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Summary. Special values ζQ(k) (k = 2, 3, 4, ...) of the spectral zeta function ζQ(s)
of the non-commutative harmonic oscillator Q are discussed. Particular emphasis
is put on basic modular properties of the generating function wk(t) of Apéry-like
numbers which is appeared in analysis on the first anomaly of each special value.
Here the first anomaly is defined to be the “1st order” difference of ζQ(k) from ζ(k),
ζ(s) being the Riemann zeta function. In order to describe such modular properties
for k ≥ 4, we introduce a notion of residual modular forms for congruence subgroups
of SL2(Z) which contains the classical notion of Eichler integrals as a particular
case. Further, we define differential Eisenstein series, which are residual modular
forms. Using such differential Eisenstein series, for example, one obtains an explicit
description of w4(t). A certain Eichler cohomology group associated to such residual
modular forms plays also an important role in the discussion.

1 Introduction

Let Q be an ordinary differential operator having two real parameters α, β
defined by

Q = Qα,β =

(
−1

2

d2

dx2
+

1

2
x2
)(

α 0
0 β

)
+

(
x
d

dx
+

1

2

)(
0 −1
1 0

)
.

The system defined by Q is called the non-commutative harmonic oscillator,
which was introduced in [22, 23] (see [21] for a detailed study of the spectral
problem of Q and [19] for a particular interpretation of the problem in terms
of Fuchsian ordinary differential equations with four regular singular points
in a complex domain). Throughout the paper, we assume that α, β > 0 and
αβ > 1. Under this assumption, Q becomes a positive self-adjoint unbounded
operator on L2(R;C2), the space of C2-valued square-integrable functions on
R, and hence Q has only a discrete spectrum. Denote the eigenvalues of Q by
0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . (→∞). One knows in [23] that the multiplicity of each
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eigenvalue is at most 3 (see also [10], [21] for certain stronger but conditional
estimates of the multiplicities). However, nothing is known explicitly about a
real shape of eigenvalues/eigenfunctions of Q if α 6= β. Let us then consider
a series defined by ζQ(s) =

∑∞
n=1 λ

−s
n . This series is absolutely convergent

and defines a holomorphic function in s in the region <s > 1. We call ζQ(s)
the spectral zeta function [8] for the non-commutative harmonic oscillator
Q. The spectral zeta function ζQ(s) is analytically continued to the whole
complex plane C as a single-valued meromorphic function that is holomorphic,
except a simple pole at s = 1. It is notable that ζQ(s) has ‘trivial zeros’ at
s = 0,−2,−4, . . . . When α = β(> 1), ζQ(s) is essentially identified with the
Riemann zeta function ζ(s) (see Remark 2).

The aim of the present paper is to investigate modular properties of special
values of the spectral zeta function ζQ(s) at s = 2, 3, 4, . . . . Similarly to the
Apéry numbers which were introduced in 1978 by R. Apéry for proving the
irrationality of ζ(2) and ζ(3) (see, e.g. [3]), Apéry-like numbers have been in-
troduced in [9] for the description of the special values ζQ(2) and ζQ(3). These
Apéry-like numbers J2(n) and J3(n) share with many of the properties of the
original Apéry numbers, e.g. recurrence equations, congruence properties, etc
(see [13, 11]). Actually, the Apéry-like numbers J2(n) for ζQ(2) obtain a re-
markable modular form interpretation as the Apéry numbers possess shown
by F. Beukers [3]. We have shown in [14] that the differential equation satis-
fied by the generating function w2(t) of J2(n) is the Picard-Fuchs equation for
the universal family of elliptic curves equipped with rational 4-torsion. The
parameter t of this family is regarded as a modular function for the congru-
ence subgroup Γ0(4)(∼= Γ (2)) ⊂ SL2(Z). Moreover, one observes ([14]) that
w2(t) is considered as a Γ0(4) meromorphic modular form of weight 1 in the

variable τ as the classical Legendre modular function t(τ) = − θ4(τ)
2

θ4(τ)4
. We also

remark that the modular form w2(t) can be found at #19 in the list of [29].
At the beginning of the paper, we describe the special values ζQ(k) in terms

of certain integrals. The formulas for the general cases k ≥ 4 are much com-
plicated than those of k = 2, 3. Thus, we will focus only on the first anomaly
Rk,1(x) (see §3) which expresses the 1st order difference (in a suitable sense)
of ζQ(k) from ζ(k) with respect to the parameters α, β. The first anomaly
Rk,1(x) for x = 1/

√
αβ − 1 describes the special value ζQ(k) partly. Notice

that when k = 2, 3, Rk,1(x) possesses full information of each special value.
The Taylor expansion of Rk,1(x) in x yields numbers Jk(n) what we call k-
th Apéry-like numbers. Then, remarkably, one can show that the generating
function wk(t) of Jk(n) satisfies an inhomogeneous differential equation whose
homogeneous part is given by the same Fuchsian differential operator which
annihilates w2(t).

In order to solve this differential equation for w4(t), it is necessary to in-
tegrate a certain explicitly given modular form. Employing a simple lemma
which is essentially given in [28], we arrive a consequence which claims the
generating function w4(t) can be expressed as a differential of an Eichler inte-
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gral (or automorphic integral) multiplied by a modular form (a product and
quotient of theta functions) for Γ (2). Note that Eichler integrals are known as
a generalization of the Abelian integrals [5]. At this point, we will introduce
a notion of residual modular forms which contains Eichler integrals and the
Eisenstein series E2(τ) of weight 2 for SL2(Z). The name “residual” comes
from the following two facts. 1) Eichler’s integral possesses a “integral con-
stant” given by a polynomial in τ which is known as a period function and
computed as residues of the integral when one performs the inverse Mellin
transform of L-function of the corresponding modular form. 2) To obtain
another meaningful expression of such Eichler’s integral, we will define differ-
ential Eisenstein series by a derivative of the analytic continuation of gener-
alized Eisenstein series [2, 18] at negative integer points like in, e.g. [26, 24]. In
particular, one can give an explicit expression of w4(t) by a sum of two such
differential Eisenstein series. We remark that the residual part of a differential
Eisenstein series is in general given by a rational function in τ , whence it can
not be handled in a framework of the Eichler integrals.

Furthermore, to understand the structure, especially the dimension of a
space of residual modular forms, it is important to consider the Eichler coho-
mology groups [5, 6, 16] associated with several Γ (2)-modules made by a set
of certain functions on the Poincaré upper half plane, such as the space (field)
of rational functions C(τ), the space of holomorphic/meromorphic functions
with some decay condition at the infinity (cusps), etc. In the very end of the
paper, we focus on a particular subgroup of the Eichler cohomology group
which we call a periodic cohomology for the explicit determination of the
space of residual modular forms which contains w4(t).

2 Special values of the spectral zeta function

The first two special values ζQ(2) and ζQ(3) have been calculated in [9]. For
instance, the value ζQ(2) is represented essentially by a contour integral of a
holomorphic solution of some Fuchsian differential equation. Actually, these
values are represented by the contour integral expressions of solutions of cer-
tain special type of Heun differential equations. Later, Ochiai [20] gave an
expression of ζQ(2) using the complete elliptic integral or the hypergeometric
function, and the authors [13] gave a formula for ζQ(3) similar to the Ochiai’s
one.

Now we give a general formula for the spectral zeta values ζQ(k) (k =
2, 3, 4, . . . ). We refer to [12] for its proof. For u = (u1, u2, . . . , uk), we define
the k by k matrix ∆k(u) ([9]) by
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∆k(u) :=

1−u4
ku

4
1

(1−u4
k)(1−u

4
1)

−u2
1

1−u4
1

0 0 . . .
−u2

k

1−u4
k

−u2
1

1−u4
1

1−u4
1u

4
2

(1−u4
1)(1−u4

2)

−u2
2

1−u4
2

0 . . . 0

0
−u2

2

1−u4
2

1−u4
2u

4
3

(1−u4
2)(1−u4

3)

−u2
3

1−u4
3

. . . 0

0 0
−u2

3

1−u4
3

. . .
. . .

...

...
...

...
. . .

. . . −u2
k−1

1−u4
k−1

−u2
k

1−u4
k

0 0 . . .
−u2

k−1

1−u4
k−1

1−u4
k−1u

4
k

(1−u4
k−1)(1−u

4
k)


=

k∑
i=1

{(
E

(k)
ii + E

(k)
i+1,i+1

)( 1

1− u4i
− 1

2

)
+
(
E

(k)
i,i+1 + E

(k)
i+1,i

) −u2i
1− u4i

}
.

