
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An explicit formula for the discrete power
function associated with circle patterns of
Schramm type

Ando, Hisashi
Graduate School of Mathematics, Kyushu University

Hay, Mike

Kajiwara, Kenji
Faculty of Mathematics, Kyushu University

Masuda, Tetsu
3Department of Physics and Mathematics, Aoyama Gakuin University

https://hdl.handle.net/2324/19573

出版情報：MI Preprint Series. 2011-11, 2011-05-10. 九州大学大学院数理学研究院
バージョン：
権利関係：



MI Preprint Series
Kyushu University

The Global COE Program
Math-for-Industry Education & Research Hub

An explicit formula for the

discrete power function

associated with circle patterns of

Schramm type

Hisashi Ando, Mike Hay,
Kenji Kajiwara & Tetsu Masuda

MI 2011-11

( Received May 10, 2011 )

Faculty of Mathematics
Kyushu University
Fukuoka, JAPAN



An Explicit Formula for the Discrete Power Function
Associated with Circle Patterns of Schramm Type

Hisashi Ando1, Mike Hay2, Kenji Kajiwara2 and Tetsu Masuda3,
1Graduate School of Mathematics, Kyushu University,

744 Motooka, Fukuoka 819-0395, Japan
2Institute of Mathematics for Industry, Kyushu University,

744 Motooka, Fukuoka 819-0395, Japan
3Department of Physics and Mathematics, Aoyama Gakuin University,

Sagamihara, Kanagawa 229-8558, Japan

May 10, 2011

Abstract

We present an explicit formula for the discrete power function introduced by Bobenko,
which is expressed in terms of the hypergeometric τ functions for the sixth Painlevé equation.
The original definition of the discrete power function imposes strict conditions on the domain
and the value of the exponent. However, we show that one can extend the value of the exponent
to arbitrary complex numbers except even integers and the domain to a discrete analogue of
the Riemann surface.

1 Introduction
The theory of discrete analytic functions has been developed in recent years based on the theory of
circle packings or circle patterns, which was initiated by Thurston’s idea of using circle packings
as an approximation of the Riemann mapping [17]. So far many important properties have been
established for discrete analytic functions, such as the discrete maximum principle and Schwarz’s
lemma [5], the discrete uniformization theorem [14], and so forth. For a comprehensive introduc-
tion to the theory of discrete analytic functions, we refer to [16].

It is known that certain circle patterns with fixed regular combinatorics admit rich structure. For
example, it has been pointed out that the circle patterns with square grid combinatorics introduced
by Schramm [15] and the hexagonal circle patterns [4, 7, 8] are related to integrable systems.
Some explicit examples of discrete analogues of analytic functions have been presented which
are associated with Schramm’s patterns: exp(z), erf(z), Airy function [15], zγ, log(z) [3]. Also,
discrete analogues of zγ and log(z) associated with hexagonal circle patterns are discussed in [4,7,
8].
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Among those examples, it is remarkable that the discrete analogue of the power function zγ

associated with the circle patterns of Schramm type has a close relationship with the sixth Painlevé
equation (PVI) [6], and this fact has been used to establish the immersion property [3] and embed-
dedness [1] of the discrete power function. It is desirable to construct a representation formula for
the discrete power function in terms of the Painlevé transcendents as was mentioned in [6]. The
discrete power function can be formulated as a solution to a system of difference equations on the
square lattice (n,m) ∈ Z2 with a certain initial condition. A correspondence between the dependent
variable of this system and the Painlevé transcendents can be found in [13], but the formula seems
somewhat indirect. Agafonov has constructed an explicit representation formula in terms of the
Gauss hypergeometric function [2], however, this formula is valid only on some special points on
Z2. In this paper, generalizing Agafonov’s result, we aim to establish an explicit representation
formula of the discrete power function in terms of the hypergeometric τ function of PVI which is
valid on Z2

+ = {(n,m) ∈ Z2 | n,m ≥ 0} and for γ ∈ C\2Z. Based on this formula, we generalize the
domain of the discrete power function to a discrete analogue of the Riemann surface.

This paper is organized as follows. In section 2, we give a brief review of the definition of the
discrete power function and its relation to PVI. The main result and its proof are given in section
3. We discuss the extension of the domain of the discrete power function in section 4. Section 5 is
devoted to concluding remarks.

2 Discrete power function

2.1 Definition of the discrete power function
For maps, a discrete analogue of conformality has been proposed by Bobenko and Pinkall in the
framework of discrete differential geometry [9].

Definition 2.1 A map f : Z2 → C ; (n,m) 7→ fn,m is called discrete conformal if the cross-ratio
with respect to every elementary quadrilateral is equal to −1:

( fn,m − fn+1,m)( fn+1,m+1 − fn,m+1)
( fn+1,m − fn+1,m+1)( fn,m+1 − fn,m)

= −1. (2.1)

The condition (2.1) is a discrete analogue of the Cauchy-Riemann relation. Actually, a smooth
map f : D ⊂ C→ C is conformal if and only if it satisfies

lim
ε→0

( f (x, y) − f (x + ε, y))( f (x + ε, y + ε) − f (x, y + ε))
( f (x + ε, y) − f (x + ε, y + ε))( f (x, y + ε) − f (x, y))

= −1 (2.2)

for all (x, y) ∈ D. However, using Definition 2.1 alone, one cannot exclude maps whose behavior
is far from that of usual holomorphic maps. Because of this, an additional condition for a discrete
conformal map has been considered [1, 3, 6, 10].

Definition 2.2 A discrete conformal map fn,m is called embedded if inner parts of different ele-
mentary quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) do not intersect.
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An example of an embedded map is presented in Figure 1. This condition seems to require
that f = fn,m is a univalent function in the continuous limit, and is too strict to capture a wide
class of discrete holomorphic functions. In fact, a relaxed requirement has been considered as
follows [1, 3].

Definition 2.3 A discrete conformal map fn,m is called immersed, or an immersion, if inner parts
of adjacent elementary quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) are disjoint.

See Figure 2 for an example of an immersed map.
Let us give the definition of the discrete power function proposed by Bobenko [3, 6, 10].

Definition 2.4 Let f : Z2
+ → C ; (n,m) 7→ fn,m be a discrete conformal map. If fn,m is the solution

to the difference equation

γ fn,m = 2n
( fn+1,m − fn,m)( fn,m − fn−1,m)

fn+1,m − fn−1,m
+ 2m

( fn,m+1 − fn,m)( fn,m − fn,m−1)
fn,m+1 − fn,m−1

(2.3)

with the initial conditions
f0,0 = 0, f1,0 = 1, f0,1 = eγπi/2 (2.4)

for 0 < γ < 2, then we call f a discrete power function.

