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Abstract.
Radial Basis Function (RBF) interpolation is a common approach to scattered data interpolation.
Gaussian Process regression is also a common approach to estimating statistical data. Both tech-
niques play a central role, for example, in statistical or machine learning, and recently they have
been increasingly applied in other fields such as computer graphics. In this survey we describe the
formulation of both techniques as instances of functional regression in a Reproducing Kernel Hilbert
Space. We then show that the RBF and Gaussian Process techniques can in some cases be reduced
to an identical formulation, differing primarily in their assumptions on when the data locations and
values are known, as well as in their (respectively) deterministic and stochastic perspectives. The
scope and effectiveness of the RBF and Gaussian process techniques are illustrated through several
applications in computer graphics.

Keywords. Reproducing Kernel Hilbert Space, Radial Basis Function, scattered data interpolation,
Gaussian process regression,

1. Introduction

Radial Basis Function (RBF) interpolation is a common
approach to scattered data interpolation. Gaussian Pro-
cess regression (GPR) can also be used for scattered data
interpolation and extrapolation. In this paper we inter-
pret both of these techniques in the common framework of
Reproducing Kernel Hilbert Spaces (RKHSs). The RKHS
interpretation helps reveal the commonalities of these two
techniques as well as clarify their differences. The practical
relevance of the techniques will also be illustrated through
several examples in computer graphics.

RBF Interpolation was popularized in the late 1980s,
initially in the machine learning community [4]. More re-
cently RBF interpolation has had numerous applications
in other fields. For example, in computer graphics RBF in-
terpolation has been used for reconstructing models from
scanned data [5], for defining the skin motion of charac-
ters [10, 8], for interpolating volume medical scans [15], for
editing lighting and shading on anime characters [17], and
other purposes.

Gaussian process regression was initially explored by
Kolmogorov and Wiener in the 1940s. It was later devel-
oped in the geostatistics community where it goes by the
name Kriging [6]. Gaussian process techniques have been
widely applied, for example in computer graphics Gaussian
processes have been used for modeling the motion of hu-
man characters [7, 14], for synthesizing terrains [9] and for
generating novel variations of human drawings [2].

Both RBF interpolation and Gaussian process regres-
sion involve the inverse problem of estimating an unknown
function from a finite number of data samples. We de-
scribe how an RKHS is the appropriate theoretical basis
for both techniques. In particular, for our practical pur-
poses of solving interpolation/regularization problems in
an RKHS, we utilize a powerful feature of RKHSs, known
as the Representer Theorem [16]. This theorem provides
effective solutions to function estimation problems in the
form of weighted combinations of a kernel function. Given
finite data samples, seeking an unknown function of this
simple form is much easier to justify than a search within
the unrestricted (infinite-dimensional) Hilbert space. Ap-
propriate choices of the kernel function can summarize the
known or assumed characteristics of the particular class
of functions, thus leading to sensible regularization of the
inverse problem. The RBF and GPR techniques can be
seen as reflecting different approaches to specifying these
assumptions.

In addition, linear operations within the RKHS can be
interpreted as nonlinear operations in the input space (this
is known as the “kernel trick” in the machine learning com-
munity). This enables problems to be solved as linear sys-
tems while still having the some of the power of a nonlinear
approach.

The RBF and GPR techniques and the notion of RKHS
are defined in the next section. The RKHS formulation
of RBF interpolation is presented in section 3. Section
4 derives GPR from functional regression in an RKHS.
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Section 5 applies the preceding discussion to establish an
equivalence between RBF interpolation and GPR.

2. Definitions and Theory

2.1. Reproducing Kernel

Let E be an abstract set, and H be a Hilbert space con-
sisting of the (real-valued1) functions defined on E, with
the inner product ⟨, ⟩.
Definition 1. The function K : E × E → R is called a
reproducing kernel of H, if it satisfies the following condi-
tions2:

1. For any fixed y ∈ E, K(x, y) belongs to H as a func-
tion of x on E.

2. For any f ∈ H, we have f(y) = ⟨f(x),K(x, y)⟩x .

Definition 2. If Hilbert space H has the above kernel K,
then H is referred to as a reproducing kernel Hilbert space
(RKHS).