Here E
(k)
ij denotes the (i, j)-matrix unit of size k. We also assume that the

indices of E
(k)
ij are understood modulo k, i.e. E

(k)
0,j = E

(k)
k,j , E

(k)
k+1,j = E

(k)
1,j , etc.

Notice that ∆k(u) is real symmetric and positive definite for any u ∈ (0, 1)k.
For {i1, i2, . . . , i2j} ⊂ [k] = {1, 2, . . . , k}, we also put

Ξk(i1, . . . , i2j) :=
√
−1

2j∑
r=1

(−1)rE
(k)
ir,ir

.

Theorem 1. For each positive integer n ≥ 2, one has

ζQ(k) = 2

(
α+ β

2
√
αβ(αβ − 1)

)k

×

(
ζ
(
k,

1

2

)
+

∑
0<2j≤k

(
α− β
α+ β

)2j
Rk,j

(
1√

αβ − 1

))
.

(1)

Here Rk,j(x) is given by a sum of integrals

Rk,j(x) =
∑

1≤i1<i2<···<i2j≤k

∫
[0,1]k

2kdu1 . . . duk√
Wk(u;x; i1, . . . , i2j)

,

where the function Wk(u;x; i1, . . . , i2j) is given by

Wk(u;x; i1, . . . , i2j) = det (∆k(u) + xΞk(i1, . . . , i2j))

k∏
i=1

(1− u4i ).

ut

Remark 1. It follows from the fact ζQ(k) ∈ R thatWk(u;x; i1, . . . , i2j) is even
as a polynomial in x.
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Remark 2. If α = β, then we have ζQ(k) = 2(α2 − 1)−k/2(2k − 1)ζ(k). This
follows from the fact ζQ(s) = 2(α2−1)−s/2ζ(s, 1/2) when α = β. In fact, when
α = β, it is known in [23] that Q is unitarily equivalent to a couple of the

harmonic oscillators
√
α2 − 1

(
− 1

2
d2

dx2 + 1
2x

2
)
I. If α 6= β, however, it seems

hard to expect a symmetry of sl2(C) (the oscillator representation of sl2(C)
(see, e.g. [7]). Hence the eigenvalue problem of Q is being highly non-trivial
in general.

Example 1. The values ζQ(2) and ζQ(3) are given by

ζQ(2) = 2

(
α+ β

2
√
αβ(αβ − 1)

)2(
ζ(2, 1/2) +

(
α− β
α+ β

)2
R2,1

(
1√

αβ − 1

))
,

ζQ(3) = 2

(
α+ β

2
√
αβ(αβ − 1)

)3(
ζ(3, 1/2) +

(
α− β
α+ β

)2
R3,1

(
1√

αβ − 1

))

with

R2,1(x) =

∫
[0,1]2

4du1du2√
(1− u21u22)2 + x2(1− u41)(1− u42)

,

R3,1(x) = 3

∫
[0,1]3

8du1du2du3√
(1− u21u22u23)2 + x2(1− u41)(1− u42u43)

.

This recovers the result in [9].

If we define the numbers J2(n) (n ≥ 0) by the expansion

R2,1(x) =

∞∑
n=0

(
−1/2

n

)
J2(n)x2n,

then they satisfy the three-term recurrence relation

4n2J2(n)− (8n2 − 8n+ 3)J2(n− 1) + 4(n− 1)2J2(n− 2) = 0 (n ≥ 1).
(2)

This implies that the generating function w2(z) =
∑∞
n=0 J2(n)zn satisfies{

z(1− z)2 d
2

dz2
+ (1− 3z)(1− z) d

dz
+ z − 3

4

}
w2(z) = 0, (3)

which looks a confluent Heun differential equation [9]. This equation, however,
can be reduced to the Gaussian hypergeometric differential equation by a
suitable change of variable and solved as follows [20]:

w2(z) =
3ζ(2)

1− z 2F1

(
1

2
,

1

2
; 1;

z

z − 1

)
, (4)
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from which, using the Clausen identity, one obtains

R2,1(x) = 3ζ(2)2F1

(
1

4
,

3

4
; 1;−x2

)2
.

Thus we have the following expression of ζQ(2) [20]:

ζQ(2) =

(
π(α+ β)

2
√
αβ(αβ − 1)

)2(
1 +

(
α− β
α+ β

)2
2F1

(
1

4
,

3

4
; 1;

1

1− αβ

)2)
.

We also have similar expression for ζQ(3) in [13].

3 Apéry-like numbers

In what follows, we restrict our attention to the quantities Rk,1(x) appearing
in the special value formula for ζQ(s). We sometimes refer to Rk,1(x) as the
first anomaly in ζQ(k) for short.

3.1 Apéry-like numbers associated to the first anomalies

Let us define the numbers Jk(n) for k = 2, 3, 4, . . . as coefficients in the Taylor
expansion of the first anomaly Rk,1(x)

Rk,1(x) =
k

2

k−1∑
r=1

∫
[0,1]k

2kdu1 · · · duk√
(1− u21 · · ·u2k)2 + x2(1− u41 · · ·u4r)(1− u4r+1 · · ·u4k)

=
k

2

∞∑
n=0

(
− 1

2

n

)
Jk(n)x2n,

and call the numbers Jk(n) the Apéry-like numbers associated to the first
anomaly Rk,1(x) of ζQ(k), or k-th Apéry-like numbers for short. For conve-
nience, we define numbers J0(n) and J1(n) by

J0(n) = 0, J1(n) =
2nn!

(2n+ 1)!!
=

(1)n(1)n

( 3
2 )n(1)n

(n = 0, 1, 2, . . . ),

where (a)n = a(a+1) · · · (a+n−1) is the Pochhammer symbol. An elementary
manipulation shows that

Jk(n) =
1

22n+1

∫ ∞
0

uk−2

(k − 2)!
Bn(u)du,

Bn(u) =
enu

(sinh u
2 )2n+1

∫ u

0

(1− e−2t)n(1− e−2(u−t))ndt

for k = 2, 3, 4, . . . and n = 0, 1, 2, . . . . We notice that the function Bn(u) is
continuous at u = 0 and is of exponential decay as u→ +∞ (see Proposition
4.10 in [9]).



Spectrum of NCHO and residual modular forms 7

Example 2 (Initial values). We see that

B0(u) =
1

sinh u
2

∫ u

0

dt =
u

sinh u
2

,

B1(u) =
eu

(sinh u
2 )3

∫ u

0

(1− e−2t)(1− e−2(u−t))dt

= 4
u

sinh u
2

+ 2
u

(sinh u
2 )3
− 4

cosh u
2

(sinh u
2 )2

.

Thus we have

Jk(0) =
1

2 · (k − 2)!

∫ ∞
0

uk−1

sinh u
2

du,

Jk(1) =
1

2 · (k − 2)!

∫ ∞
0

uk−1

sinh u
2

du+
1

4 · (k − 2)!

∫ ∞
0

uk−1

(sinh u
2 )3

du

− 1

2 · (k − 2)!

∫ ∞
0

cosh u
2

(sinh u
2 )2

uk−2du.

Using the formulas

ζ
(
s,

1

2

)
=

1

2Γ (s)

∫ ∞
0

us−1

sinh u
2

du

=
1

4Γ (s+ 1)

∫ ∞
0

cosh u
2

(sinh u
2 )2

usdu (<(s) > 1),∫ ∞
0

us−1

(sinh u
2 )3

du = (s− 1)

∫ ∞
0

cosh u
2

(sinh u
2 )2

us−2du

− 1

2

∫ ∞
0

us−1

sinh u
2

du (<(s) > 3),

we get

Jk(0) = (k − 1)ζ
(
k,

1

2

)
,

Jk(1) = (k − 3)ζ
(
k − 2,

1

2

)
+

3(k − 1)

4
ζ
(
k,

1

2

)(
= Jk−2(0) +

3

4
Jk(0)

)
for k ≥ 4. It is worth noting that these formulas are also valid for k = 2 and
k = 3:

J2(0) = ζ
(

2,
1

2

)
, J2(1) =

3

4
ζ
(

2,
1

2

)
,

J3(0) = 2ζ
(

3,
1

2

)
, J3(1) = 1 +

3

2
ζ
(

3,
1

2

)
.

