) 7→

(
pα, t,

pα+ pαtf(t) + tf(p−1t)

t2f(t)f(p−1t)

)
, (2.11)

T−1 : (α, t, f(t)) 7→

(
pα−1, t,

pα+ ptf(t) + αtf(p−1t) + αtf(t)f(p−1t)

ptf(t)(tf(t) + α)

)
, (2.12)

are Bäcklund transformations of q-P
D

(1)
7

III , (1.1).

In general, we can derive various discrete Painlevé systems from elements of infinite order
of affine Weyl groups that are not necessarily translations by taking a projection on a certain
subspace of the parameter space. We call such a procedure a projective reduction[4].
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2.2 τ function

We introduce the new variables τi (i = 1, 2, · · · , 7) with

f2 =
τ4τ5

τ6τ7
, f4 =

τ1τ2

τ3τ7
, (2.13)

and lift the representation of the affine Weyl group to τi’s-level[16]:

Proposition 2.3. The actions of si (i = 0, 1, 2, 3, 4), ι, and σ are expressed on τk by the
following:

s0(τ1) =
a4 (a0τ3τ4τ5 + a2a3τ1τ2τ6 + a0a3τ3τ6τ7)

a02a1a2τ4τ7
, s0(τi) = τi (i = 2, 3, 5, 6),

s0(τ4) =
a0a4 (a0τ3τ4τ5 + a2a3τ1τ2τ6 + a3τ3τ6τ7)

a1a2τ1τ7
,

s0(τ7) =
a4
(
a20τ3τ4τ5 + a3a0τ3τ6τ7 + a2a3τ1τ2τ6

)
a0a1a2τ1τ4

,

s1(τ1) = τ2, s1(τ2) = τ1, s1(τi) = τi (i = 3, · · · , 7),

s2(τ1) =
a0a1 (a0τ4τ5 + a2a3τ6τ7)

a32τ3
, s2(τ3) =

a0a1 (a0τ4τ5 + a3τ6τ7)

a2a32τ1
,

s2(τi) = τi (i = 2, 4, 5, 6, 7),

s3(τi) = τi (i = 1, 2, 3, 5, 7),

s3(τ4) =
a2 (a2a3τ1τ2 + a0τ3τ7)

a02a3a4τ6
, s3(τ6) =

a2a3 (a2τ1τ2 + a0τ3τ7)

a02a4τ4
,

s4(τ4) = s4(τ5), s4(τ5) = s4(τ4), s4(τi) = τi (i = 1, 2, 3, 6, 7),

ι : (τ1, τ2, τ3, τ4, τ5, τ6, τ7) = (τ4, τ5, τ6, τ1, τ2, τ3, τ7),

σ(τ1) =
a0a1 (a0τ4τ5 + a3τ6τ7)

a2a32τ1
, σ(τ2) = τ3, σ(τ3) = τ6,

σ(τ4) =
a4
(
a0

2τ3τ4τ5 + a3a0τ3τ6τ7 + a2a3τ1τ2τ6
)

a0a1a2τ1τ4
, σ(τ5) = τ7,

σ(τ6) = τ5, σ(τ7) = τ2.

Since we are studying the property of q-P
D

(1)
7

III , we consider the τ functions under the conditions
β = α−1 and γ = 1 (or, a0a1 = a3 and a2 = a4). We define the τ functions τnN (n,N ∈ Z) by

τnN = R0
nR13

N (τ4). (2.14)

We note that τi’s are expressed by τnN as follows (Figure 1):

τ1 = τ02 , τ2 = τ21 , τ3 = τ22 , τ4 = τ00 , τ5 = τ12 , τ6 = τ11 , τ7 = τ01 , (2.15)

and (2.4) and (2.5) are rewritten as

f = f0 =
τ10 τ

2
2

τ11 τ
2
1

, t = a0, α = a2
−1. (2.16)

3 Algebraic function solutions to q-P
D

(1)
7

III

In this section, we use the notation F = F (pt) for arbitrary function F = F (t).
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R13

R0

τ4 = τ
0

0

τ7 = τ
0

1

τ1 = τ
0

2

τ6 = τ
1

1
τ2 = τ

2

1

τ5 = τ
1

2
τ3 = τ

2

2
�\�\�T��

�\�\���p

τ
1

0
τ

2

0

Figure 1. Configuration of the τ functions on the lattice.

3.1 Puiseux series representation of algebraic function solutions

Proposition 3.1. Let f be an algebraic function solution to (1.1). Then

f =

∞∑
i=−2

cit
i/3 ∈ C(t1/3), (3.1)

where ci ∈ C and c−2 ̸= 0.

