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Abstract

Nonlinear regression modeling based on basis expansions has been widely used to
explore data with complex structure. A crucial issue in nonlinear regression model is
the choice of adjusted parameters including hyper-parameters for prior distribution
and the number of basis functions. The selection of these parameters can be viewed
as a model selection and evaluation problem. We derive an information criterion
for the Bayesian predictive distribution in the case of both of regression coefficient
and variance are unknown. Our proposed method make a selection of the appro-
priate value of hyper-parameters and the number of basis functions. Real data and
simulation data analysis show that our proposed modeling strategy performs well
in various situations.

Key Words: Basis expansion, the Bayesian predictive distribution, Predictive informa-

tion criterion, Model selection, Nonlinear regression model

1 Introduction

Nonlinear regression models based on basis expansions provide a useful tool to analyze

data with complex structure. The essential idea for basis expansions is to express a

regression function as a linear combination of prescribed function, called basis functions

(Hastie et al. (2001), Konishi and Kitagawa (2008)).

Since maximum likelihood methods yield unstable parameter estimates, the adopted

model is usually estimated by those such as the method of maximum penalised likelihood

(Good and Gaskins (1971), Green and Silverman (1994)), the method of regularisation or

the Bayes approach and so on.

As one of the Bayesian approach, there are several studies on the Bayesian predictive

distribution. Therefore choosing an appropriate prior distribution, the Bayesian predic-

tive distribution can be configured better than plug-in predictive distribution (Komaki

(1996)). Bishop (2006) introduced the Bayesian predictive distribution in the framework
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of regression models and showed a relationship between Maximum A Posteriori (MAP)

estimator and Ridge estimator (Hoerl and Kennard (1970)).

One of the critical issue with Bayesian modeling is how to evaluate the goodness of the

Bayesian predictive distributions. The goodness of Bayesian predictive distribution can

be evaluated by the Kullback-Leibler information (Kullback and Leibler (1951)) between

the true distribution and the Bayesian predictive distribution.

Kitagawa (1997) discussed the Bayesian predictive distribution and its evaluation

method. Kitagawa (1997) consider the multivariate linear Gaussian model with an un-

known mean and a known covariance matrix. Moreover, in this framework, he showed

that the Bayesian predictive distribution is Gaussian distribution, and he derived PIC

(Predictive Information Criterion) for evaluation of the Bayesian predictive distribution.

Here, a significant difference from the case of maximum likelihood estimation is that the

covariance matrix is assumed to be known.

In this paper, we derived the new model selection criteria based on Kitagawa (1997)

to evaluate the Bayesian predictive distribution in framework of nonlinear regression

model. The aim of this paper is to introduce procedures for choosing the values of

hyper-parameters in the prior distribution and the number of basis functions simulta-

neously. Moreover, we use prior distribution introduced by Denison et al. (2002) and the

Bayesian predictive distribution which can be obtained when both regression coefficient

and variance are assumed to be unknown (Bishop (2006)).

The paper is organized as follow. In section 2, we describe a framework of nonlinear

regression model based on basis expansions. In section 3, we derive the Bayesian predictive

distribution for the nonlinear regression model when both of regression coefficients and

regression variance are unknown. In section 4, we propose new model selection criterion

for evaluating goodness of the Bayesian predictive distribution based on Kitagawa (1997).

In section 5, we investigate the performance of the proposed model selection criterion by

real data analysis and Monte Carlo simulations. Some concluding remarks are described

in Section 6.

2 Nonlinear regression model based on basis expan-

sion method

Suppose that {(yi,xi); i = 1, ..., n} be n sets of data obtained in terms of the response

variable y and p-dimensional explanatory variables x = (x1, ..., xp)
T . In order to draw
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information from the data, we consider the Gaussian nonlinear regression model

yi = u(xi) + εi, i = 1, 2, ..., n, (1)

where u(·) is true smooth function and errors εi are sets of independent zero-mean normal

samples with variance σ2. Here, we consider basis expansions approximation. That is,

the problem is to estimate the function u(·) from the observed data, and we use the basis

functions. In the basis expansion approach (Eilers and Marx, 1996), the unknown u(xi)

is approximated by a linear combination of basis functions

u(xi) = w0 +
m∑
j=1

wjϕj(xi) = wTϕ(xi), (2)

where ϕ(x) = (1, ϕ1(x), ..., ϕm(x))
T is a vector of basis functions andw = (w0, w1, ..., wm)

T

is an unknown coefficient parameter vector.