The following proposition will be used in characterizing
the reproducing kernel in the next section.
Proposition 1. For the reproducing kernel K, we have:

(1) K(y, z) = ⟨K(x, y),K(x, z)⟩x

Proof. From condition 1 of the reproducing kernel, we
have K(y, z) ∈ H for a fixed z. Then, by putting f(y) =
K(y, z) in condition 2, we have

K(y, z) = ⟨K(x, z),K(x, y)⟩x = ⟨K(x, y),K(x, z)⟩x.

The next theorem is well known as a classical result in the
reproducing kernel theory (N. Aronszajn [1], S. Bergman
[3]).
Theorem 1. Hilbert space H(E) has a reproducing kernel,
if and only if the following condition is satisfied:
For any y ∈ E, there exists a positive constant C = Cy,
such that

(2) |f(y)| ≤ Cy∥f∥, for any f ∈ H.

Proof. [only if part] The assertion follows from Schwarz’
inequality. [if part] For a fixed y ∈ E, let us consider
the linear functional δy : H(E) → R, which is defined
as δy(f) := f(y), for f ∈ H(E). Condition (2) then
means that δy is continuous. The assertion thus follows
from Riesz’ Theorem [21]. That is, for a fixed y ∈ E, there
exists a unique function Ky(x) ∈ H(E) such that δy(f) =
⟨f, Ky⟩ for any f ∈ H(E). Then we put K(x, y) = Ky(x).

Relating to the above theorem, we note that the repro-
ducing kernel K is uniquely determined for an RKHS H(E)
(also see Theorem 3 in the next section).

1This article treats only real-valued functions, while the extension
to complex-valued functions is obvious.

2In condition 2, the inner product ⟨, ⟩x means that we get the
inner product value of the two functions with variable x.

RKHS Examples

1. R: Let E be {1}. Here we identify H(E) with R. An
arbitrary element of H(E) is a map f : E ≡ {1} →
R. Specifying f ∈ H(E) therefore means specifying a
real number x with f(1) = x. Let the inner product
⟨, ⟩ for H(E) be the ordinary multiplication in R :
⟨x, y⟩ = x ·y. We define K : E×E → R as K(1, 1) :=
1. It is then easy to see K satisfies condition 1 in the
definition of the reproducing kernel. As for condition
2, we have: ⟨f(1),K(1, 1)⟩ = f(1)1 = f(1).

2. l2: Let a = (aj)∞j=1 ∈ l2. Then a defines a map α :
N → R with α(i) := ai(i ∈ N). We thus identify a ↔
α. By setting E = N, we have H(N) ≡ {α : N →
R|

∑∞
i=1 |α(i)|2 < ∞} ∼= l2 with its kernel function K

as being K(i, j) = δij .

3. Let A be an n-th order, symmetric, and positive semi-
definite matrix. Then A(Rn) is RKHS and its repro-
ducing kernel is A (see the discussions in the next
section):

A(Rn) ≡ {Ax ∈ Rn | x ∈ Rn}.

2.2. Fundamental Properties

Theorem 2. Let K : E×E → R be the kernel function of
RKHS H(E). Then K satisfies the following properties:

1. K is symmetric: K(x, y) = K(y, x) for any x, y ∈ E.

2. K is positive semi-definite: For any (x1, · · · , xn)T

∈ En and (a1, a2, · · · , an)T ∈ Rn, we always have∑n
i,j=1 aiajK(xi, xj) ≥ 0.

Proof. (1) in Proposition 1 says that K is symmetric,
since the inner product itself is symmetric. For (x1, · · · , xn)T

∈ En and (a1, a2, · · · , an)T ∈ Rn, it follows from (1) that

n∑
i,j=1

aiajK(xi, xj) =
n∑

i,j=1

aiaj⟨K(x, xi),K(x, xj)⟩x

=

⟨
n∑

i=1

ajK(x, xi),
n∑

j=1

ajK(x, xj)

⟩
x

=

∥∥∥∥∥
n∑

k=1

akK(x, xk)

∥∥∥∥∥
2

x

≥ 0.