Proof. Let L = C(t, f, f). By Lemma 12 in [11], L = C(x) where xn = t (n ∈ Z>0) and
x = p1/nx. Express f as

f =
P

Q
, (3.2)

where P,Q ∈ C[x] \ {0} and P and Q are relatively prime. From (1.1), we obtain

x2nPP (P +Q)Q = QQ(xnP +Q)(xnP + αQ). (3.3)

Let v0(F ) denote the maximum number k such that xk | F for F ∈ C[x] \ {0}. Assume x ∤ Q.
Then, from (3.3), it follows that

2n+ 2v0(P ) + v0(P +Q) = 0, (3.4)

which implies n = 0. Therefore we obtain x | Q and so x ∤ P . Put m = v0(Q) ∈ Z>0. From
(3.3), it follows that

2n+m ≥ 2m+ 2min(n,m), (3.5)

which implies 2n = 3m.

We can express f as

f =

∞∑
i=−m

cix
i, (3.6)
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where ci ∈ C, c−m ̸= 0 To show m/2 ∤ i ⇒ ci = 0, we assume that there exists i such that
m/2 ∤ i and ci ̸= 0. Let k · m

2 + l = min{i | m/2 ∤ i and ci ̸= 0}, 1 ≤ l < m/2. Then f can be
expressed as

f = c−mx
−m + c−m/2x

−m/2 + · · ·+ ckm/2x
km/2 + ckm/2+lx

km/2+l + · · · .

From (1.1), we obtain

ff(1 + f) = (f + x−3m/2)(f + αx−3m/2). (3.7)

The coefficient of xkm/2+l−2m = x(k−4)m/2+l of the left side is

ckm/2+lp
km/2n+l/nc−mp

m/nc−m + c−mp
−m/nckm/2+lp

−km/2n−l/nc−m

+ c−mp
−m/nc−mp

m/nckm/2+l

=(p(k+2)m/2n+l/n + p−(k+2)m/2n−l/n + 1)c2−mckm/2+l

̸=0,

(3.8)

and one of the right side is 0, a contradiction.
Therefore we find f ∈ C((xm/2))∩C(x) = C(xm/2). Then we have L ⊂ C(xm/2) ⊂ C(x) = L,

which yields L = C(xm/2) = C(x), and so m = 2 and n = 3 are obtained. Since x3 = t, we can
express f as

f =

∞∑
i=−2

cit
i/3 ∈ C(t1/3), ci ∈ C, c−2 ̸= 0. (3.9)

This expression is what we want. ■

In fact, when α = −1, q-P
D

(1)
7

III has the algebraic function solution,

f = −t−2/3. (3.10)

Moreover, using the Bäcklund transformation (2.11), we obtain the algebraic function solutions:

f = −t−2/3(p1/3 + (1− p1/3)t1/3) (α = −p), (3.11)

f = −t−2/3 p
4/3 + p1/3(1− p4/3)t1/3 + p−1/3(1− p1/3)(1− p5/3)t2/3

(p1/3 + (1− p1/3)t1/3)(p1/3 + p−1/3(1− p1/3)t1/3)
(α = −p2). (3.12)

By using the continuous limit (1.2) and p → 1, we obtain the algebraic function solution to

P
D

(1)
7

III as follows:

X = −s2/3 (A = 0), (3.13)

X =
2

9
s1/3

(
−
3 + 9s1/3

2

)
(A = 1), (3.14)

X =
2

3
s1/3

∣∣∣∣∣∣∣∣
35 + 90s1/3 + 81s2/3

8
−
105 + 315s1/3 + 405s2/3 + 243s

16

1 −
3 + 9s1/3

2

∣∣∣∣∣∣∣∣(
−
3 + 9s1/3

2

)2 (A = 2). (3.15)



8 N. Nakazono and S. Nishioka

These solutions to P
D

(1)
7

III will be seen in [13] and K. Kajiwara, T. Masuda, and Y. Ohta anticipate
determinant formula of them as follows:

X =
2(2N − 1)

9
s1/3

ψNψN−2

ψN−1
2 , (A = N ∈ Z≥0), (3.16)

where

ψ−2 =
9

2
s1/3, ψ−1 = ψ0 = 1, (3.17)

ψN =

∣∣∣∣∣∣∣∣∣∣
P

(N−1)
N (s) P

(N−1)
N+1 (s) · · · P

(N−1)
2N−1 (s)

P
(N−2)
N−2 (s) P

(N−2)
N−1 (s) · · · P

(N−2)
2N−3 (s)

...
...

. . .
...

P
(0)
−N+2(s) P

(0)
−N+3(s) · · · P

(0)
1 (s)

∣∣∣∣∣∣∣∣∣∣
(N > 0), (3.18)

P (k)
n (s) = 0 (n < 0), P (k)

n (s) = L(−k−n−3/2)
n

(
9

2
s1/3

)
(n ≥ 0). (3.19)

Here L
(α)
n (x) is Laguerre Polynomial,

L(α)
n (x) =

n∑
r=0

(−1)rΠn−r
k=1(n+ α− k + 1)

(n− r)!r!
xr. (3.20)

3.2 Algebraic τ function

In [7, 8, 9], τ functions expressed by gauge functions and basic hypergeometric function are
called hypergeometric τ functions. In this section, we construct τ functions expressed by gauge
functions and algebraic functions. We call them algebraic τ functions.

