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Abstract. A complete description of the geodesic curves on the Riemann manifold of multivariate
normal distributions equipped with the Fisher information metric has been accomplished by Eriksen
in 1987, and later by Calvo and Oller in 1991 but in a different manner. The former describes
geodesic curves in terms of an exponential map in somewhat mysterious way and the latter obtains
a solution of the differential equation of a geodesic curve explicitly by solving much general system
of differential equations. The method what Erikson had taken seems to have a group theoretic
nature while it is still unclear. The purposes of this short note are to derive the explicit formula
of the geodesic curve from the result obtained by Eriksen and to clarify why such exponential map
may give geodesic curves for the one dimensional normal distribution case.
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1. Introduction

The advantage of introducing geometric concepts and tools
in statistics are quite well-understood now. One of the
main emphasis on the investigation of this direction has
been put on determining the geodesic curves and the dis-
tance between two statistical distributions, initiating with
the work by Rao [6].

Among several basic works on this subject, the geodesic
curves on the Riemann manifold M of multivariate normal
distributions equipped with the Fisher information metric
have been studied by many people, and first determined
by Eriksen [3] in 1987 and Calvo-Oller [2] later in 1991 in
a very different manner. In fact, the former [3] describes
geodesic curves in terms of an exponential map in some-
what mysterious way and the latter [2] obtains an explicit
solution of the differential equation of a geodesic curve.
The method what Erikson had taken and the result ob-
tained there are still not so clear. Actually, he has in-
tegrated the geodesic equations via using the exponential
matrix function of a given compound matrix (made of the
initial data) but did not provide an explicit form of the
solution. In contrast with this, the latter [2] solved much
general system of differential equations and then obtained
an explicit description of the solution from it.

The purpose of this note is to make two remarks on
the work [3]. Actually, we first shows that one can derive
the solutions of the geodesic differential equation explicitly
from the result obtained in [3]. For the second, we clarify
why such exponential map can provide nicely a description
of the geodesic curves when the model (= the statistical
manifold of the one dimensional normal distributions) is
being isomorphic to the Poincaré upper half plane. The

first result is considered to be another proof of the result
in [2].

2. Preliminaries

Consider the pth multivariate normal distribution (µ, Σ),
where µ ∈ Rp is the mean vector and a positive definite
symmetric matrix Σ ∈ GL(p, R) is the covariance matrix,
where GL(p, R) is the general linear group of order p over
R. Let Np := {(µ, Σ)} be the statistical Riemann manifold
defined by the collection of the pth multivariate normal
distributions (µ, Σ) equipped with the Fisher information
metric, which is computed as

ds2 = (tdµ)Σ−1(dµ) +
1
2
tr((Σ−1dΣ)2). (1)

(See, e.g. [8], for the detailed Riemann structure of Np and
also for a brief introduction to the development of studies
on geometric structure of statistical models. For further
details, see [1].)

A geodesic curve (µ(t), Σ(t)) (t ∈ R) on Np satisfies{
Σ̈ + µ̇tµ̇ − Σ̇Σ−1Σ̇ = 0,

µ̈ − Σ̇Σ−1µ̇ = 0,

where ˙ denotes the differentiation with respect to the vari-
able t. This system of differential equations can be ob-
tained by the Euler-Lagrange equation for the Lagrangian

L = tµ̇Σ−1µ̇ +
1
2
tr((Σ−1Σ̇)2).

See [4] for a general derivation of geodesic equations and
[8] for this special case.
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We note that the Riemann manifold Np is a homogeneous
Riemann space. In fact, the positive affine motion group
GA+(p) := {g = (δ, P ) ∈ Rp × GL(p, R) | detP > 0} acts
Np as

g.(µ,Σ) := (Pµ + δ, PΣtP ) ∈ Np , (g = (δ, P ) ∈ GA+(p)).

This action, obviously, leaves the Fisher metric on Np in-
variant and is transitive. Therefore, since the special or-
thogonal group SO(p) := {g ∈ GL(p, R) | tgg = Ip, det g =
1} is the stabilizer subgroup of the point (0, Ip), one obtains
the following isomorphism:

GA+(p)/SO(p) ∼→ Np

g = (δ, P ) 7→ g.(0, Ip) = (δ, P tP )
.

