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INTRODUCTION

Surface irrigation is the most common method for 
irrigating crops and pastures.  However, sprinkler irriga-
tion has been getting popular in China due to its similar-
ity to rainfall patterns, low cost, low energy requirements 
and improved aeration of the root zone.  The infiltration 
rate is one of the dominant factors in determining the 
performance of sprinkler irrigation, and both spatial and 
temporal variations of the infiltration rate are a major 
physical constraint for achieving higher irrigation effi-
ciencies (Shafique and Skogerboe, 1983).  The importance 
to understand the infiltration characteristic has long been 
recognized and has received wide attention from various 
researchers, and the vertical infiltration into a deep and 
uniform soil has played a key role in these studies 
(Sivapalan and Milly, 1989; Poulovassilis et al., 1991; 
Raine et al., 1997).  The estimate of the temporally varia-
ble infiltration rates requires an enormous computational 
burden because of the high temporal variability in rain-
fall rate.  Therefore, how to estimate infiltration rate by 
switching the infiltration process from rainfall controlled 
condition to soil controlled condition is very important. 

The time compression approximation (TCA) method 

is used here for solving the infiltration rate under comlex 
rainfall (irrigation) rate.  TCA was first introduced by 
Sherman (1943), and later used by several researchers 
in water balance modeling (Reeves and Miller, 1975; 
Eagleson, 1978; Milly, 1986; Famiglietti et al., 1992; 
Larsen et al., 1994; Salvucci and Entekhabi, 1994; 
Robinson and Sivapalan, 1995; Kim et al., 1996; Salvucci, 
1997).  The potential infiltration rate is usually defined as 
the maximum infiltration rate under ponded condition.  
The TCA assumes that the potential infiltration rate var-
ies only with the volume of water infiltrated into the soil 
from the beginning until that time.  Thus the potential 
infiltration rate depends on the cumulative infiltration 
within the given period of time regardless of its rainfall 
rate (Liu et al., 1998).  Salvucci and Entekhabi (1994) 
compared the TCA method with the one rigorously 
defined flux concentration method.  They used the latter 
to validate TCA method and found that the largest error 
of TCA in calculating cumulative infiltration was only 
2.5%.  The main objectives of this paper are: (1) to pro-
pose a modified TCA method for continuous infiltration 
modelling without additional parameters; (2) to validate 
the proposed TCA method using the local experimental 
data.

INFILTRATION MODEL

TCA assumes that potential infiltration rate depends 
only on the initial soil moisture and the cumulative infil-
tration.  Under this assumption, the potential infiltration 
rate f(t) at time t, is expressed by the TCA equation GTCA, 
which is a function of potential cumulative infiltration 
F(t). 
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f(t) = GTCA {F(t)}				    (1)

The actual infiltration rate f *(t) is the lesser of infil-
tration rate or the rainfall (irrigation) rate.

f *(t) = Min { f(t), P(t)}			   (2)

This relation between actual and potential infiltration 
rate can be analyzed either by experiments or models.  In 
this study, the Philip’s equation was used to generate 
this relation.  Philip (1957) expressed the potential infil-
tration rate as

f(t) = 0.5 St–1/2
 + cKs				    (3)

where S is the initial soil sorptivity, Ks is the saturated 
hydraulic conductivity, and c is a coefficient.  S depending 
on the soil water potential can be calculated from the 
equation given by Smith (1993).

S2 = 2(θs–θi) ∫    K(θ)(         )dθ		  (4)

where θ is soil water content, ψ is soil water potential, 
K is hydraulic conductivity, and the subscriptions of i 
and s represent the initial and saturated conditions 
respectively.  K(θ) was assumed to fit Brooks and Corey 
model (1964) and ψ(θ) was calculated using Smith’s 
equation as follows:

K(θ) = Ks {             }
b +(a/λ)	

		  (5)

ψ(θ) = ψb {(             )
–(m/λ)

–1 }
1/m	

	 (6)

where ψb is the air entry soil water potential, θr is the 
residual soil water content, a, b, m and λ are dimension-
less coefficients.

Under continuous rainfall (irrigation) rate, the actual 
infiltration rate should be equal to the rainfall (irriga-
tion) rate and less than the potential infiltration rate for 
a while after rainfall start.  After the actual infiltration rate 
becomes equal to the potential infiltration rate, it should 
remain equal to the rainfall (irrigation) rate for a while.  
Then, after certain time, the actual infiltration rate could 
become smaller than rainfall (irrigation) rate, and the 
ponding starts.  In these processes, there are two impor-

tant time points.  The one is the compressed time tc when 
the actual infiltration rate become equal to the potential 
infiltration rate.  The other is the ponding time tp, when 
the ponding starts (Fig. 1).  With the Philip’s equation, 
the compressed time tc can be derived by assuming the 
potential infiltration rate equals to the rainfall rate p.

tc = 4S–2 · (p – cKs)
2				    (7)

The potential cumulative infiltration, F(tc), under 
this assumption can be calculated to this time.

