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Abstract. We study a general mathematical framework for variation of potential energy with
respect to domain deformation. It enables rigorous derivation of the integral formulas for the energy
release rate in crack problems. Applying a technique of shape sensitivity analysis, we formulate the
shape derivative of potential energy as a variational problem with a parameter. Key tools of our
abstract theory are a new parameter variational principle and the classical implicit function theorem
in Banach spaces.

Keywords. shape derivative, variational principle, energy release rate, fracture mechanics

1. Introduction

Many variational problems related to domain deformation
have been investigated in the theory of shape derivatives or
shape sensitivity analysis [7, 8, 14, 22]. According to the
spread of the importance of shape derivatives in various
scientific fields, more development of their mathematical
foundation has been required. The purpose of this paper is
to establish some abstract parameter variational formulas
and to illustrate their application to the shape derivative of
elastic potential energies. An important example concerns
the energy release rate in crack problems, which is known
as one of the most fundamental quantities in the theory of
fracture mechanics.

Scientific investigation to understand crack evolution pro-
cess in elastic bodies was originated by Griffith [9] and
has been studied from various viewpoints in engineering,
physics and mathematics since then. Griffith’s contribu-
tion to fracture mechanics is even now the fundamental ap-
proach to modeling and analyzing crack behavior. We here
make reference to only very few extended studies from the
mathematical point of view, Cherepanov [4], Rice [21], Oht-
suka [17, 18, 19], Francfort-Marigo [6], Ohtsuka-Khludnev
[20], Kovtunenko [16], and Bourdin et al. [3] etc. For a
more complete list of crack problems in fracture mechan-
ics, see the references cited in the above papers.

In the Griffith’s theory and its various extended theories
such as [6], the concept of the energy release rate G plays
an important role. According to such theories, we treat
crack evolutions in brittle materials with linear elasticity
under a quasi-static situation, where the quasi-static situa-
tion means that an inertial term of the governing equation
is negligible under assumption that velocity of deformation
of body is very slow. In the classical Griffith’s theory, since
it treats a crack before propagation, the quasi-static situ-

ation is assumed and it is widely accepted nowadays. Fur-
thermore, even during crack propagation, the quasi-static
assumption is often adopted in many crack propagation
modelings, e.g. [6] etc. The elastic energy at a fixed mo-
ment is supposed to be given by minimization of an elasto-
static energy. According to the Griffith’s theory, the sur-
face energy required in the crack evolution is supplied by
relaxation of the potential energy along crack growth.

Roughly speaking, the energy release rate G is defined
as follows (see Section 5 for more details). Let Ω∗ be a
bounded domain in Rn (n ≥ 2), which corresponds to the
uncracked material under consideration. We assume that
a crack Σ exist in Ω∗, where Σ is the closure of an n −
1 dimensional hypersurface. The cracked elastic body is
represented by Ω∗\Σ. We consider a virtual crack extension
Σ(t) with parameter t ∈ [0, T ), where

Σ = Σ(0) ⊂ Σ(t1) ⊂ Σ(t2) (0 ≤∀ t1 ≤∀ t2 < T ).(1)

Under the quasi-static assumption, the elastic potential
energy E(t) in Ω(t) := Ω∗ \ Σ(t) is given by

(2) E(t) := min
v

∫
Ω∗\Σ(t)

W (v) dx,

where by W (v) an elastic potential energy density including
a body force is denoted, and minv is taken over all possi-
ble displacement fields in Ω∗ \ Σ(t) with a given boundary
condition. For the admissible displacement fields, a given
displacement field is imposed only on the part ΓD ⊂ ∂Ω∗.
On the other part ∂Ω(t) \ ΓD including both sides of Σ(t),
the normal stress free condition is imposed for the mini-
mizer on ∂Ω(t) implicitly.

The energy release rate G at t = 0 along the virtual crack
extension {Σ(t)}0≤t<T is given by

(3) G := lim
t→+0

E(0) − E(t)
Hn−1(Σ(t) \ Σ)

,
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where Hn−1 denotes the (n − 1)-dimensional Hausdorff
measure. Since E(t) ≤ E(0), G ≥ 0 follows if the limit
exists. The Griffith’s criterion for the brittle crack exten-
sion is given by G ≥ Gc, where Gc is an energy required to
create new crack per unit length (area) and it is a constant
depending on the material property and the position.

Cherepanov [4] and Rice [21] studied so-called J-integral
for straight crack in two dimensional linear elasticity, which
is a path-independent integral expressions of the energy
release rate. Since these works, theoretical and practical
studies of crack evolutions have been much developed by
means of such useful mathematical expression of G in two
dimensional case.

As an alternative approach to such energy based argu-
ments, Irwin [12] proposed the notions of fracture tough-
ness and stress intensity factors and he developed argu-
ments based on the singularity of stress fields.

While most of these mathematically rigorous results have
been restricted to two dimensional linear elasticity (and
often only for straight cracks), Ohtsuka [17], [18], [19],
Ohtsuka-Khludnev [20], and Kovtunenko [16] developed
mathematical formulations of the energy release rate for
general curved cracks in multi-dimensional linear or semi-
linear elliptic systems. They proved existence of the energy
release rate, and obtained its expression by a domain inte-
gral and by a generalized J-integral.

Based on the idea in [18], we shall give a new mathe-
matical framework for shape derivative of potential energy
including the energy release rate. In our approach, do-
main perturbation φ of Lipschitz class is adopted and the
shape derivative of minimum potential energy is derived as
a Fréchet derivative in a Banach space within an abstract
parameter variation formulas, which were first established
in [15]. Instead of estimating the limit (3) directly as in
[18], [20] and [16], we treat it by means of the Fréchet
derivative and the implicit function theorem.

The organization of this paper is as follows. Abstract pa-
rameter variation formulas are proved based on the implicit
function theorem in Banach spaces in Section 2. In Sec-
tion 3, a framework of Lipschitz deformation of domains,
which includes crack extensions, is introduced. Most of
contents in these sections already appeared in [15]. For
the readers’ convenience, however, we try to include all
proofs which were already stated in [15] with some addi-
tional propositions.

We consider inhomogeneous anisotropic elastic tensor
field and derive the differentiability of the elastic energy
with respect to a Lipschitz domain perturbation. The re-
sults obtained there include the results in [18] and [20] un-
der a weaker assumption for regularity of domain perturba-
tion. In [20], they assumed that the domain perturbation
φ belongs to C2([0, T ],W 2,∞(Rn, Rn)) and derived the do-
main integral expression, whereas, [16] proved it under a
weaker assumption φ ∈ C1([0, T ],W 1,∞(Rn, Rn)). Our re-
sults give an alternative proof of the results in [16], and we
can additionally prove higher order differentiability of the
elastic potential energy with respect to the domain defor-

mation (Theorem 4.5 and Theorem 5.1).