The difference equation (2.3) is a discrete analogue of the differential equation γ f = z
∂ f
∂z

for

the power function f (z) = zγ, which means that the parameter γ corresponds to the exponent of the
discrete power function.

It is easy to get the explicit formula of the discrete power function for m = 0 (or n = 0). When
m = 0, (2.3) is reduced to a three-term recurrence relation. Solving it with the initial condition
f0,0 = 0, f1,0 = 1, we have

fn,0 =


2l

2l + γ

l∏
k=1

2k + γ
2k − γ (n = 2l),

l∏
k=1

2k + γ
2k − γ (n = 2l + 1),

(2.5)

for n ∈ Z+. When m = 1 (or n = 1), Agafonov has shown that the discrete power function can be
expressed in terms of the hypergeometric function [2]. One of the aims of this paper is to give an
explicit formula for the discrete power function fn,m for arbitrary (n,m) ∈ Z2

+.
In Definition 2.4, the domain of the discrete power function is restricted to the “first quadrant”

Z2
+, and the exponent γ to the interval 0 < γ < 2. Under this condition, it has been shown that the

discrete power function is embedded [1]. For our purpose, we do not have to persist with such a
restriction. In fact, the explicit formula we will give is applicable to the case γ ∈ C\2Z. Regarding
the domain, one can extend it to a discrete analogue of the Riemann surface.
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Figure 1: An example of the embedded
discrete conformal map.

Figure 2: An example of the discrete con-
formal map that is not embedded but im-
mersed.

2.2 Relationship to PVI

In order to construct an explicit formula for the discrete power function fn,m, we will move to
a more general setting. The cross-ratio condition (2.1) can be regarded as a special case of the
discrete Schwarzian KdV equation

( fn,m − fn+1,m)( fn+1,m+1 − fn,m+1)
( fn+1,m − fn+1,m+1)( fn,m+1 − fn,m)

=
pn

qm
, (2.6)

where pn and qm are arbitrary functions in the indicated variables. Some of the authors have
constructed various special solutions to the above equation [11]. In particular, they have shown
that an autonomous case

( fn,m − fn+1,m)( fn+1,m+1 − fn,m+1)
( fn+1,m − fn+1,m+1)( fn,m+1 − fn,m)

=
1
t
, (2.7)

where t is independent of n and m, can be regarded as a part of the Bäcklund transformations of
PVI, and given special solutions to (2.7) in terms of the τ functions of PVI.

We here give a brief account of the derivation of PVI according to [13]. The derivation is
achieved by imposing a certain similarity condition on the discrete Schwarzian KdV equation (2.7)
and the difference equation (2.3) simultaneously. The discrete Schwarzian KdV equation (2.7) is
automatically satisfied if there exists a function vn,m satisfying

fn,m − fn+1,m = t−1/2vn,mvn+1,m, fn,m − fn,m+1 = vn,mvn,m+1. (2.8)

By eliminating the variable fn,m, we get for vn,m the following equation

t1/2vn,mvn,m+1 + vn,m+1vn+1,m+1 = vn,mvn+1,m + t1/2vn+1,mvn+1,m+1, (2.9)

which is equivalent to the lattice modified KdV equation. It can be shown that the difference
equation (2.3) is reduced to

n
vn+1,m − vn−1,m

vn+1,m + vn−1,m
+ m

vn,m+1 − vn,m−1

vn,m+1 + vn,m−1
= µ − (−1)m+nλ (2.10)

with γ = 1 + 2µ, where λ ∈ C is an integration constant. In the following we take λ = µ so that
(2.10) is consistent when n = m = 0 and v1,0 + v−1,0 , 0 , v0,1 + v0,−1.
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Assume that the dependence of the variable vn,m = vn,m(t) on the deformation parameter t is
given by

− 2t
d
dt

log vn,m = n
vn+1,m − vn−1,m

vn+1,m + vn−1,m
+ χn+m, (2.11)

where χn+m = χn+m(t) is an arbitrary function satisfying χn+m+2 = χn+m. Then we have the following
Proposition.

Proposition 2.5 Let q = qn,m = qn,m(t) be the function defined by qn,m = t1/2 vn+1,m

vn,m+1
. Then q satisfies

PVI

d2q
dt2 =

1
2

(
1
q
+

1
q − 1

+
1

q − t

) (
dq
dt

)2

−
(
1
t
+

1
t − 1

+
1

q − t

)
dq
dt

+
q(q − 1)(q − t)

2t2(t − 1)2

[
κ2∞ − κ20

t
q2 + κ

2
1

t − 1
(q − 1)2 + (1 − θ2)

t(t − 1)
(q − t)2

]
,

(2.12)

with
κ2∞ =

1
4

(µ − ν + m − n)2, κ20 =
1
4

(µ − ν − m + n)2,

κ21 =
1
4

(µ + ν − m − n − 1)2, θ2 =
1
4

(µ + ν + m + n + 1)2,

(2.13)

where we denote ν = (−1)m+nµ.

In general, PVI contains four complex parameters denoted by κ∞, κ0, κ1 and θ. Since n,m ∈ Z+,
a special case of PVI appears in the above proposition, which corresponds to the case where PVI

admits special solutions expressible in terms of the hypergeometric function. In fact, the special
solutions to PVI of hypergeometric type are given as follows:

Proposition 2.6 [12] Define the function τn′(a, b, c; t) (c < Z, n′ ∈ Z+) by

τn′(a, b, c; t) =
{

det (ϕ(a + i − 1, b + j − 1, c; t))1≤i, j≤n′ (n′ > 0),
1 (n′ = 0), (2.14)

with

ϕ(a, b, c; t) = c0
Γ(a)Γ(b)
Γ(c)

F(a, b, c; t)

+c1
Γ(a − c + 1)Γ(b − c + 1)

Γ(2 − c)
t1−cF(a − c + 1, b − c + 1, 2 − c; t).