The following theorem says that RKHS is constructed by
specifying a symmetric, positive semi-definite function. It
should also be noted that the proof is constructive so that
it might be useful even in our practical situations.
Theorem 3. Suppose that K is a symmetric, positive semi-
definite function on E×E. Then there exists a Hilbert space
H that has K as its reproducing kernel.

Sketch of the proof. We put F := {
∑l

i=1 αiK(x, xi)| l ∈
N, αi ∈ R, xi ∈ E}. By defining addition and multiplica-
tion by constant as usual, we can make F a vector space.
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Also we can introduce the inner product for the expres-
sions f =

∑m
i=1 αiK(x, xi) and g =

∑n
j=1 βjK(x, xj) ∈ F

as follows: ⟨f, g⟩ :=
∑m

i=1

∑n
j=1 αiβjK(xi, xj) ∈ R. Since

K is positive semi-definite, it follows that ⟨f, f⟩ ≥ 0. It is
easy to see that F is a pre-Hilbert space. Next we set H as
the completion3 of F . Then, with g(x) ≡ gy(x) = K(x, y),
we have ⟨(f(x),K(x, y)⟩x = ⟨f, gy⟩ =

∑m
i=1 αiK(xi, y) =∑m

i−1 αiK(y, xi) = f(y), for any f ∈ F . This also holds
for any f of H, because, for any Cauchy sequence {fm} of
F , we have

|fm(y) − fn(y)| ≤ |⟨(fm − fn)(x),K(x, y)⟩x|
≤ ∥fm − fn∥x · ∥K(x, y)∥x(3)

= ∥fm − fn∥ ·
√

K(y, y).

This means that {fm(y)} ⊂ R converges at any y. H
therefore contains f = limn→∞ fn, because f also satisfies
condition 2 in the definition of reproducing kernel.

One more remark is about an RKHS that has the com-
plete orthonormal system (CONS). Let us describe the re-
producing kernel K with CONS ≡ {φj}∞j=1. From condi-
tion 1 of the reproducing kernel, we first get

K(x, y) =
∞∑

i=1

αi(y)φi(x).

Then, taking f(y) = φi(y) in condition 2, we have

φi(y) = ⟨φi,K(·, y)⟩ = ⟨φi,

∞∑
k=1

αk(y)φk⟩

=
∞∑

k=1

αk(y)⟨φi, φk⟩ =
∞∑

k=1

αk(y)δik = αi(y).

We therefore have

K(x, y) =
∞∑

i=1

φi(x)φi(y).

2.3. RKHS in L2 space

We briefly describe an infinite-dimensional RKHS in L2(E),
where E is assumed to be a domain in Rn. We refer to L2

instead of L2(E) for simplicity. The inner product (, )L2

in L2 is then defined as: (f, g)L2 =
∫

E
f(x)g(x)dx for any

f, g ∈ L2(E). Supposing that K is a symmetric, positive
semi-definite function on E × E, we first define the real-
valued function κ(f) on E : κ(f)(y) :=

∫
E

K(x, y)f(x)dx,
for any y ∈ E. Let us further suppose that

(4)
∫∫

E×E

|K(x, x′)|2dxdx′ < ∞.

3The completion simply means the space that consists of all the
limits of Cauchy sequences of F .

Then κ can be considered as a linear operator: L2 → L2,
because, using Schwarz’ inequality, we have∫

E

|κ(f)(y)|2dy =
∫

E

(∫
E

K(x, x′)f(x)dx

)2

dx′

≤
∫

E

(∫
E

|K(x, x′)|2dx

∫
E

|f(y)|2dy

)
dx′

=
∫∫

E×E

|K(x, x′)|2dxdx′
∫

E

|f(y)|2dy

=
∫∫

E×E

|K(x, x′)|2dxdx′ · ∥f∥2
L2 < ∞.

