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Abstract. The differential-geometric structures of ideal magnetohydrodynamics are studied by
calculating sectional curvatures of a semidirect product of the volume-preserving diffeomorphism
group and the vector field on it. Some propositions on the negativeness and positiveness of the
sectional curvatures are derived. In particular, the curvature of the section corresponding to the
sausage instability of plasma is shown to be negative.
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1. Introduction

It is well known that the equations of motion of ideal (ideal
implies inviscid and incompressible throughout this pa-
per) hydrodynamics (HD) and ideal magnetohydrodynam-
ics (MHD) are infinite-dimensional Hamiltonian systems,
or more specifically, Lie-Poisson systems [2, 3, 4, 12, 13, 17].
Moreover, both ideal HD and ideal MHD are regarded
as geodesic flows on infinite-dimensional Lie groups when
we recall that a Lie-Poisson system whose Hamiltonian is
quadratic is an equation of the geodesic flow on the cor-
responding Lie group with one-sided invariant metric as
shown by Arnol’d [2, 3, 4]. The result by Arnol’d was
extended to the case of Lie-Poisson systems with non-
quadratic Hamiltonian by Ono [15].

The Hamiltonian formulations of ideal HD and ideal
MHD are quite useful in deriving important results such
as theorems on nonlinear stability, conservation laws, and
so on [2, 3, 8, 9]. In contrast to the Hamiltonian for-
mulation, the differential-geometric formulation is not of-
ten used in the analysis of fluid motion. Actually, the
differential-geometric structures of ideal HD have been
studied by calculating sectional curvatures of the group
[2, 3, 10, 11, 14, 18]. We have tried to give a reason-
able basis for exponential stretching of line elements in
turbulence using the differential-geometric formulation [7].
Much attention has been also given to the differential-
geometric formulation of ideal MHD [6, 16, 19]. However,
the differential-geometric structures of ideal MHD are not
fully understood; the curvature tensors are explicitly ob-
tained in the limited case of periodic boundary conditions
[16, 19]; we have little knowledge of the properties of sec-
tional curvatures.

The sectional curvatures are of much interest, since they
are closely related with the motion of geodesics [2, 3, 4].
Negativeness of sectional curvature usually implies expo-

nential instability of geodesics and positiveness implies neu-
tral stability. In particular, when the sectional curvature
is always negative, the geodesic flow is ergodic [1].

In this paper, we study the differential-geometric struc-
tures of ideal MHD by showing some explicit forms of sec-
tional curvatures for a general flow domain. Some propo-
sitions on the sign of sectional curvatures are derived.
As a step to the practical applications of the differential-
geometric formulation, the curvature for a practical sit-
uation corresponding to the sausage instability, which is
one of the fundamental instabilities of plasma, is shown
to be negative in accordance with the physical phenom-
ena. This result strongly supports that the differential-
geometric formulation of hydrodynamics and magnetohy-
drodynamics can be a tool for analyzing practical phenom-
ena including those encountered in the industries.

2. Differential-geometric formulation
of ideal MHD

In this section, we summarize the differential-geometric for-
mulation of ideal MHD in general dimensions for later use.

Let Dv(M) be a group of volume-preserving diffeomor-
phisms on M and X0(M) a space of divergenceless vector
fields on M . For simplicity, the N -dimensional domain
M ∈ RN of MHD flow is assumed to be a simply con-
nected finite region or a flat torus with periodic boundary.
Let G be a semidirect product of Dv(M) and X0(M) with
multiplication

(g, γ) ◦ (h, η) = (g ◦ h, Adh−1γ + η), (1)

for g, h ∈ Dv(M), γ, η ∈ X0(M), where Adh−1 = L̃h−1R̃h

is the adjoint action and L̃h and R̃h are the differentials of
left and right translations, respectively.

The Lie algebra of G is defined as the linear space XR(G)
of all right-invariant vector fields on G, that is, XR(G) =
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{(u, α)R; (u, α)R|(h,γ) = R̃(h,γ)(u, α), (u, α) ∈ T(e,0)G =
X0(M) ×X0(M)}.