(2.15)

Here, F(a, b, c; t) is the Gauss hypergeometric function, Γ(x) is the Gamma function, and c0 and c1

are arbitrary constants. Then

q =
τ0,−1,0

n′ τ−1,−1,−1
n′+1

τ−1,−1,−1
n′ τ0,−1,0

n′+1

(2.16)

with τk,l,m
n′ = τn′(a + k + 1, b + l + 2, c + m + 1; t) gives a family of hypergeometric solutions to PVI

with the parameters

κ∞ = a + n′, κ0 = b − c + 1 + n′, κ1 = c − a, θ = −b. (2.17)

We call τn′(a, b, c; t) or τk,l,m
n′ the hypergeometric τ function of PVI.
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3 Main Results

3.1 Explicit formulae for fn,m and vn,m

We present the solution to the simultaneous system of the discrete Schwarzian KdV equation (2.7)
and the difference equation (2.3) under the initial conditions

f0,0 = 0, f1,0 = c0, f0,1 = c1tr, (3.1)

where γ = 2r, and c0 and c1 are arbitrary constants. We set c0 = c1 = 1 and t = eπi(= −1) to obtain
the explicit formula for the original discrete power function. Note that τn′(b, a, c; t) = τn′(a, b, c; t)
by the definition. Moreover, we interpret F(k, b, c; t) for k ∈ Z>0 as F(k, b, c; t) = 0 and Γ(−k) for

k ∈ Z≥0 as Γ(−k) =
(−1)k

k!
.

Theorem 3.1 For (n,m) ∈ Z2
+, the function fn,m = fn,m(t) can be expressed as follows.

(1) Case where n ≤ m (or n′ = n). When n + m is even, we have

fn,m = c1tr−nN
(r + 1)N−1

(−r + 1)N

τn(−N,−r − N + 1,−r; t)
τn(−N + 1,−r − N + 2,−r + 2; t)

, (3.2)

where N =
n + m

2
and (u) j = u(u+ 1) · · · (u+ j− 1) is the Pochhammer symbol. When n+m

is odd, we have

fn,m = c1tr−n (r + 1)N−1

(−r + 1)N−1

τn(−N + 1,−r − N + 1,−r; t)
τn(−N + 2,−r − N + 2,−r + 2; t)

, (3.3)

where N =
n + m + 1

2
.

(2) Case where n ≥ m (or n′ = m). When n + m is even, we have

fn,m = c0N
(r + 1)N−1

(−r + 1)N

τm(−N + 2,−r − N + 1,−r + 2; t)
τm(−N + 1,−r − N + 2,−r + 2; t)

, (3.4)

where N =
n + m

2
. When n + m is odd, we have

fn,m = c0
(r + 1)N−1

(−r + 1)N−1

τm(−N + 2,−r − N + 1,−r + 1; t)
τm(−N + 1,−r − N + 2,−r + 1; t)

, (3.5)

where N =
n + m + 1

2
.

Proposition 3.2 For (n,m) ∈ Z2
+, the function vn,m = vn,m(t) can be expressed as follows.

(1) Case where n ≤ m (or n′ = n). When n + m is even, we have

vn,m = t−
n
2

(r)N

(−r + 1)N

τn(−N + 1,−r − N + 1,−r + 1; t)
τn(−N + 1,−r − N + 2,−r + 2; t)

, (3.6)
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Figure 3: The discrete power function
with γ = 1 + i.
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Figure 4: The ordinary power function
z1+i.

where N =
n + m

2
. When n + m is odd, we have

vn,m = −c1tr− n
2
τn(−N + 1,−r − N + 2,−r + 1; t)
τn(−N + 2,−r − N + 2,−r + 2; t)

, (3.7)

where N =
n + m + 1

2
.

(2) Case where n ≥ m (or n′ = m). When n + m is even, we have

vn,m = t−
m
2

(r)N

(−r + 1)N

τm(−N + 1,−r − N + 1,−r + 1; t)
τm(−N + 1,−r − N + 2,−r + 2; t)

, (3.8)

where N =
n + m

2
. When n + m is odd, we have

vn,m = −c0t
m+1

2
τm(−N + 2,−r − N + 2,−r + 2; t)
τm(−N + 1,−r − N + 2,−r + 1; t)

, (3.9)

where N =
n + m + 1

2
.

Note that these expressions are applicable to the case where r ∈ C\Z. A typical example of
the discrete power function and its continuous counterpart are illustrated in Figure 3 and Figure
4, respectively. Figure 5 shows an example of the case suggesting multivalency of the map. The
proof of the above theorem and proposition is given in the next subsection.

Remark 3.3

(1) When m = 1 (or n = 1), the above results correspond to the case where PVI is reduced to
a Riccati equation and solved by the hypergeometric function. This case recovers the result
obtained by Agafonov [2].

(2) Agafonov also has shown that the generalized discrete power function fn,m, under the setting
of c0 = c1 = 1, t = e2iα (0 < α < π) and 0 < r < 1, is embedded [2].
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Figure 5: The discrete power function
with γ = 0.25 + 3.35i.

Remark 3.4 As we mention above, some special solutions to (2.7) in terms of the τ functions of
PVI have been presented [11]. It is easy to show that these solutions also satisfy a difference
equation which is a deformation of (2.3) in the sense that the coefficients n and m of (2.3) are
replaced by arbitrary complex numbers. For instance, a class of solutions presented in Theorem 6
of [11] satisfies

(α0 + α2 + α4) fn,m

= (n − α2)
( fn+1,m − fn,m)( fn,m − fn−1,m)

fn+1,m − fn−1,m
− (α1 + α2 + α4 − m)

( fn,m+1 − fn,m)( fn,m − fn,m−1)
fn,m+1 − fn,m−1

,

(3.10)
where αi are parameters of PVI introduced in Appendix A. Setting the parameters as (α0, α1, α2, α3, α4) =
(r, 0, 0,−r+1, 0), we see that the above equation is reduced to (2.3) and that the solutions are given
by the hypergeometric τ functions under the initial conditions (3.1).

3.2 Proof of main results
In this subsection, we give the proof of Theorem 3.1 and Proposition 3.2. One can easily verify
that fn,m satisfies the initial condition (3.1) by noticing τ0(a, b, c; t) = 1. We then show that fn,m

and vn,m given in Theorem 3.1 and Proposition 3.2 satisfy the relation (2.8), the difference equation
(2.3), the compatibility condition (2.9) and the similarity condition (2.11) by means of the various
bilinear relations for the hypergeometric τ function. Note in advance that we use the bilinear
relations by specializing the parameters a, b and c as

a = −N, b = −r − N, c = −r + 1, N =
n + m

2
, (3.11)

when n + m is even, or

a = −r − N + 1, b = −N, c = −r + 1, N =
n + m + 1

2
, (3.12)

when n + m is odd.
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We first verify the relation (2.8). Note that we have the following bilinear relations

(c − 1)τ0,−1,−1
n τ−1,−1,−1

n+1 = (c − b − 1)tτ0,−1,0
n+1 τ

−1,−1,−2
n + bτ0,0,0

n τ−1,−2,−2
n+1 ,

(c − 1)τ−1,−1,−1
n τ0,−1,−1

n = (c − b − 1)τ0,−1,0
n τ−1,−1,−2

n + bτ0,0,0
n τ−1,−2,−2

n ,
(3.13)

