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ABSTRACT 
This paper proposes the concept of performance balancing, and 
reports its performance impact on a Chip multiprocessor (CMP). 
Integrating multiple processor cores into a single chip, or CMPs, 
can achieve higher peak performance by means of exploiting 
thread level parallelism. However, the off-chip memory 
bandwidth which does not scale with the number of cores tends to 
limit the potential of CMPs. To solve this issue, the technique 
proposed in this paper attempts to make a good balance between 
computation and memorization. Unlike conventional parallel 
executions, this approach exploits some cores to improve the 
memory performance. These cores devote the on-chip memory 
hardware resources to the remaining cores executing the 
parallelized threads. In our evaluation, it is observed that our 
approach can achieve 31% of performance improvement 
compared to a conventional parallel execution model. 

Categories and Subject Descriptors 
D1.3 [PROGRAMMING TECHNIQUES]: Concurrent 
Programming — parallel programming  

General Terms 
Performance, Management 

Keywords 
Chip MultiProcessors, Scratchpad Memory, Parallel Execution, 
Memory-wall Problem 

 

 

 

 

 

1. INTRODUCTION 
 Integrating multiple processor cores into a single chip, or CMP, 
is a de-facto standard for high performance computing area. By 
exploiting thread level parallelism (or TLP), CMPs achieve high 
peak performance. Industry trends show that the number of cores 
in a chip will increase every process generation, so that improving 
efficiency of parallel executions becomes more important.  
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Figure 1: Impact of memory performance 

Although the on-chip parallel processing is a promising way, 
CMPs cannot always achieve expected peak performance, 
especially for memory intensive applications. This is because the 
memory-wall problem becomes more serious in CMPs. In state-
of-the art CMP designs, the off-chip memory access latency is 
almost two orders of magnitude longer than one operation time 
(or clock cycle time) of processor cores. Moreover, due to I/O pin 
limitations, off-chip memory bandwidth does not scale with the 
number of cores. Figure 1 shows the performance improvement 
achieved by increasing the number of cores on a CMP. Here, we 
assume CMP models which have a 256KB realistic private L2 
cache or ideal perfect L2 cache. The two benchmark programs 
from SPLASH-2 [14] were executed by using M5 cycle accurate 
CMP simulator [2]. For Barnes, the performance improvement is 
in almost proportional to the number of cores used. However, for 
Cholesky, it is clear that the CMP performance is limited by the 
inefficient memory system. As in the examples given above, in 
memory intensive programs, a conventional approach which 
attempts to exploit all cores to execute parallelized threads does 
not achieve high performance.  

To solve the memory performance issue on CMPs, in this 
paper, we propose a parallel execution technique called 
performance balancing. In conventional approaches, all cores 
execute parallelized application threads to exploit TLP. On the 
other hand, our approach attempts to exploit some cores not only 
for executing parallelized threads but for improving memory 
performance. Our approach aims to improve the total performance 
by means of making a good balance between computing and 
memory performance. The contribution of this paper is as follows. 

 

 The concept of performance balancing to improve the CMP 
performance is proposed. We focus on software-controllable 
on-chip memory architecture such as Cell Broadband 
Engine (Cell/B.E.) [9], and show a performance model to 
discuss the efficiency of our approach. 



 We propose a software technique to realize the performance 
balancing on the targeted CMP. To improve the memory 
performance, we dare to throttle TLP, i.e. the parts of cores 
execute parallelized application threads. The other 
remaining cores release their on-chip memory to the 
executing cores. Our technique appropriately allocates these 
two types of cores with the aims of maximum total 
performance. 

 We implement three benchmark programs to evaluate the 
efficiency of the proposed approach. As the results, it is 
observed that using five cores for execution and two cores 
for memory assist achieves 31% of performance 
improvement compared to the conventional parallel 
execution.  

The rest of this paper is organized as follows. Section 2 reviews 
related work. Section 3 describes our proposed technique called 
performance balancing. Section 4 shows the evaluation results, 
and Section 5 concludes the paper. 