We assume that τnN are functions of t such that

τnN = τ0N (pnt), (3.21)

and

α = −p2. (3.22)

By the action of the affine Weyl group, τnN is determined as a rational function in τn0 , τ
n
1 , and

τn2 (or τ1, τ2, . . . , τ7). Thus, we only have to determine τn0 , τ
n
1 , and τ

n
2 . From (2.7), (2.16), and

Proposition 2.3, we see that the action of R0 on τi is given by

R0(τ1) = τ5, R0(τ5) = τ3, R0(τ6) = τ2, R0(τ7) = τ6, (3.23)

R0(τ2) =
t2τ3(tτ4τ5 + pατ6τ7) + pt2τ1τ2τ6

pατ1τ7
, (3.24)

R0(τ3) =
tτ3(tτ4τ5 + pατ6τ7) + pτ1τ2τ6

pατ1τ4
, (3.25)

R0(τ4) =
tτ4τ5 + pατ6τ7

pτ1
, (3.26)

R0
−1(τ1) =

pαt2τ3τ7(τ4τ5 + τ6τ7) + tτ1τ2(tτ4τ5 + pτ6τ7)

p3ατ2τ3τ4
, (3.27)

R0
−1(τ4) =

tτ4τ5 + pτ6τ7

pατ3
, (3.28)

R0
−1(τ7) =

t2(τ4τ5 + τ6τ7)

p2ατ2
. (3.29)



Solutions to a q-analog of Painlevé III equation of type D
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Lemma 3.1. Equations (3.24), (3.25), and (3.27) can be eliminated.

Proof. Erasing the term “tτ4τ5 + pατ6τ7” from (3.24) by using (3.26), we obtain

τ7 =
t2(R0(τ4)τ3 + τ2τ6)

αR0(τ2)
, (3.30)

which is equivalent to (3.29). Erasing the term “tτ4τ5 + pατ6τ7” from (3.25) by using (3.26), we
obtain

τ4 =
tτ3R0(τ4) + τ2τ6

αR0(τ3)
, (3.31)

which is equivalent to (3.28). Finally, erasing the terms “τ4τ5 + τ6τ7” and “tτ4τ5 + pτ6τ7” from
(3.27) by using (3.28) and (3.29), we obtain

τ4 =
tR0

−1(τ4)τ1 + p2ατ7R0
−1(τ7)

p2R0
−1(τ1)

, (3.32)

which is equivalent to (3.26). ■

By (2.15) and (3.22), we rewrite (3.26), (3.28), and (3.29) as follows:

τ12 τ
2
0 = tτ10 τ

2
2 − p2τ11 τ

2
1 , (3.33)

τ32 τ
0
0 = −p−2tτ10 τ

2
2 − p−2τ11 τ

2
1 , (3.34)

τ31 τ
0
1 = −p−2t2τ10 τ

2
2 − p−2t2τ11 τ

2
1 , (3.35)

respectively. Thus, the action of R0 on τi is equivalent to the bilinear equations (3.33)–(3.35).
By elementary calculations, we can verify that

τn0 =− p(13+24n)/12t2

×
(pn/3t1/3,−p(−1+n)/3t1/3; p1/3, p2/3)∞(p(−5+4n)/12t1/3; p1/3, p1/6)∞

(p(11−4n)/12t−1/3; p1/3, p1/6)∞

×

(
Θ(p(1+4n)/12t1/3; p1/3)

Θ(p(−5+4n)/12t1/3; p1/3)

)1/4

, (3.36)

τn1 =pnt(p1/3 + p(n−2)/3(1− p1/3)t1/3)

×
(pn/3t1/3,−p(−2+n)/3t1/3; p1/3, p2/3)∞(p(−7+4n)/12t1/3; p1/3, p1/6)∞

(p(13−4n)/12t−1/3; p1/3, p1/6)∞

×

(
Θ(p(−5+4n)/12t1/3; p1/3)

Θ(p(1+4n)/12t1/3; p1/3)

)1/4

, (3.37)

τn2 =
(
p4/3 + p(n−1)/3(1− p4/3)t1/3 + p(2n−5)/3(1− p1/3)(1− p5/3)t2/3

)
×

(pn/3t1/3,−p(−3+n)/3t1/3; p1/3, p2/3)∞(p(−9+4n)/12t1/3; p1/3, p1/6)∞

(p(15−4n)/12t−1/3; p1/3, p1/6)∞

×

(
Θ(p(1+4n)/12t1/3; p1/3)

Θ(p(−5+4n)/12t1/3; p1/3)