2. Parameter variation formulas

We consider a variational problem with a parameter in an
abstract setting. For a real valued functional J defined on
a metric space S, u0 ∈ S is called a global minimizer of J
in S, if J(u0) ≤ J(u) for all u ∈ S. If there exists an open
set O ⊂ S and u0 is a global minimizer of J in O, u0 ∈ S
is called a local minimizer of J .

Let X and M be real Banach spaces. For open subsets
U0 ⊂ X and O0 ⊂ M , we consider J ∈ C1(U0 × O0, R)
and u ∈ C1(O0,U0). We assume that u(µ) is a local
minimizer of J(·, µ) in U0 for each µ ∈ O0, and define
J∗(µ) := J(u(µ), µ) for µ ∈ O0. Then we have J∗ ∈ C1(O0)
and

J ′
∗(µ) = Dµ[J(u(µ), µ)](4)

= ∂XJ(u(µ), µ)[u′(µ)] + ∂MJ(u(µ), µ)
= ∂MJ(u(µ), µ),

where J ′
∗ denotes the Fréchet derivative of J∗ and Dµ de-

notes the Fréchet differential operator with respect to µ ∈
M . The symbols ∂X and ∂M denote the partial Fréchet
derivative operators for J(u, µ) with respect to u ∈ X and
µ ∈ M , respectively. The last equality of (4) follows from
∂XJ(u(µ), µ) = 0 ∈ X ′, where X ′ denotes the dual space
of X. The formula

(5) J ′
∗(µ) = ∂MJ(u(µ), µ) (µ ∈ O0),

is a simple but essential equation in this paper.
The following fundamental theorem states that the for-

mula (5) is derived under a weaker assumption for regular-
ity.

Theorem 2.1. Let X and M be real Banach spaces. For
U0 ⊂ X and an open subset O0 ⊂ M , we consider a real
valued functional J : U0×O0 → R and a map u : O0 → U0.
We define J∗(µ) := J(u(µ), µ) for µ ∈ O0. We suppose the
following conditions.

1. J ∈ C0(U0 ×O0), J(w, ·) ∈ C1(O0) for w ∈ U0, and
∂MJ ∈ C0(U0 ×O0,M

′).

2. u ∈ C0(O0, X) and u(µ) is a global minimizer of
J(·, µ) in U0 for each µ ∈ O0.

Then J∗ ∈ C1(O0) and (5) holds.

Proof. We fix µ0 ∈ O0 and we define u0 := u(µ0) and

r(µ) := J∗(µ)− J∗(µ0)− ∂MJ(u0, µ0)[µ− µ0] (µ ∈ O0).

Since u(µ) is a global minimizer and u ∈ C0(O0, X), if µ
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is close to µ0, we have

r(µ) ≤ J(u0, µ) − J(u0, µ0) − ∂MJ(u0, µ0)[µ − µ0]
= o(∥µ − µ0∥M ),

r(µ) ≥ J(u(µ), µ) − J(u(µ), µ0) − ∂MJ(u0, µ0)[µ − µ0]

=
∫ 1

0

{∂MJ(u(µ), µ0 + s(µ − µ0))

− ∂MJ(u0, µ0)}[µ − µ0]ds

= o(∥µ − µ0∥M ).

It follows that r(µ) = o(∥µ − µ0∥M ) as µ → µ0, and we
obtain the formula (5) and J ′

∗ ∈ C0(O0,M
′).

Corollary 2.2. Under the condition of Theorem 2.1, we
assume that U0 is open. If ∂MJ ∈ Ck(U0 × O0, M

′) and
u ∈ Ck(O0, X), then J∗ ∈ Ck+1(O0).
Proof. This immediately follows from the formula (5).

We apply the implicit function theorem in Banach spaces
below. The proof is found in [2] and [10] etc. For two Ba-
nach spaces X and Y , B(X, Y ) denotes the Banach space
which consists of all bounded linear operators from X to
Y .
Theorem 2.3 (Implicit function theorem). Let X, Y , Z
be real Banach spaces and U , V be open sets in X and
Y , respectively. We suppose that F : U × V → Z and
(x0, y0) ∈ U × V satisfy the conditions:

1. F (x0, y0) = 0.

2. F ∈ C0(U × V, Z).

3. F (x, ·) ∈ C1(V, Z) for x ∈ U and ∂Y F is continuous
at (x, y) = (x0, y0).

4. (∂Y F (x0, y0))−1 ∈ B(Z, Y ).

Then there exist a convex open neighborhood of (x0, y0),
U0×V0 ⊂ U×V and f ∈ C0(U0, V0), such that, for (x, y) ∈
U0 × V0, F (x, y) = 0 if and only if y = f(x). Moreover, if
F ∈ Ck(U × V, Z) (k ∈ N), then f ∈ Ck(U0, V0).

From Theorem 2.1 and the implicit function theorem, we
get the following theorems.
Theorem 2.4. Let X and M be real Banach spaces and
U and O be open subsets of X and M , respectively. We
consider a real valued functional J : U × O → R and fix
µ0 ∈ O. We assume

1. J(·, µ) ∈ C2(U) for µ ∈ O and ∂XJ ∈ C0(U×O, X ′).

2. u0 ∈ U satisfies ∂XJ(u0, µ0) = 0.

3. ∂2
XJ is continuous at (w, µ) = (u0, µ0).

4. There exists α > 0 such that ∂2
XJ(u0, µ0)[w,w] ≥

α∥w∥2
X for w ∈ X.

Then there exist a convex open neighborhood of (u0, µ0),
U0×O0 ⊂ U×O and u ∈ C0(O0,U0), such that, for µ ∈ O0,
the following three conditions are equivalent.

a. w ∈ U0 is a local minimizer of J(·, µ)

b. w ∈ U0 satisfies ∂XJ(w, µ) = 0.

c. w = u(µ).
In this case, u(µ) is a global minimizer of J(·, µ) on U0.

Proof. We define a map F := ∂XJ from U × O to X ′ and
apply Theorem 2.3 at (w, µ) = (u0, µ0). From assumption 4
and the Lax-Milgram theorem, ∂XF (u0, µ0) = ∂2

XJ(u0, µ0)
becomes a linear topological isomorphism from X to X ′.
Then, from the implicit function theorem there exist a con-
vex open neighborhood of (u0, µ0), U0 × O0 ⊂ U × O and
u ∈ C0(O0, U0), such that, for µ ∈ O0, w ∈ U0 satisfies
∂XJ(w, µ) = 0 if and only if w = u(µ).