2. RELATED WORK 
There are many techniques to improve memory performance in 

CMPs. These techniques fall into the two main categories: hiding 
memory access time and reducing the number of off-chip memory 
accesses. Data prefetching technique is categorized into the first 
type and has been proposed by several researchers [3][7]. Cantin 
et al. [3] proposed stealth prefetching which reduces the number 
of invalidation of prefetched data for cache coherency. To obtain 
the information on other cores, prefetcher does not issue prefetch 
requests for the data to be held in other cores. This leads to 
reducing the number of extra broadcast originated from data 
prefetching. Ganusov et al. [7] proposed helper threads for 
improving memory performance. Executing the helper thread 
which emulates hardware prefetching can improve memory 
performance for another core. Their approach appears similar to 
our approach in improving memory performance using processor 
cores. While their approach improves the single-thread 
application performance using an idle core to execute helper 
thread, our approach focuses on improving parallel program 
performance using core to assist other cores instead of executing 
parallelized thread.  

In another type of category, several approaches which reduce 
the number of off-chip memory accesses have been proposed. 
Cooperative cache [4] reduces cache misses with copying data to 
remote cache if cache memory has the data exclusively. This 
approach is needed to modify coherency protocol. To be 
effectively allocated data into, software-managed local memory 
(call scratchpad memory or SPM in this paper) can achieve high 
performance and low power compared to cache memory. 
However, at the same time, this allocation requires extra effort to 
coding source code. To solve this issue, many researchers have 
proposed allocation techniques which allocate effective data 
automatically into SPMs at compile time [1] [11][13]. In these 
techniques, the number of SPM accesses is maximized under 
certain conditions. These techniques can be categorized into two 
types by the difference of conditions: dynamic allocation [13] and 
static allocation [1][11]. While dynamic allocation replaces the 
data in  
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Figure 2: Concept of Performance Balancing 
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Figure 3: Workflow of Applying Performance Balancing 
 
SPMs, while static allocation does not replace them during 
execution time. Dynamic allocation has an advantage over static 
allocation in memory performance. On the other hand, static 
allocation improves energy efficiency compared to dynamic 
allocation.  

A few prior studies have already started to manage processor 
cores in response to changing the situation on CMPs. Increasing 
the number of processor cores can degrades parallel processing 
performance due to synchronization overhead, limitation of off-
chip memory bandwidth, and so on. To solve this phenomenon, 
Suleman et al. [12] and Curtis-Maury et al. [6] proposed 
concurrency throttling which changes the number of execution 
cores considering the characteristics of program. In these 
approaches, the best number of execution cores is estimated using 
profile information at runtime, and then program is executed with 
the number of cores. While their approaches improve 
performance only if increasing the number of execution cores 
degrades performance, our approach can improve performance in 
this case due to improving memory performance to use remaining 
cores. 
 

3. PERFORMANCE BALANCING 
3.1 Processor Model 

Figure 2 shows the CMP model targeted in this paper. Each 
core has SPM and these SPMs are connected an on-chip 
interconnection such as ring or shared bus. Memory accesses 
operate by DMA transfer except for access to own SPM. The 



computation at the processor cores and the data transfer between 
the off-chip memory and SPM can be overlapped by using DMA 
controller. 

3.2 Concept of Performance Balancing 
For memory intensive programs, the conventional parallel 

execution method does not achieve high performance. In Figure 1, 
the six-core CMP with the perfect cache achieves higher 
performance than the eight-core CMP with 256KB private L2 
caches. In other words, for the eight-core CMP, there is a 
possibility that best performance can be achieved by using the six 
cores for code execution and the two cores for memory 
performance improvement. 

To improve the total performance of CMPs, we propose the 
concept of performance balancing. This approach attempts to 
exploit some cores for improving memory performance as shown 
in Figure 2. Here, we define the following terminology to help 
understanding our approach. 

 Main core: It executes parallelized application threads, and 
can exploit the SPMs provided by the helper cores as a new 
level of on-chip memory hierarchy. 

 Helper core: It does not execute application threads, but 
release own SPM to main cores. 

The total number of cores implemented in a chip is a constant. 
Thus, increasing the number of helper cores means throttling TLP, 
resulting in lower computation performance. At the same time, 
since the main cores can exploit the SPMs provided by the helper 
cores, its memory performance is improved. Our approach 
attempts to decide the appropriate number of cores to be used as 
main and memory cores in order to maximize the CMP total 
performance. 

Figure 3 shows the workflow to which performance balancing 
is applied. First, our approach samples profile information to 
execute a target program for estimating the program behavior. 
Next, analyzing the profile information, we estimate an optimal 
data allocation of helper cores' SPM and the best number of 
main/helper cores. Finally, using the information, the original 
source code is transformed to objective source code. 