Hence, we may restrict ourselves to describe the geodesic
through the origin (0, Ip) of Np by translation.

The system of the equations for the geodesic curve can
be partially integrated as

µ̇ = Σx, Σ̇ = Σ(B − xtµ),

where x (pth vector) and B (pth square matrix) are inte-
gration constants. Set

∆(t) = Σ(t)−1 and δ(t) = Σ(t)−1µ(t).

Then it is known that in [3] (see, e.g. [2] for the derivation)
the system of differential equations above becomes ∆̇ = −B∆ + xtδ,

δ̇ = −Bδ + (1 + tδ∆−1δ)x,
∆(0) = Ip, δ(0) = 0.

We may also take the initial direction of the curves as{
∆̇(0) = −B (B ∈ Symp(R)),
δ̇(0) = x (x ∈ Rp),

where Symp(R) denotes the set of all real symmetric ma-
trices of degree p.

Let Matp = Matp(R) be the set of all real square matrices
of degree p. Put

A =

−B x 0
tx 0 −tx
0 −x B

 ∈ Mat2p+1.

Eriksen proved the following result (Theorem in [3]).

Proposition 1. For t ∈ R, put

Λ(t) := exp(tA) =
∞∑

n=0

(tA)n

n!
=:

∆ δ Φ
tδ ϵ tγ
tΦ γ Γ

 .

Then the geodesics curve through the origin (0, Ip) of Np

with tangent (x,−B) is given by (δ(t),∆(t)).

3. Calculation of the exponential

In this section, we calculate the exponential of the matrix
A in Proposition 1 and obtain explicit expressions of the
geodesic curves on Np = {(µ,Σ)}.

We first define two matrices of degree 2p + 1 by

H =

−1
2B x − 1

2B
0 0 0

1
2B −x 1

2B

 , L =
1
2

 Ip 0 −Ip
0 0 0

−Ip 0 Ip

 .

Then it is immediate to see that

A = H + tH, H2 = tH2 = 0

and

tHH =

 1
2B2 −Bx 1

2B2

−txB 2txx −txB
1
2B2 −Bx 1

2B2

 ,

HtH =

 1
2B2 + xtx 0 − 1

2B2 − xtx
0 0 0

−1
2B2 − xtx 0 1

2B2 + xtx


=

1
2

 G2 0 −G2

0 0 0
−G2 0 G2

 ,

where G is a positive semi-definite symmetric matrix de-
fined by G2 = B2 + 2xtx. Also, we notice that

LH = H and L2 = L = tL.

Lemma 1. Put M = HtH. Then one has

A2n+1 =MnH + tHMn,

A2n+2 =Mn+1 + tHMnH.

Proof. One finds that

A2 = HtH + tHH,

whence it follows that

A2n+3 =A2n+1A2 = (MnH + tHMn)(HtH + tHH)

=tHMn+1 + Mn+1H,

A2n+2 =A2n+1A = (MnH + tHMn)(H + tH)

=MnHtH + tHMnH.

By induction, the claim follows immediately.

From the lemma above we have

Λ(t) =I2p+1 +
∞∑

n=1

t2n

(2n)!
A2n +

∞∑
n=0

t2n+1

(2n + 1)!
A2n+1

=I2p+1 +
∞∑

n=1

t2n

(2n)!
Mn + tH

∞∑
n=1

t2n

(2n)!
Mn−1H

+
∞∑

n=0

t2n+1

(2n + 1)!
MnH + tH

∞∑
n=0

t2n+1

(2n + 1)!
Mn. (2)

We recall here the notion of a g-inverse of a square ma-
trix.
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Definition 1 (g-inverse). Let G be a square matrix. If the
square matrix G− satisfies

GG−G = G,

then G− is called a generalized inverse (simply, g-inverse)
of G.

The following lemmas are known (see e.g. [7]).
Lemma 2. If G− be the g-inverse of a symmetric matrix
G, then

G−GG− = G−, G−G = GG−.

Lemma 3. If X = X1 + X2, with X1 and X2 are posi-
tive semi-definite symmetric, then there exist positive semi-
definite symmetric matrices G and G−, where G− is a g-
inverse of G, such that the following conditions hold.