From the continuity of ∂2
XJ at (u0, µ0), without loss of

generality, (after replacing U0 and O0 with smaller ones if
needed) we can assume that

(6) ∂2
XJ(v, µ)[w,w] ≥ α

2
∥w∥2

X

( ∀w ∈ X
∀(v, µ) ∈ U0 ×O0

)
.

For µ ∈ O0, if w ∈ U0 is a local minimizer of J(·, µ)
in U0, the ∂XJ(w, µ) = 0 follows. Conversely, if w ∈ U0

satisfies ∂XJ(w, µ) = 0, w is a local minimizer in U0 from
the condition (6). It also follows from (6) that u(µ) is a
global minimizer of J(·, µ) in U0.

Theorem 2.5. Under the condition of Theorem 2.4, we
additionally assume that ∂XJ ∈ Ck(U × O, X ′) for some
k ∈ N. Then u ∈ Ck(O0,U0) holds.

Proof. The assertion follows from the implicit function the-
orem.

Under the condition of Theorem 2.4, we define

J∗(µ) := J(u(µ), µ) (µ ∈ O0).

As a consequence of Theorem 2.5, a sufficient condition
for J∗ ∈ C1(O0) is J ∈ C1(U × O) and ∂XJ ∈ C1(U ×
O, X ′). However, the condition ∂XJ ∈ C1(U × O, X ′) is
not necessary due to Theorem 2.1.

Theorem 2.6. Under the condition of Theorem 2.4, we
additionally assume that J ∈ Ck(U × O) for some k ∈ N,
then J∗ ∈ Ck(O0) and it satisfies (5).

Proof. From Theorem 2.1, J∗ ∈ C1(O0) and (5) immedi-
ately follows. Since u ∈ Ck−1(O0, X) follows from Theo-
rem 2.5, J∗ ∈ Ck(O0) is obtained from the formula (5).

Let us consider the case k = 1 in Theorem 2.6, where
J∗ ∈ C1(O0) is derived under the conditions J ∈ C1(U ×
O) and J(·, µ) ∈ C2(U). In this case, u ∈ C0(O0,U0)
holds from Theorem 2.4 but u ̸∈ C1(O0,U0) in general.
In order to obtain u ∈ C1(O0,U0), we need to assume
∂XJ ∈ C1(U × O, X ′) (Theorem 2.5). We have Hölder
regularity of u under the condition of Theorem 2.6 with
k = 1.

Proposition 2.7. Under the condition of Theorem 2.4, we
additionally assume that J ∈ C1(U ×O), then we have

∥u(µ) − u0∥X = o
(
∥µ − µ0∥1/2

M

)
as ∥µ − µ0∥M → 0.
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Proof. From the proof of Theorem 2.3, there exists C > 0
such that

(7) ∥u(µ) − u0∥X ≤ C∥∂XJ(u0, µ)∥X′ (µ ∈ O0).

Let ρ0 > 0 with {v ∈ X; ∥v−u0∥X ≤ ρ0} ⊂ U0. For h ∈ X
with ∥h∥X = 1, µ ∈ O0 and ρ ∈ (0, ρ0], we have

J(u0 + ρh, µ) =J(u0, µ) + ρ∂XJ(u0, µ)[h]

+ ρ2

∫ 1

0

(1 − s)∂2
XJ(u0 + sρh, µ)[h, h]ds.

∂XJ(u0, µ)[h]
= ∂XJ(u0, µ)[h] − ∂XJ(u0, µ0)[h]

=
{

ρ−1(J(u0 + ρh, µ) − J(u0, µ))

− ρ

∫ 1

0

(1 − s)∂2
XJ(u0 + sρh, µ)[h, h]ds

}
−

{
ρ−1(J(u0 + ρh, µ0) − J(u0, µ0))

− ρ

∫ 1

0

(1 − s)∂2
XJ(u0 + sρh, µ0)[h, h]ds

}
= ρ−1

∫ 1

0

{
∂MJ(u0 + ρh, µ0 + t(µ − µ0))

− ∂MJ(u0, µ0 + t(µ − µ0))
}

[µ − µ0]dt

− ρ

∫ 1

0

(1 − s)
{

∂2
XJ(u0 + sρh, µ)

− ∂2
XJ(u0 + sρh, µ0)

}
[h, h]ds

For r > 0, we define

S(r) :=
{

(w, λ) ∈ X × M ;
∥w − u0∥X ≤ r
∥λ − µ0∥M ≤ r2

}
,

ω(r) := sup
(w,λ)∈S(r)

∥∂MJ(w, λ) − ∂MJ(u0, µ0)∥M ′

+ sup
(w,λ)∈S(r)

∥∂2
XJ(w, λ) − ∂2

XJ(u0, µ0)∥B2(X,R).

We remark that ω(r) → 0 as r → +0. Choosing ρ :=
∥µ − µ0∥1/2

M , we obtain

∥∂XJ(u0, µ)∥X′ ≤ 2ω(ρ)ρ (µ ∈ O0, ∥µ − µ0∥M ≤ ρ2
0).

Hence, from (7), we have

∥u(µ) − u0∥X ≤ C∥∂XJ(u0, µ)∥X′ ≤ 2Cω(ρ)ρ = o(ρ).

Under the conditions of Theorem 2.4, ∂2
XJ(u(µ), µ) can

be regarded as a linear topological isomorphism from X
to X ′ from the Lax-Milgram theorem. Therefore, we can
define Λ(µ) ∈ B(X ′, X) which satisfies

∂2
XJ(u(µ), µ)[Λ(µ)h, w] = h[w] (∀w ∈ X, ∀h ∈ X ′).

The Fréchet derivative of the local minimizer u(µ) with
respect to parameter µ is given by the next proposition.

Proposition 2.8. Under the condition of Theorem 2.5
with k = 1,

(8) u′(µ) = −Λ(µ)h0(µ) (µ ∈ O0),

holds, where h0(µ) := ∂M∂XJ(u(µ), µ) ∈ B(M, X ′).
Proof. Differentiating ∂XJ(u(µ), µ) = 0 ∈ X ′ by µ, we
have

∂2
XJ(u(µ), µ)[u′(µ)] + ∂M∂XJ(u(µ), µ) = 0 ∈ B(M, X ′).

This is equivalent to (8) from the Lax-Milgram theorem.

Proposition 2.9. Under the condition of Theorem 2.4, we
additionally assume that J ∈ C2(U ×O) then J∗ ∈ C2(O0)
and it satisfies

J ′′
∗ (µ)[µ1, µ2] =∂2

MJ(u(µ), µ)[µ1, µ2]
− X⟨Λ(µ)h0(µ)[µ1], h0(µ)[µ2]⟩X′ ,

for µ ∈ O0 and µ1, µ2 ∈ M .
Proof. Differentiating the formula (5) by µ and substituting
(8), we obtain the formula.