)1/4

, (3.38)

is a solution to (3.33)–(3.35). Incidentally, the algebraic function solution (3.12),

f =
τ10 τ

2
2

τ11 τ
2
1

= −t−2/3 p
4/3 + p1/3(1− p4/3)t1/3 + p−1/3(1− p1/3)(1− p5/3)t2/3

(p1/3 + (1− p1/3)t1/3)(p1/3 + p−1/3(1− p1/3)t1/3)
, (3.39)
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is useful to find out this solution.
We next express τnN for a general N ∈ Z by gauge functions and algebraic functions. From

(3.26), (3.28), and (3.29), we obtain the following bilinear equations:

pN+2τn+1
N+1τ

n
N+1 = −τnN+2τ

n+1
N + pn−1tτn+1

N+2τ
n
N , (3.40)

τn+1
N+1τ

n
N+1 = −pN+2τn+2

N+2τ
n−1
N − pn−1tτn+1

N+2τ
n
N , (3.41)

τnN+2τ
n−1
N = −τn−1

N+1τ
n
N+1 − p6−2n+N t−2τn−2

N+1τ
n+1
N+1. (3.42)

We define ψn
N by

τnN =
(pn/3t1/3,−p(−1+n−N)/3t1/3; p1/3, p2/3)∞(p(−5+4n−2N)/12t1/3; p1/3, p1/6)∞

(p(11−4n+2N)/12t−1/3; p1/3, p1/6)∞

×

(
Θ(p(1+4n)/12t1/3; p1/3)

Θ(p(−5+4n)/12t1/3; p1/3)

)(−1)N/4

ψn
N . (3.43)

Then it holds that

ψn
0 = −p(13+24n)/12t2, (3.44)

ψn
1 = pnt(p1/3 + p(n−2)/3(1− p1/3)t1/3), (3.45)

ψn
2 = p4/3 + p(n−1)/3(1− p4/3)t1/3 + p(2n−5)/3(1− p1/3)(1− p5/3)t2/3, (3.46)

and (3.40)–(3.42) are rewritten as

(−1)N+1p(8+4N−(1−2n)(−1)N )/4t((−1)N−1)/2ψn+1
N+1ψ

n
N+1

= p(−4−N+2n)/4(1 + p(−3+n−N)/3t1/3)ψn
N+2ψ

n+1
N − p(−8+N+10n)/12t1/3ψn+1

N+2ψ
n
N , (3.47)

(−1)N+1p−(1−2n)(−1)N/4t((−1)N−1)/2ψn+1
N+1ψ

n
N+1

= p(4+3N+2n)/4(1− p(n−1)/3t1/3)ψn+2
N+2ψ

n−1
N + p(−8+N+10n)/12t1/3ψn+1

N+2ψ
n
N , (3.48)

(−1)N+1p(6+9(−1)N−2(1+3(−1)N )n+N)/12t−(1+3(−1)N )/6ψn
N+2ψ

n−1
N

= ψn−1
N+1ψ

n
N+1 + t−2/3(p(2−n)/3 − t1/3)(p(4−n+N)/3 + t1/3)ψn−2

N+1ψ
n+1
N+1, (3.49)

respectively. For convenience, we introduce

u = t1/3. (3.50)

It is obvious that ψn
N is a rational function for u from (3.49) and initial conditions (3.44)–(3.46).

Set

ψ0
N = ψN (t) = ueN

PN (u)

QN (u)
, (3.51)

where PN is a polynomial, QN is a monic polynomial, eN ∈ Z, PN and QN are relatively prime,
and PN (0), QN (0) ̸= 0. We shall show that ψn

N is a Laurent polynomial by the following lemma:

Lemma 3.2. It holds that

(i) QN = 1;

(ii) PN , PN :relatively prime;

(iii) PN , PN :relatively prime.
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Proof. We shall prove this lemma by induction for N ∈ Z≥0. It is obvious for or N = 0, 1. We
assume that (i)–(iii) are hold for N = 0, 1, . . . ,M − 1 (M ≥ 2). From (3.49),

ψMψM−2
= p−eM−2/3ueM+eM−2

PMPM−2

QM
, (3.52)

is a Laurent polynomial, which implies

QM | PM−2. (3.53)

From (3.47) and the fact that ψMψM−2 is a Laurent polynomial,

(1 + p(−1−M)/3u)ψMψM−2 = peM−2/3(1 + p(−1−M)/3u)ueM+eM−2
PMPM−2

QM
, (3.54)

is a Laurent polynomial, which implies

QM | (1 + p(−1−M)/3u)PM−2. (3.55)

From (3.48) and the fact that ψMψM−2 is a Laurent polynomial,

(1− p−1/3u)ψMψM−2
= p(2eM−eM−2)/3ueM+eM−2(1− p−1/3u)

PMPM−2

QM

, (3.56)

is a Laurent polynomial, which implies

QM | (1− p−1u)P
M−2

. (3.57)

From (ii), (iii), (3.53), (3.55), and (3.57), it holds that

QM | (1 + p(−1−M)/3u), (3.58)

QM | (1− p−1u). (3.59)

Therefore QM = 1, and so (i) holds for N =M .
We next prove (ii). Set S1 = gcd(PM , PM ) where S1 is a monic polynomial. From (3.47)–