(a) G2 = X,

(b) XiGG− = GG−Xi = Xi.

Moreover, if Xi = R2
i , where Ri is a positive semi-definite

symmetric matrix, then

RiGG− = GG−Ri = Ri.

Let X = G2 = B2 + 2xtx. Then, by Lemma 3, there
exists a positive semi-definite symmetric g-inverse G− of G
such that the following equations hold.

BGG− = GG−B = B,

GG−xtx = xtxGG− = xtx.

Since x is an eigenvector of the matrix xtx, using the
latter relation above, we observe

(txx)GG−x = GG−xtxx = xtxx = (txx)x.

Hence, it follows that

GG−x = x.

To make our subsequent discussion simpler, we introduce
the following convention. For X ∈ Matp and K ∈ Mat2p+1

of the form

K =

A x B
0 0 0
C y D

 (A,B, C, D ∈ Matp, x , y ∈ Rp),

we define a matrix X ◦R K ∈ Mat2p+1 by

X ◦R K =

XA Xx XB
0 0 0

XC Xy XD

 .

Then for X,X ′ ∈ Matp and for such matrices K, K ′ ∈
Mat2p+1, it is easy to see that

(XX ′) ◦R K = X ◦R (X ′ ◦R K),
X ◦R (KK ′) = (X ◦R K)K ′.

Similarly, for X ∈ Matp and

J =

A 0 B
tx 0 ty
C 0 D

 ∈ Mat2p+1,

we define

J ◦L X =

AX 0 BX
txX 0 tyX
CX 0 DX

 ∈ Mat2p+1.

Then it is obvious that

t(X ◦R K) = tK ◦L
tX.

Using this convention, we have

M = HtH = G2 ◦R L = L ◦L G2.

In particular, since L2 = L it follows that

Mn = G2n ◦R L.

We now calculate the exponential Λ(t) = exp(tA) explic-
itly according to the four parts decomposition of the sum
(2). Since

MnH = (G2n ◦R L)H = G2n ◦R (LH) = G2n ◦R H

= (G2n+1G−) ◦R H = G2n+1 ◦R (G− ◦R H),

it is not hard to calculate the first term as

∞∑
n=0

t2n+1

(2n + 1)!
MnH =

∞∑
n=0

t2n+1

(2n + 1)!
G2n+1 ◦R (G− ◦R H)

= sinh(tG)G− ◦R H.

Similarly, we have

tH
∞∑

n=0

t2n+1

(2n + 1)!
Mn =t(

∞∑
n=0

t2n+1

(2n + 1)!
MnH)

=tH ◦L sinh(tG)G−,
∞∑

n=1

t2n

(2n)!
Mn =

∞∑
n=1

t2n

(2n)!
G2n ◦R L

=(cosh(tG) − Ip) ◦R L,

tH
∞∑

n=1

t2n

(2n)!
Mn−1H =tH

∞∑
n=1

t2n

(2n)!
G2n−2 ◦R (LH)

=tH
∞∑

n=1

t2n

(2n)!
G2n(G−)2 ◦R H

=tH(cosh(tG) − Ip)(G−)2 ◦R H.

A small manipulation hence yields the following.

Theorem 1. Retain the notation and assumption in the
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Preliminaries. Then, one has

∆(t) =Ip +
1
2
(cosh(tG) − Ip) +

1
2
B(cosh(tG) − Ip)(G−)2B

− 1
2

sinh(tG)G−B − 1
2
B sinh(tG)G−,

δ(t) = − B(cosh(tG) − Ip)(G−)2x + sinh(tG)G−x,

Φ(t) = − 1
2
(cosh(tG) − Ip) +

1
2
B(cosh(tG) − Ip)(G−)2B

− 1
2

sinh(tG)G−B +
1
2
B sinh(tG)G−

and

Γ(t) = ∆(−t), γ(t) = δ(−t).

Remark that the last two relations in the theorem can
be also seen from the fact Λ(t)−1 = Λ(−t). Further, since
Λ̇(t) = AΛ(t), one observes easily that δ̇ = −Bδ + ϵx.
Hence, noticing (a part of) the geodesic equation δ̇ =
−Bδ + (1 + tδ∆−1δ)x, we have

ϵ(t) = 1 + tδ(t)∆(t)−1δ(t).