Here we use the fact that

ζ
(

0,
1

2

)
= 0, lim

s→1
(s− 1)ζ

(
s,

1

2

)
= 1.
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Remark 3 (Remarks on conventions for Apéry-like numbers). J2(n) in this
article is equal to Jn in [9] (and J2(n) in [13]). J3(n) in this article is equal
to 2J1

n in [9] (and 2J3(n) in [13]), since our J3(n) is defined to be the sum
J1,3−1(n) + J2,3−2(n), each summand in which is equal to J1

n in [9].

As we have mentioned above, the second Apéry-like numbers J2(n) satisfy
the three-term recurrence formula (2), which also implies the second order
differential equation (3) for their generating function w2(z). By developing the
discussion in [9], we can prove that the Apéry-like numbers Jk(n) also satisfy
similar three-term recurrence formula for each k = 2, 3, 4, . . . in general as
follows.

Theorem 2.

4n2Jk(n)− (8n2 − 8n+ 3)Jk(n− 1) + 4(n− 1)2Jk(n− 2) = 4Jk−2(n− 1)
(5)

for k ≥ 2 and n ≥ 2. ut

For k ≥ 0, we define

wk(z) =

∞∑
n=0

Jk(n)zn.

It is immediate to see that w0(z) = 0 and

w1(z) = 2F1

(
1, 1;

3

2
; z

)
The formula (5) into the differential equations for the generating functions

wk(z) as follows.

Theorem 3. One has{
z(1− z)2 d

2

dz2
+ (1− z)(1− 3z)

d

dz
+ z − 3

4

}
wk(z) = wk−2(z) (6)

for k ≥ 2. ut

Remark 4. We have{
z(1− z)2 d

2

dz2
+ (1− z)(1− 3z)

d

dz
+ z − 3

4

}k
w2k(z) = 0

and{
z(1− z) d

2

dz2
+

3

2
(1− 2z)

d

dz
− 1

}
{
z(1− z)2 d

2

dz2
+ (1− z)(1− 3z)

d

dz
+ z − 3

4

}k
w2k+1(z) = 0

for each k ≥ 0. This shows that each wk(z) is a formal power series solution
of a linear differential equation.
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To find an explicit formula for Jk(n), it is useful to introduce the function

vk(t) = (1− z)wk(z), t =
z

z − 1(
⇐⇒ wk(z) = (1− t)vk(t), z =

t

t− 1

)
.

Note that

v2(t) = J2(0) · 2F1

(
1

2
,

1

2
; 1; t

)
= J2(0)

∞∑
n=0

(
− 1

2

n

)2
tn,

v1(t) =
1

1− t 2
F1

(
1, 1;

3

2
;

t

t− 1

)
=

∞∑
n=0

tn

2n+ 1
.

The formula (6) is translated equivalently as{
t(1− t) d

2

dt2
+ (1− 2t)

d

dt
− 1

4

}
vk(t) = −vk−2(t).

Let us look at the (hypergeometric differential) operator

D = t(1− t) d
2

dt2
+ (1− 2t)

d

dt
− 1

4
.

It is straightforward to check that the polynomial

pn(t) = − 1

(n+ 1
2 )2

(
− 1

2

n

)−2 n∑
k=0

(
− 1

2

k

)2
tk (n = 0, 1, 2, . . . )

satisfy Dpn(t) = tn (see §4 of [13]). Thus, if we put

ξl(t) =

∞∑
n=0

(
− 1

2

n

)2
Al,nt

n (l ≥ 0),

then

D

{
−
∞∑
n=0

(
− 1

2

n

)2
Al,npn(t)

}
= −ξl(t).

On the other hand, we see that

−
∞∑
n=0

(
− 1

2

n

)2
Al,npn(t) =

∞∑
n=0

Al,n
1

(n+ 1
2 )2

n∑
k=0

(
− 1

2

k

)2
tk

=

∞∑
k=0

(
− 1

2

k

)2{ ∞∑
n=k

Al,n

(n+ 1
2 )2

}
tk.
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Hence, if we assume that the numbers Al,k satisfy the condition

Al+2,k =

∞∑
n=k

Al,n

(n+ 1
2 )2

, (7)

then the functions ξl(t) satisfy the relation

Dξl+2(t) = −ξl(t) (l ≥ 0).

Notice that we have

Al+2m,n =
∑

n≤k1≤k2≤···≤km

Al,km
(k1 + 1

2 )2(k2 + 1
2 )2 · · · (km + 1

2 )2
(8)

under the assumption (7).
Now we determine the numbers Al,n so that they satisfy (7). If we set

Al,n =


1

2

1

n+ 1
2

(
− 1

2

n

)−2
l = 1,

J2(0) l = 2

and extend by the relation (8), then the relation (7) is surely satisfied. We
remark that the series (8) indeed converges since A1,n and A2,n are bounded
so that the positive series Al+2m,n is majorated by a constant multiple of the
series (multiple zeta-star value)

∑
0<k1≤k2≤···≤km(k1k2 . . . km)−2. Notice that

ξ1(t) =
1

1− t 2
F1

(
1, 1;

3

2
;

t

t− 1

)
= v1(t),

ξ2(t) = J2(0) · 2F1

(
1

2
,

1

2
; 1; t

)
= v2(t).

As a result, we see that vl(t) is of the form

vl(t) = ξl(t) +
∑

0<j≤l/2

Cl−2jv2j(t),

and the coefficients Cl−2, Cl−4, . . . are determined inductively. Indeed, if vl(t)
is given as above, then

Dξl+2(t) = −ξl(t) = −vl(t) +
∑

0<j≤l/2

Cl−2jv2j(t)

= D
(
vl+2(t)−

∑
0<j≤l/2

Cl−2jv2j+2(t)
)
,

which implies that there exists certain constant Cl such that
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vl+2(t)− ξl+2(t)−
∑

0<j≤l/2

Cl−2jv2j+2(t) = Clv2(t).

We also have

wl(z) =
1

1− z
ξl

(
z

z − 1

)
+

∑
0<j≤2l

Cl−2jw2j(z),

and we can obtain explicit formulas of Jk(n) for each k.

Example 3. For k = 2, 3, 4 one has

J2(n) = ζ
(

2,
1

2

) n∑
k=0

(−1)k
(
− 1

2

k

)2(
n

k

)
,

J3(n) = −1

2

n∑
k=0

(−1)k
(
− 1

2

k

)2(
n

k

) ∑
0≤j<k

1

(j + 1
2 )3

(
− 1

2

j

)−2

+ 2ζ
(

3,
1

2

) n∑
k=0

(−1)k
(
− 1

2

k

)2(
n

k

)
,

J4(n) = −ζ
(

2,
1

2

) n∑
k=0

(−1)k
(
− 1

2

k

)2(
n

k

) ∑
0≤j<k

1

(j + 1
2 )2

+ 3ζ
(

4,
1

2

) n∑
k=0

(−1)k
(
− 1

2

k

)2(
n

k

)
.

4 Modular forms and Apéry-like numbers

In this section, we focus on the study of modular properties of the generating
functions wk(t) of Apéry-like numbers. In particular, we obtain an explicit
expression of w4(t) in terms of a newly introduced functions which we call
differential Eisenstein series.

4.1 Modular interpretation of w2 — a motivating example

Let Γ (2) := {γ ∈ SL2(Z) | γ ≡ I2 mod 2}, the principal congruence subgroup
of level 2. Let τ ∈ h, h being the complex upper half plane. We recall the
following standard functions (the elliptic theta functions θ2(τ), θ3(τ), θ4(τ)
and normalized Eisenstein series Ek(τ) for k = 2, 4, 6, . . . ):

θ2(τ) =

∞∑
n=−∞

eπi(n+1/2)2τ , θ3(τ) =

∞∑
n=−∞

eπin
2τ ,

θ4(τ) =

∞∑
n=−∞

(−1)neπin
2τ , Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e2πinτ .
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Put

t = t(τ) = −θ2(τ)4

θ4(τ)4
, (9)

which is a Γ (2)-modular function such that t(i∞) = 0. Notice that

1− t(τ) =
θ3(τ)4

θ4(τ)4
,

t(τ)

t(τ)− 1
=
θ2(τ)4

θ3(τ)4

by the identity θ2(τ)4 + θ4(τ)4 = θ3(τ)4. By the formula (§22.3 in [27])

2F1

(
1

2
,

1

2
; 1;

θ2(τ)4

θ3(τ)4

)
= θ3(τ)2,

it follows from (4) that

w2(t) =
J2(0)

1− t(τ)
2F1

(
1

2
,

1

2
; 1;

t(τ)

t(τ)− 1

)
=
θ4(τ)4

θ3(τ)2
,

which is a Γ (2)-modular form of weight 1.

