
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Performance Balancing: Software-based On-chip
Memory Management for Effective CMP Executions

Fukumoto, Naoto
Department of Advanced Information Technology, Kyushu University

Imazato, Kenichi
Department of Advanced Information Technology, Kyushu University

Inoue, Koji
Department of Advanced Information Technology, Kyushu University

Murakami, Kazuaki
Department of Advanced Information Technology, Kyushu University

https://hdl.handle.net/2324/18827

出版情報：MEDEA2009, pp.28-34, 2009-09. ACM Press
バージョン：
権利関係：

 Performance Balancing: Software-based On-chip Memory
Management for Effective CMP Executions

Naoto Fukumoto, Kenichi Imazato, Koji Inoue, Kazuaki Murakami
Department of Advanced Information Technology, Kyushu University

744 Motooka, Nishi-ku, Fukuoka City, Japan

{fukumoto,imazato}@c.csce.kyushu-u.ac.jp, {inoue,murakami}@ait.kyushu-u.ac.jp

ABSTRACT
This paper proposes the concept of performance balancing, and
reports its performance impact on a Chip multiprocessor (CMP).
Integrating multiple processor cores into a single chip, or CMPs,
can achieve higher peak performance by means of exploiting
thread level parallelism. However, the off-chip memory
bandwidth which does not scale with the number of cores tends to
limit the potential of CMPs. To solve this issue, the technique
proposed in this paper attempts to make a good balance between
computation and memorization. Unlike conventional parallel
executions, this approach exploits some cores to improve the
memory performance. These cores devote the on-chip memory
hardware resources to the remaining cores executing the
parallelized threads. In our evaluation, it is observed that our
approach can achieve 31% of performance improvement
compared to a conventional parallel execution model.

Categories and Subject Descriptors
D1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming — parallel programming

General Terms
Performance, Management

Keywords
Chip MultiProcessors, Scratchpad Memory, Parallel Execution,
Memory-wall Problem

1. INTRODUCTION
 Integrating multiple processor cores into a single chip, or CMP,
is a de-facto standard for high performance computing area. By
exploiting thread level parallelism (or TLP), CMPs achieve high
peak performance. Industry trends show that the number of cores
in a chip will increase every process generation, so that improving
efficiency of parallel executions becomes more important.

0
2
4
6
8

10

1 2 3 4 5 6 7 8

Sp
ee

dU
p

of processor cores

Barnes

256KB L2$
Perfect L2$

0

5

10

15

1 2 3 4 5 6 7 8

Sp
ee

dU
p

of processor cores

Cholesky
256KB L2$
Perfect L2$

Figure 1: Impact of memory performance

Although the on-chip parallel processing is a promising way,
CMPs cannot always achieve expected peak performance,
especially for memory intensive applications. This is because the
memory-wall problem becomes more serious in CMPs. In state-
of-the art CMP designs, the off-chip memory access latency is
almost two orders of magnitude longer than one operation time
(or clock cycle time) of processor cores. Moreover, due to I/O pin
limitations, off-chip memory bandwidth does not scale with the
number of cores. Figure 1 shows the performance improvement
achieved by increasing the number of cores on a CMP. Here, we
assume CMP models which have a 256KB realistic private L2
cache or ideal perfect L2 cache. The two benchmark programs
from SPLASH-2 [14] were executed by using M5 cycle accurate
CMP simulator [2]. For Barnes, the performance improvement is
in almost proportional to the number of cores used. However, for
Cholesky, it is clear that the CMP performance is limited by the
inefficient memory system. As in the examples given above, in
memory intensive programs, a conventional approach which
attempts to exploit all cores to execute parallelized threads does
not achieve high performance.

To solve the memory performance issue on CMPs, in this
paper, we propose a parallel execution technique called
performance balancing. In conventional approaches, all cores
execute parallelized application threads to exploit TLP. On the
other hand, our approach attempts to exploit some cores not only
for executing parallelized threads but for improving memory
performance. Our approach aims to improve the total performance
by means of making a good balance between computing and
memory performance. The contribution of this paper is as follows.

