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Abstract

Diffusion coefficients of jump-diffusion processes with finite Lévy measure are
estimated from discrete observations at points tn

i = i/n (i = 0, 1, . . . , n) using
filtered conditional moments of increments. The estimation is based on the local
time for jump-diffusions and the consistency result is obtained. This is an extension
of the result for pure diffusion cases by Florens-Zmirou (1993).

Key Words and Phrases: diffusion coefficients, jump-diffusions, discrete observations, asymp-
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1. Introduction

On a filtered probability space (Ω, F , (Ft)0≤t≤1, P ), we consider an one-dimensional
jump-diffusion process X satisfying the following stochastic differential equation:

Xt = X0 +
∫ t

0

a(Xs−) ds +
∫ t

0

b(Xs−) dWs +
∫ t

0

∫
R

c(Xs−, z)µ(ds, dz), (1)

where X0 is a random variable, coefficients a, b and c are measurable functions such that
a : R → R, b : R → R and c : R × R → R, respectively, W is a Wiener process, µ(dt, dz)
is a Poisson random measure with the Lévy density π; E[µ(dt, dz)] = π(z) dzdt. We
assume throughout this paper that

∫
R π(z) dz < ∞. Therefore (1) is well defined.

This paper is devoted to the nonparametric estimation of the diffusion function
β(·) := b2(·) from discrete observations obtained in [0, 1]-time interval, that is, {Xtn

i
}n

i=0,
where tni = i/n; i = 0, 1, . . . , n.

Recently, several authors have studied the asymptotic inference for discretely ob-
served jump-diffusions; see e.g. Bandi and Nguyen (2003), Mancini (2004), Shimizu and
Yoshida (2006) and Shimizu (2006a,b) etc. All their works are discussed under the sam-
pling scheme such that tni = i × hn; i = 0, 1, . . . , n for a sequence hn > 0 satisfying
hn → 0 and nhn → ∞ as n → ∞. This is because they tried to estimate not only
the diffusion but also the drift and the Lévy characteristics such as a(x), c(x, z) and π.
We know well that it is impossible to estimate these characteristics without the asymp-
totics nhn → ∞. However it is nothing unusual in applications that the terminal nhn

is fixed. In this paper we suppose that the observations are obtained in [0, 1]-interval,
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and try to estimate the diffusion function with the estimation of the drift and the Lévy
characteristics abandoned.

When X is a diffusion process without jumps; µ ≡ 0, Florens-Zmirou (1993)
proposed a nonparametric estimator of the diffusion coefficient in view of the fact
that t−1E

[
(Xs+t − Xs)2|Xs = x

]
→ β(x) as t → 0 from the same type of obser-

vations as ours. However when X is a jump-diffusion, the limit is not only β(·).
Bandi and Nguyen (2003) extended their work to the case of jump-diffusions although
the sampling scheme is different; hn → 0 and nhn → ∞. They also focused on the fact
that

lim
t→0

1
t
E

[
(Xs+t − Xs)2|Xs = x

]
= β(x) +

∫
R

c2(x, z)π(z) dz, (2)

and discretized the above conditional expectation when t is small by using the local time
estimators for X. Such a procedure is essentially the same as in Florens-Zmirou (1993),
but the assumption that nhn → ∞ is necessary since the right-hand side of (2) includes
the Lévy characteristics. Moreover the fact (2) clearly does not indicate the possibility
of separate estimation of β(·) and

∫
c2(·, z) π(z)dz.

Our goal in this paper is to estimate β(·) separately under the sampling scheme
that nhn is fixed. In order to execute the separate estimation as above, we need to
discriminate whether the increment of neighboring data ∆iX

n = Xtn
i
− Xtn

i−1
includes

a jump or does not. An asymptotic filter proposed by Shimizu and Yoshida (2006)
or Shimizu (2006a) enables us to judge whether a jump occurred or not in (tni−1, t

n
i ].

Although it is a stochastic judgment, the error rate asymptotically decreases as n → ∞;
see Section 2. Using increments that are expected not to include any jump, we take
the similar argument to the one in Florens-Zmirou (1993); see Section 3, where some
estimators of the local time of X are presented. The estimator of β(x); say β̂n(x) is
constructed in combination with their local time estimators. Our main result is for the
consistency: lim

n→∞
β̂n(x) = β(x) in probability for appropriate points x ∈ R, which is

presented in Theorem 3.7.