3.3 Performance Modeling 
In this section we discuss the impact of our approach on CMP 
performance modeling execution time. Let )(nTexe  be the 

execution time with a perfect on-chip memory and ),( nmTmem  
be the time of DMA transfer when there are n  main cores and m  
helper cores. Then, the execution time of a main core ),( nmT  
can be approximated by the following  s. 
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Let F  be the time to execute the parallel part of the program 
with one main core. ),( nmTmem  represents the product of the 

number of DMA transfers )(nAC  and average DMA transfer 

time AMAT . iAT  means access time to memory component i , 

where i  is SPM, or main memory. For example, SPMAT  
represents access time to a remote SPM. The rate of SPM-to-SPM 
data transfers represents )(mHRSPMR  i.e., this term is division of 
the number of SPM-to-SPM data transfer and that of whole 
memory accesses. 
Here we assume that DMA transfer is also parallelized based on 
F . )(nAC  can be expressed by the following equation. 

⎟
⎠
⎞

⎜
⎝
⎛ −+×= F

n
FACnAC 1)1()(         (5) 

Based on these equations, we discuss that our approach impacts 
on the CMP performance. We firstly focus on how the number of 
main cores impacts on CMP performance. If the number of main 
cores n  is increased with that of helper cores m fixed, 

),( nmTmem  and )(nTexe  are decreased. This is caused by 
increasing n  reduces the load of computation and DMA transfer 
per a main core (see the Equation (2) and (5)). On the other hand, 
increasing the value of m  with fixed that of n  improves 

),( nmTmem  due to enlarging )(mHRSPMR  in Equation (4). 
Increasing m  or n  causes the performance improvement, but 
the sum of m  and n  cannot exceed the all number of cores in the 
chip. Consequently, the value of m  and n  largely affects CMP 
performance and the optimal number of main and helper cores 
which achieves the maximum performance is depend on F , 

)(nAC , and )1(exeT  which are varied with application program 
characteristic. Thus, it is important to specify the appropriate 
value of m  and n  with respect to each program. This way is 
explained at Section 3.4.  

)(mHRSPMR  is also changed by how effective data is loaded 
into the SPM of helper cores. Loading more data requested by 
main cores improves )(mHRSPMR . We explain how to determine 
the data stored in SPM of helper cores in Section 3.5. 

 

3.4 Prediction of Optimal Core Allocation 
In our approach, program should be executed with the 

appropriate number of main/helper cores. The appropriate number 
of cores varies with characteristics of program, input set and 
machine configuration. Thus, we propose profile-based prediction 
technique for optimal core allocation. 

First, our approach samples profile information to execute a 
program for estimating the program behavior. Next, we calculate 
execution time for each core combination based on the 
performance modeling. The optimal core allocation is estimated 
by choosing the best combination of cores to achieve best 
performance. 

To calculate execution time with respect to each combination 
of cores, our approach uses the equations in Section 3.4. All terms 
except for access time to SPM and main memory are estimated 
using pre-execution information with one main core and no helper 
core. To measure F , time function is inserted at the begin and 
end of the parallel part in source code. F  is calculated by the 



difference of this time and whole execution time. )1(AC  can be 
measured by performance counter. )(mHRSPMR  can be estimated 
by comparing the allocation data into the SPM of helper cores and 
DMA transfer trace. This is because mapping data for each 
number of helper cores are previously determined and the data 
targeted by DMA transfer are previously obtained. )1(exeT  can be 
obtained to assign )1,0(),( =nm  to Equation (1) since )1,0(T  
and )1,0(memT  can be calculated. 

 

3.5 Data Mapping to SPM of Helper Cores 
In our approach, main cores use SPM of helper cores as the 

second hierarchical memory. If helper cores have the data 
demanded by the main core, the main core can obtain the data by 
high-speed SPM-to-SPM data transfer without accessing main 
memory. Consequently, loading more effective data in helper 
cores corresponds to more memory performance improvement in 
main cores. This section describes how to determine the data 
loaded into SPM of helper cores. 