 The concept of performance balancing to improve the CMP
performance is proposed. We focus on software-controllable
on-chip memory architecture such as Cell Broadband
Engine (Cell/B.E.) [9], and show a performance model to
discuss the efficiency of our approach.

 We propose a software technique to realize the performance
balancing on the targeted CMP. To improve the memory
performance, we dare to throttle TLP, i.e. the parts of cores
execute parallelized application threads. The other
remaining cores release their on-chip memory to the
executing cores. Our technique appropriately allocates these
two types of cores with the aims of maximum total
performance.

 We implement three benchmark programs to evaluate the
efficiency of the proposed approach. As the results, it is
observed that using five cores for execution and two cores
for memory assist achieves 31% of performance
improvement compared to the conventional parallel
execution.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 describes our proposed technique called
performance balancing. Section 4 shows the evaluation results,
and Section 5 concludes the paper.

2. RELATED WORK
There are many techniques to improve memory performance in

CMPs. These techniques fall into the two main categories: hiding
memory access time and reducing the number of off-chip memory
accesses. Data prefetching technique is categorized into the first
type and has been proposed by several researchers [3][7]. Cantin
et al. [3] proposed stealth prefetching which reduces the number
of invalidation of prefetched data for cache coherency. To obtain
the information on other cores, prefetcher does not issue prefetch
requests for the data to be held in other cores. This leads to
reducing the number of extra broadcast originated from data
prefetching. Ganusov et al. [7] proposed helper threads for
improving memory performance. Executing the helper thread
which emulates hardware prefetching can improve memory
performance for another core. Their approach appears similar to
our approach in improving memory performance using processor
cores. While their approach improves the single-thread
application performance using an idle core to execute helper
thread, our approach focuses on improving parallel program
performance using core to assist other cores instead of executing
parallelized thread.

In another type of category, several approaches which reduce
the number of off-chip memory accesses have been proposed.
Cooperative cache [4] reduces cache misses with copying data to
remote cache if cache memory has the data exclusively. This
approach is needed to modify coherency protocol. To be
effectively allocated data into, software-managed local memory
(call scratchpad memory or SPM in this paper) can achieve high
performance and low power compared to cache memory.
However, at the same time, this allocation requires extra effort to
coding source code. To solve this issue, many researchers have
proposed allocation techniques which allocate effective data
automatically into SPMs at compile time [1] [11][13]. In these
techniques, the number of SPM accesses is maximized under
certain conditions. These techniques can be categorized into two
types by the difference of conditions: dynamic allocation [13] and
static allocation [1][11]. While dynamic allocation replaces the
data in

core core

・・ ・・
core core

Main Cores Helper Cores

For memory intensive
applications, increase the
number of helper cores

idle

Execute programs
using their own SPM
and provided SPMs

Provide SPMs
to main cores

provided SPM

For compute intensive
applications, increase the

number of main cores

On‐chip interconnection

To off‐chip memory

SPM SPM SPM SPM

Figure 2: Concept of Performance Balancing

Source code

input
Profile

information

Mapping
data

Core allocation

Final
source code

Pre
execution

Analysis

Source code
transformation

Figure 3: Workflow of Applying Performance Balancing

SPMs, while static allocation does not replace them during
execution time. Dynamic allocation has an advantage over static
allocation in memory performance. On the other hand, static
allocation improves energy efficiency compared to dynamic
allocation.

A few prior studies have already started to manage processor
cores in response to changing the situation on CMPs. Increasing
the number of processor cores can degrades parallel processing
performance due to synchronization overhead, limitation of off-
chip memory bandwidth, and so on. To solve this phenomenon,
Suleman et al. [12] and Curtis-Maury et al. [6] proposed
concurrency throttling which changes the number of execution
cores considering the characteristics of program. In these
approaches, the best number of execution cores is estimated using
profile information at runtime, and then program is executed with
the number of cores. While their approaches improve
performance only if increasing the number of execution cores
degrades performance, our approach can improve performance in
this case due to improving memory performance to use remaining
cores.