From the first two equations in Theorem 1, one can easily
derive the explicit formulas of the geodesic curves for the
multivariate normal model obtained in [2].
Corollary 1. When n = 1, one has

∆(t) =1 +
1
2
(cosh(tg) − 1)(1 + b2g−2) − bg−1 sinh(tg),

δ(t) = − b(cosh(tg) − 1)g−2x + sinh(tg)g−1x

and

Φ(t) =
1
2
(cosh(tg) − 1)(b2g−2 − 1).

We make here a small remark. Consider the sub-
manifold Np(0) := {(0, Σ)} of Np (that is, with the 0 mean
value). Then, since x = 0 we have G = B. It follows im-
mediately from the theorem above that Σ(t) = ∆(t)−1 =
exp(tB). In other words, the geodesic curves on Np(0) are
given by the exponential map. This meets the fact that
the metric ds2 = 1

2 tr((Σ−1dΣ)2) on Np(0) is equal to that
of the space of positive definite symmetric matrices of or-
der p, i.e. the Riemann symmetric space GL(p, R)/O(p),
where O(p) is the orthogonal group of order p.

4. A group theoretic interpretation
for the one dimensional model

The aim of this section is to make a group theoretical in-
terpretation of Proposition 1 when p = 1.

Let SL(2, R) = {g ∈ GL(2, R) | det g = 1} be the special
linear group of order 2. The corresponding Lie algebra is
sl(2, R) := {X ∈ Mat2(R) | trX = 0} and the Lie bracket is
given by the matrices commutator [X,Y ] := XY − Y X.

The stage we consider is the complex upper plane H :=
{z = x + iy ∈ C | y > 0} equipped with the Poincaré met-
ric ds2 = 2

y2 (dx2 + dy2). The group SL(2, R) acts on H by

the linear fractional transform:

g.z =
az + b

cz + d
(g =

(
a b
c d

)
∈ SL(2, R), z ∈ H).

Note that the action leaves invariant the Poincaré met-
ric. Moreover, it is well known (see, e.g. [5]) that every
g ∈ SL(2, R) can be uniquely written as g = nxayk (the

Iwasawa decomposition), where nx :=
(

1 x
0 1

)
(x ∈ R),

ay :=
(

y
1
2 0
0 y− 1

2

)
(y > 0) and k ∈ SO(2). This shows

that the stabilizer group of the point i ∈ H is given by K :=
SO(2). Hence the (isometric) map SL(2, R)/SO(2) ∋
gK 7→ g.i = x + iy ∈ H induces a structure of the Rie-
mann symmetric space on H. We sometimes identify the
coset gK with the point z = g.i.

For g ∈ SL(2, R) and X, Y ∈ sl(2, R), define the adjoint
representations of SL(2, R) and sl(2, R) respectively by

Ad(g)X := gXg−1 and ad(X)Y := [X, Y ].

Also, the Killing form B of sl(2, R) is defined by

B(X,Y ) := tr(ad(X)ad(Y )) = 4trXY.

It defines a non-degenerated quadratic form of signature
(2, 1) on the space sl(2, R). We put Bo(X, Y ) = 1

2 trXY .

Let e1 =
(

1
1

)
, e2 =

(
1

−1

)
and e3 =

(
1

−1

)
.

Then (e1, e2, e3) gives an orthogonal basis of sl(2, R) with
respect to Bo. We will fix this basis in the sequel. Then,
since

ad
(

b x
x −b

)
e1 =2be3,

ad
(

b x
x −b

)
e2 = − 2xe3,

ad
(

b x
x −b

)
e3 =2be1 − 2xe2,

we have

ad
(

b x
x −b

)
=

 0 0 2b
0 0 −2x
2b −2x 0

 .

Similarly, for g =
(

a b
c d

)
∈ SL(2, R), we have

Ad(g)

=

 1
2
(a2 − b2 − c2 + d2) −ab + cd 1

2
(a2 + b2 − c2 − d2)

bd − ac ad + bc −(ac + bd)
1
2
(a2 − b2 + c2 − d2) −(ab + cd) 1

2
(a2 + b2 + c2 + d2)

 .