This yields that κ(f) ∈ L2 and that κ is a continuous
linear operator, known as Hilbert-Schmidt integral operator.
According to Mercer’s theorem, we then have the eigen
decomposition: K(x, x′) =

∑
ν≥1 λνϕν(x)ϕν(x′) where ν ∈

N, and λν , ϕν are eigen value and eigen functions of κ,
respectively. Assumption (4) yields

∑
ν≥1 λ2

ν < ∞, so that
we have limk→∞ λk = 0. We now assume that λ1 ≥ λ2 ≥
· · · ≥ λn ≥ · · · > 0. We then know that {ϕn}∞n=1 is a CONS
of L2, which consequently gives the following result:
Theorem 4. Let Hκ be the totality of the functions f ∈
L2, satisfying

∑
k≥1

f2
k

λk
< ∞, where fk = (f, ϕk)L2 , re-

ferred to as the Fourier coefficient of f w.r.t. {ϕn}∞n=1.
We then have:

1. Hκ is a Hilbert space with the inner product: ⟨f, g⟩κ =∑
k≥1

fkgk

λk
< ∞, where f, g ∈ Hκ, with fk = (f, ϕk)L2

and gk = (g, ϕk)L2 .

2. For g ∈ Hκ, we have

⟨g, ϕν⟩κ =
(g, ϕν)L2

λν
,

⟨ϕν , ϕν⟩κ =
1
λν

(i.e., ∥ϕν∥κ =
1√
λν

) (ν = 1, 2, · · · ).

3. K is the reproducing kernel of Hκ: f(x) = ⟨f, K(·, x)⟩κ
for any f ∈ Hκ.

We skipped the mathematical details and the rigorous
proof of the above theorem. Instead, we should keep in
mind the relation between Hκ and L2 through the CONS
derived from the Hilbert-Schmidt operator κ. We also note
that a similar result is obtained in a finite-dimesional case,
where K simply means an n-th order symmetric, positive
semi-definite matrix and L2 ∼= Rn.

2.4. Radial Basis Functions

The form

(5) f̂(x) =
N∑
k

wkG(x − xk)

is an example of radial basis interpolation of a function
f(x) known at a set of points xk. The function G() is as-
sumed to be a radially symmetric function of its argument,
i.e. G(r) := ϕ(|r|).
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Figure 1: Schematic diagram of RBF interpolation for pose
space deformation [10]. The coefficients of each vertex are
interpolated from example shapes in different poses. In the
figure, the position of a particular vertex on the fore-arm
is interpolated as a function of several examples situated
in a “pose space” described by the elbow and fore-arm ro-
tations.

Figure 2: An animated human hand created with WPSD
(reproduced from [8]). After obtaining example hand poses
from medical scans, the resulting WPSD model can pro-
duce a realistic hand in any pose.

Given known values yk ≡ f(xk), the weights wk can be
solved as a linear system
(6)

G(x1 − x1) G(x1 − x2) G(x1 − x3) · · ·
G(x2 − x1) G(x2 − x2) · · ·
G(x3 − x2) · · ·

...




w1

w2

w3

...

 =


y1

y2

y3

...


Since the argument to the kernel function G() depends

only on the distance between points, the interpolation takes
the form of a weighted sum of radially symmetric functions.

Common choices of the kernel function G() with ϕ(r)
are:

• Gaussian ϕ(r) = exp(−(r/c)2)

• Hardy multiquadratic ϕ(r) =
√

r2 + c2, c > 0

Definition 3. [19] A function G : Rn → R is positive semi-
definite if, for any N ∈ N, all sets of N distinct points
xk ∈ Rn, and any w = (w1, w2, · · · , wN )T ∈ RN , the
quadratic form

∑N
i=1

∑N
j=1 wiwjG(xi−xj) is non-negative.

The function G is called positive definite if the quadratic
form is strictly positive, for any w ̸= 0 ∈ RN .

The linear system (6) of course has a solution for a positive
definite G().

In other cases the matrix Gi,j ≡ G(xi − xj) has a sig-
nificant nullspace. A prominent example is spline interpo-
lation of scattered data [13, 18], to be discussed further in
section 3. In the spline case the interpolation has the form

(7) f̂(x) =
N∑
k

wkG(x − xk) + pm−1(x)

where pm−1(x) ∈ Pm−1. Here we denote the space of poly-
nomials of degree at most k by Pk.