For several times, splines (Green and Silverman (1994)), B-splines (de Boor (2001),

Imoto and Konishi (2003)) and radial basis functions (Bishop (1995), Ripley (1996)) are

used here for basis functions.

From equation (1) and (2), for n independent observations, the nonlinear regression

model based on basis functions ϕj(x) (j = 1, ...,m) is expressed as

yi = wTϕ(xi) + εi, i = 1, ..., n. (3)

Since the nonlinear regression model (3) has a probability density function

f(yi|xi;w, σ2) =
1√

(2πσ2)
exp

[
−
{
yi −wTϕ(xi)

}2

2σ2

]
, i = 1, ..., n. (4)

The unknown parameters in the model are the set of coefficients,w = (w0, w1, · · · , wm)
T

and the regression variance σ2.

3 Estimation

For n independent observations {(yi,xi); i = 1, ..., n}, the nonlinear regression model

based on basis expansions given in section 2 is expressed as

yi = wTϕ(xi) + εi, i = 1, ..., n. (5)

where ϕ(xi) = (1, ϕ1(xi), ..., ϕm(xi))
T , w = (w0, w1, ..., wm)

T and εi are error terms.
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Then the maximum likelihood estimates of the coefficient vector w and σ2 are respec-

tively given by

ŵMLE = (ΦTΦ)−1ΦTy, σ̂2
MLE =

1

n
(y − ΦŵMLE)

T (y − ΦŵMLE), (6)

where 1 = (1, 1, ..., 1)T , Φ = (1,ϕ(x1),ϕ(x2), · · · ,ϕ(xn))
T and y = (y1, ..., yn)

T . How-

ever, when fitting a nonlinear regression model to data with a complex structure, the

maximum likelihood method often yields unstable estimation and leads to overfitting.

We therefore estimate w, σ2 by maximizing the posterior distribution,

π(w, σ2 |y) = f(y|w, σ2)π(w, σ2)∫ ∫
f(y|w, σ2)π(w, σ2)dwdσ2

(7)

where, π(w, σ2) is a prior distribuion. Moreover, we consider the parametric model given

by equation (5), and make assume for the known variance. One of the typical forms for

the conjugate prior distribution is given by a Gaussian distribution of the form,

w ∼ N(0, (nλ)−1Im). (8)

Then, the posterior distribution π(w|y) is still Gaussian distribution of mean vector

ξ and variance-covariance matrix V ,

ξ = (ΦTΦ + nλσ2Im)
−1ΦTy, V = σ2(ΦTΦ + nλσ2Im)

−1, (9)

where λ is a hyperparameter. Then, we use the MAP estimator which is well-known as

ridge estimator (Hoerl and Kennard (1970)),

ŵ = (ΦTΦ + nλσ2Im)
−1ΦTy. (10)

In many cases, we use the plug-in type model f(y|ŵ, σ̂2) as a statistical model which

is a nonlinear regression model based on basis expansion method. However, in this paper,

we consider the Bayesian predictive distribution (Bishop (2006)) defined as

f(z|y) =
∫ ∫

f(z|w, σ2)π(w, σ2 |y)dwdσ2. (11)

where z = (z1, z2, ..., zn)
T is a n-dimensional future data vector generated independently

by the observed y = (y1, y2, ..., yn)
T .

Moreover, if regression variance σ2 is known and we use the assumption of equation (3)

and (8), as a result, the Bayesian predictive distribution is given by Gaussian distribution

of mean vector µ and variance-covariance matrix Σ analythically,

µ = Φŵn, Σ = σ2(2ΦΦT + nλσ2In)(ΦΦ
T + nλσ2In)

−1. (12)

4



We consider another type of conjugate prior distribution, when both w and σ2 are

unknown, and one of correspondingly the conjugate prior distribution π(w, σ2) which

gives a Gaussian-inverse gamma distribution (Denison et. al. (2002)).