We have the following group isomorphism:

SL(2, R)/{±I2} ∋ g 7→ g̃ = Ad(g) ∈ SOo(2, 1)
∪ ∪

SO(2)/{±I2} ∋ k 7→ k̃ = Ad(k) ∈ S(O(2) × O(1)),

where SOo(2, 1) := SOo(Bo) is the connected component
of the special Lorentz group SO(Bo)(∼= SO(2, 1)) := {g ∈
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GL(3, R) |Bo(gX, gY ) = Bo(X, Y ), det g = 1} of type
(2, 1). It is elementary to verify that Bo(X, Y ) = x1y1 +
x2y2 − x3y3 for X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3

with respect to our fixed basis (e1, e2, e3). Since the ad-
joint action Ad(g) (g ∈ SL(2, R)) leaves the quadratic form
Bo(X, Y ) invariant, as Riemann symmetric spaces, we have
the isomorphisms:

H ∼= SL(2, R)/SO(2) ∼= SOo(2, 1)/S(O(2) × O(1)).

Now, in order to make our story meet the picture of
Proposition 1 (and Theorem 1), we take a realization of
the Lie algebra so(2, 1) as

so(2, 1) := {Z ∈ Mat3(R) | tZJ + JZ = 0, tr(Z) = 0},

where J =

0 0 1
0 1 0
1 0 0

 . Remark that the corresponding

realization of the Lorentz group is given by

SO(2, 1) := {g ∈ GL(3, R) | tgJg = J, det g = 1}.

It is the conjugate image of the group SO(Bo) above by

C = 1√
2

1 0 1
0

√
2 0

1 0 −1

. Obviously, C−1 = C.

Let X =

(
− b

2 − x√
2

− x√
2

b
2

)
∈ sl(s, R). Then we see that

Cad(X)C−1 =

−b x 0
x 0 −x
0 −x b

 ∈ so(2, 1).

Since Ad(exp tX) = exp(tad(X)), we observe

CAd(exp tX)C−1

=C exp(tad(X))C−1 = exp(tCad(X)C−1)

= exp t

−b x 0
x 0 −x
0 −x b

 =:

∆ δ Φ
δ ϵ γ
Φ γ Γ

 .

It follows that

Ad(exp tX) = C−1

∆(t) δ(t) Φ(t)
δ(t) ϵ(t) γ(t)
Φ(t) γ(t) Γ(t)

C

=
1

2

∆(t) + 2Φ(t) + Γ(t)
√

2(δ(t) + γ(t)) ∆(t) − Γ(t)√
2(δ(t) + γ(t)) 2ϵ(t)

√
2(δ(t) − γ(t))

∆(t) − Γ(t)
√

2(δ(t) − γ(t)) ∆(t) − 2Φ(t) + Γ(t)

 .

On the other hand, one finds that X2 = g2

4 I2, where
g2 = b2 + 2x2. It follows that

X2n = (
g

2
)2nI2 and X2n+1 = (

g

2
)2nX.

We then compute the exponential as

exp tX

=
∞∑

n=0

t2n

(2n)!
(
g

2
)2nI2 +

∞∑
n=0

t2n+1

(2n + 1)!
(
g

2
)2nX

=cosh(
tg

2
)I2 + 2g−1 sinh(

tg

2
)X

=
(

cosh( tg
2 ) − g−1 sinh( tg

2 )b −
√

2g−1 sinh( tg
2 )x

−
√

2g−1 sinh( tg
2 )x cosh( tg

2 ) + g−1 sinh( tg
2 )b

)
.

Set exp tX =
(

α(t) β(t)
β(t) γ(t)

)
. Then, since

Ad(exp tX)

=

 1
2 (α2 + γ2 − 2β2) −αβ + βγ 1

2 (α2 − γ2)
βγ − βα αγ + β2 −(αβ + βγ)

1
2 (α2 − γ2) −(αβ + βγ) 1

2 (α2 + 2β2 + γ2)

 ,

comparing the elements of two expressions of Ad(exp tX)
above, i.e. by taking the sum of (1.1), (1.3), (3.1) and
(3.3)-components, and of (1.2) and (2.3)-components re-
spectively, we conclude that

∆ = α2 and δ = −
√

2αβ. (3)

By Proposition 1, taking the exponential Λ(t) = exp tA
of the matrix A = ad(X) ∈ Mat3(R), we find that the
equation (3) should give a geodesic on N1. (In fact, one
can easily obtain the explicit formulas in Corollary 1 from
(3).)