3. Lipschitz deformation of domains

We study a domain deformation with Lipschitz transform
φ : Ω → φ(Ω), where Ω is a bounded domain in Rn (n ∈ N)
and φ is a Rn-valued Lipschitz function. The identity map
on Rn is denoted by φ0(x) = x (x ∈ Rn).

For a function u : Ω → Rk, we define

|u|Lip,Ω := sup
x,y∈Ω,x̸=y

|u(x) − u(y)|
|x − y|

,

where | · | denotes the Euclidean norm in Rn or Rk. If
|u|Lip,Ω < ∞, u is called uniformly Lipschitz continuous on
Ω. It is known that, for u ∈ W 1,∞(Ω), there is ũ ∈ C0(Ω)
such that ũ(x) = u(x) a.e. x ∈ Ω, in other words, we can
regard W 1,∞(Ω) ⊂ C0(Ω). If Ω is convex, W 1,∞(Ω) =
C0,1(Ω) as a subset of C0(Ω). Moreover, if k = 1, we have

∥∇u∥L∞(Ω) = |u|Lip,Ω (u ∈ W 1,∞(Ω) ∩ C0(Ω)).

In the following argument, we fix a bounded convex domain
Ω0 ⊂ Rn (n ≥ 2), and we identify W 1,∞(Ω0, Rn) with
C0,1(Ω0, Rn).
Proposition 3.1. Suppose that φ ∈ W 1,∞(Ω0, Rn) satis-
fies |φ − φ0|Lip,Ω0 < 1. Then φ is a bi-Lipschitz transform
from Ω0 to φ(Ω0), i.e. φ is bijective from Ω0 onto an open
set and φ and φ−1 are both uniformly Lipschitz continuous.
Moreover, we have

(9) ess- inf
Ω0

(det∇φT) ≥ (1 − |φ − φ0|Lip,Ω0)
n

> 0.

where ∇φT is the Jacobian matrix defined by

∇φT(x) :=
(

∂φj

∂xi
(x)

)
i↓,j→

∈ Rn×n,

for x = (x1, · · · , xn)T ∈ Ω0.
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Proof. Let µ := φ−φ0 and θ := |µ|Lip,Ω0 ∈ (0, 1). First, we
show that φ(Ω0) is open. We arbitrarily fix x0 ∈ Ω0 and
define y0 := φ(x0). Let δ > 0 such that Bδ(x0) ⊂ Ω0,
where Bδ(x0) := {x ∈ Rn; |x − x0| < δ}. For y ∈
B(1−θ)δ(y0), we show that y ∈ φ(Ω0). It is easily checked
that T (ξ) := y − µ(ξ) is a uniform contraction on Bδ(x0).
From the contraction mapping theorem, there is a fixed
point x = T (x) = y − µ(x) in Bδ(x0), that is y = φ(x).
Hence, φ(Ω0) is an open set. Since |φ(x1) − φ(x2)| ≥
|x1−x2|−|µ(x1)−µ(x2)| ≥ (1−θ)|x1−x2| for x1, x2 ∈ Ω0,
it follows that φ is injective and φ−1 satisfies uniform Lip-
schitz condition on φ(Ω0).

From Rademacher’s theorem (see [5], [23]), µ is differen-
tiable almost everywhere and the derivative coincides with
the distributional derivative almost everywhere, i.e., there
exists N ⊂ Ω0 with Ln(N ) = 0 such that

∇Tµ(x)y = lim
h→0

µ(x + hy) − µ(x)
h

(x ∈ Ω0 \ N ),

where ∇Tµ = (∇µT)T. It follows that

|∇Tµ(x)y| ≤ θ |y| (x ∈ Ω0 \ N ),

and that the moduli of all the eigenvalues of ∇Tµ(x) for
x ∈ Ω0 \ N are bounded by θ. Hence, we obtain

det (∇Tφ(x)) = det (I + ∇Tµ(x)) ≥ (1−θ)n (x ∈ Ω0\N ).

We fix an open set Ω which satisfies Ω ⊂ Ω0 and the de-
formed domain φ(Ω) is denoted by Ω(φ) under the condi-
tion of Proposition 3.1, hereafter. We define a pushforward
operator φ∗ which transforms a function v on Ω to a func-
tion φ∗v := v ◦ φ−1 on Ω(φ), if φ satisfies Proposition 3.1.
We define

A(φ) := (∇φT)−1 ∈ L∞(Ω0, Rn×n),
κ(φ) := det∇φT ∈ L∞(Ω0, R).

These Jacobi matrices and Jacobian appear in the pull-
back of differentiation and integration on Ω(φ) to Ω. For
a function v on Ω, we have

(10) [∇(φ∗v)] ◦ φ = A(φ)∇v a.e in Ω (v ∈ W 1,1(Ω)),

(11)
∫

Ω(φ)

(φ∗v)(y)dy =
∫

Ω

v(x)κ(φ)(x)dx (v ∈ L1(Ω)).

These equalities are well known in the case φ ∈ C1. How-
ever, for φ ∈ C0,1, these are not so trivial. See, [5] and [23]
etc. for details. We omit the proof of the next proposition
since it is clear from (10) and (11).
Proposition 3.2. Under the condition of Proposition 3.1,
for p ∈ [1,∞], φ∗ is a linear topological isomorphism from
Lp(Ω) onto Lp(Ω(φ)), and a linear topological isomorphism
from W 1,p(Ω) onto W 1,p(Ω(φ)).

The following theorem plays an essential role in the ap-
plication to the shape derivatives.

Theorem 3.3. Let Ω be an open subset of Ω0.

1. κ ∈ C∞(W 1,∞(Ω, Rn), L∞(Ω)), and κ′(φ0)[µ] = divµ
for µ ∈ W 1,∞(Ω, Rn).

2. A ∈ C∞(O, L∞(Ω, Rn×n)), where

O := {φ ∈ W 1,∞(Ω, Rn); ess- inf
Ω

κ(φ) > 0}.

In particular, it holds that A′(φ0)[µ] = −∇µT for
µ ∈W 1,∞(Ω, Rn).

Proof. Since the determinant is a polynomial of degree n, it
is clear that κ belongs to C∞(W 1,∞(Ω, Rn), L∞(Ω)). For
fixed µ ∈ W 1,∞(Ω, Rn), we define

mij(t) := δij + t
∂µj

∂xi
∈ L∞(Ω) (i, j = 1, · · · , n, t ∈ R),

where δij is the Kronecker’s delta. Then we have

κ′(φ0)[µ] =
d

dt

∣∣∣∣
t=0

κ(φ0 + tµ) =
d

dt

∣∣∣∣
t=0

det (mij(t))

=
d

dt

∣∣∣∣
t=0

( ∑
σ∈Sn

sgn(σ)m1σ(1)(t) · · ·mnσ(n)(t)

)

=
d

dt

∣∣∣∣
t=0

(m11(t) · · ·mnn(t))

=
n∑

i=1

m11(0) · · ·m′
ii(0) · · ·mnn(0) = divµ.