Now, we assume that the prior on the regression coefficients given the regression

variance is a Gaussian distribution, and the prior on the regression variance is inverse-

gamma distribution, by its specified following parameters.

w|σ2 ∼ N(0, σ2(nλIm)
−1), σ2 ∼ IG (ν0/2, η0/2) . (13)

As a consequence of our assumptions, posterior distribution on the regression coeffi-

cients giving the regression variance is given by a Gaussian distribution, and the posterior

distribution on the regression variance is an inverse-gamma distribution respectively as

w|σ2,y ∼ N(ŵn, σ
2Ân), σ2|y ∼ IG (ν̂n/2, η̂n/2) , (14)

where

η̂n = η0 + (y − ΦŵMLE)
T (y − ΦŵMLE) + ŵT

MLE

{
nλIm + (ΦTΦ)−1

}−1
ŵMLE,

ŵn = (ΦTΦ + (nλ)−1Im)
−1ΦTΦŵMLE

Ân = (ΦTΦ + nλIm)
−1, ν̂n = n+ ν0, . (15)

In this case, according to Bishop (2006), the predictive distribution was given by

student t-distribution. The Bayesian predictive distribution is Student t-distribution with

ν̂n degrees of freedom ,

z|y ∼ St(µ̂, Σ̂∗, ν̂n) (16)

where, µ̂ and Σ̂∗ are given by

µ̂ = Φŵn, Σ̂∗ =
λ̂n

ν̂n
(ΦÂnΦ

T + In), (17)

respectively. The Student t-distribution is well known to have more probability in its tails

than a normal distribution with the same location and scale parameters.

Futhermore, by the assumption of equation (3) and (13), the Bayesian predictive

distribution for nonlinear regression model based on basis expansion, h(z|y;λ, η, ν) is

given by

h(z|y;λ, η, ν) =
{
Γ ((n+ ν̂n)/2) /Γ (ν̂n/2) (πν̂n)

n
2

} ∣∣∣(λ̂n/ν̂n)(ΦÂnΦ
T + In)

∣∣∣− 1
2

×
[
1 + (1/ν̂n)(z − Φŵn)

T
{
(λ̂n/ν̂n)(ΦÂnΦ

T + In)
}−1

(z − Φŵn)

]−(n+ν̂n
2 )

.(18)
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4 Model selection criterion

In the Bayesian nonlinear regression model, we have crucial problems to solve, such

as the choices of a hyper-parameter λ for the prior distribution, and the number of basis

functions m. Kitagawa (1997) proposed the predictive information criterion (PIC) for

evaluating goodness of the Bayesian predictive distribution in framework of multivariate

Gaussian linear model, under the assumption of unknown regression coefficient and known

variance. According to Kitagawa (1997), PIC is given by

PIC = −2 log h(y|y, λ) + 2Bp (19)

where Bp is bias term of the expected log-likelihood estimated by the log-likelihood.

In the case of the Bayesian predictive distribution (12) in section 3, according to

Kitagawa (1997), PIC is derived as

PIC = n log(2π) + log |Σ|+ (y − µ)TΣ−1(y − µ) + 2tr
{
(2ΦΦT + nλσ2I)−1ΦΦT

}
where,

µ = Φ(ΦTΦ + nλσ2I)−1ΦTy, Σ = σ2(2ΦΦT + nλσ2I)(ΦΦT + nλσ2I)−1. (20)

In this paper, we derive the information criterion for the Bayesian predictive distribu-

tion in framework of nonlinear regression model where both of the regression coefficient

and variance are unknown.

Since the Bayesian predictive distribution (18) which is derived in section 3, we con-

sider applying the Laplace approximation method.

We use the Laplace’s approximation method (Tierney and Kadane (1986), Davison

(1986)) which has been extensively investigated as a useful tool for approximation the

Bayesian predictive distributions. It aims to find a Gaussian approximation to a proba-

bility density defined over a set of continuous variables.

According to Konishi and Kitagawa (2008), if we regard ŵ⋆ and σ̂2
⋆ as the model of

n−1 {log f(y|w, σ2) + log π(w, σ2)}, the Laplace approximation method yields the Bayesian

predictive distribution in framework of nonlinear regression model, in the form h(z|y) =
f(z|ŵ⋆, σ̂

2
⋆)(1 + Op(n

−1)). Moreover, in this framework, we can analytically calculate

mode of (14),

ŵ⋆ = (ΦTΦ + nλIm)
−1ΦTy, σ̂2

⋆ = C
{
(y − Φw⋆)

T (y − Φw⋆) + nλwT
⋆ w⋆ + ν0

}
.
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where C = 1/(n+m+ ν0 + 2).