We construct a right-invariant metric on G by defining
it at the identity of G and extending it to each point by
right translation. That is,

⟨(u, α), (v, β)⟩|(e,0)

=
∫

M

u · v dNx +
∫

M

α · (−∆−1)β dNx (2)

=
∫

M

N∑
i=1

(
uivi + αi(−∆−1)βi

)
dNx

for (u, α), (v, β) ∈ T(e,0)G (∆ = ∇ · ∇, ∇ =
(∂/∂x1, · · · , ∂/∂xN ) ) and

⟨(u′, α′), (v′, β′)⟩|(h,γ)

= ⟨R̃(h−1,−Adhγ)(u′, α′), R̃(h−1,−Adhγ)(v′, β′)⟩|(e,0)

for (u′, α′), (v′, β′) ∈ T(h,γ)G. If we regard u as a velocity
field and α as a current field, the metric defined above
is related with the total energy of MHD flow by 2ET =
⟨(u, α), (u, α)⟩|(e,0). The Levi-Civita connection ∇̃ for this
metric is expressed for right-invariant vector fields as

∇̃(u,α)R(v, β)R|(h,γ)

= R̃(h,γ)

(
P [(u · ∇)v − 1

2
(∂iαj∆−1βj + ∆−1αj∂iβj

+ (α · ∇)∆−1β + (β · ∇)∆−1α)],
1
2
P

{
∆

[
∂iuj∆−1βj + ∆−1αj∂ivj

+(u · ∇)∆−1β + (v · ∇)∆−1α
]

+ (u · ∇)β − (β · ∇)u

+ (α · ∇)v − (v · ∇)α
})

, (3)

where P denotes the projection operator from the space of
all vector fields X (M) to X0(M) and Einstein’s contraction
rule is used for the repeated indices.

After some calculations, the equation of geodesics,

∇̃XX = 0, X =
d
dt

σ(t), (4)

is shown to be written as

∂u

∂t
+ (u · ∇)u − ∂i(BikBkj) + ∇pτ = 0, (5)

∂Bij

∂t
+ ∂j(ukBik) − ∂i(ukBjk) = 0, (6)

where pτ is a scalar function which can be interpreted as
the total pressure. Here we have introduced a generalized
magnetic field B = Bij and a generalized vector potential
A for the generalized current α by

A = −∆−1α, Bij = ∂iAj − ∂jAi. (7)

These equations, together with the condition ∇ · u = 0,
are the equations of motion for an ideal MHD flow in N
dimensions [13].

For N = 3, the Levi-Civita connection reduces to

∇̃(u,α)R(v, β)R|(h,γ)

= R̃(h,γ)

(
P [(u · ∇)v − 1

2
(α × Bβ + β × Bα)],[1

2
∇× (−u × β + v × α)

− 1
2
∇× (∇× (u × Bβ + v × Bα))

] )
, (8)

where Bα = (B23, B31, B12) is a magnetic field on M sat-
isfying

∇× Bα = α, ∇ · Bα = 0. (9)

In the rest of the paper we consider the three-dimensional
case.

3. Sectional curvatures

The sectional curvature of the section spanned by tangent
vectors X, Y is defined as

K(X, Y ) =
R

⟨X,X⟩⟨Y, Y ⟩ − ⟨X, Y ⟩2
, (10)

where

R = ⟨R(X,Y )Y, X⟩, (11)

R(X, Y ) = ∇̃X∇̃Y − ∇̃Y ∇̃X − ∇̃[X,Y ]. (12)

We call R the tensor form of sectional curvature. Note that
the sign of R coincides with that of K(X,Y ). The tensor
form R is decomposed as

R = ⟨R(u, v)v, u⟩ + 2⟨R(u, v)β, α⟩
+ 2⟨R(u, β)v, α⟩ + ⟨R(u, β)β, u⟩
+ ⟨R(α, v)v, α⟩ + ⟨R(α, β)β, α⟩ (13)

for X = (u, α), Y = (v, β). Here we abbreviate
⟨R((u, 0), (v, 0))(0, β), (0, α)⟩ as ⟨R(u, v)β, α⟩ and so on.
We need to calculate the sectional curvatures only at the
identity (e, 0), since the right-invariance of the metric im-
plies

K(X, Y ) = K(R̃(g,γ)X, R̃(g,γ)Y ). (14)

We focus our attention on three typical sections here: (i)
the pure hydrodynamic section; (ii) the pure magnetic sec-
tion; and (iii) the section spanned by pure hydrodynamic
vector and pure magnetic vector. The explicit expressions
of two components ⟨R(u, v)β, α⟩ and ⟨R(u, β)v, α⟩ in (13)
are given in the Appendix to complete the explicit expres-
sion of R for a general section.