(3.49), we have

(−1)M+1p(4M−(−1)M )/4+eM−1/3u3((−1)M−1)/2+2eM−1PM−1PM−1

= p(−2−M)/4+eM−2/3ueM+eM−2(1 + p(−1−M)/3u)PMPM−2

− p(−10+M)/12+eM/3u1+eM+eM−2PMPM−2, (3.60)

(−1)M−1p(−1)M+1/4+eM−1/3u3((−1)M−1)/2+2eM−1PM−1PM−1

= p(−2+3M)/4+(2eM−eM−2)/3ueM+eM−2(1− p−1/3u)PMPM−2

+ p(−10+M)/12+eM/3u1+eM+eM−2PMPM−2, (3.61)

(p2/3 − u)(p(2+M)/3 + u)p−eM−1/3u−2+2eM−1P
M−1

PM−1

= (−1)M+1p(4+9(−1)M+M)/12−eM−2/3u−(1+3(−1)M )/2+eM+eM−2PMPM−2

− p−eM−1/3u2eM−1PM−1PM−1. (3.62)

From (3.60) and (3.61), we obtain

S1 | PM−1PM−1, (3.63)

S1 | PM−1PM−1, (3.64)
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respectively. From (3.62) and (3.64), we obtain

S1 | (p2/3 − u)(p(2+M)/3 + u)P
M−1

PM−1. (3.65)

From (3.62) and (3.63), we obtain

S1 | (p2/3 − p1/3u)(p(2+M)/3 + p1/3u)PM−1PM−1. (3.66)

Since PM−1PM−1 and PM−1PM−1 are relatively prime, it follows by (3.63) and (3.66) that

S1 | (p2/3 − p1/3u)(p(2+M)/3 + p1/3u). (3.67)

Since PM−1PM−1 and P
M−1

PM−1 are relatively prime, it follows by (3.64) and (3.65) that

S1 | (p2/3 − u)(p(2+M)/3 + u). (3.68)

Therefore S1 = 1, and so (ii) holds for N =M .

We finally prove (iii). Set S2 = gcd(PM , PM ) where S2 is a monic polynomial. From (3.47)
and (3.48), we obtain

(pM + 1)(−1)M+1p−(−1)M/4+eM−1/3u3(−1)M/2+2eM−1PM−1PM−1

= p(−2−M)/4+eM−2/3u3/2+eM+eM−2(1 + p(−1−M)/3u)PMPM−2

+ p(−2+3M)/4+(2eM−eM−2)/3u3/2+eM+eM−2(1− p−1/3u)PMPM−2, (3.69)

which implies

S2 | PM−1PM−1. (3.70)

From (3.60), (3.70), and (ii), we obtain

S2 | PM−2. (3.71)

From S2 | PM−2 and (3.60), we obtain

S2 | PM−1PM−1. (3.72)

From S2 | PM−2 and (3.61), we obtain

S2 | PM−1PM−1. (3.73)

From (3.70), (3.72), and (3.73), S2 = 1, and so (iii) holds for N =M . We can prove this lemma
for N ∈ Z<0 in a similar way. ■

Therefore we obtain the following theorem:

Theorem 3.1. The functions,

f = (−1)Np(2−3(−1)N+N)/12t−(1+3(−1)N )/6 ψN (pt)ψN+2(p
2t)

ψN+1(pt)ψN+1(p2t)
, (3.74)

are algebraic function solutions to (1.1) with α = −p2+N . Here ψN (t) is a Laurent polynomial
for t1/3 constructed by

(−1)N+1p(6+9(−1)N+N)/12t−(1+3(−1)N )/6ψN+2(t)ψN (p−1t)

= ψN+1(p
−1t)ψN+1(t) + (p2/3 − t1/3)(p(4+N)/3 + t1/3)t−2/3ψN+1(p

−2t)ψN+1(pt),
(3.75)

under the initial conditions

ψ0(t) = −p13/12t2, (3.76)

ψ1(t) = t(p1/3 + p−2/3(1− p1/3)t1/3). (3.77)
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4 Irreducibility of q-P
D

(1)
7

III

In this section, we prove irreducibility of q-P
D

(1)
7

III . We use the following terms of difference
algebra.

Throughout this section every field is of characteristic zero. When K is a field and τ is an
isomorphism of K into itself, namely an injective endomorphism, the pair K = (K, τ) is called a
difference field. We call τ the (transforming) operator and K the underlying field. For a ∈ K,
an element τna ∈ K, n ∈ Z, is called the n-th transform of a and is frequently denoted by an if
it exists. If τK = K, we say that K is inversive. If K/τK is algebraic, we say that K is almost
inversive. For difference fields K = (K, τ) and K′ = (K ′, τ ′), K′/K is called a difference field
extension if K ′/K is a field extension and τ ′|K = τ . In this case we say that K′ is a difference
overfield of K or K is a difference subfield of K′. For brevity we sometimes use (K, τ ′) instead of
(K, τ ′|K). Let K be a difference field, L = (L, τ) a difference overfield of K and B a subset of L.
The difference subfield K⟨B⟩L of L is defined to be the difference field (K(B, τB, τ2B, . . . ), τ)
and is denoted by K⟨B⟩ for brevity. A solution of a difference equation over K is defined to be
an element of some difference overfield of K which satisfies the equation (cf. the books [1, 6]).