By using the nonlinear regression model based on basis expansion methods, our pro-

posed model selection criterion is given as

PIC = n log(2π) + n log(σ̂2
⋆) +

1

σ̂2
⋆

(y − Φŵ⋆)
T (y − Φŵ⋆)

+2

(
σ2∗

σ̂2
⋆

)
tr
[
Φ(ΦTΦ + nλIm)

−1ΦT
]
. (21)

However, our proposed model selection criterion contains the unknown true regression

variance σ2∗. Then, we use two types of (21), actually. We first consider the true variance,

substituting the maximum likelihood estimator of the variance estimated from the data.

As a consequence, PIC results can be expressed as following:

PICMLE = n log(2π) + n log(σ̂2
⋆) +

1

σ̂2
⋆

(y − Φŵ⋆)
T (y − Φŵ⋆)

+2

(
σ̂2
MLE

σ̂2
⋆

)
tr
[
Φ(ΦTΦ + nλIm)

−1ΦT
]
.(22)

We next consider that the true variance substituting the mode of the posterior distri-

bution.

PICMode = n log(2π) + n log(σ̂2
⋆) +

1

σ̂2
⋆

(y − Φŵ⋆)
T (y − Φŵ⋆)

+2tr
[
Φ(ΦTΦ + nλIm)

−1ΦT
]
. (23)

We select the optimal values of the number of basis functions and a hyper-parameter

that minimize PIC.

5 numerical example

5.1 analysis of real data

We illustrate the proposed procedure to choose the smoothing parameter and the

number of basis functions through the analysis of the motorcycle impact data (Silverman

(1985), Härdle (1990), Eilers and Marx (1996)). The motorcycle impact data were simu-

lated to investigate the efficacy of crash helmets and it comprised a series of measurements

of head acceleration in units of gravity and times in milliseconds after impact.

We fit the Bayesian predictive distribution based on B-spline regression model with

Gaussian noise (1) to the motorcycle impact data. Then we choose the number of basis

functions m and the smoothing parameter λ that minimize the information criterion for
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the Bayesian predictive distribution PICMLE and PICMode given by equation (22), (23).

For the analysis of the motorcycle impact data, we set the candidate values of m and λ to

{4, ..., 15} and
{
1010(i−100)/99; i = 1, ..., 100

}
, respectively. The criterion PICMLE selected

m = 13 and λ = 1.62 × 10−9, while PICMode selected m = 13 and λ = 2.59 × 10−9. The

corresponding fitted curve is shown in Fig. 2 (solid curve).
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Figure 1: Real data examples: The motorcycle impact data: The left solid curved is the
estimated curve based on PICMLE, The right solid curve is the estimated curve based on
PICMode.

5.2 curve fitting

For the second study, repeated random samples {(xi, yi); i = 1, ..., n} with

n = 50, 100, 300, were generated from a true regression model yi = u(xi)+εi. The design

point xi are uniformly distributed in [0, 1] and the errors εi are independently, normally

distributed with mean 0 and variance τ 2, where the standard deviation is taken as τ =

0.15Ry or 0.3Ry with Ry being the range of u(x) over x ∈ [0, 1]. For the analysis of the

Simulated data, we divide [10−8, 100] to 100 equal subintervals by points λi(i = 0, ..., 100).

We considered the following two cases for the true regression model:

u(x) = 1− 48x+ 218x2 − 315x3 + 145x4, (24)

u(x) = sin(2πx3). (25)

We performed 300 repetitions, and then calculated average squared errors (ASE) defined

by ASE =
∑n

i=1 {u(xi)− ŷi}2 /n and predictive average squared errors (PASE) defined

by PASE=
∑n

i=1 {zi − ŷi}2 /n and deviations to assess the goodness of fit, respectively.
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Where, z is the future observation data that generated from true regression model. Table

1 displays simulation results with ASE, PASE, the number of basis function m and hyper

parameter λ.