RBF Application Examples

1. Pose space deformation (PSD)[10]: This technique is
an example-based skinning method. The word “skin-
ning” refers to the skin (surface) deformation of a 3D
character such as human as the underlying skeleton
moves (Figure 1). PSD uses skin surface examples of
varying posture and interpolates them during anima-
tion as a function of the vector of joint angles of the
skeleton. The skin is prescribed with its vertices, so
that RBF interpolation is applied to the coefficients
of those vertices. In the notation of (5), x is the vec-
tor of joint angles or other parameters describing the
current pose of the skeleton, xk is the pose of the kth
example, and f̂(x) is the interpolated value of one of
the vertex coefficients. The weights wk are different
for each vertex coefficient. Kurihara and Miyata [8]
introduced the improved weighted PSD (WPSD) al-
gorithm. In this approach the distance between poses
∥xj − xk∥ is different at each vertex, with individual
terms in the distance being weighted by the influence
of that parameter on the particular vertex. This ef-
fectively replaces the single pose space in PSD with
smaller coupled pose spaces at each vertex, thereby
greatly reducing the number of needed training exam-
ples. Both PSD and WPSD use RBFs of Gaussian
type (and its nomalized version in [8]).

2. Learning doodles by example: Baxter and Anjyo [2]
proposed the concept of a latent doodle space, a low-
dimensional space derived from a set of input doo-
dles, or simple line drawings in R2. This approach
first gives a heuristic algorithm for finding stroke cor-
respondences between the input drawings, and then
proposes a few latent variable techniques to automat-
ically extract a low-dimensional latent doodle space
from the inputs. By the stroke correspondence algo-
rithm, each of the input drawings is represented as
a feature vector by combining all the x and y coor-
dinates of each point on each stroke into one vector.
One of the latent variable techniques first employs
PCA (Principal Component Analysis) applied to the
feature vectors. The first two principal components
are then used to constitute the 2-dimensional latent
doodle space, and, using thin plate spline RBF, we
can obtain new drawings in this 2-d space (Figure 3)



Ken Anjyo and J. P. Lewis 67

(a) cartoon face

(b) jellyfish drawing

Figure 3: “Doodle” synthesis. The left images were drawn
by an artist; the right images were then synthesized using
the technique in [2].

2.5. Gaussian Process regression

A Gaussian process is a function from which any finite
number of samples have a jointly Gaussian distribution.
A Gaussian process u(x) is thus completely specified by
its mean E[u(x)] and covariance function Σu(x1,x2) =
E[u(x1)u(x2)]. Gaussian process regression (GPR) esti-
mates the values of a Gaussian process given observed val-
ues at other locations.

A value u(x) of a Gaussian process at location x can be
estimated as

(8) û(x) = σT Σ−1
u y

where y ∈ Rm is the vector of known data values, and
σ = E[u(x), u(xk)] is the covariance between u(x) (the
function at the point being evaluated) and the function
at the data points xk. If it is assumed that the data y
are observed in the presence of an independent identically
distributed Gaussian observation noise ϵ then (8) takes the
form

(9) û(x) = σT (Σu + λI)−1y

with λ being the variance of the observation noise.
Expression (8) is derived by assuming a linear estimate

(10) û(x) = wT y

The weights w for the optimal linear estimate are found
by applying the orthogonality principle, i.e., the estimate

Figure 4: Synthetic ocean waves generated by Gaussian
process regression with a specified covariance [9].

is optimal when the error is orthogonal in expectation to
the data:

E [(û(x) − u(x)) yk] = 0 ∀ k

Although the true value u(x) is unknown, substituting (10)
and applying the expectations E[yjyk] = Σ(xj ,xk) and
E[u(x)yk] = Σ(x,xk) results in (8) with w = Σ−1

u σ. Note
that the linear estimate (10) is in fact the optimal esti-
mator (among all linear and non-linear estimators) if the
underlying function is in fact Gaussian [20].