2. The basic idea of estimation

Let Y be an one-dimensional diffusion process that follows dYt = ã(Yt) dt+b̃(Yt) dWt.
As already described, Florens-Zmirou (1993) focused attention to the following infinites-
imal conditional moment to construct an estimator of b̃2:

lim
τ→0

1
τ

E
[
(Yt+τ − Yt)2|Yt = x

]
= b̃2(x). (3)

This fact also indicates the possibility that we can extract only the diffusion part if we
can identify the increment from the time t to the first jump time. For that purpose, we
introduce the asymptotic filter proposed in Shimizu (2006a), which is originally due to
Shimizu and Yoshida (2006). The filter can separate the jumps of the process and the
increment by diffusions asymptotically, and it helps us to discretize the expectation in
(3). This is the basic idea in this paper. Indeed, the estimator of β(·) we propose in The-
orem 3.7 later would look like a discrete approximation of τ−1E

[
(Yt+τ − Yt)2|Yt = x

]
for small τ .

Before introducing the filter, we make the following assumptions, which is the
similar setting as in Florens-Zmirou (1993) and Shimizu (2006a).
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A 1 For a constant L and a function ζ(z) of polynomial growth in z, |a(x) − a(y)| +
|b(x) − b(y)| ≤ L|x − y|, |c(x, z) − c(y, z)| ≤ ζ(z)|x − y|, and |c(x, z)| ≤ ζ(z)(1 + |x|).

A 2 The Lévy density π is bounded and satisfies that
∫

R |z|pπ(z) dz < ∞ for any p > 0.
Moreover supt∈[0,1] E|Xt|p < ∞ for any p > 0.

A 3 There exists c0 > 0 such that infx∈R |c(x, z)| ≥ c0|z| in a neighborhood of z = 0.

A 4 The coefficient a is bounded and twice continuously differentiable with bounded
derivatives. The coefficient b is three times continuously differentiable with bounded
derivatives such that there exists constants k and K with 0 < k ≤ b(x) ≤ K.

In the sequel, we use the following notation. Denote by ∆iX
n := Xtn

i
−Xtn

i−1
; the

increments of X in the interval (tni−1, t
n
i ], and denote by Jn

i the number of jumps in that
interval. The symbol Pn

i−1 stands for the conditional probability on σ-field Ftn
i−1

, and
En

i−1 means that the expectation with respect to Pn
i−1, that is, Pn

i−1{ · } = P{ · |Ftn
i−1

}
and En

i−1[ · ] = E[ · |Ftn
i−1

]. Moreover X . Y means there exists a constant c > 0 such
that X ≤ cY . Let un be a real valued sequence, and R : R × R → R be a function for
which there exists a constant C such that R(un, x) . un(1 + |x|)C for all x ∈ Rd and
n ∈ N.

The following lemma is due to Shimizu (2006a), which is the key result in this
paper.

Lemma 2.1. Suppose Assumptions A 1–A 3. Fix an arbitrary constant L > 0 and
ρ ∈ [0, 1/2). Then the following inequalities are valid for any p ≥ 1 and sufficiently large
n ∈ N:

Pn
i−1{|∆iX

n| ≤ Ln−ρ, Jn
i = 0} = R(1, Xtn

i−1
),

Pn
i−1{|∆iX

n| ≤ Ln−ρ, Jn
i = 1} = R(n−(1+ρ), Xtn

i−1
),

Pn
i−1{|∆iX

n| ≤ Ln−ρ, Jn
i ≥ 2} = R(n−2, Xtn

i−1
),

Pn
i−1{|∆iX

n| > Ln−ρ, Jn
i = 0} = R(n−p, Xtn

i−1
),

Pn
i−1{|∆iX

n| > Ln−ρ, Jn
i = 1} = R(n−1, Xtn

i−1
),

Pn
i−1{|∆iX

n| > Ln−ρ, Jn
i ≥ 2} = R(n−2, Xtn

i−1
).