(a − b)τ0,−1,−1
m τ0,−1,0

m = aτ−1,−1,−1
m τ1,−1,0

m − bτ0,0,0
m τ0,−2,−1

m ,

(a − b)tτ0,−1,0
m+1 τ

0,−1,−1
m = aτ−1,−1,−1

m+1 τ1,−1,0
m − bτ0,0,0

m τ0,−2,−1
m+1 ,

(3.14)

(b − a + 1)τ0,0,0
m τ−1,−1,−1

m = (b − c + 1)τ0,−1,0
m τ−1,0,−1

m + (c − a)τ0,−1,−1
m τ−1,0,0

m ,

(b − a + 1)τ−1,−1,−1
m+1 τ0,0,0

m = (b − c + 1)τ0,−1,0
m+1 τ

−1,0,−1
m + (c − a)τ0,−1,−1

m τ−1,0,0
m+1 ,

(3.15)

for the hypergeometric τ functions, the derivation of which is discussed in Appendix A. Let us
consider the case where n′ = n. When n + m is even, the relation (2.8) is reduced to

−rτ[1,1,1]
n τ[0,1,1]

n+1 = Ntτ[1,1,2]
n+1 τ

[0,1,0]
n − (r + N)τ[1,2,2]

n τ[0,0,0]
n+1 ,

−rτ[0,1,1]
n τ[1,1,1]

n = Nτ[1,1,2]
n τ[0,1,0]

n − (r + N)τ[1,2,2]
n τ[0,0,0]

n ,
(3.16)

where we denote
τ[i1,i2,i3]

n′ = τn′(−N + i1,−r − N + i2,−r + i3; t), (3.17)

for simplicity. We see that the relations (3.16) can be obtained from (3.13) with the parameters
specialized as (3.11). In fact, the hypergeometric τ functions can be rewritten as

τ0,−1,−1
n = τn(a + 1, b + 1, c) = τn(−N + 1,−r − N + 1,−r + 1) = τ[1,1,1]

n , (3.18)

for instance. When n + m is odd, (2.8) yields

−rτ[1,2,1]
n τ[1,1,1]

n+1 = (−r + N)tτ[1,2,2]
n+1 τ

[1,1,0]
n − Nτ[2,2,2]

n τ[0,1,0]
n+1 ,

−rτ[1,1,1]
n τ[1,2,1]

n = (−r + N)τ[1,2,2]
n τ[1,1,0]

n − Nτ[2,2,2]
n τ[0,1,0]

n ,
(3.19)

which is also obtained from (3.13) by specializing the parameters as (3.12). Note that the hyper-
geometric τ functions can be rewritten as

τ0,−1,−1
n = τn(a + 1, b + 1, c) = τn(−r − N + 2,−N + 1,−r + 1)

= τn(−N + 1,−r − N + 2,−r + 1) = τ[1,2,1]
n ,

(3.20)

this time. In the case where n′ = m, one can similarly verify the relation (2.8) by using the bilinear
relations (3.14) and (3.15).

Next, we prove that (2.3) is satisfied, which is rewritten by using (2.8) as

− r
fn,m

vn,m
=

nt−
1
2

v−1
n+1,m + v−1

n−1,m

+
m

v−1
n,m+1 + v−1

n,m−1

. (3.21)

We use the bilinear relations

n′τ0,0,0
n′ τ

0,−1,−1
n′ = (b − c + 1)τ0,−1,0

n′+1 τ
0,0,−1
n′−1 + at−1τ−1,−1,−1

n′+1 τ1,0,0
n′−1,

(a + b − c + n′ + 1)τ0,0,0
n′ τ

0,−1,−1
n′ = aτ−1,−1,−1

n′ τ1,0,0
n′ + (b − c + 1)τ0,−1,0

n′ τ0,0,−1
n′ ,

(3.22)
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and
τ0,0,0

n τ−1,−1,−2
n = −t−1τ−1,−1,−1

n+1 τ0,0,−1
n−1 + τ

−1,−1,−1
n τ0,0,−1

n ,

τ0,0,0
m τ1,−1,0

m = τ0,−1,0
m τ1,0,0

m − τ0,−1,0
m+1 τ

1,0,0
m−1 ,

τ0,−1,−1
m τ−1,0,−1

m = −τ−1,−1,−1
m+1 τ0,0,−1

m−1 + τ
−1,−1,−1
m τ0,0,−1

m ,

(3.23)

for the proof. Their derivation is also shown in Appendix A. Let us consider the case where n′ = n.
When n + m is even, we have

−nτ[1,2,2]
n τ[1,1,1]

n = Nτ[1,1,2]
n+1 τ

[1,2,1]
n−1 + Nt−1τ[0,1,1]

n+1 τ
[2,2,2]
n−1 ,

mτ[1,2,2]
n τ[1,1,1]

n = Nτ[0,1,1]
n τ[2,2,2]

n + Nτ[1,1,2]
n τ[1,2,1]

n ,
(3.24)

from the bilinear relations (3.22) by specializing the parameters a, b and c as given in (3.11). These
lead us to

v−1
n+1,m + v−1

n−1,m = c−1
1 t−r+ n+1

2
n
N
τ[1,2,2]

n τ[1,1,1]
n

τ[0,1,1]
n+1 τ

[1,2,1]
n−1

,

v−1
n,m+1 + v−1

n,m−1 = −c−1
1 t−r+ n

2
m
N
τ[1,2,2]

n τ[1,1,1]
n

τ[0,1,1]
n τ[1,2,1]

n

.