Remark 5. The differential equation (3) satisfied by the generating function
w2(z) of Apéry-like numbers J2(n) is the Picard-Fuchs equation for the uni-
versal family of elliptic curves equipped with rational 4-torsion. In fact, each
elliptic curve in the family is birationally equivalent to one of the curves
(1 − u2v2)2 + x2(1 − u4)(1 − v4) = 0 in the (u, v)-plane, which are appeared
in the denominator of the integrand of R2,1(x).

This fact naturally leads us to a question what the nature of wk(t) is in
general from a geometric viewpoint. In order to answer this question for the
special case w4(t) at the beginning, we recall a lemma [28] (Lemma 1). We
slightly generalize the statement of this lemma for our purpose. The proof is
essentially the same.

Lemma 1. Let Γ be a discrete subgroup of SL2(R) commensurable with the
modular group. Let A(τ) be a modular form of weight k and t(τ) be a non-
constant modular function on Γ such that t(i∞) = 0. Let ϑ = t ddt . Let L :=
ϑk+1+rk(t)ϑk+· · ·+r0(t) be the differential operator with rational coefficients
rj(t). Assume that LA(t) = 0. Let g(t) = g(t(τ)) be a modular form. Then a
solution of the inhomogeneous differential equation LB(t) = g(t) is given by

B(t) = A(t)

∫ q

· · ·
∫ q

︸ ︷︷ ︸
k+1

(qdt/dq
t

)k+1 g(t)

A(t)

dq

q
· · · dq

q
,

where the integration is iterated k + 1 times and q := e2πiτ . ut
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From Theorem 3, it follows that(
z(1− z)2 d

2

dz2
+ (1− z)(1− 3z)

d

dz
+ z − 3

4

)k
w2k+r(z) = wr(z) (10)

for k ≥ 1 and r ≥ 0, which can be also written in terms of the Euler operator
ϑ = t ddt as(

ϑ2k + · · ·
)
w2k+r(z) =

zk

(1− z)2k
wr(z) (k ≥ 1, r ≥ 0). (11)

Let us consider the function

Wk,r(t) := w2(t)

∫ q

0

· · ·
∫ q

0︸ ︷︷ ︸
2k

(qdt/dq
t

)2k tk

(1− t)2k
wr(t)

w2(t)

dq

q
· · · dq

q

=
(
−1

2

)k
J2(0)

θ4(τ)4

θ3(τ)2

∫ q

0

· · ·
∫ q

0︸ ︷︷ ︸
2k

(
θ2(τ)4θ4(τ)4

)k θ3(τ)2

θ4(τ)4
wr(t)

dq

q
· · · dq

q
.

Here we use the fact

q

t

dt

dq
=

1

2
θ3(τ)4.

Obviously, Lemma 1 is applicable to (11) if k = 1 and r = 2, and then a
solution to (11) is given by the integral W1,2(t). Thus we have the following.

Lemma 2.
w4(t) = W1,2(t) + π2w2(t).

Proof. It is clear that w4(t) is of the form

w4(t) = W1,2(t) + Cw2(t)

with some constant C. Notice that w2(0) = ζ(2, 12 ) = 3ζ(2) = 3 · π
2

6 and

w4(0) = J4(0) = 3ζ(4, 12 ) = 3 · 15 · ζ(4) = 3 · 15 · π
4

90 . Hence the result follows
immediately from the fact W1,2(0) = W1,2(t(τ))|τ=i∞ = 0.

In what follows, we consider Wk,2(t) for k ∈ N in general. For convenience,
let us put

f(τ) = θ2(τ)4θ4(τ)4 =
1

15

(
E4(τ)− 17E4(2τ) + 16E4(4τ)

)
, (12)

Λk(s) =

∫ ∞
0

tsf(it)k
dt

t
, (13)

Ek(τ) =

∫ q

0

· · ·
∫ q

0︸ ︷︷ ︸
2k

f(τ)k
dq

q
· · · dq

q
. (14)



14 K. Kimoto and M. Wakayama

Notice that

Wk,2(t) =
(
−1

2

)k
J2(0)

θ4(τ)4

θ3(τ)2
Ek(τ). (15)

Since f(τ) is a modular form of weight 4 with respect to Γ (2), the correspond-
ing L-function Λk(s) of f(τ)k satisfies the functional equation Λk(4k − s) =
Λk(s). By the inversion formula of Mellin’s transform, one notices that

f(iy)k =
1

2πi

∫
<s=α

y−sΛk(s)ds (y > 0, α� 0).

4.2 Modular interpretation of w4

Let us consider the case where k = 1. Λ1(s) satisfies the functional equation
Λ1(4− s) = Λ1(s). If we put

Ξ1(s) =
Λ1(s+ 2)

(s+ 1)s(s− 1)
,

then the functional equation for Λ1(s) implies the oddness Ξ1(−s) = −Ξ1(s).
For later use, we denote by ρ1,j the residue of Ξ1(s) at s = j for j = −1, 0, 1.
Explicitly, we have

Λ1(s) = 16ζ(s)ζ(s− 3)(1− 2−s)(1− 24−s),

ρ1,−1 = ρ1,1 =
7ζ(3)

π3
, ρ1,0 = −1

2
.

Let us introduce

G1(τ) =

∫ q

0

∫ q

0

∫ q

0

f(τ)
dq

q

dq

q

dq

q
=

∫ q

0

E1(τ)
dq

q
.

Clearly, G1(τ) is a periodic function with period 2 and G1(i∞) = 0.

Lemma 3. For β � 0, one has

E1(τ) =
(2π)2

2πi

∫
<s=β

(s− 1)
(τ
i

)−s
Ξ1(s)ds,

G1(τ) =
(2π)3

2πi

∫
<s=β

(τ
i

)1−s
Ξ1(s)ds

and

d

dτ
G1(τ) = 2πiE1(τ).
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Proof. For simplicity, we restrict our discussion on the upper imaginary axis,
that is, we assume that τ = iy (y > 0). We see that q = e−2πy and

dq

q
= −2πdy.

It follows that

E1(iy)

= (−2π)2
∫ y

∞

∫ y

∞
f(iy)dydy =

(2π)2

2πi

∫
<s=α

{∫ y

∞

∫ y

∞
y−sdydy

}
Λ1(s)ds

=
(2π)2

2πi

∫
<s=α

y2−sΛ1(s)

(s− 1)(s− 2)
ds =

(2π)2

2πi

∫
<s=α−2

y−sΛ1(s+ 2)

s(s+ 1)
ds

=
(2π)2

2πi

∫
<s=α−2

(s− 1)y−sΞ1(s)ds,

and

G1(iy) = (−2π)3
∫ y

∞

∫ y

∞

∫ y

∞
f(iy)dydydy

=
−(2π)3

2πi

∫
<s=α−2

(s− 1)

{∫ y

∞
y−sdy

}
Ξ1(s)ds

=
(2π)3

2πi

∫
<s=α−2

y1−sΞ1(s)ds.

Lemma 4. One has

G1

(
−1

τ

)
− ρ̃1,1 = τ−2

(
G1(τ)− ρ̃1,1 −

ρ̃1,0
i
τ
)
.

Here ρ̃1,j = (2π)3ρ1,j.

Proof. Using the functional equation Ξ1(−s) = −Ξ1(s), one observes

2πi

(2π)3
G1

(
− 1

iy

)
= −

∫
<s=β

(1

y

)1−s
Ξ1(−s)ds = −

∫
<s=−β

(1

y

)1+s
Ξ1(s)ds

= −y−2
∫
<s=−β

y1−sΞ1(s)ds

= (iy)−2
{∫
<s=β

y1−sΞ1(s)ds− 2πi(y2ρ1,−1 + yρ1,0 + ρ1,1)

}
= (iy)−2

2πi

(2π)3
{
G1(iy)− (y2ρ̃1,1 + yρ̃1,0 + ρ̃1,1)

}
.

It then follows that

G1

(
− 1

iy

)
− ρ̃1,1 = (iy)−2

(
G1(iy)− ρ̃1,1 − yρ̃1,0

)
.