We say that q-P
D

(1)
7

III is irreducible if there is no transcendental function solution in any decom-
posable extension of (C(t), t 7→ pt) (cf. [10, 11]). The irreducibility implies that any transcenden-
tal function solution cannot be algebraically expressed by solutions of linear difference equations

and solutions of first order algebraic difference equations. To obtain the irreducibility of q-P
D

(1)
7

III ,
we only have to prove the following theorem because of Lemma 4.10 in the paper[10] (cf. Lemma
9 in [11]):

Lemma 4.1 (Lemma 4.10 in [10]). Let K be an almost inversive difference field, D a decompo-
sable extension of K and B ⊂ D. Suppose that for any inversive difference overfield L of K and
for any difference overfield U of L with K⟨B⟩D ⊂ U , the following holds,

tr. deg L⟨B⟩U/L ≤ 1 ⇒ any f ∈ B is algebraic over L.

Then any f ∈ B is algebraic over K.

Theorem 4.1. Let p ∈ C× be not a root of unity, L an inversive difference overfield of (C(t), t 7→
pt), U = (U, τ) a difference overfield of L and f ∈ U satisfy

ff =
(f + p−1t−1)(f + p−1t−1α−1)

1 + f
, (4.1)

where f = τf and f = τ2f . Then we obtain

tr. deg L⟨f⟩/L ≤ 1 ⇒ f is algebraic over L. (4.2)

The proof of Theorem 4.1 is given later. We now prove the following lemma:

Lemma 4.2. Let p ∈ C× be not a root of unity, L an inversive difference overfield of (C(t), t 7→
pt), U = (U, τ) a difference overfield of L and f ∈ U satisfy (4.1). If tr. deg L⟨f⟩/L = 1, then
there are n, l ∈ Z≥0 such that

αn−2l = pn, (4.3)

0 ≤ l ≤ n, n ̸= 0 and 2l ̸= n.



14 N. Nakazono and S. Nishioka

Proof. There is an irreducible polynomial F ∈ L[X,Y ] \ {0} such that F (f, f) = 0. We set

F =

n0∑
i=0

n1∑
j=0

ai,jX
iY j , (4.4)

where ai,j ∈ L and define F ∗, F0, F1 ∈ L[X,Y ] \ {0} as

F ∗ =

n0∑
i=0

n1∑
j=0

τ(ai,j)X
iY j , (4.5)

F0(X,Y ) = Y n0(1 +X)n0F

(
(X + p−1t−1)(X + p−1t−1α−1)

Y (1 +X)
, X

)
, (4.6)

F1(X,Y ) = Xn1(1 + Y )n1F ∗

(
Y,

(Y + p−1t−1)(Y + p−1t−1α−1)

X(1 + Y )

)
, (4.7)

respectively. Now we prove this lemma by dividing the proof into the following eight steps:

Step 1. We prove that F |F1 and F ∗|F0 in L[X,Y ].

We find that (f, f) is a zero of F and F1, and (f, f) is a zero of F ∗ and F0. By the assumption
tr. deg L⟨f⟩/L = 1, we see that f is transcendental over L, which implies F |F1 and F ∗|F0, the
required (cf. the book [17], Ch. II, §13, Lemma 2).

Step 2. We prove n0 = n1.

By using F |F1 and F ∗|F0 in L[X,Y ], we get the following:

n0 = degXF ≤ degXF1 ≤ n1, (4.8)

n0 ≥ degY F0 ≥ degY F
∗ = degY F = n1. (4.9)

We set

n = n0 = n1, (4.10)

and define P ∈ L[X,Y ] as

F1 = PF. (4.11)

Step 3. We prove that the following equations hold:

(Y + p−1t−1)n(Y + p−1t−1α−1)n
n∑

i=0

τ(ai,n)Y
i = P

n∑
i=0

a0,iY
i, (4.12)

(1 + Y )j(Y + p−1t−1)n−j(Y + p−1t−1α−1)n−j
n∑

i=0

τ(ai,n−j)Y
i = P

n∑
i=0

aj,iY
i, (4.13)

(1 + Y )n
n∑

i=0

τ(ai,0)Y
i = P

n∑
i=0

an,iY
i, (4.14)

where j = 1, 2, · · · , n− 1.
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We find P ∈ L[Y ] because

degXP = degXF1 − degXF = 0. (4.15)

We obtain

F1(X,Y ) =

n∑
j=0

{
(1 + Y )n−j(Y + p−1t−1)j(Y + p−1t−1α−1)j

n∑
i=0

τ(ai,j)Y
i

}
Xn−j

=
n∑

j=0

{
(1 + Y )j(Y + p−1t−1)n−j(Y + p−1t−1α−1)n−j

n∑
i=0

τ(ai,n−j)Y
i

}
Xj ,

(4.16)

PF (X,Y ) = P

n∑
i,j=0

ai,jX
iY j =

n∑
j,i=0

Paj,iX
jY i =

n∑
j=0

(
P

n∑
i=0

aj,iY
i

)
Xj , (4.17)

By comparing coefficients of X of (4.11), we get (4.12)–(4.14).