Simulation results may be summarized as follows: Our proposed information criterion,

PICMLE and PICMode, generally give good estimates in the sense of ASE and PASE, and

yields stable hyper parameter estimates.
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Figure 2: Examples of simulated data (n = 100; left: τ = 0.15Ry; right: τ = 0.3Ry):
The dashed curve is the true regression curve u(x) = 1 − 48x + 218x2 − 315x3 + 145x4,
while the solid curved and dot-dashed curvethe are estimated curve based on PICMLE and
PICMode, respectively.

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3: Examples of simulated data (n = 100; left: τ = 0.15Ry; right: τ = 0.3Ry): The
dashed curve is the true regression curve u(x) = sin(2πx3), while the solid curved and
dot-dashed curvethe are estimated curve based on PICMLE and PICMode, respectively.
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Table 1: τ 2 = 0.15

Criterion Basis hyper paramete AMSE APSE

mean (SD) mean (SD) mean (SD) mean (SD)

(n = 50)

GIC 8.37 3.03 ×10−4 2.20×10−2 1.19 ×10−1

(3.06) (1.70×10−2) (1.28×10−2) (2.55×10−2)

mAIC 7.61 6.73×10−4 2.04×10−2 1.18 ×10−1

(2.79) (2.70×10−3) (1.22×10−1) (2.48×10−2)

PICMLE 6.57 4.04×10−4 1.79×10−2 1.16 ×10−1

(2.12) (2.00×10−3) (1.11×10−2) (2.45×10−2)

PICMode 7.14 1.00×10−8 1.93×10−2 1.17×10−1

(2.38) (6.29×10−23) (1.19×10−2) (2.45×10−2)

(n = 100)

GIC 7.88 3.03×10−4 1.03 ×10−2 1.076 ×10−1

(2.60) (1.70×10−3) (0.62-×10−2) (1.64-×10−2)

mAIC 7.45 4.71×10−4 1.00×10−2 1.073 ×10−1

(2.47) (2.10×10−1) (6.30×10−3) (1.67×10−2)

PICMLE 6.60 1.00×10−8 9.20 ×10−3 1.064 ×10−1

(1.68) (6.29×10−23) (5.50×10−3) (1.66×10−2)

PICMode 7.16 1.00×10−8 9.60 ×10−3 1.070×10−1

(2.14) (6.29×10−23) (5.90×10−3) (1.69×10−2)

(n = 300)

GIC 7.53 3.36×10−5 3.20×10−3 1.018 ×10−1

(1.86) (5.83×10−4) (1.90×10−3) (9.00×10−3)

mAIC 7.47 3.36×10−5 3.20×10−3 1.018 ×10−1

(1.76) (5.83×10−4) (1.90×10−3) (9.00×10−3)

PICMLE 7.24 1.00×10−8 3.10×10−3 1.017 ×10−1

(1.52) (6.29×10−23) (1.80×10−3) (8.90×10−3)

PICMode 7.43 1.00×10−8 3.20×10−3 1.018×10−1

(1.71) (6.29×10−23) (1.90×10−3) (9.00×10−3)
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Table 2: τ 2 = 0.3

Criterion number hyper parameter AMSE APSE

mean(SD) mean(SD) mean(SD) mean(SD)

(n = 50)

GIC 8.46 1.60 ×10−3 3.28×10−1 1.8932

(3.57) (3.70×10−3) (2.15×10−1) (4.14×10−1)

mAIC 8.14 2.90 ×10−3 2.85×10−1 1.8539

(3.53) (4.60×10−3) (1.87×10−1) (3.88×10−1)

PICMLE 9.75 7.80×10−3 2.47 ×10−1 1.8197

(4.08) (6.80×10−3) (1.28×10−1) (3.73×10−1)

PICMode 7.94 3.10×10−3 2.69×10−1 1.8397

(3.54) (4.70×10−3) (1.80×10−1) (3.86×10−1)

(n = 100)

GIC 7.13 7.40×10−4 1.42×10−1 1.6976

(3.04) (2.60×10−3) (1.00-×10−1) (2.64-×10−1)

mAIC 6.77 9.09 ×10−4 1.32×10−1 1.6876

(2.86) (2.90×10−23) (9.59×10−2) (2.61×10−1)

PICMLE 6.93 2.00×10−3 1.21 ×10−1 1.6794

(3.15) (4.00×10−3) (7.97×10−2) (2.60×10−1)