3. PERFORMANCE BALANCING
3.1 Processor Model

Figure 2 shows the CMP model targeted in this paper. Each
core has SPM and these SPMs are connected an on-chip
interconnection such as ring or shared bus. Memory accesses
operate by DMA transfer except for access to own SPM. The

computation at the processor cores and the data transfer between
the off-chip memory and SPM can be overlapped by using DMA
controller.

3.2 Concept of Performance Balancing
For memory intensive programs, the conventional parallel

execution method does not achieve high performance. In Figure 1,
the six-core CMP with the perfect cache achieves higher
performance than the eight-core CMP with 256KB private L2
caches. In other words, for the eight-core CMP, there is a
possibility that best performance can be achieved by using the six
cores for code execution and the two cores for memory
performance improvement.

To improve the total performance of CMPs, we propose the
concept of performance balancing. This approach attempts to
exploit some cores for improving memory performance as shown
in Figure 2. Here, we define the following terminology to help
understanding our approach.

 Main core: It executes parallelized application threads, and
can exploit the SPMs provided by the helper cores as a new
level of on-chip memory hierarchy.

 Helper core: It does not execute application threads, but
release own SPM to main cores.

The total number of cores implemented in a chip is a constant.
Thus, increasing the number of helper cores means throttling TLP,
resulting in lower computation performance. At the same time,
since the main cores can exploit the SPMs provided by the helper
cores, its memory performance is improved. Our approach
attempts to decide the appropriate number of cores to be used as
main and memory cores in order to maximize the CMP total
performance.

Figure 3 shows the workflow to which performance balancing
is applied. First, our approach samples profile information to
execute a target program for estimating the program behavior.
Next, analyzing the profile information, we estimate an optimal
data allocation of helper cores' SPM and the best number of
main/helper cores. Finally, using the information, the original
source code is transformed to objective source code.

3.3 Performance Modeling
In this section we discuss the impact of our approach on CMP
performance modeling execution time. Let)(nTexe be the

execution time with a perfect on-chip memory and),(nmTmem
be the time of DMA transfer when there are n main cores and m
helper cores. Then, the execution time of a main core),(nmT
can be approximated by the following s.

),()(),(nmTnTnmT memexe += (1)

())1(1)(exeexe TF
n
FnT ×

⎭
⎬
⎫

⎩
⎨
⎧ −+= (2)

),()(),(nmAMATnACnmTmem ×= (3)

() mainSPMRSPMSPMR ATmHRATmHRnmAMAT ×−+×=)(1)(),((4)

Let F be the time to execute the parallel part of the program
with one main core.),(nmTmem represents the product of the

number of DMA transfers)(nAC and average DMA transfer

time AMAT . iAT means access time to memory component i ,

where i is SPM, or main memory. For example, SPMAT
represents access time to a remote SPM. The rate of SPM-to-SPM
data transfers represents)(mHRSPMR i.e., this term is division of
the number of SPM-to-SPM data transfer and that of whole
memory accesses.
Here we assume that DMA transfer is also parallelized based on
F .)(nAC can be expressed by the following equation.

⎟
⎠
⎞

⎜
⎝
⎛ −+×= F

n
FACnAC 1)1()((5)

Based on these equations, we discuss that our approach impacts
on the CMP performance. We firstly focus on how the number of
main cores impacts on CMP performance. If the number of main
cores n is increased with that of helper cores m fixed,

),(nmTmem and)(nTexe are decreased. This is caused by
increasing n reduces the load of computation and DMA transfer
per a main core (see the Equation (2) and (5)). On the other hand,
increasing the value of m with fixed that of n improves

),(nmTmem due to enlarging)(mHRSPMR in Equation (4).
Increasing m or n causes the performance improvement, but
the sum of m and n cannot exceed the all number of cores in the
chip. Consequently, the value of m and n largely affects CMP
performance and the optimal number of main and helper cores
which achieves the maximum performance is depend on F ,

)(nAC , and)1(exeT which are varied with application program
characteristic. Thus, it is important to specify the appropriate
value of m and n with respect to each program. This way is
explained at Section 3.4.