(3.25)

By using
τ[1,2,2]

n τ[0,1,0]
n = −t−1τ[0,1,1]

n+1 τ
[1,2,1]
n−1 + τ

[0,1,1]
n τ[1,2,1]

n , (3.26)

which is obtained from the first relation in (3.23), one can verify (3.21). When n + m is odd, we
have the bilinear relations

−nτ[2,2,2]
n τ[1,2,1]

n = (−r + N)τ[1,2,2]
n+1 τ

[2,2,1]
n−1 + (r + N − 1)t−1τ[1,1,1]

n+1 τ
[2,3,2]
n−1 ,

mτ[2,2,2]
n τ[1,2,1]

n = (r + N − 1)τ[1,1,1]
n τ[2,3,2]

n + (−r + N)τ[1,2,2]
n τ[2,2,1]

n ,
(3.27)

from (3.22) with (3.12), and

τ[2,2,2]
n τ[1,1,0]

n = −t−1τ[1,1,1]
n+1 τ

[2,2,1]
n−1 + τ

[1,1,1]
n τ[2,2,1]

n , (3.28)

from the first relation in (3.23). These lead us to (3.21). We next consider the case where n′ = m.
When n + m is even, we get the bilinear relations

−mτ[1,2,2]
m τ[1,1,1]

m = Nτ[1,1,2]
m+1 τ

[1,2,1]
m−1 + Nt−1τ[0,1,1]

m+1 τ
[2,2,2]
m−1 ,

nτ[1,2,2]
m τ[1,1,1]

m = Nτ[0,1,1]
m τ[2,2,2]

m + Nτ[1,1,2]
m τ[1,2,1]

m ,
(3.29)

and
τ[1,2,2]

m τ[2,1,2]
m = τ[1,1,2]

m τ[2,2,2]
m − τ[1,1,2]

m+1 τ
[2,2,2]
m−1 , (3.30)

from (3.22) and the second relation in (3.23), respectively. By using these relations, one can show
(3.21) in a similar way to the case where n′ = n. When n + m is odd, we use the bilinear relations

−mτ[2,2,2]
m τ[1,2,1]

m = (−r + N)τ[1,2,2]
m+1 τ

[2,2,1]
m−1 + (r + N − 1)t−1τ[1,1,1]

m+1 τ
[2,3,2]
m−1 ,

nτ[2,2,2]
m τ[1,2,1]

m = (r + N − 1)τ[1,1,1]
m τ[2,3,2]

m + (−r + N)τ[1,2,2]
m τ[2,2,1]

m ,
(3.31)

and
τ[1,2,1]

m τ[2,1,1]
m = −τ[1,1,1]

m+1 τ
[2,2,1]
m−1 + τ

[1,1,1]
m τ[2,2,1]

m , (3.32)
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which are obtained from (3.22) and the third relation in (3.23), respectively, to show (3.21).
We next give the verification of the compatibility condition (2.9) by using the bilinear relations

(c − a)τ0,−1,−1
n′ τ−1,−1,0

n′+1 − bτ0,0,0
n′ τ

−1,−2,−1
n′+1 = (t − 1)τ−1,−1,−1

n′ τ0,−1,0
n′+1 ,

(c − a)tτ0,−1,−1
n′ τ−1,−1,0

n′+1 − bτ0,0,0
n′ τ

−1,−2,−1
n′+1 = (t − 1)τ0,−1,0

n′ τ−1,−1,−1
n′+1 .

(3.33)

The derivation of these is discussed in Appendix A. We first consider the case where n′ = n. When
n + m is even, we get

(−r + N + 1)τ[1,1,1]
n τ[0,1,2]

n+1 + (r + N)τ[1,2,2]
n τ[0,0,1]

n+1 = (t − 1)τ[0,1,1]
n τ[1,1,2]

n+1 ,

(−r + N + 1)tτ[1,1,1]
n τ[0,1,2]

n+1 + (r + N)τ[1,2,2]
n τ[0,0,1]

n+1 = (t − 1)τ[1,1,2]
n τ[0,1,1]

n+1 ,
(3.34)

from the bilinear relations (3.33). Then we have

t
1
2 vn,m + vn+1,m+1 = t−

n+1
2 (t − 1)

(r)N

(−r + 1)N+1

τ[1,1,2]
n τ[0,1,1]

n+1

τ[1,2,2]
n τ[0,1,2]

n+1

,

vn,m + t
1
2 vn+1,m+1 = t−

n
2 (t − 1)

(r)N

(−r + 1)N+1

τ[0,1,1]
n τ[1,1,2]

n+1

τ[1,2,2]
n τ[0,1,2]

n+1

,

(3.35)

from which we arrive at the compatibility condition (2.9). When n + m is odd, we have

Nτ[1,2,1]
n τ[1,1,2]

n+1 + Nτ[2,2,2]
n τ[0,1,1]

n+1 = (t − 1)τ[1,1,1]
n τ[1,2,2]

n+1 ,

Ntτ[1,2,1]
n τ[1,1,2]

n+1 + Nτ[2,2,2]
n τ[0,1,1]

n+1 = (t − 1)τ[1,2,2]
n τ[1,1,1]

n+1 ,
(3.36)

from (3.33). Calculating t
1
2 vn,m + vn+1,m+1 and vn,m + t

1
2 vn+1,m+1 by means of these relations, we see

that we have (2.9). In the case where n′ = m, one can verify the compatibility condition (2.9) in a
similar manner.

Let us finally verify the similarity condition (2.11), which can be written as

n
2
− 1

2
χn+m − t

d
dt

log vn,m =
nvn+1,m

vn+1,m + vn−1,m
. (3.37)

Here, we take the factor χn+m as χn+m = r [(−1)n+m − 1]. The relevant bilinear relations for the
hypergeometric τ function are

(D + n)τ0,0,0
n · τ0,−1,−1

n = at−1τ−1,−1,−1
n+1 τ1,0,0

n−1 ,

(D + b − c + 1)τ0,−1,−1
m · τ0,0,0

m = (b − c + 1)τ0,−1,0
m τ0,0,−1

m ,

(D + a + m)τ0,0,0
m · τ0,−1,−1

m = aτ−1,−1,−1
m τ1,0,0

m .

(3.38)

The derivation of these is obtained in Appendix A. We first consider the case where n′ = n. When
n + m is even, it is easy to see that we have

n
vn+1,m

vn+1,m + vn−1,m
= −Nt−1τ

[0,1,1]
n+1 τ

[2,2,2]
n−1

τ[1,2,2]
n τ[1,1,1]

n

, (3.39)

from the bilinear relation (3.24). We get

(D + n)τ[1,2,2]
n · τ[1,1,1]

n = −Nt−1τ[0,1,1]
n+1 τ

[2,2,2]
n−1 , (3.40)
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from the first relation in (3.38) with (3.11). From this we can obtain the similarity condition (3.37)
as follows. When n + m is odd, we have

(D + n)τ[2,2,2]
n · τ[1,2,1]

n = −t−1(r + N − 1)τ[1,1,1]
n+1 τ

[2,3,2]
n−1 , (3.41)

from the first relation in (3.38). This relation together with the first relation in (3.27) leads us to
(3.37). Next, we discuss the case where n′ = m. When n + m is even, we have

(D + N)τ[1,2,2]
m · τ[1,1,1]

m = Nτ[1,1,2]
m τ[1,2,1]

m , (3.42)

from the second relation in (3.38). Then we arrive at (3.37) by virtue of the second relation in
(3.29). When n + m is odd, we get

(D + r + n−m−1
2 )τ[1,2,1]

m · τ[2,2,2]
m = (r + N − 1)τ[1,1,1]

m τ[2,3,2]
m , (3.43)

from the third relation in (3.38). Then we derive the similarity condition (3.37) by using the second
relation in (3.31). This completes the proof of Theorem 3.1 and Proposition 3.2.