Our approach decides the data which is loaded into SPM in 
helper cores for the purpose that minimizes the number of main 
memory accesses. Helper cores do not reload other data during 
program execution. This kind of technique has been proposed in 
area of SPMs as static allocation [1][11]. To allocate optimal data 
into SPM, static allocation minimizes the number of main 
memory accesses in a single core processor on the condition not 
to reload the data. We apply the static allocation technique to 
allocate the data of helper cores' SPM. Static allocation is applied 
as follows. First, static allocation obtains memory access trace by 
pre-executing. Next, the number of memory accesses is counted 
to each interval of address based on the trace. Finally, the data are 
loaded into on-chip memory in decreasing order of counts of main 
memory accesses. 

Note that our approach allocates statically data to SPMs of 
helper cores. Helper cores do not reload data dynamically even 
though this could be useful for long programs using the large 
amount of data. This is because frequently data reloading can 
cause performance degradation to increase synchronization 
overhead. Main cores must obtain the demanded data from helper 
cores or main memory to guarantee the expected behavior of 
program. If helper cores reload data into own SPM not to 
synchronize main cores, main core can obtain unexpected data. 
Using the unexpected data brings wrong behavior of program. 
Consequently, helper cores must synchronize main cores every 
time they replace the data. Also note that minimizing the number 
of main memory accesses does not correspond to maximizing the 
memory performance of main cores. Most processors to have 
SPMs can execute computation and DMA transfer at the same 
time. Processor core can continue computation during accessing 
to main memory. Consequently, there is no guarantee that stall 
time of cores is minimized in the case of minimizing the number 
of main memory accesses. The extensions to dynamic reloading 
and minimizing stall time are part of our future work. 
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Table 1: Details of Executed workloads 

Benchmark Problem description Input set 

HIMENO Poisson's equation  17x17x33(SSS), 
33x33x65(SS), 
65x65x129 (S) 

Susan Image processing Large input 

LU LU decomposition 512x512, 
1024x1024 

 
Table 2: Access Time to Each Memory Module 

Memory component Access time [CC] 

Remote LS (
SPMAT ) 106+transfer size/8 

Main memory (
mainAT ) 300+transfer size/4 

 

4. EVALUATION 
 

4.1 Experimental Setup 
In order to clarify the efficiency of the proposed approach, we 

have evaluated the performance of a Cell B.E. processor. Figure 4 
shows the microarchitecture of Cell/B.E. processor. Cell/B.E. has 
one PPE (PowerPC Processor Element) and eight SPEs 
(Synergistic Processor Elements) [9]. PPE which is general 
purpose processor assigns threads to SPEs and controls standard 
I/O. Each SPE has 256KB controllable on-chip memory call 
Local Store (LS). We apply our approach to SPEs without PPE. 
Since only seven SPEs are available on the Cell/B.E. chip, the 
maximum number of main cores is seven. Cell/B.E. accesses main 
memory or remote LSs with DMA transfer. The access time of 
DMA write does not vary where to access. Consequently, we 
allocate the data to minimize the read requests to main memory. 
Table 2 shows read access time to each module for performance 
modeling. We decided these values based on the reports [5], [10]. 

For the evaluation, we used HIMENO benchmark program 
[15], Susan in Mibench [8] and LU in SPLASH-2 [14]. These 
programs are modified for executing in Cell/B.E and are tuned for 
memory performance improvement. In HIMENO benchmark, 
there is a three dimension array, and the main function includes a 
four pipe loop. We parallelized at the second level loop and did  
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Figure 5: Rate of SPM-to-SPM data transfer (Read) 

 
not adapt special code tuning except for double buffering. Susan 
has four steps of program, which are (1) initialize, (2) edge 
reinforcement, (3) edge correction, and (4) stacking raw image. 
We parallelized the part of (2) and (4). Since SPLASH-2 is 
parallelized benchmark program suite, we do not arrange 
algorithm in LU. The input set of benchmarks is shown in Table 1. 
We used -O3 as a compile option, and took the average execution 
time of 10 times.  
We measure the real execution time of the following evaluation 
models. 

 CONV: This is a conventional model which uses all of the 
cores to execute parallelized threads, i.e. the number of 
main cores is equal to seven. 

 PB-IDEAL: This model is applied performance balancing 
with the optimal number of main/helper cores. The 
optimal core allocation is estimated by pre-execution of all 
combination of main/helper cores with the same input as 
the evaluated input. 

 PB-PREDICT: This model is applied performance 
balancing with the predicted number of main/helper cores. 
The predicted number of main/helper cores is calculated 
by the method explained in Section 3.4. We use the same 
input size as the evaluated input size.  
 