)(mHRSPMR is also changed by how effective data is loaded
into the SPM of helper cores. Loading more data requested by
main cores improves)(mHRSPMR . We explain how to determine
the data stored in SPM of helper cores in Section 3.5.

3.4 Prediction of Optimal Core Allocation
In our approach, program should be executed with the

appropriate number of main/helper cores. The appropriate number
of cores varies with characteristics of program, input set and
machine configuration. Thus, we propose profile-based prediction
technique for optimal core allocation.

First, our approach samples profile information to execute a
program for estimating the program behavior. Next, we calculate
execution time for each core combination based on the
performance modeling. The optimal core allocation is estimated
by choosing the best combination of cores to achieve best
performance.

To calculate execution time with respect to each combination
of cores, our approach uses the equations in Section 3.4. All terms
except for access time to SPM and main memory are estimated
using pre-execution information with one main core and no helper
core. To measure F , time function is inserted at the begin and
end of the parallel part in source code. F is calculated by the

difference of this time and whole execution time.)1(AC can be
measured by performance counter.)(mHRSPMR can be estimated
by comparing the allocation data into the SPM of helper cores and
DMA transfer trace. This is because mapping data for each
number of helper cores are previously determined and the data
targeted by DMA transfer are previously obtained.)1(exeT can be
obtained to assign)1,0(),(=nm to Equation (1) since)1,0(T
and)1,0(memT can be calculated.

3.5 Data Mapping to SPM of Helper Cores
In our approach, main cores use SPM of helper cores as the

second hierarchical memory. If helper cores have the data
demanded by the main core, the main core can obtain the data by
high-speed SPM-to-SPM data transfer without accessing main
memory. Consequently, loading more effective data in helper
cores corresponds to more memory performance improvement in
main cores. This section describes how to determine the data
loaded into SPM of helper cores.

Our approach decides the data which is loaded into SPM in
helper cores for the purpose that minimizes the number of main
memory accesses. Helper cores do not reload other data during
program execution. This kind of technique has been proposed in
area of SPMs as static allocation [1][11]. To allocate optimal data
into SPM, static allocation minimizes the number of main
memory accesses in a single core processor on the condition not
to reload the data. We apply the static allocation technique to
allocate the data of helper cores' SPM. Static allocation is applied
as follows. First, static allocation obtains memory access trace by
pre-executing. Next, the number of memory accesses is counted
to each interval of address based on the trace. Finally, the data are
loaded into on-chip memory in decreasing order of counts of main
memory accesses.

Note that our approach allocates statically data to SPMs of
helper cores. Helper cores do not reload data dynamically even
though this could be useful for long programs using the large
amount of data. This is because frequently data reloading can
cause performance degradation to increase synchronization
overhead. Main cores must obtain the demanded data from helper
cores or main memory to guarantee the expected behavior of
program. If helper cores reload data into own SPM not to
synchronize main cores, main core can obtain unexpected data.
Using the unexpected data brings wrong behavior of program.
Consequently, helper cores must synchronize main cores every
time they replace the data. Also note that minimizing the number
of main memory accesses does not correspond to maximizing the
memory performance of main cores. Most processors to have
SPMs can execute computation and DMA transfer at the same
time. Processor core can continue computation during accessing
to main memory. Consequently, there is no guarantee that stall
time of cores is minimized in the case of minimizing the number
of main memory accesses. The extensions to dynamic reloading
and minimizing stall time are part of our future work.