PICMode 6.55 7.40×10−4 1.27×10−1 1.6850

(2.69) (2.60×10−3) (9.22×10−2) (2.63×10−1)

(n = 300)

GIC 6.98 1.50×10−4 4.49×10−2 1.6200

(2.56 ) (4.11×10−4) (3.03×10−2) (0.14)

mAIC 6.78 1.40×10−4 4.37×10−2 1.6199

(2.46) (3.90×10−4) (2.88×10−2) (0.14)

PICMLE 6.50 1.51×10−4 4.14 ×10−2 1.6178

(2.20) (4.61×10−4) (2.77×10−2) (0.14)

PICMode 6.59 1.13×10−4 4.26×10−2 1.6188

(2.2904) (3.50×10−4) (2.88×10−2) (0.14)
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Table 3: τ 2 = 0.15

Criterion number hyper parameter AMSE APSE

mean(SD) mean(SD) mean(SD) mean(SD)

(n = 50)

GIC 10.45 7.90 ×10−3 2.10×10−3 9.90 ×10−3

(3.08) (2.38×10−2) (9.78×10−4) (2.10×10−3)

mAIC 9.68 1.57 ×10−2 2.00×10−3 9.80×10−3

(3.06) (3.47×10−2) (9.86×10−4) (2.10×10−3)

PICMLE 7.89 1.00×10−8 1.70 ×10−3 9.50 ×10−3

(1.76) (6.29×10−23) (8.99×10−4) (2.00×10−3)

PICMode 9.04 1.00×10−8 1.90×10−3 9.80 ×10−3

(2.70) (6.29×10−23) (8.59×10−4) (2.10×10−3)

(n = 100)

GIC 9.70 4.10 ×10−3 1.00×10−3 9.00 ×10−3

(2.96) (1.27×10−2) (4.87×10−4) (1.30×10−3)

mAIC 9.05 5.70 ×10−3 1.00×10−3 9.00×10−3

(2.82) (1.64×10−2) (4.90×10−4) (1.30×10−3)

PICMLE 8.04 1.00×10−8 9.11 ×10−4 8.90×10−3

(1.99) (6.29×10−23) (4.6×10−4) (1.30×10−3)

PICMode 8.60 1.00×10−8 9.56×10−4 8.90×10−3

(2.49) (6.29×10−23) (4.73×10−4) (1.40×10−3)

(n = 300)

GIC 10.31 8.75×10−4 3.87×10−4 8.40 ×10−3

(2.96) (3.60×10−3) (1.54×10−4) (7.49×10−4)

mAIC 9.86 9.76 ×10−4 3.85×10−4 8.40×10−3

(2.92) ( 4.00×10−3) (1.50×10−4) (7.49×10−4)

PICMLE 9.41 1.00×10−8 3.74×10−4 8.40×10−3

(2.79) (6.29×10−23) (1.43×10−4) (7.50×10−4)

PICMode 9.70 1.00×10−8 3.77×10−4 8.40 ×10−3

(2.84) (6.29×10−23) (1.48×10−4) (7.48×10−4)
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Table 4: τ 2 = 0.3

Criterion number hyper parameter AMSE APSE

mean(SD) mean(SD) mean(SD) mean(SD)

(n = 50)

GIC 9.85 8.10 ×10−3 2.89×10−2 1.548 ×10−1

(2.95) (1.48×10−2) (1.55×10−2) (3.28×10−2)

mAIC 9.80 1.41 ×10−2 2.72×10−2 1.534×10−1

(2.97) (1.89×10−2) (1.40×10−2) (3.21×10−2)

PICMLE 13.95 1.32 ×10−2 2.89 ×10−2 1.548 ×10−1

(1.35) (5.00×10−3) (1.14×10−2) (3.18×10−2)

PICMode 11.84 8.10×10−3 2.94×10−2 1.553 ×10−1

(2.86) (5.40×10−3) (1.32×10−4) (3.21×10−2)

(n = 100)

GIC 8.96 4.70 ×10−3 1.38×10−2 1.41 ×10−1

(2.68) (9.70×10−3) (7.90×10−3) (2.18×10−2)

mAIC 8.88 6.20 ×10−3 1.35×10−2 1.40×10−1

(2.64) (1.07×10−2) (7.70×10−3) (2.19×10−2)