Step 4. We prove

n∑
i=0

a0,iY
i ̸= 0 and

n∑
i=0

an,iY
i ̸= 0.

Supposing

n∑
i=0

a0,iY
i = 0, we get

a0,n = a1,n = · · · = an,n = 0, (4.18)

from (4.12). This contradicts degY F = n.

Supposing
n∑

i=0

an,iY
i = 0, we get

an,0 = an,1 = · · · = an,n = 0, (4.19)

This contradicts degXF = n.

Step 5. We prove that there are A0 ∈ L and l,m ∈ Z≥0 which satisfy

P = A0(1 + Y )m(Y + p−1t−1)l(Y + p−1t−1α−1)n−l, (4.20)

where 0 ≤ l,m ≤ n.

We define l1 and l2 by (Y + p−1t−1)l1 ||P and (Y + p−1t−1α−1)l2 ||P , respectively. We get

l1 + l2 = n, (4.21)

because

l1 + l2 ≥ n, (4.22)

l1 + l2 ≤ n, (4.23)

hold from (4.12) and (4.14), respectively. We set

l = l1. (4.24)

We get

(Y + p−1t−1)l(Y + p−1t−1α−1)n−l||
n∑

i=0

τ(ai,0)Y
i, (4.25)
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from (4.14). Considering the coefficient of Y n of the above, we get

n∑
i=0

τ(ai,0)Y
i = τ(an,0)(Y + p−1t−1)l(Y + p−1t−1α−1)n−l. (4.26)

Substituting this into (4.14), we get

τ(an,0)(1 + Y )n(Y + p−1t−1)l(Y + p−1t−1α−1)n−l = P

n∑
i=0

an,iY
i. (4.27)

Therefore we can set

P = A0(1 + Y )m(Y + p−1t−1)l(Y + p−1t−1α−1)n−l. (4.28)

Step 6. We prove an,n−m ̸= 0 and am,n ̸= 0.

By using (4.20) and (4.26) in (4.14), we get

τ(an,0)(1 + Y )n−m = A0

n∑
i=0

an,iY
i. (4.29)

Comparing the coefficients of Y n−m of (4.29), we get

an,n−m ̸= 0. (4.30)

By using (4.20) in (4.12), we get

(Y + p−1t−1)n−l(Y + p−1t−1α−1)l
n∑

i=0

τ(ai,n)Y
i = A0(1 + Y )m

n∑
i=0

a0,iY
i. (4.31)

From (4.31), we get

(Y + p−1t−1)n−l(Y + p−1t−1α1)l||
n∑

i=0

a0,iY
i, (4.32)

degY

(
n∑

i=0

τ(ai,n)Y
i

)
= m. (4.33)

Therefore we obtain am,n ̸= 0.

Step 7. We prove 2m = n.

By using (4.20) and (4.26) in (4.13), we get

(Y + p−1t−1)n−m(Y + p−1t−1α−1)n−m
n∑

i=0

τ(ai,n−m)Y i

= A0(Y + p−1t−1)l(Y + p−1t−1α−1)n−l
n∑

i=0

am,iY
i. (4.34)

By comparing degrees of Y of (4.34)

2m = n. (4.35)
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(1)
7 17

Step 8. We prove that the following equations hold:

τ(a0,0) = p−nαl−nt−nτ(an,0), (4.36)

τ(an,0) = A0an,0, (4.37)

τ(an,0) = A0an,m, (4.38)

τ(a0,n) = A0p
nαltna0,0, (4.39)

τ(am,n) = A0a0,n, (4.40)

τ(an,m) = A0am,n. (4.41)

From the coefficient of Y 0 of (4.26), we get (4.36). From the coefficients of Y 0 and Y m of
(4.29), we get (4.37) and (4.38), respectively. From the coefficients of Y 0 and Y n+m of (4.31),
we get (4.39) and (4.40), respectively. From the coefficient of Y 2n of (4.34), we get (4.41).