4.2 Reduction of Main Memory Accesses 
Figure 5 illustrates the proportion of SPM-to-SPM data transfer 

counts to whole DMA transfer counts for each benchmark 
programs. The x-axis represents the number of helper cores and 
the other remaining cores are used as that of main cores. In this 
graph, the proportion of SPM-to-SPM data transfer is higher in  
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Figure 6: Execution Time Varying the Number of Cores 

 
increasing the number of helper cores in all programs. This is 
because increasing the number of helper cores enlarges the 
capacity of on-chip memory available to main cores. Increasing 
the data capacity to be used as second hierarchical memory 
enlarges the rate of SPM-to-SPM transfer. Another important 
aspect of Figure 5 is that the rate of SPM-to-SPM transfer even in 
the same program and the same number of helper cores is quite 
different among the input size. This is because executing program 
with large input set increases the data capacity to be used during 
program execution. Our approach does not replace the data of 
helper cores after the data allocation for helper cores is 
determined. Consequently, the amount of data to be used in 
program execution affects largely the proportion of SPM-to-SPM 
data transfer rate.  

4.3 Accuracy of Core Allocation 
 

Figure 6 shows the execution time applying performance 
balancing as the number of main/helper cores varies. X-axis 
represents the number of main and helper cores. For example, 1:6 
means one main core and six helper cores. Estimate of graph 
legends represents the execution time estimated by the 
performance modeling and Real represents the execution time of 
the real machine. For Himeno (S), the estimated execution time 
matches the real execution time. For the others, these two kinds of 
time are quite different. This observation is not important for our 
approach, since the purpose of performance modeling is to predict 
the appropriate number of main and helper cores. Consequently, it 
is more important to predict the best number of main and helper 
cores to accurately model relative execution time. Looked at from 
this angle, our performance model works well. In HIMENO (S), 
HIMENO (SS), Susan, and LU, our approach can predict the best 
number of cores which achieves the highest performance. In the  
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Figure 7: Performance Normalized with Conventional 

Approach 
 

other programs, our approach estimates the second best number of 
cores. 

4.4 Performance 
Figure 7 illustrates the performance of the three evaluation 

models normalized by the CONV model. X-axis is the name of 
benchmark programs and input size. The numerical character 
above the bars represents the ratio of the number of main 
cores/helper cores. For example, 6:1 means six main cores and 
one helper core. In HIMENO (SSS) and HIMENO (SS), 
performance balancing in optimal core allocation improves 
performance by 39% and 9%, respectively. This is because 
memory performance improvement exceeds computation 
performance degradation originated form decrease in the number 
of main cores. On the other hand, our approach improves 31% 
and 9% in HIMENO (SSS) and HIMENO (SS) in PB-PREDICT. 
This result shows that our prediction technique works well. In the 
others, our approach does not improve performance even with the 
best number of main and helper cores. This result demonstrates 
that conventional approach which executes programs with all 
cores is the best case. Even in these programs, our proposed 
technique does not degrade the performance to predict the best 
allocation of cores.  

In almost all programs, performance balancing does not 
improve total performance. This is mainly because helper cores 
cannot improve higher memory performance than the degradation 
of computation performance in HIMENO(S) and LU (1024) which 
use large amount of data. Actually, in these programs, the effect 
of reducing the number of main memory accesses is small 
observed in Figure 5. To achieve high performance in these 
programs, it is necessary to effectively load important data into 
helper cores’ LS such as the dynamic allocation technique. In 
susan, on the other hand, even though the largely number of main 
memory accesses is replace to SPM-to-SPM transfer, our 
approach does not improve the total performance. This is why 
memory performance is not performance bottleneck and 
performance scales in proportional to the number of cores. 

5. CONCLUSIONS 
In many-core era, it is important to bring out potential 

performance in processor chip to operate processor cores 
concertedly. We have researched techniques of orchestrating 
processor cores in multicore systems for performance, energy, 
reliability, and so on. As part of this project, this paper proposes 
the parallel execution technique called performance balancing. 

This approach exploits processor cores not only for executing 
parallelized threads, but also for improving memory performance 
considering the balance of memory and computation performance. 
Experimental results show up to 31% performance improvement 
to predict the appropriate number of main/helper cores.  

For future work, we develop more effective method for data 
mapping to SPMs of helper cores such as replacing mapping data 
during program execution. We also evaluate energy on our 
approach adding benchmark programs. 
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