This is the desired conclusion.
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Define ψ1(τ) by

ψ1(τ) = G1(τ)− ρ̃1,1. (16)

Lemma 5.

ψ1

(
−1

τ

)
= τ−2

{
ψ1(τ)− ρ̃1,0

τ

i

}
.

Since ψ1(τ) is a constant shift of the 2-periodic function G1(τ), it is also
invariant under the translation τ 7→ τ + 2 but ψ1(i∞) 6= 0.

4.3 General case for k > 1

Put

Ξk(s) =
Λk(s+ 2k)∏2k−1
j=1−2k(s− j)

.

Then the functional equation Λk(4k − s) = Λk(s) implies the oddness
Ξk(−s) = −Ξk(s). For later use, we denote by ρk,j the residue of Ξk(s) of a
(possible) pole at s = j for j = 1 − 2k, . . . , 2k − 1. Notice that ρk,−j = ρk,j .
Put ρ̃k,j = (2π)4k−1ρk,j .

Let us introduce

Gk(τ) =

∫ q

0

· · ·
∫ q

0︸ ︷︷ ︸
4k−1

f(τ)k
dq

q
· · · dq

q
=

∫ q

0

· · ·
∫ q

0︸ ︷︷ ︸
2k−1

Ek(τ)
dq

q
· · · dq

q
.

Clearly, Gk(τ) is a periodic function with period 2 and Gk(i∞) = 0.

Lemma 6. For β � 0, one has

Gk(τ) =
(2π)4k−1

2πi

∫
<s=β

(τ
i

)−s+2k−1
Ξk(s)ds

and

d2k−1

dτ2k−1
Gk(τ) = (2πi)2k−1Ek(τ).

Proof.
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Gk(τ) = (−2π)4k−1
∫ y

∞
· · ·
∫ y

∞
f(iy)kdy · · · dy

= − (2π)4k−1

2πi

∫
<s=α

Λk(s)

{∫ y

∞
· · ·
∫ y

∞
y−sdy · · · dy

}
ds

=
(2π)4k−1

2πi

∫
<s=α

Λk(s)y−s+4k−1

(s− 1)(s− 2) · · · (s− 4k + 1)
ds

=
(2π)4k−1

2πi

∫
<s=α−2k

Λk(s+ 2k)y−s+2k−1

(s+ 2k − 1)(s+ 2k − 2) · · · (s− 2k + 1)
ds

=
(2π)4k−1

2πi

∫
<s=α−2k

y−s+2k−1Ξk(s)ds.

Lemma 7.

Gk

(
−1

τ

)
= τ2−4k

{
Gk(τ)−

2k−1∑
j=1−2k

ρ̃k,j

(τ
i

)2k−1−j}
.

Proof. Since Ξk(−s) = Ξk(s), we have

2πi

(2π)4k−1
Gk

(
−1

τ

)
= −

∫
<s=β

(1

y

)−s+2k−1
Ξk(−s)ds = −

∫
<s=−β

(1

y

)s+2k−1
Ξk(s)ds

= −y2−4k
∫
<s=−β

y−s+2k−1Ξk(s)ds

= (iy)2−4k


∫
<s=β

y−s+2k−1Ξk(s)ds− 2πi

2k−1∑
j=1−2k

ρk,jy
2k−1−j


= (iy)2−4k

2πi

(2π)4k−1

Gk(iy)−
2k−1∑
j=1−2k

ρk,jy
2k−1−j

 .

Define RkS(τ) by

RkS(τ) = −
2k−1∑
j=1−2k

ρ̃k,j

(τ
i

)2k−1−j
.

Notice that RkS(τ) is a polynomial in τ of degree 4k − 2. Summarizing the
discussion above, we obtain the

Theorem 4. One has

Gk(τ + 2) = Gk(τ), Gk

(
−1

τ

)
= τ2−4k

{
Gk(τ) +RkS(τ)

}
.

ut
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5 Residual modular forms

We introduce the notion of residual modular forms, which is a generalization of
the classical holomorphic modular forms and Eichler integrals (or automorphic
integrals) [5, 16].

5.1 Definition

For γ =

(
a b
c d

)
∈ SL2(R), we put j(γ, τ) := cτ + d. Let m be an integer.

Define a slash operator f |mγ for a function f on h by

(f |mγ)(τ) := j(γ, τ)−mf(γτ). (17)

Let G(⊂ SL2(Z)) be a congruence subgroup of level N . Let X be a G-
invariant subspace of the vector space F (h) of all complex-valued functions
on h under the action f 7→ f |mγ, (γ ∈ G). The vector spaces C∞(h) of C∞-
functions, H(h) of holomorphic functions, M(h) of holomorphic functions on
h with certain decay conditions at cusps, and the space of rational functions
C(τ) are typical examples of such X. If m < 0, the space C[τ ]−m of all
polynomials of degree at most −m is also an example of X for the action
f |mγ.

Definition 1 (Residual modular forms). Let m ∈ Z. We define

Mm(G,X) :=

f : h
hol.−−→ C

f(τ +N) = f(τ),

(f |mγ)(τ)− f(τ) ∈ X (∀γ ∈ G)

f is holomorphic at each cusp of G

 .

We call an element in Mm(G,X) a residual modular form for G of weight
m. The second condition can be replaced by the one for only generators of G.
One may also define the notion of residual cusp forms in an obvious way:

Cm(G,X) := {f ∈Mm(G,X) | f vanishes at each cusp ofG}.

Remark 6. When m is positive, an element of Mm(G) := Mm(G, 0) (reps.
Cm(G) := Cm(G, 0)) is the classical modular (reps. cusp) form of weight m.
Since the Eisenstein series E2(τ) of weight 2 satisfies τ−2E2(− 1

τ ) = E2(τ) +
12

2πiτ , it is an element of M2(SL2(Z),C(τ)).

Remark 7. Suppose that the space X contains constant functions. Then, if
f(τ) ∈ Mm(G,X), it is clear that any constant shift f(τ) + c (c ∈ C)
belongs to Mm(G,X). In this case, it is natural to study the quotient
Mm(G,X)/(constant shift).

Remark 8. When m < 0, an element of Mm(G,C[τ ]−m) is also known as an
Eichler integral or automorphic integral [17]. The notion of Eichler integrals
is a generalization of the classical Abelian integrals, which occur as the case
m = 0.
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Define T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
. Let Γ be a subgroup of SL2(Z) (or

PSL2(Z) practically) defined by Γ :=
〈
T 2, S

〉
. Notice that

Γ ⊃ Γ (2) =

〈(
1 2
0 1

)
,

(
1 0
2 1

)〉
=
〈
T 2, ST−2S−1

〉
.

For convenience, we give the definitions of the space of residual modular forms
(with characters) in terms of the generators for the specific groups Γ and Γ (2).

Definition 2 (Residual modular forms).

M±m(Γ,X) :=

f : h
hol.−−→ C

f(τ + 2) = f(τ),

τ−mf
(
−1

τ

)
∓ f(τ) ∈ X

f is holomorphic at each cusp of Γ

 ,

Mm(Γ (2), X) :=

f : h
hol.−−→ C

f(τ + 2) = f(τ),

(2τ + 1)−mf
( τ

2τ + 1

)
− f(τ) ∈ X

f is holomorphic at each cusp of Γ (2)

 .

Notice that M+
m(Γ,X) is identified with Mm(Γ,X) in Definition 1.

Now Theorem 4 in the previous section may be simply restated as follows.

Theorem 5. One has Gk(τ) ∈ M2−4k(Γ,C[τ ]4k−2) for each positive integer
k. Moreover, Gk(τ) is a residual cusp form. ut

Remark 9. Let f(τ) ∈M±m(Γ,X). Put

R(τ) = τ−mf
(
− 1

τ

)
∓ f(τ) ∈ X.

Then we have

f
( τ

2τ + 1

)
= (−1)m(2τ + 1)m

{
f(τ)±R(τ) + τ−mR

(
−2τ + 1

τ

)}
Hence, in particular, one has M±2m(Γ,C(τ)) ⊂ M2m(Γ (2),C(τ)). Notice also

that, when −m = k ∈ N one has τ2kR
(
− 2τ+1

τ

)
∈ C[τ ]2k for R(τ) ∈ C[τ ]2k.

Thus, in particular, M±−2k(Γ,C[τ ]2k) ⊂M−2k(Γ (2),C[τ ]2k).