3.1. Pure hydrodynamic section

Using the connection (8), we obtain the sectional curvature
of the pure hydrodynamic section spanned by (u, 0), (v, 0)
as

RH = ⟨R(u, v)v, u⟩
= ⟨Q[(v · ∇)v], Q[(u · ∇)u]⟩
− |Q[(u · ∇)v]|2 (15)
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in tensor form. Here we denote by Q = I−P the projection
operator from X (M) to the space of all vector fields in
gradient form X⊥

0 (M). Of course, the above expression
(15) coincides with the expression of the sectional curvature
for ideal HD [11]. It immediately follows that

Proposition 1 ([11]). If u satisfies Q[(u · ∇)u] = 0 (e.g.,
u = (u1(z), u2(z), 0)), then RH ≤ 0.

The condition Q[(u · ∇)u] = 0 implies that the pressure
associated with u is zero, or in other words, u is pressure-
less. Thus any hydrodynamic section spanned by a pres-
sureless field and arbitrary field has negative curvature.

3.2. Pure magnetic section

The sectional curvature of the pure magnetic section
spanned by (0, α), (0, β) is calculated to be

RM = ⟨R(α, β)β, α⟩
= −⟨P [(Bβ · ∇)Bβ ], P [(Bα · ∇)Bα]⟩

+
1
4
|P [(Bα · ∇)Bβ + (Bβ · ∇)Bα]|2 (16)

in tensor form. From this expression we obtain

Proposition 2. If Bα satisfies P [(Bα · ∇)Bα] = 0, then
RM ≥ 0.

The condition P [(Bα · ∇)Bα] = 0 implies that Bα is a
“steady velocity field” in ideal HD, or equivalently, u = Bα

is a steady solution of the Euler equation

∂u

∂t
+ (u · ∇)u = −∇p. (17)

For example, this condition is satisfied for the field that
has Beltrami property ∇×Bα ∥ Bα; it is called a force-free
field in MHD, since the Lorentz force α×Bα vanishes. An
example of the proposition above is obtained by Zeitlin and
Kambe [19].

3.3. Section spanned by pure hydrodynamic vec-
tor and pure magnetic vector

For the section spanned by (u, 0) and (0, β), the sectional
curvature is calculated to be

RHM = ⟨R(u, β)β, u⟩
= ⟨P [(Bβ · ∇)Bβ ], P [(u · ∇)u]⟩

+
1
4
|∇ × (u × Bβ) + P [u × β]|2

− |P [u × β]|2 (18)

in tensor form. We have

Proposition 3. If u or Bβ is a “steady velocity field” and
u is parallel to β everywhere, then RHM ≥ 0.

If u or Bβ is a “steady velocity field” and u is parallel to
Bβ everywhere, then RHM ≤ 0.

As mentioned in the introduction, the sign of the sec-
tional curvature is related with the stability of the geodesic
flow on the semidirect group G. Unfortunately, there is no
theorem connecting the stability of geodesic flow and the
stability of velocity fields and current fields as far as the
author knows. However, it seems to be true that when the
velocity or current fields are unstable the corresponding
geodesic flow is also unstable. In the following we show
an example supporting this conjecture. The example cor-
responds to the well-known plasma instability, sausage in-
stability [5].

Applying an infinitesimal velocity field ϵu to a steady
current field α is interpreted as deformation of the current
field α if we remind that the magnetic lines move with fluid
particles, or in other words, they are in ‘frozen-in state.’