This lemma implies that, under n → ∞, we can judge that the interval (tni−1, t
n
i ] has no

jump if |∆iX
n| ≤ Ln−ρ and the interval has a single jump if |∆iX

n| > Ln−ρ, and that
we can ignore the event which includes more than two jumps in that interval. Although
this lemma holds for any L > 0 and ρ ∈ [0, 1/2) if we take sufficiently large n ∈ N, it is
important in applications to choose L and ρ suitably for fixed n. On some methods to
choose a suitable (L, ρ), see Shimizu (2007b).

Let us define the further notation: Cn
i = ∪2

j=1Cn
i,j ; i = 1, . . . , n, where

Cn
i,j := {|∆iX

n| ≤ Ln−ρ, Jn
i = j} (j = 0, 1),

Cn
i,2 := {|∆iX

n| ≤ Ln−ρ, Jn
i ≥ 2}.

Thanks to the previous lemma, we obtain the following estimates for moments of the
increments ∆iX

n, which are provided in Shimizu and Yoshida (2006), Proposition 3.2.
Therefore their proofs are omitted here.
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Lemma 2.2. Suppose Assumptions A 1–A 3. Then

En
i−1

[
∆iX

n1(Cn
i,0)

]
= a(Xtn

i−1
)n−1 + R(n−2, Xtn

i−1
), (4)

En
i−1

[
(∆iX

n)21(Cn
i,0)

]
= β(Xtn

i−1
)n−1 + R(n−2, Xtn

i−1
), (5)

En
i−1

[
(∆iX

n)31(Cn
i,0)

]
= R(n−2, Xtn

i−1
), (6)

En
i−1

[
(∆iX

n)41(Cn
i,0)

]
= 3β2(Xtn

i−1
)n−2 + R(n−3, Xtn

i−1
), (7)

where 1(A) is the indicator function of a set A.

Remark. Under the same assumptions as in Lemma 2.2, we see that

En
i−1

[
|∆iX

n|N1(Cn
i,0)

]
= R(n−N/2, Xtn

i−1
) (8)

for any N ≥ 1. See Remark 3.1 in Shimizu and Yoshida (2006).

In the next section, we propose some estimators of the local time of X, which will
play the role of τ in (3), and together with Lemma 2.2 enables us to discretize the
infinitesimal conditional moments in (3).

3. Local time estimates

Before the discussion for estimators of the local time, we shall state some auxiliary
results for the local time of semimartingales.

Notice that the assumption
∫

R π(z) dz < ∞ implies that
∑

0≤t≤1 |∆Xt| < ∞ a.s.,
which is an important hypothesis for the following useful lemma; see e.g. Protter (2004).

Lemma 3.1. We denote by Lt(x) the local time of the jump-diffusion (1) in x during
[0, t], then Lt(x) has a version with càdlàg in x and continuous in t, and the following
equalities hold true:

Lt(x) = Lt(x+) = lim
ε→0

1
ε

∫ t

0

1({x ≤ Xs ≤ x + ε}) d[X,X]cs a.s.,

Lt(x−) = lim
ε→0

1
ε

∫ t

0

1({x − ε ≤ Xs ≤ x}) d[X,X]cs a.s.,

where [X,X]c is the path-by-path continuous part of the quadratic variation of X.

Moreover we denote by L̄t(x) the symmetric version of the local time, that is,

L̄t(x) :=
Lt(x+) + Lt(x−)

2
= lim

ε→0

1
2ε

∫ t

0

1({|Xs − x| ≤ ε}) d[X,X]cs a.s.

The next lemma is known as the occupation time formula.

Lemma 3.2. Let X be a semimartingale with the local time Lt(x) in x during [0, t],
and let g be a bounded Borel function. Then∫ ∞

−∞
Lt(x)g(x) dx =

∫ t

0

g(Xs−) d[X,X]cs a.s.
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Now, let us construct estimators of the local time L̄t(·) from the data (Xtn
i
)0≤i≤n

using the asymptotic filter Cn := {Cn
i }n

i=1, and show their asymptotic behaviors.
First we prepare a lemma. Hereafter we use a convention

∑0
i=1 ≡ 0 and use

I+(y) = 1({0 ≤ y ≤ 1}), I−(y) = 1({−1 ≤ y ≤ 0}), I(y) =
1
2
1({|y| ≤ 1}).