We now give a brief explanation why the equation (3)
can give a geodesic on N1 directly from the general theory
of geodesics on Riemann symmetric spaces. Notice first
that the Fisher information metric given by the equation
(1) for the one dimensional normal model N1 = {(µ, σ2)}
is

ds2 = σ−2(dµ2 + 2dσ2).
It is hence easy to check that the following map defines
an isomorphism between N1 and the Poincaré upper half
plane H:

N1
∼→ H ∼= SL(2, R)/SO(2)

(µ, σ2) 7→ 1√
2
µ + iσ

.

Hence the manifold N1 is a Riemann symmetric space. In
particular, one may identify (0, 1) ∈ N1 with i ∈ H (the
origin). It is well known that the geodesic curve through
the origin eK with a tangent vector X on a Riemann
symmetric space G/K is given by the exponential map
(exp tX)K ∈ G/K (see [4]). Therefore, what we have to
show that is the curve (µ(t), σ(t)2) = (∆(t)−1, ∆(t)−1δ(t))
can be obtained by exp(tY ).i for some Y ∈ sl(2, R).

Let X =

(
− b

2 − x√
2

− x√
2

b
2

)
∈ sl(2, R) as before. Define the

real valued functions µ̃(t) and σ̃(t) by
1√
2
µ̃(t) + iσ̃(t) := exp(− t

2
X).i ∈ H (t ∈ R).

Then we observe

σ̃(−2t) =Im{exp tX.i} =
1

β(t)2 + γ(t)2

=
1

cosh(tg) + g−1b sinh(tg)
=

1
α(−2t)

.

Similarly, noticing αγ − β2 = 1, we have

1√
2
µ̃(−2t) =Re{exp tX.i} =

(α(t) + γ(t))β(t)
β(t)2 + γ(t)2

=
−
√

2g−1x sinh(tg)
α(−2t)

= −β(−2t)
α(−2t)

= − ∆(−2t)−1α(−2t)β(−2t).
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Hence, it follows from (3) that{
σ̃(t)2 = ∆(t)−1 = σ(t)2,
µ̃(t) = ∆(t)−1δ(t) = µ(t).

This explains group theoretically the legitimacy of the re-
sult in [3] for p = 1.

5. Concluding discussions

The matrix A taken in the Preliminaries can be regarded
as an element of the Lie algebra g := so(p + 1, p) =
{X ∈ Mat2p+1(R) | tXJ2p+1 + J2p+1X = 0} of the spe-
cial Lorentz group G = SOo(p+1, p) as Eriksen [3] pointed
out. Here the matrix J2p+1, which defines a non-degenerate
(p + 1, p) quadratic form (invariant under the action of G,
i.e. tgJ2p+1g = J2p+1 for g ∈ G), is given by

J2p+1 =

 0 0 Ip
0 1 0
Ip 0 0

 .

More precisely, the matrix A is regarded as an element of
the p-part of the Cartan decomposition g = k ⊕ p, where
k is the Lie algebra of a maximal compact subgroup K =
S(O(p + 1) × O(p)) of G. It is well known (see [4]) that
its exponential exp(tA)K defines a geodesic curve on the
Riemann symmetric space G/K.

When p = 1, there exists an isomorphism of Riemann
manifolds N1

∼= SOo(2, 1)/S(O(2) × O(1)). Thus, as we
have shown that exp(tA) for A = ad(X) ∈ so(2, 1) indeed
describes a geodesic curve on N1. If p > 1, however, the
Riemann structure defined by the Fisher information met-
ric on the space Np is not equivalent to the one induced
from the Killing form of g on G/K. Although Np can be
embedded into G/K as a differentiable manifold, this fact
implies that exp(tA)K is not necessarily defines a geodesic
on the normal model Np when p > 1. It is the future work
to study this point by clarifying the geometric meaning of
each component of the matrix exp(tA).
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