Another useful expression is the variance of the regres-
sion estimate. This can be obtained from E

[
(û(x) − u(x))2

]
by substituting (10), resulting in

(11) E
[
(û(x) − u(x))2

]
= E

[
u(x)2

]
− σT Σ−1

u σ

GPR Application Examples

1. Kriging:

Gaussian process regression is form of Kriging, a term
used in geostatistics to refer to estimation of quan-
tities based on spatial samples and covariance (or
variogram) information [11]. More specifically, (8) is
identical to simple Kriging, whereas the more com-
monly used ordinary Kriging adds an additional con-
straint that the weights w sum to one. In addition
to its use in geostatistical interpolation, Kriging has
recently been applied in computer graphics for in-
terpolating human body poses from motion capture
[14].

2. Terrain Synthesis:

Gaussian process regression is also called Wiener in-
terpolation in the signal estimation literature. [9]
utilized this interpolation technique in a hierarchi-
cal subdivision scheme to incrementally synthesize
random textures and terrains. Whereas the frac-
tal approach to terrain synthesis is restricted to the
1/fp family of power spectra, in Wiener interpolation
an arbitary covariance is specified, allowing the syn-
thesis of non-fractal landscapes such as ocean waves
(Figure 4). Note that the covariance function and
power spectrum are a Fourier transform pair by the
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Wiener-Khinchine theorem. The goal in texture and
terrain synthesis is to obtain a representative sam-
ple from the underlying random process. To achieve
this, in the synthesis each variable is first estimated
with (10), but then this estimate is displaced by an
i.i.d. (independent identically distributed) Gaussian
pseudo-random variable with variance (11).

3. RKHS and Radial Basis Functions

3.1. Regularization problem in RKHS

For simplicity, let E = Rn. Suppose that (xi, yi) are given
as sample points, where yi ∈ R, xi ∈ Rn(i = 1, 2, · · · , N).
Let us consider the following regularization problem: Find
a function f defined on Rn such that

(12) min
f

{
N∑

i=1

(yi − f(xi))2 + λJn
m(f)

}
,

where

Jn
m(f) :=

∑
α1+α2+···+αn=m

m!
α1!α2! · · ·αn!

∥Dαf∥2
L2 ,(13)

Dαf :=
∂mf

∂xα1
1 ∂xα2

2 · · · ∂xαn
n

.

The regularization term λJn
m(f) in (12) prescribes smooth-

ness of a solution. Where can we find a solution of this
problem (12)? According to the definition of Jn

m(f), we
should find a solution to (12) in the following space:

(14) Bn
m := {f : Rn → R ∪ {±∞}|Dαf ∈ L2(Rn),

for any α(|α| = m)}.

Now recall the thin plate spline case. We then start with
B2

2 in (14) to minimize the energy functional
(15)

F (φ) :=
∫∫

R2

(∣∣∣∣∂2φ

∂x2
1

∣∣∣∣2 + 2
∣∣∣∣ ∂2φ

∂x1∂x2

∣∣∣∣2 +
∣∣∣∣∂2φ

∂x2
2

∣∣∣∣2
)

dx1dx2.

In the following we want to solve the regularization prob-
lem like (12) in RKHS. The main reason for this is the fol-
lowing nice property of RKHS:
Representer Theorem4 Let H be an RKHS, with its
reproducing kernel K and norm ∥ ∥H . Consider the regu-
larization problem of the following form: Find f ∈ H such
that

(16) min
f∈H

{
N∑

i=1

(yi − f(xi))2 + λ∥f∥2
H

}
.

The solution f can then be found in the form:

(17) f(x) =
N∑

i=1

αiK(x, xi).

4This is one of the variations of the representer theorem. Please
refer to [16].

It would therefore be nice, if we could have Bn
m as the

RKHS in the above theorem. However, Jn
m cannot be the

squared norm for Bn
m, as described next.

The functional Jn
m has the following properties:

1. Jn
m(f) = 0 ⇔ f ∈ Pm−1.

2. Jn
m(f) = (−1)m⟨f,∆mf⟩L2 , where ∆ is Laplacian:

∆:=
∑n

i=1
∂2

∂x2
i
.