F(tc) = S · tc
1/2	

 + cKs · tc				   (8)

Ponding time is considered to be the boundary condition 
switching the infiltration process from rainfall controlled 
conditions to soil controlled conditions.  Under TCA 
assumptions, ponding will occur at a time when the 
cumulative infiltration is equal to the total rainfall (irri-
gation) volume.  Therefore, the ponding time can be 
solved as

 
tp =                {                    –1 }			   (9)

Once ponding occurred, the actual infiltration should be 
less than the rainfall (irrigation) rate.  We then used a 
relative time t–(tp–tc) = t – tp + tc and calculated the actu-
al infiltration rate at any time greater than tp by

f *(t) = f (t – tp + tc) = 0.5 · S · (t – tp + tc)
–1/2 + cKs

  (10)

The above description solves the infiltration under 
constant rainfall (irrigation) rate.  In case of variable 
rainfall (irrigation) rate, the similar TCA method can still 
be used, in which the ponding time tp,i under the rainfall 
rate pi at the time step i is re–calculated for each time 
step.

 tp,i = 				                  (11)

Although the variability of S is generally neglected, it is 
actually a time–dependent variable in Philip’s equation.  
In each time step in which continuous rainfall (irrigation) 
rate is assumed within the time, S should be re–calculat-
ed.  However, it is difficult to realize because the varia-
bles to calculate S are also changing temporally.  In this 
paper, a new concept of offset time tf,i was introduced to 
solve this problem.  Since, the actual infiltration rate at 
the end of the time step must be equal to the one at the 
beginning of the next time step.  Thus tf,i can be repre-
sented by relating the corresponding time for two time 
steps under the ponded conditions.

f (ti+1 + tf,i) = 	f (ti – tp,i + tc,i)		                (12)

Combing Eq. (12) with Eq. (3), Eq. (7) and Eq. (11), 
the offset time can be solved as

tf, i = 				                  (13)

 θs

θi

dψ
dθ

θ–θr

θs–θr

θ–θr

θs–θr

Fig. 1.  Illustration of TCA based infiltration rate.
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Therefore, under variable rainfall (irrigation) rate, there 
are three possible situations of the infiltration

Δt <_ tp,i : no ponding occurs
Δt > tp,i  : ponding occurs
tp,i < 0, : ponding happened at the exact beginning.

where Δt is the time step.
All three possible expressions are summarized as a func-
tion of the infiltration volume during a given time step.

ΔF(ti) = pi · Δt                                  if    pi <_ cKS

ΔF(ti) = cKS · Δt +S · ( Δt+tf,i –  tf,i )   if    pi >cKS ,tp,i < 0

ΔF(ti) = pi · tp,i +cKS· (Δt – tp,i )

             +S · ( Δt – (tp,i – tc,i ) –  tc,i)	      if    pi>cKS ,tp,i >_ 0
		  (14)

MODEL EVALUATION

Soil experiments were conducted by Yu et al. (2006)

in the two cultivated soils types (Acrisol and Cambisol) 
at the six sites.  The soils at the Site–1, 2 and 3 were the 
cultivated Acrisol while the soils at Site–4, 5 and 6 were 

Table 1.  Soil properties of topsoils at the experimental sites (Yu et al., 2006) 

Site
No.

Mechanical composition (%) Bulk density
 (g/cm3)

Ks 
(mm/h)2–0.5 mm 0.5–0.05 mm 0.05–0.002 mm <0.002 mm

1 1.0 23.5 33.6 46.4 1.37 57.06

2 1.0 28.8 34.4 35.8 1.19 36.51

3 4.7 29.9 34.5 30.9 1.33 48.64

4 1.7 61.0 19.8 17.5 1.43 36.86

5 0.5 64.3 15.7 19.5 1.50 32.51

6 0.8 63.3 19.9 16.0 1.54 85.14

Table 2.  Soil experimental conditions and observed results at the experimental sites 

Site
No.

Rainfall
No.

Rainfall intensity 
(mm/h)

Surface runoff 
(mm)

Runoff 
coefficient

 θi 
(g/kg)

θs 
(g/kg)

1 1 58.1 13.75 0.24 153.6 219.1

2 51.8 23.92 0.46

3 45.2 24.45 0.54

2 1 59.6 20.65 0.35 157.7 205.0

2 56.3 31.37 0.58

3 53.3 32.09 0.60

3 1 58.0 2.14 0.04 184.6 202.7

2 57.3 12.79 0.22

3 60.4 21.89 0.36

4 1 61.7 22.06 0.36 112.6 158.9

2 57.3 32.49 0.57

3 61.6 33.83 0.55

5 1 57.7 26.94 0.47 92.9 170.3

2 55.1 33.12 0.60

3 56.4 37.42 0.66

6 1 60.2 16.38 0.27 120.1 169.8

2 61.6 28.79 0.47

3 59.3 28.63 0.48

Fig. 2.	 Experimental set up used for soil testing (Yu et al., 
2006).
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cultivated Cambisol.  Soil properties at the six sites were 
measured at the topsoils (0–20 cm) and subsoils (20–
40 cm).  Table 1 shows the soil properties of topsoils and 
the corresponding saturated hydraulic conductivities, 
which are used in model evaluation.