PICMLE 13.21 9.60×10−3 1.48 ×10−2 1.41 ×10−1

(2.09) (2.40×10−3) (6.20×10−3) (2.13×10−2)

PICMode 10.22 4.90×10−3 1.42×10−2 1.41×10−1

(3.13) (5.10×10−3) (7.60×10−3) (2.18×10−2)

(n = 300)

GIC 8.58 1.70 ×10−3 2.20×10−3 6.45 ×10−2

(2.45) (4.40×10−3) ( 1.20×10−3) (5.80×10−3)

mAIC 8.50 2.00 ×10−3 2.20×10−3 6.44×10−2

(2.45) (4.70×10−3) (1.30×10−3) (5.80×10−3)

PICMLE 7.74 1.00×10−8 2.00 ×10−3 6.43 ×10−2

(1.59) (6.29×10−23) (1.30×10−3) (5.80×10−3)

PICMode 7.84 1.00×10−8 2.00×10−3 6.43×10−2

(1.70) (6.29×10−23) (1.30×10−3) (5.80×10−3)
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6 Concluding Remarks

This article has proposed the nonlinear regression modeling based on basis expansion

technique. We have introduced the information criterion for the Bayesian predictive

distribution in nonlinear regression model based on basis expansion method. In particular,

we derived PIC, when both of regression coefficient and regression variance are unknown.

7 Appendix

7.1 Derivation of PIC

As introduced by Kitagawa (1997), PIC is the derivation of our case is as follows:

PIC = −2 log h(z|y, ŵ⋆, σ̂
2
⋆) +Bp(q(·), ŵ⋆, σ̂

2
⋆) (26)

The log likelihood for the Bayesian predictive distribution, log h(z|y, ŵ⋆, σ̂
2
⋆) is given

by

log h(z|y, ŵ⋆, σ̂
2
⋆) = −n

2
log(2π)− 1

2
log |σ̂2

⋆I| −
1

2σ̂2
⋆

(z −Bŵ⋆)
T (z −Bŵ⋆). (27)

Then, the diffence between the log likelihood for the Bayesian predictive distribution

and expected loglikelihood is calcurated by

Bp(q(·), ŵ⋆, σ̂
2
⋆)

= Eq(y)

[
log h(y|y, ŵ⋆, σ̂

2
⋆)− Eq(z)

[
log h(z|y, ŵ⋆, σ̂

2
⋆)
]]

= − 1

2σ̂2
⋆

tr
{
Eq(y)

[
(y −Bŵ⋆)(y −Bŵ⋆)

T − Eq(z)

[
(z −Bŵ⋆)(z −Bŵ⋆)

T
]]}

. (28)

Moreover we assume that true distribution q(z) is given by

q(z) = f(z|w∗, σ2∗) (29)

where, w∗ ∈ Rm, σ2∗ ∈ R1. Then we denoted this fact as

z|w∗, σ2∗ ∼ N(Bw∗, σ2∗I). (30)

Futhermore, The expected that the value of the difference between the log-likelihood

function and expected log-likelihood function is evaluated as

Eq(z)

{
(z −Bŵ⋆)(z −Bŵ⋆)

T
}
= Ef(z|w∗,σ2∗)

{
(z −Bw∗)(z −Bw∗)T

}
+(Bw∗ −Bŵ⋆)(Bw∗ −Bŵ⋆)

T . (31)
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Moreover, we have,

Bw∗ −Bŵ⋆ = (BBT + nλIn)
−1BBT (Bw∗ − y) + nλ(BBT + nλIn)

−1Bw∗

y −Bŵ⋆ = nλ(BTB + nλIm)
−1(y −Bw∗) + nλ(BTB + nλIm)

−1Bw∗. (32)

Consequently, we correct bias term.

Eq(y)

[
log h(y|y, ŵ⋆, σ̂

2
⋆)− Eq(z)

[
log h(z|y, ŵ⋆, σ̂

2
⋆)
]]

= − 1

2σ̂2
tr
[
Eq(y)

[
(y −Bŵ⋆)(y −Bŵ⋆)

T − Eq(z)

[
(z −Bŵ⋆)(z −Bŵ⋆)

T
]]]

= −
(
σ2∗

σ̂2
⋆

)
tr
[
B(BTB + nλIm)

−1BT
]
. (33)
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