Since the null space of Jn
m is equal to Pm−1, we first

represent Bn
m as being the direct sum of the two function

spaces: Bn
m = Hn

m ⊕Pm−1. Then let us solve the regular-
ization problem on Hn

m. As a result of [12], we therefore
have:

Theorem 5. If m > n
2 , then Hn

m is an RKHS with:

(18)

⟨f, g⟩Hn
m

:=
∑

α1+α2+···+αn=m

m!
α1!α2! · · ·αn!

⟨Dαf, Dαg⟩L2

= ⟨(−1)m∆mf, g⟩L2 .

This also means ∥f∥2
Hn

m
= Jn

m(f).

With the above theorem, the regularization problem (12)
is restated as:

min
f∈Bn

m

{
N∑

i=1

(yi − f(xi))2 + λJn
m(f)

}

= min
g∈Hn

m, p∈Pm−1

{
N∑

i=1

{yi − (g(xi) + p(xi))}2 + λ∥g∥2
Hn

m

}
.

(19)

We thus know the solution to (19) is represented in the
form of

(20) f(x) =
N∑

i=1

αiK(x, xi) + pm−1(x),

where pm−1(x) ∈ Pm−1. Here we denote the space of poly-
nomials of degree at most k by Pk.

3.2. RBF as Green’s function

To describe RBF in the above RKHS framework, we first
consider the function Ky(x) = K(x, y) 5, where K(x, y)
is the kernel of Hn

m. In [12], it is shown that Ky gives a
weak solution 6 of a certain type of non-homogeneous linear
differential equation of m-th iterated Laplacian ∆m. Next
let G be a Green’s function in the sense that

(21) ∆mG(x) = δ(x),
5The function Ky(x) is the same as Ky(x) appeared in the proof

of Theorem 1.
6The weak solution is a solution in the sense of distributions [21].
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where δ is the Dirac delta (generalized) function. Then it
is further shown in [12] that we can replace equation (20)
by

(22) f(x) =
N∑

i=1

αiG(x − xi) + p(x),

where p is a polynomial ∈ Pm−1. This brings us to our
familiar class of radial basis functions:
(23)

G(x) =

{
βmn|x|2m−n log |x| if 2m − n is an even integer,
γmn|x|2m−n otherwise,

where βmn and γmn are constants.
For example, for the thin plate spline, we have m = n = 2

so that G(x) = |x|2 log |x| and the polynomial p in (22) is
of the first order (linear). Another familiar case is where
m = 2 and n = 3. Then we have G(x) = |x| and a linear
polynomial for (22).

Regularization with RKHS norm Let us consider an-
other regularization problem, where, instead of Jn

m(f) in
(12) and (13), we take

∑
m≥0 amJn

m(f) with am being con-
stants and a0 ̸= 0. According to the scenario used in es-
tablishing the above theorems, we have the following result
in which the regularization problem is directly solved in an
RKHS.

1. We can find a Green’s function for the operator∑
m≥0

(−1)m∆m.

The solution is then given by f(x) =
∑N

k=1 ckG(x −
xk). Note that this time we do not need a polynomial
term like (22).

2. Gaussian RBF. In a particular case, where am =
σ2m

m!2m (σ > 0), we have the Green’s function as G(x) =

c exp(−∥x∥2

2σ2 ).

4. From RKHS to Gaussian Processes

GPR (8) and (9) can be derived using the RKHS duality
[18] using an appropriate choice of kernel. Here we derive
(9) through the regularization problem (16)7.

Let {P, Ω,B} be a probability space. Suppose then that
a zero-mean Gaussian process u(x) ≡ u(x, ω) is given on
the probability space, with x ∈ E and ω ∈ Ω. Consider the
space Z consisting of stochastic variables, which is induced
by the Gaussian process:

Z = {
k∑

j=1

aju(xj); aj ∈ R,xj ∈ E, k ∈ N}.

7As for (8), see [18].

We then know that Z is a pre-Hilbert space having the
inner product

⟨Z1, Z2⟩ =
∫

Ω

Z1(ω)Z2(ω)dP (ω) = E[Z1, Z2]

where Z1, Z2 ∈ Z. The completion of Z is therefore a
Hilbert space.