4 Extension of the domain
First, we extend the domain of the discrete power function to Z2. To determine the values of fn,m

in the second, third and fourth quadrants, we have to give the values of f−1,0 and f0,−1 as the initial
conditions. Set the initial conditions as

f−1,0 = c2t2r, f0,−1 = c3t3r, (4.1)

where c2 and c3 are arbitrary constants. This is natural because these conditions reduce to

f1,0 = 1, f0,1 = eπir, f−1,0 = e2πir, f0,−1 = e3πir (4.2)

at the original setting. Due to the symmetry of equations (2.7) and (2.3), we immediately obtain
the explicit formula of fn,m in the second and third quadrant.

Corollary 4.1 Under the initial conditions f0,1 = c1tr and (4.1), we have

f−n,m = fn,m| c0 7→c2t2r , f−n,−m = fn,m| c0 7→c2t2r ,c1 7→c3t2r , (4.3)

for n,m ∈ Z+.

Next, let us discuss the explicit formula in the fourth quadrant. Naively, we use the initial
conditions f0,−1 = c3t3r and f1,0 = c0 to get the formula fn,−m = fn,m| c1 7→c3t2r . However, this setting
makes the discrete power function fn,m become a single-valued function on Z2. In order to allow
fn,m to be multi-valued on Z2, we introduce a discrete analogue of the Riemann surface by the
following procedure. Prepare an infinite number of Z2-planes, cut the positive part of the “real
axis” of each Z2-plane and glue them in a similar way to the continuous case. The next step is to
write the initial conditions (3.1) and (4.1) in polar form as

f (1, πk/2) = cktkr (k = 0, 1, 2, 3), (4.4)

12
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Figure 6: The discrete power function
with γ = 5/2 whose domain is Z2.
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Figure 7: The discrete power function
with γ = 5/2 whose domain is the discrete
Riemann surface.

where the first component, 1, denotes the absolute value of n+ im and the second component, πk/2,
is the argument. We must generalize the above initial conditions to those for arbitrary k ∈ Z so
that we obtain the explicit expression of fn,m for each quadrant of each Z2-plane. Let us illustrate a

typical case. When
3
2
π ≤ arg(n + im) ≤ 2π, we solve the equations (2.7) and (2.3) under the initial

conditions
f (1, 3π/2) = c3t3r, f (1, 2π) = c4t4r, (4.5)

to obtain the formula
f−n,−m = fn,m| c0 7→c4t4r ,c1 7→c3t2r (n,m ∈ Z+). (4.6)

We present the discrete power function with γ = 5/2 whose domain is Z2 and the discrete Riemann
surface in Figure 6 and 7, respectively. Note that the necessary and sufficient condition for the
discrete power function to reduce to a single-valued function on Z2 is (ck = ck+4 and) e4πir = 1,
which means that the exponent γ is an integer.

5 Concluding remarks
The discrete logarithmic function and cases where γ ∈ 2Z were excluded from the considerations
in the previous sections. From the viewpoint of the theory of hypergeometric functions, these cases
lead to integer differences in the characteristic exponents. Thus we need a different treatment for
precise description of these cases. However, they may be obtained by some limiting procedures
in principle. In fact, Agafonov has examined the case where γ = 2 and γ = 0 by using a limiting
procedure [1, 2], the former is the discrete power function Z2 and latter is the discrete logarithmic
function. In general, one may obtain a description of these cases by introducing the functions f̃n,m

and f̂n,m as

f̃n,m :=


lim
r→ j

1
j

(−r + 1) j

(r + 1) j−1
fn,m, for γ = 2 j ∈ 2Z>0

lim
r→− j

(−r + 1) j

(r + 1) j
fn,m, for γ = −2 j ∈ 2Z<0

(5.1)
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and
f̂n,m = lim

r→0

fn,m − 1
r
, (5.2)

respectively. The function f̃n,m might coincide with the counterpart defined in section 6 of [3].
Moreover, it has been shown that the discrete power function and logarithmic function associ-

ated with hexagonal patterns are also described by some discrete Painlevé equations [4]. It may
be an interesting problem to construct the explicit formula for them.
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A Bäcklund transformations of the sixth Painlevé equation
As a preparation, we give a brief review of the Bäcklund transformations and some of the bilinear
equations for the τ functions [12]. It is well-known that PVI (2.12) is equivalent to the Hamilton
system

q′ =
∂H
∂p
, p′ = −∂H

∂q
, ′ = t(t − 1)

d
dt
, (A.1)

whose Hamiltonian is given by

H = f0 f3 f4 f 2
2 − [α4 f0 f3 + α3 f0 f4 + (α0 − 1) f3 f4] f2 + α2(α1 + α2) f0. (A.2)

Here fi and αi are defined by

f0 = q − t, f3 = q − 1, f4 = q, f2 = p, (A.3)

and
α0 = θ, α1 = κ∞, α3 = κ1, α4 = κ0 (A.4)

with α0 + α1 + 2α2 + α3 + α4 = 1. The Bäcklund transformations of PVI are described by

si(α j) = α j − ai jαi (i, j = 0, 1, 2, 3, 4), (A.5)

s2( fi) = fi +
α2

f2
, si( f2) = f2 −

αi

fi
(i = 0, 3, 4), (A.6)

s5 : α0 ↔ α1, α3 ↔ α4, f2 7→ −
f0( f2 f0 + α2)

t(t − 1)
, f4 7→ t

f3

f0
,

s6 : α0 ↔ α3, α1 ↔ α4, f2 7→ −
f4( f4 f2 + α2)

t
, f4 7→

t
f4
,

s7 : α0 ↔ α4, α1 ↔ α3, f2 7→
f3( f3 f2 + α2)

t − 1
, f4 7→

f0

f3
,

(A.7)
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where A = (ai j)4
i, j=0 is the Cartan matrix of type D(1)

4 . Then the group of birational transformations
〈s0, . . . , s7〉 generate the extended affine Weyl group W̃(D(1)