Lemma 3.3. Suppose Assumption A 4. Let {δn}n∈N be a sequence such that δn → 0
and nδn

2 → ∞ as n → ∞, and let Λn =
√

ne−Cnδn
2

for a constant C > 0. Then it
follows for each i = 1, . . . , n and any s ∈ (tni−1, t

n
i ] that∥∥∥∥{

I

(
Xtn

i−1

δn

)
− I

(
Xs−

δn

)}
1({Jn

i = 0})
∥∥∥∥

L1

= O(Λn)

as n → ∞.

Proof. Let Y be a strong solution process to the SDE dYt = a(Yt) dt+ b(Yt) dWt

and Ytn
i−1

= Xtn
i−1

. Then (Xt)t∈(tn
i−1,tn

i ] is indistinguishable from (Yt)t∈(tn
i−1,tn

i ] on the
set {Jn

i = 0}. Hence it follows for any s ∈ (tni−1, t
n
i ]; i = 1, . . . , n, that∥∥∥∥{

I

(
Xtn

i−1

δn

)
− I

(
Xs−

δn

)}
1({Jn

i = 0})
∥∥∥∥

L1

≤
∥∥∥1({|Xtn

i−1
| ≤ δn}) − 1({|Ys−| ≤ δn})

∥∥∥
L1

=
∥∥∥1({|Xtn

i−1
| ≤ δn, |Ys−| > δn})

∥∥∥
L1

+
∥∥∥1({|Xtn

i−1
| > δn, |Ys−| ≤ δn})

∥∥∥
L1

= P
{
|Xtn

i−1
| ≤ δn, |Ys−| > δn

}
+ P

{
|Xtn

i−1
| > δn, |Ys−| ≤ δn

}
.

Here we denote by pt(x, y) the transition kernel of the process Y from x to y in time t.
Then it follows under A 4 that

pt(x, y) . 1√
t
exp

(
−c(x − y)2

2t

)
(9)

for a positive constant c; see Friedman (1964) p257. Therefore we easily see that
sup|x|<δn

|pt(x, y)| . t−1/2 exp(−cy2/2t); see also Lemma 1 in Florens-Zmirou (1993).
Therefore, denoting by Dn

i (dx) the distribution of Xtn
i−1

, we have

P
{
|Xtn

i−1
| ≤ δn, |Ys−| > δn

}
=

∫ δn

−δn

∫
|y|>δn

ps−tn
i−1

(x, y) dyDn
i (dx)

.
∫ δn

−δn

∫
|y|>δn

1√
s − tni−1

e
− cy2

2(s−tn
i−1) dyDn

i (dx)

.
√

ne−Cnδn
2

(C > 0).

The same argument as above is possible on the term P{|Xtn
i−1

| > δn, |Ys−| ≤ δn} since
we also see by (9) that sup|y|<δn

|pt(x, y)| . t−1/2 exp
(
−c′y2/2t

)
(c′ > 0). 2
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Lemma 3.4. Suppose Assumptions A 1–A 4, and that δn ↓ 0, nδn
2 → ∞ and

δn
−1Λn → 0 as n → ∞. Let g be a function that is bounded and Lipschitz continuous,

and let

G
(n)
t (x) =

1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
1(Cn

i )

for an arbitrary t ∈ (0, 1]. Then the following convergence holds true for any x ∈ R:

lim
n→∞

‖G(n)
t (x) − g(x)β−1(x)L̄t(x)‖L1 = 0.

Proof. Notice the following decomposition:

‖G(n)
t (x) − g(x)β−1(x)L̄t(x)‖L1

≤

∥∥∥∥∥∥ 1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
1({Jn

i = 0}) − g(x)β−1(x)L̄t(x)

∥∥∥∥∥∥
L1

+

∥∥∥∥∥∥ 1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
1(Cn

i,1 ∪ Cn
i,2)

∥∥∥∥∥∥
L1

+

∥∥∥∥∥∥ 1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
1({|∆iX

n| > Ln−ρ, Jn
i = 0})

∥∥∥∥∥∥
L1

=: α1 + α2 + α3.

On the second term α2, it is easily seen that α2 ≤ δn
−1P{Cn

i,1 ∪ Cn
i,2} since g and I are

bounded. Thus α2 = O
(
δn

−1n−(1+ρ)
)
→ 0 as n → ∞. Similarly, we see that α3 → 0.