16B/cycle

SPU

LS

SPE

16B/cycle

EIB(96B/cycle)

L2

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

256KB

L1 PPU

16B/cycle

PPE MIC BIC

16B/cycle

Off‐chip
Figure 4: Cell/B.E. Processor Architecture

Table 1: Details of Executed workloads

Benchmark Problem description Input set

HIMENO Poisson's equation 17x17x33(SSS),
33x33x65(SS),
65x65x129 (S)

Susan Image processing Large input

LU LU decomposition 512x512,
1024x1024

Table 2: Access Time to Each Memory Module

Memory component Access time [CC]

Remote LS (
SPMAT) 106+transfer size/8

Main memory (
mainAT) 300+transfer size/4

4. EVALUATION

4.1 Experimental Setup
In order to clarify the efficiency of the proposed approach, we

have evaluated the performance of a Cell B.E. processor. Figure 4
shows the microarchitecture of Cell/B.E. processor. Cell/B.E. has
one PPE (PowerPC Processor Element) and eight SPEs
(Synergistic Processor Elements) [9]. PPE which is general
purpose processor assigns threads to SPEs and controls standard
I/O. Each SPE has 256KB controllable on-chip memory call
Local Store (LS). We apply our approach to SPEs without PPE.
Since only seven SPEs are available on the Cell/B.E. chip, the
maximum number of main cores is seven. Cell/B.E. accesses main
memory or remote LSs with DMA transfer. The access time of
DMA write does not vary where to access. Consequently, we
allocate the data to minimize the read requests to main memory.
Table 2 shows read access time to each module for performance
modeling. We decided these values based on the reports [5], [10].

For the evaluation, we used HIMENO benchmark program
[15], Susan in Mibench [8] and LU in SPLASH-2 [14]. These
programs are modified for executing in Cell/B.E and are tuned for
memory performance improvement. In HIMENO benchmark,
there is a three dimension array, and the main function includes a
four pipe loop. We parallelized at the second level loop and did

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

1 2 3 4 5 6

R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R
_S
PM

R
)

The Number of Helper Cores

HIMENO(S)

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R_
SP
M
R
)

The Number of Helper Cores

HIMENO(SS)

0
0.2
0.4
0.6
0.8
1

1.2

1 2 3 4 5 6

R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R
_S
PM

R
)

The Number of Helper Cores

HIMENO(SSS)

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R
_S
PM

R
)

The number of Helper Cores

LU(1024)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R
_S
PM

R
)

The Number of Helper Cores

LU(512)

0
0.2
0.4
0.6
0.8
1

1.2

1 2 3 4 5 6

R
at
e
of
 S
PM

‐t
o‐
SP
M
 D
at
a

Tr
an
sf
er
 (H

R
_S
PM

R
)

The Number of Helper Cores

SUSAN

Figure 5: Rate of SPM-to-SPM data transfer (Read)

not adapt special code tuning except for double buffering. Susan
has four steps of program, which are (1) initialize, (2) edge
reinforcement, (3) edge correction, and (4) stacking raw image.
We parallelized the part of (2) and (4). Since SPLASH-2 is
parallelized benchmark program suite, we do not arrange
algorithm in LU. The input set of benchmarks is shown in Table 1.
We used -O3 as a compile option, and took the average execution
time of 10 times.
We measure the real execution time of the following evaluation
models.

 CONV: This is a conventional model which uses all of the
cores to execute parallelized threads, i.e. the number of
main cores is equal to seven.

 PB-IDEAL: This model is applied performance balancing
with the optimal number of main/helper cores. The
optimal core allocation is estimated by pre-execution of all
combination of main/helper cores with the same input as
the evaluated input.

 PB-PREDICT: This model is applied performance
balancing with the predicted number of main/helper cores.
The predicted number of main/helper cores is calculated
by the method explained in Section 3.4. We use the same
input size as the evaluated input size.