4 ). In fact, these generators satisfy the
fundamental relations

s2
i = 1 (i = 0, . . . , 7), sis2si = s2sis2 (i = 0, 1, 3, 4), (A.8)

and

s5s{0,1,2,3,4} = s{1,0,2,4,3}s5, s6s{0,1,2,3,4} = s{3,4,2,0,1}s6, s7s{0,1,2,3,4} = s{4,3,2,1,0}s7,

s5s6 = s6s5, s5s7 = s7s5, s6s7 = s7s6.
(A.9)

We add a correction term to the Hamiltonian H as follows,

H0 = H +
t
4

[
1 + 4α1α2 + 4α2

2 − (α3 + α4)2
]
+

1
4

[
(α1 + α4)2 + (α3 + α4)2 + 4α2α4

]
. (A.10)

This modification gives a simpler behavior of the Hamiltonian with respect to the Bäcklund trans-
formations. From the corrected Hamiltonian, we introduce a family of Hamiltonians hi (i =
0, 1, 2, 3, 4) as

h0 = H0+
t
4
, h1 = s5(H0)− t − 1

4
, h3 = s6(H0)+

1
4
, h4 = s7(H0), h2 = h1+ s1(h1). (A.11)

Next, we also introduce τ functions τi (i = 0, 1, 2, 3, 4) by hi = (log τi)′. Imposing the condition
that the action of the si’s on the τ functions also commute with the derivation ′, one can lift the
Bäcklund transformations to the τ functions. The action of W̃(D(1)

4 ) is given by

s0(τ0) = f0
τ2

τ0
, s1(τ1) =

τ2

τ1
, s2(τ2) =

f2√
t

τ0τ1τ3τ4

τ2
, s3(τ3) = f3

τ2

τ3
, s4(τ4) = f4

τ2

τ4
, (A.12)

and
s5 : τ0 7→ [t(t − 1)]

1
4τ1, τ1 7→ [t(t − 1)]−

1
4τ0,

τ3 7→ t−
1
4 (t − 1)

1
4τ4, τ4 7→ t

1
4 (t − 1)−

1
4τ3, τ2 7→ [t(t − 1)]−

1
2 f0τ2,

(A.13)

s6 : τ0 7→ it
1
4 τ3, τ3 7→ −it−

1
4τ0, τ1 7→ t−

1
4τ4, τ4 7→ t

1
4τ1, τ2 7→ t−

1
2 f4τ2, (A.14)

s7 : τ0 7→ (−1)−
3
4 (t − 1)

1
4 τ4, τ4 7→ (−1)

3
4 (t − 1)−

1
4τ0,

τ1 7→ (−1)
3
4 (t − 1)−

1
4 τ3, τ3 7→ (−1)−

3
4 (t − 1)

1
4τ1,

τ2 7→ −i(t − 1)−
1
2 f3τ2.

(A.15)

We note that some of the fundamental relations are modified

sis2(τ2) = −s2si(τ2) (i = 5, 6, 7), (A.16)

and
s5s6τ{0,1,2,3,4} = {i,−i,−1,−i, i}s6s5τ{0,1,2,3,4},

s5s7τ{0,1,2,3,4} = {i,−i,−1, i,−i}s7s5τ{0,1,2,3,4},

s6s7τ{0,1,2,3,4} = {−i,−i,−1, i, i}s7s6τ{0,1,2,3,4}.

(A.17)
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Let us introduce the translation operators

T̂13 = s1s2s0s4s2s1s7, T̂40 = s4s2s1s3s2s4s7,

T̂34 = s3s2s0s1s2s3s5, T14 = s1s4s2s0s3s2s6,
(A.18)

whose action on the parameters ~α = (α0, α1, α2, α3, α4) is given by

T̂13(~α) = ~α + (0, 1, 0,−1, 0),

T̂40(~α) = ~α + (−1, 0, 0, 0, 1),

T̂34(~α) = ~α + (0, 0, 0, 1,−1),
T14(~α) = ~α + (0, 1,−1, 0, 1).

(A.19)

We denote τk,l,m,n′ = T n′
14T̂ m

34T̂ l
40T̂ k

13(τ0) (k, l,m, n′ ∈ Z). By using this notation, we have

τ0,0,0,0 = τ0, τ−1,−1,−1,0 = [t(t − 1)]
1
4τ1,

τ0,−1,−1,0 = (−1)−
3
4 t

1
4τ3, τ0,−1,0,0 = (−1)−

3
4 (t − 1)

1
4τ4,

τ−1,−2,−1,1 = (−1)−
1
4 s0(τ0), τ0,−1,0,1 = (−1)−

3
4 [t(t − 1)]

1
4 s1(τ1),

τ−1,−1,0,1 = −it
1
4 s3(τ3), τ−1,−1,−1,1 = (t − 1)

1
4 s4(τ4),

(A.20)

for instance. When the parameters ~α take the values

(α0, α1, α2, α3, α4) = (−b, a + n′,−n′, c − a, b − c + 1 + n′), (A.21)

the function τk,l,m,n′ relates to the hypergeometric τ function τk,l,m
n′ introduced in Proposition 2.6

by [12]

τk,l,m,n′ = ωk,l,m,n′τ
k,l,m
n′ t−(â+b̂−ĉ+2n′)2/4−(â−b̂−n′)2/4+n′(b̂+n′)−n′(n′−1)/2(t − 1)(â+b̂−ĉ+2n′)2/4+1/2, (A.22)

where we denote â = a + k, b̂ = b + l + 1 and ĉ = c +m, and the constants ωk,l,m,n′ = ωk,l,m,n′(a, b, c)
are determined by the recurrence relations

ωk+1,l,m,iωk−1,l,m,i = iâ(ĉ − â)ω2
k,l,m,i,

ωk,l+1,m,iωk,l−1,m,i = −ib̂(ĉ − b̂)ω2
k,l,m,i,

ωk,l,m+1,iωk,l,m−1,i = (ĉ − â)(ĉ − b̂)ω2
k,l,m,i

(i = 0, 1) (A.23)

and
ωk,l,m,n′+1ωk,l,m,n′−1 = −ω2

k,l,m,n′ (A.24)

with initial conditions

ω−1,−2,−1,1 = (−1)−1/4b, ω0,−2,−1,1 = b,
ω−1,−1,−1,1 = 1, ω0,−1,−1,1 = (−1)−1/4,
ω−1,0,0,1 = −(−1)−3/4(c − a), ω0,0,0,1 = −i,
ω−1,−1,0,1 = −i(c − a), ω0,−1,0,1 = (−1)−3/4,

(A.25)

and
ω−1,−2,−1,0 = (−1)−3/4b, ω0,−2,−1,0 = −b,
ω−1,−1,−1,0 = 1, ω0,−1,−1,0 = (−1)−3/4,
ω−1,0,0,0 = (−1)−3/4(c − a), ω0,0,0,0 = 1,
ω−1,−1,0,0 = c − a, ω0,−1,0,0 = (−1)−3/4.