Let the (i, j) component of A(φ) be denoted by aij(φ) ∈
L∞(Ω). Then we have aij(φ) = αij(φ)/κ(φ), where αij(φ)
is the (i, j) cofactor of ∇φT, which is a polynomial of ∂φk

∂xl

of degree n − 1. Since ess- infΩ κ(φ) > 0 for φ ∈ O,
aij ∈ C∞(O, L∞(Ω)) follows. For fixed µ ∈ W 1,∞(Ω, Rn),
differentiating the identity

A(φ0+tµ)(I+t∇µT) = I (I: identity matrix of degree n),

by t ∈ R at t = 0, we have

A′(φ0)[µ] + A(φ0)∇µT = O.

Since A(φ0) = I, we have A′(φ0)[µ] = −∇µT.
We define an open subset of W 1,∞(Ω0, Rn) as

(12)

O(Ω) :=
{

φ ∈ W 1,∞(Ω0, Rn); Ω(φ) ⊂ Ω0

|φ − φ0|Lip,Ω0 < 1

}
.

Proposition 3.4. We assume µ ∈ W 1,∞(Ω0, Rn) with
supp(µ) ⊂ Ω.

1. If |µ|Lip,Ω0 < 1, then φ = φ0 + µ is a bi-Lipschitz
transform from Ω onto itself.

2. For t ∈ R with |tµ|Lip,Ω0 < 1, we define a bi-Lipschitz
transform φ(t) = φ0 + tµ from Ω to itself. Let l ∈
{0, 1} and p ∈ [1,∞]. Suppose that f ∈ W l,p(Ω) if
p ∈ [1,∞), and f ∈ Cl(Ω)∩W l,∞(Ω) if p = ∞. Then
φ(t)∗f → f strongly in W l,p(Ω) as t → 0.
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Proof. From Proposition 3.1, claim 1 is clear. For claim 2,
let us fix t0 > 0 with |t0µ|Lip,Ω0 < 1. Then, from Proposi-
tion 3.2, there exist C > 0 such that the following inequal-
ities hold for |t| ≤ t0,

∥φ(t)∗f − f∥W l,p(Ω) = ∥φ(t)∗(f − f ◦ φ(t))∥W l,p(Ω)

≤ C∥f − f ◦ φ(t)∥W l,p(Ω).

Since [φ 7→ f ◦ φ] ∈ C0(O(Ω), W l,p(Ω)), we obtain

∥f − f ◦ φ(t)∥W l,p(Ω) = ∥f ◦ φ0 − f ◦ φ(t)∥W l,p(Ω) → 0,

as t → 0.

4. Variation of elastic energy

We consider an application of our abstract parameter vari-
ation formula stated in Section 2 to shape variation of elas-
tic energy with an inhomogeneous and anisotropic elastic
tensor.

Let Ω0 be a fixed bounded convex open set of Rn (n ≥ 2).
We consider an elastic body denoted by Ω, which is an
open subset of Ω0 with Ω ⊂ Ω0. For a small displace-
ment vector field u = (u1, · · · , un)T ∈ H1(Ω)n, the strain
tensor e[u](x) = (eij [u](x)) ∈ Rn×n

sym and the stress ten-
sor σ[u](x) = (σij [u](x)) ∈ Rn×n

sym are given by the strain-
displacement relations and the constitutive equations (gen-
eralized Hooke’s law):
(13)

e[u] :=
1
2

(∇Tu + ∇uT) , i.e. eij [u] =
1
2

(∂jui + ∂iuj) .

σ[u](x) = C(x)e[u](x) i.e. σij(x) = cijkl(x)ekl(x),

where C(x) = (cijkl(x)) ∈ Rn×n×n×n is the (anisotropic)
elasticity tensor with the symmetries cijkl = cklij = cjikl

(i, j, k, l = 1, · · · , n). It should satisfy the positivity condi-
tion:

∃c∗ > 0 s. t. cijkl(x) ξij ξkl ≥ c∗ |ξ|2(14) ( ∀x ∈ Ω0,
∀ξ ∈ Rn×n

sym

)
.

where |ξ| :=
√

ξij ξij . It depends on the elastic property
of the material Ω, and is supposed to be given. If the
material is homogeneous, the elasticity tensor should be
constant C(x) ≡ C. From the strain-displacement relation
(13), we write σ[u] := C e[u],.

The displacement field u(x) should satisfy the the equi-
librium equations of force and some boundary conditions.
They consist of the following linear second order elliptic
boundary value problem.

(15)


−divσ[u] = f(x) (x ∈ Ω)

u = g(x) (x ∈ ΓD)

−σ[u] ν = h(x) (x ∈ ΓN).

In the first equation, divσ means div σ = (∂iσi1, · · · , ∂iσin)T

and f(x) = (f1(x), · · · , fn(x))T ∈ Rn stands for the given
body force.

The boundary Γ := ∂Ω is divided into two parts as

Γ = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, |ΓD| > 0,

(on the other hand, ΓN can be empty). The outward unit
normal vector to Γ at x ∈ Γ is denoted by ν(x) ∈ Rn. For
the boundary condition of displacement on ΓD, we sup-
pose that g ∈ H1(Ω, Rn) exists and the boundary condi-
tion is given by its boundary value g|ΓD in the sense of
the trace operator. The surface force on ΓN, is given by
h ∈ L2(ΓN, Rn), as a prescribed boundary value.

The strain energy density w[u](x) ∈ R is defined by

w[u](x) =
1
2
σ[u](x) : e[u](x) :=

1
2
tr (σ[u](x)e[u](x))

i.e. w[u](x) =
1
2
σij [u](x)eij [u](x).

If e[u](x) ̸= 0, w[u](x) > 0 follows from the the positivity
condition of C(x).

For the problem (15), we introduce the total elastic en-
ergy:

E(v) :=
∫

Ω

{w[v]−f ·v}dx+
∫

ΓN

h·v dHn−1 (v ∈ H1(Ω, Rn)).

For a fixed Ω and ΓD, we define the affine space

V (g) :=
{
v ∈ H1(Ω, Rn) ; v|ΓD = g|ΓD

}
,

for g ∈ H1(Ω, Rn), and we set a closed subspace V := V (0).
On the geometry of Ω and ΓD, we assume the following
condition:

∃c0 > 0, s.t.
∫

Ω

|e[v]|2dx ≥ c0∥v∥2
H1(Ω,Rn) (v ∈ V ).