Example 1 (sausage instability). Let us consider the case
where α = (0, 0, J) in the cylindrical coordinate system
(r, θ, z) with

J =
{

I
πa2 , for r < a
0, for r ≥ a

(19)

B = (0, Bθ, 0) with

Bθ =
{

Ir
2πa2 , for r < a

I
2πr , for r ≥ a

(20)

and u = (ur(r, z), 0, uz(r, z)) with

ur(r, z) =

{
f(z)r

a2 , for r < a
f(z)

r , for r ≥ a
(21)

uz(r, z) =
{

F (z), for r < a
0, for r ≥ a

(22)

where F ′(z) = −2f(z)/a2. The perturbation by the ve-
locity field u is homogeneous in the poloidal or θ direction
and it is regarded as a simple model of sausage instability.
For simplicity, the function f(z) is assumed to be periodic:
f(z + L) = f(z). The sectional curvature in this case is
calculated to be

RHM = − I2

4πa4

∫ L

0

{f(z)}2 dz. (23)

Hence the section corresponding to the sausage instabil-
ity has negative curvature.

The magnetic fields and the velocity field in Example 1
do not belong to C1-class, but it is easy to show that
slightly modified results for smoothed fields are obtained
by using mollifier.
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4. Summary

The sectional curvatures for ideal MHD were calculated
for typical sections. Some results on the positiveness and
negativeness of sectional curvatures were derived.

In particular, the sectional curvature for the section cor-
responding to the well-known plasma instability, sausage
instability, was shown to be negative, in accordance with
the physical phenomena. This result suggests that the
present differential-geometric formulation is promising as
a tool of practical analysis of MHD, though further study
is expected.

Appendix

Here we show the expressions of ⟨R(u, v)β, α⟩ and
⟨R(u, β)v, α⟩ which appear in the tensor form R (13).

⟨R(u, v)β, α⟩

= −1
4
⟨P [v × β], P [u × α]⟩ − 1

4
⟨v × β,∇× (u × Bα)⟩

− 1
4
⟨∇ × (v × Bβ), u × α⟩

− 1
4
⟨∇ × (v × Bβ),∇× (u × Bα)⟩

+
1
4
⟨P [u × β], P [v × α]⟩ +

1
4
⟨u × β,∇× (v × Bα)⟩

+
1
4
⟨∇ × (u × Bβ), v × α⟩

+
1
4
⟨∇ × (u × Bβ),∇× (v × Bα)⟩

+
1
2
⟨P [(u · ∇)v], β × Bα⟩ −

1
2
⟨P [(u · ∇)v], α × Bβ⟩

− 1
2
⟨P [(v · ∇)u], β × Bα⟩ +

1
2
⟨P [(v · ∇)u], α × Bβ⟩,

⟨R(u, β)v, α⟩

=
1
4
⟨P [u × α], P [v × β]⟩ +

1
2
⟨P [u × β], P [v × α]⟩

− 1
4
⟨u × β,∇× (v × Bα)⟩ − 1

4
⟨v × α,∇× (u × Bβ)⟩

− 1
4
⟨∇ × (u × Bα),∇× (v × Bβ)⟩

− 1
4
⟨P [(u · ∇)v], α × Bβ⟩ −

1
4
⟨P [(u · ∇)v], β × Bα⟩

− 1
4
⟨P [(v · ∇)u], α × Bβ⟩ −

1
4
⟨P [(v · ∇)u], β × Bα⟩.

The formula ⟨∇̃X∇̃Y Z,W ⟩ = −⟨∇̃Y Z, ∇̃XW ⟩ which is
valid for right-invariant fields X,Y, Z,W is useful in deriv-
ing these expressions. The sum of these two components

reduces to be

⟨R(u, v)β, α⟩ + ⟨R(u, β)v, α⟩

= −1
4
⟨v × β,∇× (u × Bα)⟩ − 1

4
⟨∇ × (v × Bβ), u × α⟩

− 1
4
⟨∇ × (v × Bβ),∇× (u × Bα)⟩

+
3
4
⟨P [u × β], P [v × α]⟩ +

1
4
⟨P [(u · ∇)v], β × Bα⟩

− 3
4
⟨P [(u · ∇)v], α × Bβ⟩ −

3
4
⟨P [(v · ∇)u], β × Bα⟩

+
1
4
⟨P [(v · ∇)u], α × Bβ⟩.
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