5.2 Differential Eisenstein series

We always assume that −π ≤ arg z < π for z ∈ C to determine the branch of
complex powers.
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Definition 3 (Generalized Eisenstein series). Define

G(s, x, τ) :=
∑′

m,n∈Z
(mτ + n+ x)−s,

G(s, τ) := G(s, 0, τ),

Ga,b(s, τ) :=
∑′

m,n∈Z
m≡a (mod 2)
n≡b (mod 2)

(mτ + n)−s (a, b ∈ {0, 1})

for s ∈ C such that <(s) > 2. Here
∑′

m,n∈Z
means the sum over all pairs

(m,n) of integers such that the summand is defined.

Remark that G0,0(s, τ) = 2−sG(s, τ),

Ga,b(s, τ) = 2−sG
(
s,
aτ + b

2
, τ
)
.

It is known that G(s, x, τ) is analytically continued to the whole s-plane,
and G(s, x, τ) can be written in the form

G(s, x, τ) =
∑
n>−x

1

(n+ x)s
+

1

Γ (s)
A(s, x, τ),

when x ∈ R, where A(s, x, τ) is holomorphic in s and τ . In particular, we see
that

G(−2k, τ) = G1,1(−2k, τ) = 0

for any positive integer k (see [18, Theorem 1]; see also [2]). We now introduce
the differential Eisenstein series.

Definition 4 (Differential Eisenstein series). For m ∈ Z, define

dEm(τ) :=
∂

∂s
G(s, τ)

∣∣∣∣
s=m

,

dEa,bm (τ) :=
∂

∂s
Ga,b(s, τ)

∣∣∣∣
s=m

(a, b ∈ {0, 1})

It is immediate to see that dEm(τ + 1) = dEm(τ) and dEa,bm (τ + 2) =
dEa,bm (τ). For later use, we recall the definitions and several results on the
double zeta functions and double Bernoulli numbers [1].

Definition 5 (Barnes’ double zeta function).

ζ2(s, z |ω) :=
∑
m,n≥0

(mω1 + nω2 + z)−s

for ω = (ω1, ω2).
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Definition 6 (Double Bernoulli polynomials). The double Bernoulli
polynomials B2,k(z |ω) are defined by the expansion

t2ezt

(eω1t − 1)(eω2t − 1)
=

∞∑
k=0

B2,k(z |ω)
tk

k!
.

The following is well-known (see, e.g. [1]).

Lemma 8. For each m ∈ N, one has

ζ2(1−m, z |ω) =
B2,m+1(z |ω)

m(m+ 1)
.

Example 4.

ζ2

(
− 2k,

τ − 1

2

∣∣∣ (−1, τ)
)

=
B2,2k+2( τ−12 | (−1, τ))

(2k + 1)(2k + 2)
∈ 1

τ
C[τ ],

ζ2(−2k, τ | (−1, τ)) =
B2,2k+2(τ | (−1, τ))

(2k + 1)(2k + 2)
∈ 1

τ
C[τ ].

5.3 Residual-modularity of dE−2k

We notice the following elementary fact.

Lemma 9. If τ ∈ h and (a, b) ∈ R2 − {(0, 0)}, then

arg
(
−1

τ

)
+ arg(aτ + b) ≥ π ⇐⇒ a > 0, b ≤ 0.

ut

Lemma 10. For each k ∈ N, one has

dE−2k

(
−1

τ

)
=
(
−1

τ

)2k{
dE−2k(τ)− 4kπiζ2

(
−2k, τ | (−1, τ)

)}
.

Proof. It follows from Lemma 9 that

G
(
s,−1

τ

)
=
∑′

m,n∈Z

(
−m1

τ
+ n

)−s
=
∑′

m,n∈Z

((
−1

τ

)
(mτ + n)

)−s
=
(
−1

τ

)−s{ ∑′

m,n∈Z
(mτ + n)−s + (e2πis − 1)

∑
m>0,
n≤0

(mτ + n)−s
}

=
(
−1

τ

)−s{
G(s, τ) + (e2πis − 1)ζ2

(
s, τ | (−1, τ)

)}
.

This yields that
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∂

∂s
G
(
s,−1

τ

)∣∣∣∣
s=−2k

=
∂

∂s

(
−1

τ

)−s∣∣∣∣
s=−2k

{
G(−2k, τ) + (e−4kπ − 1)ζ2

(
−2k, τ | (−1, τ)

)}
+
(
−1

τ

)2k ∂
∂s

{
G(s, τ) + (e2πis − 1)ζ2

(
s, τ | (−1, τ)

)}∣∣∣∣
s=−2k

=
(
−1

τ

)2k{ ∂

∂s
G(s, τ)

∣∣∣∣
s=−2k

− 4kπiζ2
(
−2k, τ | (−1, τ)

)}
.

Thus we have

dE−2k

(
−1

τ

)
=
(
−1

τ

)2k{
dE−2k(τ)− 4kπiζ2

(
−2k, τ | (−1, τ)

)}
.

Lemma 11. For each k ∈ N, one has

dE1,1
−2k

(
−1

τ

)
= τ−2k

(
dE1,1
−2k(τ)− 4kπiζ2(−2k, τ − 1

∣∣ (−2, 2τ))
)
.

Proof. It follows from Lemma 9 that

G1,1
(
s,−1

τ

)
=
∑
m,n∈Z

(
−(2m+ 1)

1

τ
+ (2n+ 1)

)−s
=
∑
m,n∈Z

((
−1

τ

)(
(2m+ 1)τ + 2n+ 1

))−s
=
(
−1

τ

)−s{
G1,1(s, τ) + (e2πis − 1)

∑
m≥0
n<0

(
(2m+ 1)τ + 2n+ 1

)−s}

=
(
−1

τ

)−s{
G1,1(s, τ) + (e2πis − 1)ζ2

(
s, τ − 1

∣∣ (−2, 2τ)
)}

Hence, by the same discussion as in the proof of the previous lemma, we get

dE1,1
−2k

(
−1

τ

)
= τ−2k

(
dE1,1
−2k(τ)− 4kπiζ2(−2k, τ − 1

∣∣ (−2, 2τ))
)

as desired.

Corollary 1. Suppose k ∈ N. Then, one has dE−2k(τ) ∈M−2k(SL2(Z),C(τ))
and dE0,0

−2k(τ), dE1,1
−2k(τ) ∈M+

−2k(Γ,C(τ)). ut

Remark 10. Notice that

dE−2k(τ) /∈M−2k(SL2(Z),C[τ ]), dE0,0
−2k(τ), dE1,1

−2k(τ) /∈M+
−2k(Γ,C[τ ])

for k > 0. In other words, neither dE1,1
−2k(τ) nor dE0,0

−2k(τ) is Eichler’s integral.
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Remark 11. A recent calculation due to G. Shibukawa on the same analysis
of the lemmas above shows that dE2k+1(τ) ∈ M−2k(SL2(Z),M(h)) but /∈
M−2k(SL2(Z),C(τ)) for k > 0.

Let us look at the case where k = 1. Using the special value formula of
ζ2(s, z |ω) for negative integers s, we have

dE1,1
−2

(
−1

τ

)
= τ−2

(
dE−2(τ)− πi

3
B2,4(τ − 1 | (−2, 2τ))

)
,

dE−2

(
−1

τ

)
= τ−2

(
dE−2(τ)− πi

3
B2,4(τ | (−1, τ))

)
.

Lemma 12.

7B2,4

(
τ
∣∣ (1, τ)

)
− 2B2,4

(
τ − 1

∣∣ (−2, 2τ)
)

=
3

2
τ.

Proof. Straightforward calculation.

Recall the function ψ1(τ) = G1(τ)− ρ̃1,1 ∈M−2(Γ,C[τ ]2) in (16).

Corollary 2. The function ψ1(τ) is given by

ψ1(τ) = −2ρ̃1,0
π

{
7dE−2(τ)− 2dE1,1

−2 (τ)

}
.

Proof. Denote the right hand side by φ1(τ). Then, obviously φ(τ) satisfies

φ1(τ + 2) = φ1(τ), φ1

(
−1

τ

)
= τ−2

(
φ1(τ)− ρ̃1,0

τ

i

)
.

Hence ψ1(τ)− φ1(τ) ∈M−2(Γ, 0) ⊂M−2(Γ (2), 0) = M−2(Γ (2)), the space of
classical holomorphic modular forms of weight −2. Since M−2(Γ (2)) = {0},
the result follows.