A sprinkling rainfall simulator was used to generate 
rainfall with varying intensities; the rainfall simulator has 
an intensity ranging from 20 to 100 mm/h.  Three rainfall 
simulation events were conducted on each site respec-
tively.  These events have one–hour durations and a one–
hour interval between two events (Fig. 2).  In all events, 
the rain was produced at an average intensity of 60 mm/h 
over an area of 45 m2 at a height of 3 m; plant residues at 
the surface were removed before the experiment (Yu et 
al., 2006).

At each site, the topsoil (0–20 cm) and subsoil (20–
40 cm) were sampled for chemical and physical analysis.  
Prior to each event, the initial soil water contents and 
bulk densities of the topsoil and subsoil were measured.  
Surface runoff was sampled at 10 min intervals.  Table 2 
shows the experimental conditions and the observed 
results at the experimental sites (Yu et al., 2006).  The 
results show that the average runoff coefficient at Site–5 
was the highest, while Site–2 and Site–4 were slightly 
lower, which reflects the different infiltration level at 
each experimental site.  The low initial water content at 
Site–5 caused sealing at the surface soil, which affects 
runoff coefficient.

The artificial rainfall rates by rainfall simulator were 
cited as input data to the modified TCA method.  The 
measured and estimated infiltrations rates are compared 
in Table 3 and Fig. 3.  It is shown that the modified TCA 

method tends to overestimate in the low infiltration rate 
range (under 30 mm/h) and underestimate in the high 
infiltration rate range (over 30 mm/h).  Of all the esti-
mated actual infiltration rates, the deviation coefficients 
range from 0.59% to 34.74%, and the variation of differ-
ences was found to be closely related to the rainfall rates.  
Generally, high rainfall rate caused high infiltration vol-
ume, which leads to low difference deviation.  The root 
mean square error is 426 mm/h and the Nash–Sutcliffe 
(Nash) coefficient of efficiency is 82% for all the esti-
mated results, which is acceptable for the on–site infil-
tration prediction.

In infiltration modelling, the initial soil water content 
θi is one of the most important parameters, which 
greatly influences the final results.  Meanwhile, the val-
ues of θi may vary from event to event depending on the 
initial condition settings.  To assign different values to θi 
for all events, long–term soil water content measurement 
is needed, which decreases the applicability of infiltra-
tion modelling.  In this study, by introducing the modi-
fied TCA method in which only initial soil conditions 
either observed or calibrated based literature values are 
required.  To distinguish the difference of θi, the first 
rainfall simulation is generally important for the predic-
tion precision of the infiltration model.

CONCLUSIONS

TCA method provides an adequate tool for descrip-
tion transition of state dependent infiltration processes 
from rainfall control to soil control.  In TCA method, the 
cumulative infiltration can be easily calculated, therefore, 
the major error in estimating infiltration come from the 
error in estimating the ponding time tp.  In this study, we 
suggest a modified TCA method by introducing the 
newly proposed offset time into TCA method, in which 
the exact ponding time can be calculated to improve the 
estimate of postponding infiltration process.  Hence 
there would be less error in estimating the cumulative 
infiltration, which is validated using the experimental 
data.  On the basis of results and analysis this paper pre-
sented, the modified TCA method is not only more real-
istic than standard TCA method using cumulative infil-

Table 3.  �Comparison between measured and predicted infiltra-
tion rates at the experimental sites

Site
No.

Rainfall No.
Infiltration rate (mm/h)

Deviation (%)
Measured Predicted

1 1 44.35 42.58 3.99 

2 27.88 27.71 0.61 

3 20.75 24.90 20.00 

2 1 38.95 32.92 15.48 

2 24.93 27.71 11.15 

3 21.21 24.86 17.21 

3 1 55.86 45.03 19.39 

2 44.51 42.17 5.26 

3 38.51 36.33 5.66 

4 1 39.64 37.30 5.90 

2 24.81 27.97 12.74 

3 27.77 29.95 7.85 

5 1 30.76 29.49 4.13 

2 21.98 24.86 13.10 

3 18.98 25.57 34.72 

6 1 43.82 38.56 12.00 

2 32.81 36.37 10.85 

3 30.67 28.01 8.67

Fig. 3.	 Comparison of the measured and predicted infiltration 
rates.
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tration rather than infiltration rates but more accurate 
as well in predicting the cumulative infiltration.  The 
TCA method has the potential for use in the manage-
ment of sprinkler irrigation.
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