(16)

The condition (16) is called Korn’s inequality and is satis-
fied by most domains under the positivity condition (14).
See details for Korn’s inequality in [11] and [13] etc.

We consider the following minimization problem:

minimize E(v) among v ∈ V (g)

Owing to the Korn’s inequality (16), the functional E(v) is
strictly convex and admits a unique minimizer ū0 ∈ V (g).
The first variation of this minimizing problem gives us the
following equality.
(17)∫

Ω

σ[ū0] : e[v] dx−
∫

Ω

f ·v dx+
∫

ΓN

h·v dHn−1 = 0 (∀v ∈ V ).

For u ∈ V (g), u is the unique minimizer of E(·) in V (g)
if and only if u = ū0 satisfies (17). Moreover, (17) means
that ū0 is a weak solution of (15).

We consider a family of minimization problem parametrized
by φ ∈ O′(Ω):

O′(Ω) := {φ ∈ O(Ω); φ(x) = x, (x ∈ supp(h) ∩ ΓN)},
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where O(Ω) is defined by (12). For φ ∈ O′(Ω), we define
a total elastic energy and an affine space in the modified
domain Ω(φ):

E(v, φ) :=
∫

Ω(φ)

{w[v] − f · v}dx +
∫

ΓN

h · v dHn−1

(v ∈ H1(Ω(φ), Rn)).

V (g, φ) := φ∗(V (g))

= {v ∈ H1(Ω(φ), Rn); φ−1
∗ (v) − g ∈ V }

(g ∈ H1(Ω, Rn)).

Problem 4.1. For given φ ∈ O′(Ω) and g ∈ H1(Ω, Rn),
find a global minimizer ū(φ) of E(·, φ) in V (g, φ)

We define an elastic potential energy in the modified
domain Ω(φ):

(18) E∗(φ) := E(ū(φ), φ),

and consider its Fréchet differentiability with respect to the
parameter φ in this section.

We denote the pullbacks of the strain and stress tensors,
and the strain energy density of φ∗v for v ∈ H1(Ω, Rn) by

e[v, φ] := φ−1
∗ (e[φ∗v]), σ[v, φ] := φ−1

∗ (σ[φ∗v]),

w[v, φ] := φ−1
∗ (w[φ∗v]).

Then we have

e[v, φ] =
1
2

{
(A(φ)∇vT)T + A(φ)∇vT

}
σ[v, φ] = (C ◦ φ)e[v, φ]

w[v, φ] =
1
2
σ[v, φ] : e[v, φ]

We define a modified elastic energy in the original domain:

E0(v, φ) :=
∫

Ω(φ)

{w[φ∗v] − f · φ∗v}dx

(v ∈ H1(Ω, Rn), φ ∈ O(Ω)).

For a simple notation, we also define

W (ξ, η, ζ) :=
1
2
cijkl(ξ)ζijζkl − fi(ξ)ηi

(ξ ∈ Ω0, η ∈ Rn, ζ ∈ Rn×n
sym ).

Then, the modified elastic energy is also written in the
form:

E0(v, φ) =
∫

Ω(φ)

W (x, φ∗v, e[φ∗v])dx

=
∫

Ω

W (φ(x), v, e[v, φ])κ(φ)dx

The derivatives of W are denoted as follows:

∇ξW (ξ, η, ζ) =
1
2
∇cijkl(ξ)ζijζkl −∇fT(ξ)η,

∇ηW (ξ, η, ζ) = −f(ξ),

∂W

∂ζij
(ξ, η, ζ) :=

d

dt
W (ξ, η, ζ + tζ(ij))

∣∣∣∣
t=0

= cijkl(ξ)ζkl,

where ζ(ij) = (ζ(ij)
kl ) ∈ Rn×n is defined by ζ

(ij)
kl = δikδjl.

For v ∈ H1(Ω, Rn), we write W (v) = W (x, v(x), e[v](x)),
∇ξW (v) = ∇ξW (x, v(x), e[v](x)), etc. We remark that

∂W

∂ζij
(v) =

∂W

∂ζij
(x, v(x), e[v](x)) = σij [v].

Lemma 4.2. For v ∈ H1(Ω, Rn) and µ ∈ W 1,∞(Ω, Rn),

d

dt
W (x, v(x), e[v, φ0 + tµ])

∣∣∣
t=0

= −σ[v](x) : (∇µT(x)∇vT(x)) (a.e. x ∈ Ω)

holds.
Proof. From Theorem 3.3, we have

d

dt
e[v, φ0 + tµ](x)

∣∣∣
t=0

=
1
2

d

dt

{
(A(φ0 + tµ)∇vT)T + A(φ0 + tµ)∇vT

} ∣∣∣
t=0

= −1
2

{
(∇µT∇vT)T + ∇µT∇vT

}
.

Hence we obtain

d

dt
W (x, v(x),e[v, φ0 + tµ])

∣∣∣
t=0

=
∂W

∂ζij
(v)

d

dt
eij [v, φ0 + tµ]

∣∣∣
t=0

= −1
2
σ[v] :

{
(∇µT∇vT)T + ∇µT∇vT

}
.

= −σ[v] : (∇µT(x)∇vT(x)) ,

for a.e. x ∈ Ω
Lemma 4.3. Let m ∈ N∪ {0}, and let q > 1. We assume
that q ≥ 2n

n+2 if Ω satisfies the cone property. If the cone
property does not hold for Ω, we set q = 2. Then, under
the condition:

cijkl ∈ Cm(Ω0), f ∈ Wm,q(Ω0, Rn),(19)

the following regularities hold:

E0(·, φ) ∈ C∞(H1(Ω, Rn)) (φ ∈ O(Ω)),

E0 ∈ Cm(H1(Ω, Rn) ×O(Ω)),

∂vE0 ∈ Cm(H1(Ω, Rn) ×O(Ω),H1(Ω, Rn)′),

∂2
vE0 is continuous on H1(Ω, Rn) ×O(Ω)

Proof. Using the formulas (10) and (11), we have

E0(v, φ) =
∫

Ω(φ)

φ∗{w[v, φ] − (f ◦ φ) · v}dx

=
∫

Ω

{w[v, φ] − (f ◦ φ) · v}κ(φ)dx.

Under the assumptions, from Theorem 3.3, we obtain

[(v, φ) 7→ A(φ)∇vT] ∈ C∞(H1(Ω, Rn)×O(Ω), L2(Ω, Rn×n)),

[(v, φ) 7→ e[v, φ]] ∈ C∞(H1(Ω, Rn) ×O(Ω), L2(Ω, Rn×n)),
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[φ 7→ C ◦ φ] ∈ Cm(O(Ω), L∞(Ω, Rn×n×n×n)),

[(v, φ) 7→ σ[v, φ]] ∈ Cm(H1(Ω, Rn) ×O(Ω), L2(Ω, Rn×n)).