The covariance function Σu(x,y) = E[u(x)u(y)] induces
a Kernel function on E×E, so that Theorem 3 asserts that
there exists RKHS H associated with this kernel function.
It’s easy to see that the completion of Z is isometrically
isomorphic to H [18].

Now again let us assume that the data y = (y1, y2, ..., yN )T

are observed in the presence of an independent identically
distributed observation noise. Consider the regularization
problem (16) in the above H. According to the Represen-
ter Theorem, the solution f is represented in the form (17).
Considering the reproducing property (1), the norm ∥f∥2

H

can therefore be written in the form

∥f∥2
H = αT Kα

with αi gathered into a column vector α and K(xi,xj)
gathered into a matrix K. We will rewrite the discrete *

regularization problem (16) as

min
f

∥y − Kα∥2 + λαT Kα

with y being a vector containing data values yi.
Then expanding the square and taking the derivative

with respect to α, we have

d

dα
= 0 = −2KT y + 2KT Kα + 2λKα.

Because K is symmetric, it follows that

KK + λKα = Ky

⇔ (K + λI)α = y

⇔ α = (K + λI)−1y.

Here we assume that K and K + λI are invertible. Now
substitute this expression for α into f = Kα,

f = K(K + λI)−1y.

This is an expression to synthesize the Gaussian process at
all the locations corresponding to y. For a particular data
point yi = f(xi) this specializes to

yi = [K(xi,x1), K(xi,x2), · · · , K(xi,xn)](K + λI)−1y

Then generalizing from location xi to an arbitrary loca-
tion x and choosing K = Σ−1 we have (9). It is interest-
ing to note that the regularization parameter λ in RKHS
functional regression takes on the role of the observation
noise variance in (9). This is somewhat intuitive in that
the functional regression requires increased regularization
in the presence of increased noise.
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5. An equivalence between Radial
Basis and Gaussian Process models

The RBF and GPR models initially seem quite different.
GPR is a weighted sum of the data, whereas RBF is a
weighted sum of a kernel indexed by the distances between
the data. The RBF weights can be computed in advance,
whereas the GPR weights seem to need to be computed at
run time. However, since the problem of fitting functions
in an RKHS to data yields both Radial Basis function and
Gaussian process models, there should be a direct and sim-
ple relationship between the RBF and GPR models. In this
section we state this relationship.

The solution of the system (6) for the RBF weights can
be written

w = G−1y

with G being the matrix containing G(xi−xj) in the i, jth
position. Substituting this expression for the weights, the
RBF interpolation (5) can be written in vector-matrix no-
tation as*

ŷ0 = f̂(x) = rT w = rT G−1y

with rT = [G(x − x1), G(x − x2), G(x − x3), · · · ]. If we
take the data covariance as the RBF kernel this is exactly
the same expression as (8). This equivalence is reasonable
in some cases. In particular, the Gaussian distribution is
both a prototypical choice of covariance and a standard
choice for the RBF kernel.

With this equivalence in place, the main operational dif-
ference between the RBF and GPR techniques is the as-
sumption on “what is known when”. In the RBF technique
the data values yi are assumed known in advance, whereas
the locations to be interpolated (or extrapolated) are only
known when the interpolation is evaluated. GPR has the
opposite assumption, that the data covariance is known in
advance (at arbitrary locations), but the surrounding data
values yi are not known until run-time.

On the other hand RBF and GPR models are not always
equivalent. There are many choices of covariance that are
not radially symmetric, and many choices of radial basis
that cannot be covariances. A common instance of the lat-
ter was discussed in section 3.2, i.e., the radial basis func-
tions generated as Green’s functions of a regularizer (13).
These functions are zero at the origin, which precludes con-
sidering them as covariances.

6. Conclusion

RBF interpolation and Gaussian process regression can
both be expressed in terms of a common underlying RKHS
formulation. Specifically, both techniques are instances of
functional regression in an RKHS. This common formu-
lation illuminates the role and choice of the kernel, and
allows us to identify an exact formal equivalence between
the two techniques under appropriate choices of this ker-
nel. While we wish to make this point of equivalence, the
two techniques nevertheless have significant differences in

motivation and practice. The common formulation clarifies
both similarities and differences.
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