4.2 Reduction of Main Memory Accesses
Figure 5 illustrates the proportion of SPM-to-SPM data transfer

counts to whole DMA transfer counts for each benchmark
programs. The x-axis represents the number of helper cores and
the other remaining cores are used as that of main cores. In this
graph, the proportion of SPM-to-SPM data transfer is higher in

0

0.2

0.4

0.6

0.8

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
ti
m
e
(s
ec
)

Main Cores : Helper Cores

HIMENO (S)

E

0
0.2
0.4
0.6
0.8
1

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Main Cores : Helper Cores

HIMENO (SS)

Estimate

Real

0

0.2

0.4

0.6

0.8

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Main Cores : Helper Cores

HIMENO (SSS)

0
0.01
0.02
0.03
0.04
0.05

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Main Cores : Helper Cores

SUSAN

Estimate

real

0

5

10

15

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Main Cores : Helper Cores

LU (1024)

0

0.5

1

1.5

2

1:6 2:5 3:4 4:3 5:2 6:1 7:0

Ex
ec
ut
io
n
Ti
m
e
(s
ec
)

Main Cores : Helper Cores

LU (512)

Estimate

Real

Real

Figure 6: Execution Time Varying the Number of Cores

increasing the number of helper cores in all programs. This is
because increasing the number of helper cores enlarges the
capacity of on-chip memory available to main cores. Increasing
the data capacity to be used as second hierarchical memory
enlarges the rate of SPM-to-SPM transfer. Another important
aspect of Figure 5 is that the rate of SPM-to-SPM transfer even in
the same program and the same number of helper cores is quite
different among the input size. This is because executing program
with large input set increases the data capacity to be used during
program execution. Our approach does not replace the data of
helper cores after the data allocation for helper cores is
determined. Consequently, the amount of data to be used in
program execution affects largely the proportion of SPM-to-SPM
data transfer rate.

4.3 Accuracy of Core Allocation

Figure 6 shows the execution time applying performance
balancing as the number of main/helper cores varies. X-axis
represents the number of main and helper cores. For example, 1:6
means one main core and six helper cores. Estimate of graph
legends represents the execution time estimated by the
performance modeling and Real represents the execution time of
the real machine. For Himeno (S), the estimated execution time
matches the real execution time. For the others, these two kinds of
time are quite different. This observation is not important for our
approach, since the purpose of performance modeling is to predict
the appropriate number of main and helper cores. Consequently, it
is more important to predict the best number of main and helper
cores to accurately model relative execution time. Looked at from
this angle, our performance model works well. In HIMENO (S),
HIMENO (SS), Susan, and LU, our approach can predict the best
number of cores which achieves the highest performance. In the

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

S SS SSS 1024 512

HIMENO SUSAN LU

N
or
m
al
iz
ed

 P
er
fo
rm

an
ce

CONV PB‐PREDICT PB‐IDEAL

7:07:0 7:07:0 7:0 7:0 7:07:0

5:26:1

6:16:1

Figure 7: Performance Normalized with Conventional

Approach

other programs, our approach estimates the second best number of
cores.

4.4 Performance
Figure 7 illustrates the performance of the three evaluation

models normalized by the CONV model. X-axis is the name of
benchmark programs and input size. The numerical character
above the bars represents the ratio of the number of main
cores/helper cores. For example, 6:1 means six main cores and
one helper core. In HIMENO (SSS) and HIMENO (SS),
performance balancing in optimal core allocation improves
performance by 39% and 9%, respectively. This is because
memory performance improvement exceeds computation
performance degradation originated form decrease in the number
of main cores. On the other hand, our approach improves 31%
and 9% in HIMENO (SSS) and HIMENO (SS) in PB-PREDICT.
This result shows that our prediction technique works well. In the
others, our approach does not improve performance even with the
best number of main and helper cores. This result demonstrates
that conventional approach which executes programs with all
cores is the best case. Even in these programs, our proposed
technique does not degrade the performance to predict the best
allocation of cores.

In almost all programs, performance balancing does not
improve total performance. This is mainly because helper cores
cannot improve higher memory performance than the degradation
of computation performance in HIMENO(S) and LU (1024) which
use large amount of data. Actually, in these programs, the effect
of reducing the number of main memory accesses is small
observed in Figure 5. To achieve high performance in these
programs, it is necessary to effectively load important data into
helper cores’ LS such as the dynamic allocation technique. In
susan, on the other hand, even though the largely number of main
memory accesses is replace to SPM-to-SPM transfer, our
approach does not improve the total performance. This is why
memory performance is not performance bottleneck and
performance scales in proportional to the number of cores.