(A.26)
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From the above formulation, one can obtain the bilinear equations for the τ functions. For
examle, let us express the Bäcklund transformations s2( fi) = fi +

α2

f2
(i = 0, 3, 4) in terms of the τ

functions τ j ( j = 0, 1, 3, 4). We have by using (A.12)

α2t−
1
2 τ3τ4 − s1(τ1)s2s0(τ0) + s0(τ0)s2s1(τ1) = 0,

α2t−
1
2 τ0τ4 − s1(τ1)s2s3(τ3) + s3(τ3)s2s1(τ1) = 0,

α2t−
1
2 τ0τ3 − s1(τ1)s2s4(τ4) + s4(τ4)s2s1(τ1) = 0.

(A.27)

Applying the affine Weyl group W̃(D(1)
4 ) on these equations, we obtain

(α0 + α2 + α4) t−
1
2 τ3s4(τ4) − s1(τ1)s4s2s0(τ0) + τ0s0s4s2s1(τ1) = 0,

(α0 + α2 + α4) t
1
2 τ1τ3 − τ4s4s2s0(τ0) + τ0s0s2s4(τ4) = 0,

(A.28)

(α0 + α1 + α2) t−
1
2τ3τ4 − τ1s1s2s0(τ0) + τ0s0s2s1(τ1) = 0,

(α0 + α1 + α2) t
1
2 s1(τ1)τ3 − s4(τ4)s1s2s0(τ0) + τ0s0s1s2s4(τ4) = 0,

(A.29)

(α2 + α3 + α4) t−
1
2 τ0τ1 − τ4s4s2s3(τ3) + τ3s3s2s4(τ4) = 0,

(α2 + α3 + α4) t−
1
2 s4(τ4)τ0 − s1(τ1)s4s2s3(τ3) + τ3s3s4s2s1(τ1) = 0,

(A.30)

and
α2t−

1
2τ0τ3 − s1(τ1)s2s4(τ4) + s4(τ4)s2s1(τ1) = 0,

(α1 + α4 + α2)t−
1
2τ0τ3 − τ1s1s2s4(τ4) + τ4s4s2s1(τ1) = 0.

(A.31)

For instance, the first equation in (A.28) can be obtained by applying s0s4 on the first one in (A.27).
We also get the second equation in (A.28) by applying s0s4s6 on the second one in (A.27). Other
equations can be derived in a similar manner. By applying the translation T n′

14T̂ m
34T̂ l

40T̂ k
13 to the

bilinear relations (A.28) and noticing (A.20), we get

(α0 + α2 + α4 − m) t−
1
2τk,l−1,m−1,n′τk−1,l−1,m−1,n′+1

+τk,l−1,m,n′+1τk−1,l−1,m−2,n′ + τk,l,m,n′τk−1,l−2,m−2,n′+1 = 0,
(α0 + α2 + α4 − m)τk−1,l−1,m−1,n′τk,l−1,m−1,n′

+τk,l−1,m,n′τk−1,l−1,m−2,n′ − τk,l,m,n′τk−1,l−2,m−2,n′ = 0,

(A.32)

and then (3.13) for the hypergeometric τ functions. Similarly, we obtain for the hypergeometric τ
functions (3.14), (3.15) and (3.22) from (A.29), (A.30) and (A.31), respectively. The constraints

f0 = f4 − t, f3 = f4 − 1, (A.33)

yield
τ0s4s2s0(τ0) = s4(τ4)s2s4(τ4) − tτ1s4s2s1(τ1),
τ0s1s2s0(τ0) = τ4s1s2s4(τ4) − ts1(τ1)s2s1(τ1),
τ3s4s2s3(τ3) = s4(τ4)s2s4(τ4) − τ1s4s2s1(τ1),

(A.34)

and
τ3s3(τ3) − τ0s0(τ0) = (t − 1)τ1s1(τ1),
tτ3s3(τ3) − τ0s0(τ0) = (t − 1)τ4s4(τ4),

(A.35)
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from which we obtain (3.23) and (3.33), respectively. Due to (A.11) we have the relation

h0 − h3 = (t − 1)
[

f2 f4 +
1
2

(1 − α3 − α4)
]
. (A.36)

Then we get the bilinear relations

D τ0 · τ3 = t
1
2 s4(τ4)s2s1(τ1) +

1
2

(1 − α3 − α4)τ0τ3,

D τ0 · τ3 = t
1
2 τ4s4s2s1(τ1) +

1
2

(1 − α3 + α4)τ0τ3,

D τ0 · τ3 = t
1
2 τ1s1s2s4(τ4) +

1
2

(α0 − α1)τ0τ3,

(A.37)

where D denotes Hirota’s differential operator defined by D g · f = t
(
dg
dt

f − g
d f
dt

)
. By applying

the translation T n′
14T̂ m

34T̂ l
40T̂ k

13 to the first bilinear relation of (A.37), one gets[
D +

1
2

(
α3 + α4 − k + l + n′ − 1

2

)]
τk,l,m,n′ · τk,l−1,m−1,n′ = −t

1
2 (t − 1)−

1
2 τk−1,l−1,m−1,n′+1τk+1,l,m,n′−1,

(A.38)
which is reduced to the first relation of (3.38). The second and third relations of (A.37) also yield
their counterparts in (3.38).
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106, no. 3 (2001): 261–314.

[14] Rodin, B. “Schwarz’s lemma for circle packings.” Invent. Math. 89, no. 2 (1987): 271–289.

[15] Schramm, O. “Circle patterns with the combinatorics of the square grid.” Duke Math. J. 86,
no. 2 (1997): 347–389.

[16] Stephenson, K. Introduction to circle packing, New York: Cambridge University Press, 2005.

[17] Thurston, W. P. “The finite Riemann mapping theorem.” Invited address, International Sym-
posium in Celebration of the Proof of the Bieberbach Conjecture (Purdue University, 1985).

19



List of MI Preprint Series, Kyushu University
The Global COE Program

Math-for-Industry Education & Research Hub

MI

MI2008-1 Takahiro ITO, Shuichi INOKUCHI & Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata

MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost
Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space

MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristic-
curve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-
adic field

MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields

MI2008-7 Takehiro HIROTSU & Setsuo TANIGUCHI
The random walk model revisited

MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI & Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical al-
gebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO & Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials



MI2008-10 Sangyeol LEE & Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Ob-
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