From these regularities, it follows that

[(v, φ) 7→ w[v, φ]] ∈ Ck(H1(Ω, Rn) ×O(Ω), L1(Ω)).

We define q∗ > 1 by the condition 1/q + 1/q∗ = 1. From
the Sobolev embedding theorem (see [1] etc.), H1(Ω) is
continuously embedded in Lq∗

(Ω). From the regularities:

[φ 7→ f ◦ φ] ∈ Cm(O(Ω), Lq(Ω, Rn)),

[(f, v) 7→ f · v] ∈ C∞(Lq(Ω, Rn) × H1(Ω, Rn), L1(Ω)),

and κ ∈ C∞(O(Ω), L∞(Ω)) (Theorem 3.3), we conclude
that E0 ∈ Cm(H1(Ω, Rn) ×O(Ω)).

Since E0(v, φ) is quadratic with respect to v, E0(·, φ) ∈
C∞(H1(Ω, Rn)) is clear. The Fréchet derivatives of E0 are

∂vE0(v, φ)[w]

=
∫

Ω(φ)

{σ[φ∗v] : e[φ∗w] − f · (φ∗w)} dx

=
∫

Ω

{σ[v, φ] : e[w,φ] − (f ◦ φ) · w}κ(φ) dx,

∂2
vE0(v, φ)[w1, w2] =

∫
Ω

{σ[w1, φ] : e[w2, φ]}κ(φ) dx.

From these expressions, the regularities for ∂vE0 and ∂2
vE0

follow similarly.
For v ∈ H1(Ω, Rn) and µ ∈ O(Ω), we define

Q[v, µ](x) := ∇ξW (v) · µ − σ[v] : (∇µT∇vT) + W (v)divµ.

Then we have the following lemma.

Lemma 4.4. Under the condition of Lemma 4.3, if m ≥ 1,
the following formula holds:

∂φE0(v, φ0)[µ] =
∫

Ω

Q[v, µ]dx (v ∈ H1(Ω, Rn), µ ∈ O(Ω)).

Proof. Since E is Fréchet differentiable, it holds that

∂φE0(v, φ0)[µ]

=
d

dt
E0(v, φ0 + tµ)

∣∣∣
t=0

=
d

dt

∫
Ω

W (x + tµ(x), v, e[v, φ0 + tµ])κ(φ0 + tµ)dx
∣∣∣
t=0

=
∫

Ω

{∇ξW (v) · µ − σ[v] : (∇µT∇vT)}κ(φ0)dx

+
∫

Ω

W (v)κ′(φ0)[µ]dx

=
∫

Ω

{∇ξW (v) · µ − σ[v] : (∇µT∇vT) + W (v)divµ} dx.

We remark that in case of a translation of domain, i.e.
if µ is a constant vector, Q[v, µ] becomes

Q[v, µ](x) = ∇ξW (v) · µ.

Moreover, if the material is homogeneous, i.e. if cijkl and
fj are constant, then ∇ξW (v) = 0 in Ω and

∂φE(v, φ0)[µ] = 0

holds. Since a homogeneous media is invariant under a
translation, this is a natural result.

We define

E(v, φ) := E(φ∗(v + g), φ)

= E0(v + g, φ) +
∫

ΓN

h · (v + g) dHn−1(20)

(v ∈ V, φ ∈ O(Ω)).

Applying the abstract theory in Section 2 to E , we have
the following theorem.
Theorem 4.5. Suppose the conditions of Lemma 4.3 and
(16). Then there exists an open subset O0 ⊂ O(Ω) with
φ0 ∈ O0 such that, for φ ∈ O0, there exists an unique min-
imizer ū(φ) ∈ V (g, φ) of E(·, φ). In addition, the map-
ping [φ 7→ φ−1

∗ (ū(φ))] belongs to Cm(O0,H
1(Ω, Rn)) and

E∗ ∈ Cm(O0). Furthermore, if m ≥ 1, the formula:

E′
∗(φ0)[µ] =

∫
Ω

Q[ū0, µ](x)dx (µ ∈ W 1,∞(Ω0, Rn))

holds.
Proof. We apply Theorems 2.4-2.6 to the functional J =
E with U = X = V , M = W 1,∞(Ω0, Rn), O = O(Ω),
u0 = ū0 − g, and µ0 = φ0. From Lemma 4.3 and (20), the
regularity conditions in Theorems 2.4-2.6 are all satisfied.
The condition 4 in Theorem 2.4 is nothing but the Korn’s
inequality (16).

From Theorem 2.4 and Theorem 2.5, there exists O0 ⊂
O(Ω) and u ∈ Cm(O0, V ) such that

ū(φ) := φ∗(u(φ) + g) ∈ V (g, φ),

gives a unique minimizer of E(·, φ) for φ ∈ O0. Since
E(v, φ) is a quadratic polynomial with respect to v ∈ V , it
is clear that U0 can be chosen as U0 = V .

We define

E∗(φ) := E(u(φ), φ) (φ ∈ O0).

Then it follows that

E∗(φ) = E(ū(φ), φ) = E∗(φ).

From Theorem 2.6, we obtain E∗ = E∗ ∈ Cm(O0). Fur-
thermore, if m ≥ 1,

E′
∗(φ0) = E ′

∗(φ0) = ∂φE(u(φ0), φ0)
= ∂φE0(u(φ0) + g, φ0) = ∂φE0(ū0, φ0),
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holds. Applying Lemma 4.4, we obtain the formula for
E′

∗(φ0).
The weak solution for (15), which was given as a mini-

mizer ū0 = u(φ0)+g, is denoted simply by u hereafter. We
also set m = 1 and q = 2 in the condition (19) hereafter
just for simplicity, i.e., we suppose

cijkl ∈ C1(Ω0), f ∈ H1(Ω0, Rn).(21)

The following theorem gives a formula of integration by
parts for Q[v, µ].
Theorem 4.6. Suppose the condition (21). Let D be a
subdomain of Ω with the cone property, in which the Gauss-
Green formula holds. Then, for v ∈ H2(D, Rn) and µ ∈
W 1,∞(Ω0, Rn), the following formula holds:∫

D

Q[v, µ]dx =
∫

D

(divσ[v] + f) · ((µ · ∇)v) dx

+
∫

∂D

{W (v)µ · ν − (σ[v]ν) · ((µ · ∇)v)} dHn−1,

where ν stands for the unit outward normal vector on ∂D.
Proof. Since eij [v] ∈ H1(D), from the Sobolev embedding
theorem, W (v) ∈ W 1,s(D) holds for some s > 1. Hence,
we can apply the Gauss-Green formula and obtain

∫
D

Q[v, µ]dx

(22)

=
∫

D

{(∇ξW (v) −∇x[W (v)]) · µ − σ[v] : (∇µT∇vT)} dx

+
∫

∂D

W (v)µ · νdHn−1

For p = 1, · · · , n, using the symmetries of cijkl, σij and
eij , we have

∂p [W (v)] = ∂p

[
1
2
cijkleijekl − fjvj

]
=

[
1
2
(∂pcijkl)eijekl − (∂pfj)vj

]
+ σij(∂peij) − fj(∂pvj),

σij(∂peij) = σij∂p

(
∂ivj + ∂jvi

2

)
= σij∂p(∂ivj) = σij∂i(∂pvj).