5. CONCLUSIONS
In many-core era, it is important to bring out potential

performance in processor chip to operate processor cores
concertedly. We have researched techniques of orchestrating
processor cores in multicore systems for performance, energy,
reliability, and so on. As part of this project, this paper proposes
the parallel execution technique called performance balancing.

This approach exploits processor cores not only for executing
parallelized threads, but also for improving memory performance
considering the balance of memory and computation performance.
Experimental results show up to 31% performance improvement
to predict the appropriate number of main/helper cores.

For future work, we develop more effective method for data
mapping to SPMs of helper cores such as replacing mapping data
during program execution. We also evaluate energy on our
approach adding benchmark programs.

6. ACKNOWLDEGMENT
We would like to express our thanks to Semiconductor

Technology Academic Research Center (STARC) for their
support. We thank all members of the System LSI laboratory of
Kyushu University for discussing at technical meetings.

7. REFERENCE
[1] O. Avissar, R. Barua, and D. Stewart, An Optimal Memory

Allocation Scheme for Scratchpad-based Embedded
Systems. ACM Transactions on Embedded Computing
Systems, pp.6-26, 2002.

[2] N. L. Binkert, E. G. Hallnor and S. K. Reinhardt. Network
Oriented Full-System Simulation using M5. 6th Workshop
on Computer Architecture Evaluation using Commercial
Workloads, 2003.

[3] J.F. Cantin, M.H. Lipasti, and J.E. Smith. Stealth
prefetching. Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 274-282, 2006.

[4] J. Chang and G. S. Sohi. Cooperative Caching for Chip
Multiprocessors. The 33rd Intl. Symposium on Computer
Architecture, pp 264-276, 2006.

[5] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell
Broadband Engine Architecture and its first implementation
performance view. IBM Journal of Research and
Development, 51(5): pp.559-572, 2007.

[6] M. Curtis-Maury, K. Singh, S. A. McKee, F. Blagojevic, D.
S. Nikolopoulos, B. R. de Supinski, M. Schulz. Identifying
Energy-Efficient Concurrency Levels using Machine
Learning. The Intl. Workshop on Green Computing, pp.488-
495, 2007.

[7] I. Ganusov and M. Burtscher. Efficient Emulation of
Hardware Prefetchers via Event-Driven Helper Threading.
The 15th Intl. Conference on Parallel Architectures and
Compilation Techniques, pp. 144-153, 2006.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.
Mudge and R. B. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark suite. The IEEE 4th
Annual Workshop on Workload Characterization, pp.3-14,
2001.

[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer and D. Shippy. Introduction to the Cell
multiprocessor. IBM journal of Research and Development,
49(4-5), 2005.

[10] M. Kistler, M. Perrone, F. Petrini. Cell Multiprocessor
Communication Network: Built for Speed. Micro, IEEE,
26(3), pp. 10-23, 2006.

[11] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel.
Assigning Program and Data Objects to Scratchpad for
Energy Reduction. Proceedings of the conference on Design,
automation and test in Europe, pp.409-415, 2002

[12] M. A. Suleman, M. K. Qureshi and Y. N. Patt. Feedback-
Driven Threading: Power-Efficient and High-Performance
Execution of Multi-threaded Workloads on CMPs. 13th Intl.
Conference on Architectural Support for Programming
Languages and Operating Systems, pp.277-286, 2008

[13] S. Udayakumaran, A. Dominguez, and R. Barua, Dynamic
allocation for scratchpad memory using compile-time

decisions. ACM Transactions on Embedded Computing
Systems, pp.472-511, 2006.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. The Intl. Symposium on
Computer Architecture, pp.24-36, 1995.

[15] Himeno Benchmark:
http://accc.riken.jp/HPC/HimenoBMT/index_e.html