Let us estimate the first term α1. In the sequel, we assume t = 1 and x = 0
without loss of generality; see Florens-Zmirou (1993), and denote by G

(n)
1 (0) = G(n)

and L̄1(0) = L̄. We show G(n) converges to g(0)β−1(0)L̄ in L1-sense.

Notice that

α1 ≤
∥∥∥∥G(n)1({Jn

i = 0}) −
∫ 1

0

g(Xs−)
δnβ(Xs−)

I

(
Xs−

δn

)
d[X,X]cs

∥∥∥∥
L1

+
∥∥∥∥∫ 1

0

g(Xs−)
δnβ(Xs−)

I

(
Xs−

δn

)
d[X,X]cs − g(0)β−1(0)L̄

∥∥∥∥
L1

=: γ1 + γ2.

On the term γ1, noticing that d[X,X]ct = β(Xt) dt, the Lipschitz condition for g, and
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that g and I are bounded function, it follows by Lemma 3.3 that

γ1 ≤ 1
δn

n∑
i=1

∫ tn
i

tn
i−1

∥∥∥∥g(Xtn
i−1

)
{

I

(
Xtn

i−1

δn

)
− I

(
Xs−

δn

)}
1({Jn

i = 0})
∥∥∥∥

L1

ds

+
1
δn

n∑
i=1

∫ tn
i

tn
i−1

∥∥∥∥I

(
Xs−

δn

){
g(Xtn

i−1
) − g(Xs−)

}∥∥∥∥
L1

ds

. δn
−1

n∑
i=1

∫ tn
i

tn
i−1

∥∥∥∥I

(
Xtn

i−1

δn

)
− I

(
Xs−

δn

)∥∥∥∥
L1

ds + δn
−1

n∑
i=1

∫ tn
i

tn
i−1

∥∥∥Xs− − Xtn
i−1

∥∥∥
L1 ds

= O
(
δn

−1(Λn + n−1/2)
)
→ 0 (n → ∞).

On the term γ2, thanks to Lemma 3.2, we obtain that

γ2 =
∥∥∥∥∫ ∞

−∞
L̄1(r)

g(r)
δnβ(r)

I

(
r

δn

)
dr − g(0)β−1(0)L̄

∥∥∥∥
L1

=
∫

R

∥∥∥∥ g(δnq)
β(δnq)

L̄1(δnq) − g(0)
β(0)

L̄

∥∥∥∥
L1

I(q) dq

. 1
2

∫ ∞

0

∥∥L̄(δnq) − L̄1(0+)
∥∥

L1 I(q) dq

+
1
2

∫ 0

−∞

∥∥L̄(δnq) − L̄1(0−)
∥∥

L1 I(q) dq

+ ‖L̄‖L1

∫
R

∣∣∣∣ g(δnq)
β(δnq)

− g(0)
β(0)

∣∣∣∣ I(q) dq.

Here we see that L̄1(δnq) is uniformly integrable since supn,q:|q|≤1 E|L̄(δnq)|2 < ∞, which
can be shown by Assumption A 2 and Tanaka’s formula (e.g. Protter (2004), p.213,
Theorem 68). Moreover L̄(±δnq) → L̄(0±) a.s. by Lemma 3.1. Hence L̄(±δnq) → L̄(0±)
in L1. Furthermore the bounded term g(δnq)β−1(δnq) → g(0)β−1(0) by the continuity.
Therefore the last three terms converge to zero as n → ∞ by the Lebesgue convergence
theorem since I(q) dq is a probability measure. This completes the proof. 2

Remark. Suppose the same assumptions as in Lemma 3.4, and let

G̃
(n)
t (x) =

1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
,

Then we also see that lim
n→∞

‖G̃(n)
t (x) − g(x)β−1(x)L̄t(x)‖L1 = 0 for all x ∈ R since

‖G(n)
t (x) − G̃

(n)
t (x)‖L1 =

∥∥∥∥∥∥ 1
nδn

[nt]∑
i=1

g(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
1({|∆iX

n| > Ln−ρ})

∥∥∥∥∥∥
L1

= O(n−1δn
−1),

which tends to zero as n → ∞.
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By Remark 3., we have the following.