Therefore, we have

∇x[W (v)] = ∇ξW (v) + σij∂i(∇vj) − fj(∇vj).(23)

Substituting (23) into (22) and using the equality∫
D

{σij∂i(∇vj)} · µdx =
∫

∂D

(σ[v]ν) · ((µ · ∇)v)dHn−1

−
∫

D

divσ[v] · ((µ · ∇)v)dx,

we obtain our objective formula.

The following two corollaries are easily derived from this
theorem. We omit their proofs.

Corollary 4.7. Under the assumptions in Theorem 4.5
with (21), let D be a subdomain of Ω with the cone prop-
erty, in which the Gauss-Green formula holds. If u ∈
H2(D, Rn), then we have the following formula:

E′
∗(φ0)[µ] =

∫
Ω\D

Q[u, µ](x)dx(24)

+
∫

∂D

{W (u)µ · ν − (σ[u]ν) · ((µ · ∇)u)} dHn−1,

for µ ∈ W 1,∞(Ω0, Rn).
Corollary 4.8. Under the assumptions in Theorem 4.5
with (21), if there is a sequence of subdomains {Ωl}l with
the cone property in which the Gauss-Green formula holds
and

Ω1 ⊂ Ω2 ⊂ · · ·Ω with
∞∪

l=1

Ωl = Ω,

and if the global minimizer u belongs to H2(Ωl, Rn) for each
l ∈ N, then we have

E′
∗(φ0)[µ](25)

= lim
l→∞

∫
∂Ωl

{W (u)µ · ν − (σ[u]ν) · ((µ · ∇)u)} dHn−1,

for µ ∈ W 1,∞(Ω0, Rn).
The above boundary integral appearing in (25) is called

J-integral and (25) shows that the variation of energy is
given by a limit of the J-integral in general. For more
detail in a traditional setting in a cracked domain, see the
next section. On the other hand, sum of the J-integral and
a domain integral appearing in (24) is called generalized
J-integral which was defined by Ohtsuka [17].

5. Application to fracture mechanics

In this section, we briefly illustrate an application of our
theory to the energy release rate in fracture mechanics.
The virtual crack extension used in the definition of the
energy release rate is expressed in terms of the Lipschitz
domain deformation described in Section 3.

As an important application of our results in the previous
section, we consider the energy release rate G defined by
(3). We set a cracked elastic body Ω = Ω∗\Σ with Ω ⊂ Ω0,
and consider its virtual crack extension Ω(t) = Ω∗\Σ(t) for
t ∈ [0, T ]. We assume that the virtual crack extension is
expressed by a parametrized Lipschitz deformation φ(t) ∈
W 1,∞(Ω0, Rn). More precisely, we suppose

φ ∈ C1([0, T ], W 1,∞(Ω0, Rn)),
φ(t) ∈ O′(Ω) (0 ≤ t ≤ T ),
φ(0) = φ0, Ω(t) = Ω(φ(t)) (0 ≤ t ≤ T ),
Hn−1(Σ(t) \ Σ) = t (0 ≤ t ≤ T ).

(26)

We define

µ :=
d

dt
φ(t)

∣∣∣∣
t=0

∈ W 1,∞(Ω0, Rn).
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In case of a virtual crack extension, without loss of gener-
ality, we can suppose

supp(µ) ⊂ Ω∗.(27)

Additionally, from the inclusion relation (1), we suppose

µ · ν = 0 on Σ,(28)

where ν is a unit normal vector on Σ.
The boundary conditions in (15) become as follows. Let

ΓD be a subportion of ∂Ω∗ with Hn−1(ΓD) > 0 and define
Γ0

N := ∂Ω∗ \ ΓD. The two sides of the crack Σ are denoted
by Σ+ and Σ−. Then ΓN := ∂Ω \ ΓD is divided into the
following union:

ΓN = Γ0
N ∪ Σ+ ∪ Σ−.

From a physical point of view, we naturally suppose that

−σ[u] ν = 0 on Σ+ ∪ Σ−,(29)

i.e., supp(h) ⊂ Γ0
N.

In case of the above crack problem, the weak solution u
belongs to H1(Ω), but not to H2(Ω) in general. We remark
that Theorem 4.5 is valid for all H1 weak solution without
assuming additional regularity.

We consider a Lipschitz domain A ⊂ Rn which includes
all singular points of u, i.e., u ∈ H2(Ω \ A). We remark
that the boundary of D := Ω \ A is decomposed into the
following union:

∂D = ∂Ω∗ ∪ (Σ+ \ A) ∪ (Σ− \ A) ∪ ((∂A) ∩ Ω).

We have following theorem for the energy release rate.
Theorem 5.1. Under conditions of Theorem 4.5 with m ≥
1 and the assumptions (26), the energy release rate G de-
fined by (3) exists and is given by

G = E′
∗(φ0)[µ] =

∫
Ω

Q[u, µ]dx,

where µ = d
dtφ(t)|t=0. Moreover, under the conditions

(27), (28) and (29), we obtain

G =
∫

Ω∩A

Q[u, µ]dx

+
∫

(∂A)∩Ω

{W (u)µ · ν − (σ[u]ν) · ((µ · ∇)u)} dHn−1.

Proof. The first part is a direct consequence of Theo-
rem 4.5. From the conditions (27), (28) and (29), the latter
part is derived from Corollary 4.7, too.

If Σ is a straight crack in a two dimensional domain, then
we can choose µ as it is constant vector around a crack tip.
In other words, we can assume that

∇µT = 0 in A.(30)

Even in higher dimension, if Σ is flat and the crack exten-
sion is a translation, we can assume the condition (30). In
this case, we have the following corollary.

Corollary 5.2. Under the additional condition (30), the
formula:

G =
∫

(∂A)∩Ω

{W (u)µ · ν − (σ[u]ν) · ((µ · ∇)u)} dHn−1

(31)

holds, where the above boundary integral on (∂A) ∩ Ω is
path-independent.

The path-indepedent integral in (31) is called the J-
integral.
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