Corollary 3. One has

w4(t) = w4(t(τ)) = π2 θ4(τ)4

θ3(τ)2

[
1 + iπ

d

dτ

{
7dE−2(τ)− 2dE1,1

−2 (τ)

}]
. (18)

Proof. Since 2πiEk(τ) = d
dτ ψ1(τ), the expression follows immediately from

Lemma 2 and (15).

6 Eichler cohomology for residual modular forms

We construct a cochain complex arising from residual modular forms. We then
focus on a particular cohomology which we call a periodic Eichler cohomology.
We start by the first cohomology in §6.1 and discuss later a general cochain
cohomology in §6.2.
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6.1 First cohomology group

Let m be an integer. Suppose that X is a G-invariant subspace of the space
of complex-valued functions on h under the action f |mγ (γ ∈ G) (see §5.1).
Namely, we assume that X is a G-module.

Suppose that f be a function on h which obeys the following equation for
some Rmf (γ)(τ) ∈ X:

f |mγ − f = Rmf (γ) (∀γ ∈ G),

that is,
f(γτ) = j(γ, τ)m(f(τ) +Rmf (γ)(τ)) (∀γ ∈ G).

Obviously Rmf (e)(τ) ≡ 0. Notice also that Rmf (TN ) = 0 if f ∈ Mm(G,X)
whenever G is a congruence subgroup of level N . In order to recall the Eichler
cohomology group (see, e.g. [5, 6]) in this setting, one notices first the following
equation for Rmf (γ).

Lemma 13.

Rmf (γ1γ2)(τ) = Rmf (γ2)(τ) + j(γ2, τ)−mRmf (γ1)(γ2τ).

Proof. Since j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ), one has

f(γ1γ2τ) = j(γ1, γ2τ)mj(γ2, τ)m
(
f(τ) +Rmf (γ1γ2)(τ)

)
.

On the other hand,

f(γ1γ2τ) = j(γ1, γ2τ)m(f(γ2τ) +Rmf (γ1)(γ2τ))

= j(γ1, γ2τ)m
{
j(γ2, τ)m(f(τ) +Rmf (γ2)(τ)) +Rmf (γ1)(γ2τ)

}
.

Hence the claim follows.

Let C1(G,X) be a space of all maps from G to X. We call R ∈ C1(G,X)
a (twisted) 1-cocycle of weight m if it satisfies

R(γ1γ2) = R(γ2)−R(γ1)|mγ2.

We denote by Z1
[m](G,X) the set of all (twisted) 1-cocycles of weight m.

Obviously Z1
[m](G,X) is a subspace of C1(G,X).

Define the element ∂R ∈ C1(G,X) for R ∈ X by

∂R : Γ 3 γ 7→ R−R|mγ,

that is,
(∂R)(γ)(τ) = R(τ)− j(γ, τ)−mR(γτ).

Lemma 14. ∂R ∈ Z1
[m](G,X).
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Proof. The lemma follows from

(∂R)(γ1γ2)(τ) = R(τ)− j(γ1γ2, τ)−mR(γ1γ2τ)

= R(τ)− j(γ1, γ2τ)−mj(γ2, τ)−mR(γ1 · γ2τ)

= R(τ) + j(γ2, τ)−m
(

(∂R)(γ1)(γ2τ)−R(γ2τ)
)

= (∂R)(γ2)(τ) + j(γ2, τ)−m(∂R)(γ1)(γ2τ).

Define a subgroup B1
[m](G,X) of Z1

[m](G,X) by

B1
[m](G,X) =

{
∂R
∣∣R ∈ X}.

We call an element of B1
[m](G,X) by a (twisted) 1-coboundary of weight m.

The quotient group defined by

H1
[m](G,X) := Z1

[m](G,X)/B1
[m](G,X)

is called the 1st Eichler cohomology group of weight m for the G-module X.
(Notice that ∂1 ◦ ∂ = 0 in the notation of §6.2.)

Define subspaces Z̃1
[m](G,X) and B̃1

[m](G,X) of Z1
[m](G,X) andB1

[m](G,X)
respectively by

Z̃1
[m](G,X) :={R ∈ Z1

[m](G,X) |R(TN ) = 0},

B̃1
[m](G,X) :={∂R ∈ B1

[m](G,X) | ∂R(TN ) = 0}
=∂{R ∈ X |R(τ +N) = R(τ), ∀τ ∈ h }.

Then we may define the 1st periodic Eichler cohomology group by the quotient:

H̃1
[m](G,X) := Z̃1

[m](G,X)/B̃1
[m](G,X).

The following lemma is obvious.

Lemma 15. Assume that a congruence subgroup G of level N contains S. If
f ∈M−k(G,X) we have

R−kf (TN )(τ) = 0, R−kf (S)(Sτ) = −τ−kR−kf (S)(τ).

In particular, R−kf (γ) ∈ Z̃1
[m](G,X). From the cocycle condition, one knows

that R ∈ Z̃1
[m](G,X) is determined by the double coset of Γ∞ =

〈
TN
〉
:

R(TNγ)(τ) = R(γ)(τ), R(γTN )(τ) = R(γ)(TNτ).

Definition 7. Suppose X contains a constant function. Define

M∗m(G,X) := Mm(G,X)/(constant shift).
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Notice that we may always take a cusp form as a representative of M∗m(G,X).

Lemma 16. Let k ∈ N. Let X be either C(τ) or C[τ ]k. For f ∈M∗−k(G,X),
define

Rf (γ) := f |−kγ − f ∈ X.

Then the map f 7→ Rf induces an injective map from M∗−k(G,X) to the 1st

periodic cohomology group H̃1
[−k](G,X).

Proof. Since f(TNτ) = f(τ), we have the map

M∗−k(G,X) 3 f 7→ Rf ∈ Z̃1
[−k](G,X).

Suppose Rf ∈ B̃1
[−k](G,X). Since X is either C(τ) or C[τ ]k, it is clear that

B̃1
[−k](G,X) = ∂{constant functions}. Hence, for some c ∈ C, one has

Rf (γ)(τ) = j(γ, τ)kf(γτ)− f(τ) = cj(γ, τ)k − c.

It follows that f(τ)− c ∈M−k(G)(= M−k(G, 0)) = {0}. This shows that the
map f 7→ Rf induces a well-defined map from M∗−k(G,X) to H̃1

[−k](G,X),
which is injective.

Lemma 17. Retain the assumption of Lemma 16. Then

dimCM
∗
−k(G,X) ≤ dimC H̃

1
[−k](G,X) ≤ dimCH

1
[−k](G,X)− 1.

Proof. The first inequality follows immediately from Lemma 16.
In order to prove the second inequality, let us consider the natural inclusion

Z̃1
[−k](G,X) ↪→ Z1

[−k](G,X). Suppose the image R (denoting the same letter)

of R ∈ Z̃1
[−k](G,X) belongs to B1

[−k](G,X). Then one sees that R(γ)(τ) =

∂P (γ)(τ) = P (τ)− (P |−kγ)(τ) for some P ∈ X. It follows in particular that
0 = R(TN )(τ) = P (τ) − P (TNτ). This shows that P is a constant, whence
R ∈ B̃1

[−k](G,X). One can therefore naturally define the “inclusion” map

H̃1
[−k](G,X) 3 R 7→ R ∈ H1

[−k](G,X).

We now construct an element of H1
[−k](G,X)\H̃1

[−k](G,X). Let P be a

non-constant element in X. Then, since B̃1
[−k](G,X) = ∂{constant functions},

∂P (∈ B1
[−k](G,X)) satisfies ∂P (TN ) 6= 0. By Lemma 16, there exists an

element R ∈ Z̃1
[−k](G,X)(⊂ Z1

[−k](G,X)) but R 6∈ B̃1
[−k](G,X). Put L := R+

∂P ∈ Z1
[−k](G,X). Then, obviously L(TN ) = ∂P (TN ) 6= 0. Further, one sees

that L 6∈ B1
[−k](G,X). In fact, suppose otherwise. Then R ∈ B1

[−k](G,X), that

is, R ∈ B1
[−k](G,X) ∩ Z̃1

[−k](G,X) = B̃1
[−k](G,X), whence the contradiction.

This shows that L defines the element of H1
[−k](G,X)\H̃1

[−k](G,X). Hence the
second inequality follows. This proves the lemma.
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Corollary 4.