Corollary 3.5. Suppose the same assumptions as in Lemma 3.4. Then

L
(n)
t (x) :=

1
nδn

[nt]∑
i=1

I

(
Xtn

i−1
− x

δn

)
→ β−1(x)L̄t(x),

B
(n)
t (x) :=

1
nδn

[nt]∑
i=1

β(Xtn
i−1

)I
(

Xtn
i−1

− x

δn

)
→ L̄t(x)

in L1-sense as n → ∞.

The above estimator B
(n)
t (·) still includes the unknown function β. Therefore we

provide its empirical version as follows.

Lemma 3.6. Let

B̂
(n)
t (x) =

1
δn

[nt]∑
i=1

I

(
Xtn

i−1
− x

δn

)
(∆iX

n)21(Cn
i ).

Suppose the same assumptions as in Lemma 3.4. Then, for all x ∈ R and t ∈ (0, 1]

B̂
(n)
t (x)

p−→ L̄t(x). (10)

Proof. We shall show that B̂
(n)
t (x) − B

(n)
t (x)

p−→ 0, then Corollary 3.5 yields
the consequence. For that purpose, it suffices to show the following two conditions; see
Genon-Catalot and Jacod (1993), Lemma 9: as n → ∞,

[nt]∑
i=1

En
i−1

[
1
δn

I

(
Xtn

i−1
− x

δn

)
(∆iX

n)21(Cn
i )

]
− B

(n)
t (x)

p−→ 0, (11)

[nt]∑
i=1

En
i−1

[∣∣∣∣ 1
δn

I

(
Xtn

i−1
− x

δn

)
(∆iX

n)21(Cn
i )

∣∣∣∣2
]

p−→ 0. (12)

On (11), we see by Lemma 2.2, (5) that

[nt]∑
i=1

En
i−1

[
1
δn

I

(
Xtn

i−1
− x

δn

)
(∆iX

n)21(Cn
i )

]
− B

(n)
t (x)

=
1

nδn

[nt]∑
i=1

I

(
Xtn

i−1
− x

δn

)
En

i−1

[
n(∆iX

n)21(Cn
i ) − β(Xtn

i−1
)
]

= Op

(
1

nδn

)
p−→ 0.
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Moreover, on (12), we see by Lemma 2.2, (7) that

[nt]∑
i=1

En
i−1

[∣∣∣∣ 1
δn

I

(
Xtn

i−1
− x

δn

)
(∆iX

n)21(Cn
i )

∣∣∣∣2
]

=
1

δn
2

[nt]∑
i=1

I

(
Xtn

i−1
− x

δn

)
En

i−1

[
(∆iX

n)41(Cn
i )

]
= Op

(
1

nδn
2

)
p−→ 0.

This ends the proof. 2

The next theorem is our main result, which is the direct consequence from Corollary
3.5 and Lemma 3.6.

Theorem 3.7. Suppose Assumptions A 1–A 4, and that δn ↓ 0, nδn
2 → ∞ and

δn
−1Λn → 0 as n → ∞. Then the estimator β̂n(x) := B̂

(n)
1 (x)/L

(n)
1 (x) is consistent to

β(x) for all x ∈ R with L̄1(x) > 0:

β̂n(x)
p−→ β(x)

as n → ∞.

Remark. Mancini (2004) also proposes the same type of the asymptotic filter,
which can also be applied to our purpose. However, in that case, the order condition for
δn would be changed.

Remark. Under the asymptotics hn → 0 and nhn → ∞, it would also be possible
to estimate β(·) and

∫
c2(·, z)π(z) dz separately, and also a(·) by operating the asymp-

totic filter to kernel estimators by Bandi and Nguyen (2003). In particular, when c(x, z)
is known, Shimizu (2007a) proposes a nonparametric estimator of

∫
G(·, z)π(z) dz for

any known function G.
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sion processes with jumps, J. Japan Statist. Soc. 36, no. 1, 37–62.

Shimizu, Y. (2006b). M -estimation for discretely observed ergodic diffusion processes
with infinitely many jumps, Statist. Infer. Stochastic Proc. 9, no. 2, 179–225.

Shimizu, Y. (2007a). . Semiparametric estimation of Lévy characteristics of jump-
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