Now we prove Lemma 4.2. From (4.37) and (4.38), we get

an,0 = an,m. (4.42)

By using (4.36), (4.37), (4.39), (4.40), (4.41), and (4.42), we obtain

τ(a0,0) = p−nαl−nt−nτ(an,0) (4.43)

⇔ a0,0 = αl−nt−nan,0 (4.44)

⇔ τ(a0,n) = A0p
nα2l−nan,0 (4.45)

⇔ τ(a0,n) = pnα2l−nτ(an,0) (4.46)

⇔ a0,n = pnα2l−nan,0 (4.47)

⇔ τ(am,n) = A0p
nα2l−nan,0 (4.48)

⇔ τ(am,n) = pnα2l−nτ(an,0) (4.49)

⇔ am,n = pnα2l−nan,0 (4.50)

⇔ τ(an,m) = A0p
nα2l−nan,0 (4.51)

⇔ τ(an,m) = pnα2l−nτ(an,0) (4.52)

⇔ an,m = pnα2l−nan,0 (4.53)

⇔ αn−2l = pn. (4.54)

We also get

2l ̸= n, (4.55)

because p is not a root of unity. ■

In order to prove Theorem 4.1, we use the following lemma:

Lemma 4.3. Let L be an inversive difference overfield of (C(t), t 7→ pt) and U a difference
overfield of L. Using the Bäcklund transformations, (2.11) and (2.12), we find that if there is a
solution f ∈ U to (4.1) with α = A satisfying tr. deg L⟨f⟩/L = 1, then for all j ∈ Z, there is a
solution g ∈ U to (4.1) with α = pjA satisfying tr. deg L⟨g⟩/L = 1.

Now we prove Theorem 4.1 by using Lemma 4.2 and Lemma 4.3.
Proof of theorem 4.1. We assume tr. deg L⟨f⟩/L = 1. We will derive a contradiction. We
consider the set Φ of all (A, j) ∈ C× × Z≥0 satisfying the following conditions: (i) there is a
solution g to (4.1) with α = A such that tr. deg L⟨g⟩/L = 1; (ii) there is i ∈ Z \ {0} which
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satisfies Ai = pj . We find Φ ̸= {} by Lemma 4.2. We choose (A1, k) ∈ Φ whose k is minimum.
There is i ∈ Z \ {0} which satisfies

A1
i = pk, (4.56)

and from Lemma 4.2, there are n, l ∈ Z≥0 which satisfy

A1
n−2l = pn, (4.57)

where 0 ≤ l ≤ n, n ̸= 0 and 2l ̸= n. Supposing k = 0, we get

pin = A1
(n−2l)i = 1, (4.58)

from (4.57) because

A1
i = 1, (4.59)

from (4.56). This contradicts the assumption that p is not a root of unity. Therefore

k ̸= 0. (4.60)

We obtain

in = k(n− 2l), (4.61)

because

pn = A1
n−2l ⇒ pin = A1

i(n−2l) ⇔ pin = pk(n−2l) ⇔ in = k(n− 2l), (4.62)

from (4.56) and (4.57).

Now we consider by dividing the range of l into the following four types:

(i) 0 < 2l < n. We find (p−1A1, |k − i|) ∈ Φ because

(p−1A1)
i = p−iA1

i = pk−i. (4.63)

This contradicts the minimality of k because we get

0 < 2l < n (4.64)

⇔ 0 < n− 2l < n (4.65)

⇔ 0 <
k(n− 2l)

n
< k (4.66)

⇔ 0 < i < k (4.67)

⇔ −k < −i < 0 (4.68)

⇔ 0 < k − i < k (4.69)

⇔ |k − i| < k, (4.70)

from (4.61).

(ii) n < 2l < 2n. In the same way as (i), we can prove the contradiction.
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(iii) l = 0. We get

A1
n = pn, (4.71)

from (4.57). From Lemma 4.3, we find that the assumption holds for α = p−1A1. From
Lemma 4.2, there is n′ ∈ Z>0 and l′ ∈ Z≥0 which satisfy

(p−1A1)
n′−2l′

= pn
′

(4.72)

and n′ ≥ l′. This contradicts that p is not a root of unity from

pnn
′
=
(
(p−1A1)

n)n′−2l′
= 1. (4.73)

(iv) l = n. In the same way as (iii), we can prove the incoherence.

Therefore we find a contradiction in any case, and so we conclude tr. deg L⟨f⟩/L ̸= 1, which
implies

tr. deg L⟨f⟩/L ≤ 1 ⇒ f is algebraic over L, (4.74)

the required. ■

5 Concluding remarks

In this paper, we have studied algebraic function solutions to q-P
D

(1)
7

III and proved its irreducibility.

Before closing, we mention a determinant formula of algebraic function solutions to q-P
D

(1)
7

III .
As mentioned in Section 3.1, K. Kajiwara et al. anticipate the determinant formula of algebraic

function solutions to P
D

(1)
7

III . By the continuous limit, the Laurent polynomials are reduced to the
determinants of which the determinant formula above are composed. This gives us expectation
that each of the Laurent polynomials has an analogous determinant expression.
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(1)
8 , Ramanujan J. 24 (2011).



20 N. Nakazono and S. Nishioka

[9] N. Nakazono, Hypergeometric τ Functions of the q-Painlevé Systems of Type (A2+A1)
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