M−2(Γ,C[τ ]2) = M−2(Γ (2),C[τ ]2) = C · ψ1 ⊕ C · 1.

Proof. Notice that 1 ∈M−2(Γ,C[τ ]2) because 1 = j(γ, τ)−2{1−(1−j(γ, τ)2)}.
Since ψ1 ∈M−2(Γ,C[τ ]2), by the lemma above we observe that

1 ≤ dimCM
∗
−2(Γ,C[τ ]2) ≤ dimCM

∗
−2(Γ (2),C[τ ]2)

≤ dimC H̃
1
[−2](Γ (2),C[τ ]2) ≤ dimCH

1
[−2](Γ (2),C[τ ]2)− 1.

It is known in [6] that H1
[−2k](Γ (2),C[τ ]2k) is isomorphic to the direct sum

M2k+2(Γ (2)) ⊕ C2k+2(Γ (2)), C2k+2(Γ (2)) being the space of cusp forms of
weight 2k + 2 for Γ (2). Since dimCM4(Γ (2)) = 2 and dimC C4(Γ (2)) = 0
(see, e.g. [25]), one concludes that dimCM

∗
−2(Γ (2),C[τ ]2) = 1. This proves

the lemma.

Remark 12. Let m ≥ 0. It is worth noting the following classical result due to
G. Bol [4]:

dm+1

dτm+1

{
j(γ, τ)mF (γτ)

}
= j(γ, τ)−m−2F (m+1)(γτ)

for any γ with det(γ) = 1 and any function F with sufficiently many deriva-
tives. Actually, this identity bridges between Eichler integrals of weight −m−2
and classical modular forms of weight m.

Remark 13. It is obvious that R(γ) ∈ Z̃1
[−2d](Γ,C[τ ]2d) is completely deter-

mined by R(S)(τ). Lemma 15 asserts that R(S)(τ) ∈ C[τ ]2d is anti-self-
reciprocal. Namely, one has dimC Z̃

1
[−2d](Γ,C[τ ]2d) = d + 1. Since the space

B̃1
[−2d](Γ,C[τ ]2d) is one-dimensional, one finds that dimC H̃

1
[−2d](Γ,C[τ ]2d) =

d. This gives another proof of Corollary 4.

Remark 14. Let f ∈M−−2d(Γ,C[τ ]2d). Then

Rf (S)(τ) = τ2df
(
− 1

τ

)
+ f(τ) ∈ C[τ ]2d

and

f
( τ

2τ + 1

)
= (2τ + 1)−2d

{
f(τ)−Rf (S)(τ) + τ2dRf (S)

(
−2τ + 1

τ

)}
Notice that Rf (S)(τ) is self-reciprocal, that is, τ2dRf (S)(− 1

τ ) = Rf (S)(τ).
Theorefore, if d = 1 there exists c ∈ C such that Rf (S)(τ) = c(1 + τ2). Hence

Rf

((1 0
2 1

))
(τ) = −Rf (S)(τ) + τ2Rf (S)

(
−2τ + 1

τ

)
= −c(1− (2τ + 1)2) ∈ C ·

(
1− j

((
1 0
2 1

)
, τ
)2)

.

This implies that Rf (γ) ∈ B̃1
[−2](Γ,C[τ ]2) for f ∈M−−2(Γ,C[τ ]2), which meets

the result in Corollary 4.
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Remark 15. Similarly to the classical automorphic forms, it is expected that
negatively weighted Poincaré series defined below may give the basis of the
space M∗−2k(Γ,C(τ)). Let N be a non-negative integer. Define a generalized
Poincaré series by

PN (s, z, τ) :=
∑

γ∈Γ∞\Γ

j(γ, τ)−s exp
(
2πiNγτ

)
,

PN (s, τ) := PN (s, 0, τ),

where Γ∞ =
〈
T 2
〉

is the stabilizer of ∞. Then one defines the negatively
weighted Poincaré series as

PN−2k(τ) :=
∂

∂s
PN (s, τ)

∣∣∣
s=−2k

.

6.2 Cochain complex

Retain the assumption on G and X. Fix an integer m. Let us put

Cn = Cn(G,X) := Map(Gn, X),

for n = 1, 2, 3, . . . and C0 = C0(G,X) := X. Define the linear operator
∂n : Cn → Cn+1 by

(∂nf)(γ1, . . . , γn+1)(τ) := f(γ1, . . . , γn)(τ)

+ (−1)n+1j(γ1, τ)−mf(γ2, . . . , γn)(γ1τ)

+

n∑
j=1

(−1)n+1−jf(γ1, . . . , γj+1γj
j-th

, . . . , γn+1)(τ) (19)

Lemma 18. ∂n+1 ◦ ∂n = 0.

Proof. Take arbitrary f(γ1, . . . , γn)(τ) ∈ Cn. One has

((∂n+1 ◦ ∂n)f)(γ1, . . . , γn+2)(τ)

= (∂nf)(γ1, . . . , γn+1)(τ) + (−1)n+2j(γ1, τ)−m(∂nf)(γ2, . . . , γn+2)(γ1τ)

+

n+1∑
k=1

(−1)n+2−k(∂nf)(γ1, . . . , γk+1γk
k-th

, . . . , γn+2)(τ)
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= f(γ1, . . . , γn)(τ) + (−1)n+1j(γ1, τ)−mf(γ2, . . . , γn+1)(γ1τ)

+

n∑
j=1

(−1)n+1−jf(γ1, . . . , γj+1γj
j-th

, . . . , γn+1)(τ)

+ (−1)nj(γ1, τ)−m

[
f(γ2, . . . , γn+1)(γ1τ)

+ (−1)n+1j(γ2, γ1τ)−mf(γ3, . . . , γn+2)(γ2γ1τ)

+

n∑
j=1

(−1)n+1−jf(γ2, . . . , γj+2γj+1
j-th

, . . . , γn+2)(γ1τ)

]

+

n+1∑
k=1

(−1)n−k

[{
f(γ1, . . . , γk+1γk

k-th

, . . . , γn+1)(z) (1 ≤ k ≤ n)

f(γ1, . . . , γn)(z) (k = n+ 1)

}

+ (−1)n+1


j(γ2γ1, τ)−mf(γ3, . . . , γn+2)(γ2γ1τ) (k = 1)

j(γ1, τ)−mf(γ2, . . . , γk+1γk
(k − 1)-th

, . . . , γn+2)(γ1τ) (2 ≤ k ≤ n+ 1)


+

n∑
j=1

(−1)n+1−j


f(γ1, . . . , γj+2γj+1γj

j-th

, . . . , γn+2)(τ) (k = j, j + 1)

f(. . . , γj+1γj
j-th

, . . . , γk+1γk
(k − 1)-th

, . . . )(τ) (j ≤ k − 2)

f(. . . , γk+1γk
k-th

, . . . , γj+2γj+1
j-th

, . . . )(τ) (j ≥ k + 1)


]
,

which is verified to vanish.

Thus, for a fixed m ∈ Z, we define cocycles and coboundaries by

Zn[m](G,X) := ker ∂n, Bn[m](G,X) := im ∂n−1

in Cn(G,X), and the cohomology group

Hn
[m](G,X) := Zn[m](G,X)/Bn[m](G,X)

for each n = 0, 1, 2, . . . . One may obviously define a periodic cohomology
group H̃n

[m](G,X).

Example 5. Recall the congruence subgroup Γ =
〈
T 2, S

〉
(⊃ Γ (2)). Let us

look at H0
[−k](Γ,C(τ)) for k ∈ N. Noticing that

R ∈ Z0
[−k](Γ,C(τ)) ⊂ C(τ)

=⇒ 0 = (∂0R)(γ)(τ) = R(τ)− j(γ, τ)kR(γτ) (∀γ ∈ Γ )

=⇒ R(τ +N) = R(τ), R(−1/τ) = τ−kf(τ) =⇒ R(τ) = 0,

we conclude that H0
[−k](G,C(τ)) = {0}.
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We will make much systematic study on the residual modular forms and
related Eichler cohomology groups arising from the spectrum of the non-
commutative harmonic oscillators in [15].
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SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Par-
ticles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Composition, union and division of cellular automata on groups

MI2010-24 Toshimitsu TAKAESU
A Hardy’s Uncertainty Principle Lemma in Weak Commutation Relations of
Heisenberg-Lie Algebra

MI2010-25 Toshimitsu TAKAESU
On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI & Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy
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