
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Real-Time Power Management for a Multi-
Performance Processor

Ishihara, Tohru
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/18778

出版情報：Proceedings of International SoC Design Conference. 2009, pp.147-152, 2009-11. IEEE
バージョン：
権利関係：

Real-Time Power Management for a Multi-Performance Processor

Tohru Ishihara
System LSI Research Center, Kyushu University, JAPAN

ishihara@slrc.kyushu-u.ac.jp

ABSTRACT

This paper presents an energy efficient embedded processor
which can be used as a design alternative for the dynamic volt-
age scaling (DVS) processors in embedded real-time system
design. The processor consists of multiple same-ISA PE (pro-
cessing element) cores and a selective set-associative cache
memory. The PE-cores differ in their clock speeds and energy
consumptions. Only a single PE-core is activated at a time and
the other PE-cores are deactivated using clock gating and sig-
nal gating. The major advantage over the DVS processors is a
small overhead for changing its performance. Our processor
can change its performance within 1.5 microsecond and dissi-
pates about 10 nano-joule while conventional DVS processors
need hundreds of microseconds and dissipate a few micro-joule
for each voltage transition. Our processor makes it possible to
use the DVS control in embedded real-time systems and to per-
form more sophisticated dynamic power management.

Keywords: Microprocessor, Low-power design, Embedded
systems, Real-time systems

I. INTRODUCTION

Dynamic voltage scaling (DVS) is one of the most popular
approaches for reducing the energy consumption of processors.
The DVS-capable processor dynamically lowers the supply
voltage to the lowest possible value which ensures a correct op-
eration of the processor under a given clock frequency. Since
the dynamic energy consumption of CMOS circuits, which
dominates total energy consumption, is quadratically propor-
tional to the supply voltage, significant energy reduction can be
achieved by the DVS scheme. In past years, a lot of DVS pro-
cessor architectures have been proposed [1, 2, 3, 4]. However,
only a few of them are used in embedded systems. One major
reason is that many DVS processors involve large mass produc-
tion cost including test cost, design cost and the cost of on-chip
DC-DC converters. The other reasons are delay and energy
overheads for dynamically changing the supply voltage and the
clock frequency. In this paper, a real-time power management
technique for our originally developed processor named multi-
performance processor is presented. The processor can be used
as a design alternative for the DVS processors. This paper is an
extension of our previous work presented in [5]. Although our
previous work is focused on presenting the multi-performance
processor architecture, this paper presents how the processor
can be applied to real-time embedded systems. This paper also

quantitatively evaluates the energy consumptions of three types
of processors; 1) a conventional DVS processor, 2) a heteroge-
neous multi-processor, and 3) our multi-performance proces-
sor.

The rest of the paper is organized as follows. In section 2,
related work and an idea of our multi-performance processor
is presented. Section 3 presents an overview and specifications
of our prototype processor which integrates the minimal func-
tionality of the multi-performance processor architecture. Sec-
tion 4 shows how our processor can be effectively applied to
real-time embedded applications for reducing the energy con-
sumption without violating real-time constraints. The paper
concludes in Section 5.

II. RELATED WORK AND OUR APPROACH

A. Voltage and Task Scheduling on DVS Processors

In the past, a lot of DVS scheduling algorithms have been
proposed for real-time systems. For given multiple tasks, these
algorithms dynamically assign the proper clock frequency and
operating voltage to each task while guaranteeing all their
deadlines. In real-time systems, since the actual execution time
of each task may be much smaller than the worst-case execu-
tion time (WCET), CPU slack times are generated at run time
even though the worst-case CPU utilization is 1. However, it
is usually difficult to exploit the CPU slack times because we
cannot know the actual amount of slack time before the com-
pletion of a task. Therefore, most of DVS scheduling algo-
rithms transfer the slack time to later tasks which can use it
[6, 7, 8]. These techniques determine the supply voltage on
task-by-task basis. More specifically, only one operating volt-
age is assigned to each active task and it is not changed during
the task execution. This policy is not very effective because
the next tasks are not always ready to be executed when a task
completes much earlier than its deadline.

Lee and Sakurai proposed a technique which can use CPU
slack times within the current task [9]. This technique first di-
vides each task into fixed-length segments. After the comple-
tion of each segment, the optimal operating voltage is selected
depending on the slack time made by the previous segments.
In this case, the duration of the segment is typically a few mil-
liseconds. However, as shown in table 1, the transition time
required for changing the operating voltage of DVS processors
is hundreds of microseconds [11]. More specifically, 500 mi-
croseconds are supposed for the voltage transition time in [9].

1

Table 1: Commercial DVS processors
Processor Voltage (V) Transition Time

Transmeta Crusoe 1.1-1.65 300µs
AMD Mobile K6 0.9-2.0 200µs

Intel PXA250 0.85-1.3 500µs
Compaq Itsy 1.0-1.55 189µs

TI TMS320C55x 1.1-1.6 3.2 ms (1.6→ 1.1V)
300µs (1.1→ 1.6V)

UCB [13] 1.2-3.8 520µs

This is very large compared to the duration of the task segment,
which reduces the chances of lowering the operating voltage
of the processor. Shin and Kim [10] generalize the technique
in [9] to non-periodic tasks as well as the periodic tasks pre-
sented in [9]. However, the large overhead for changing the
voltage in DVS processors is still an critical issue for real-time
applications since many real-time systems require less than a
millisecond of task response time [12]. In addition to the tran-
sition time overhead, the energy overhead is very large as well.
The energy consumed in DC-DC converter during voltage tran-
sition from VDD2 to VDD1 is:

ETRAN = (1 − η) ·C · |V2
DD2 − V2

DD1| (1)

where η is the efficiency of the DC-DC converter [13]. A typ-
ical capacitance of 100µF yields ETRAN = 6.4µJ for 0.6V-1.0V
voltage transition and η = 90%. This energy corresponds to
the energy consumed during 25K cycles of task execution on a
typical embedded processor.

B. Dynamic Task Scheduling on Multi Processors

Dynamic task migration on a heterogeneous multi-processor
can reduce the energy consumption for task execution [14].
Suppose we have a heterogeneous dual-core multi-processor.
Both of the MPUs employs scratchpad and cache memories
which are tightly connected with the corresponding MPU-core.
These two processors have the same instruction-set architec-
ture but differ in their clock speeds and power consumptions
like our multi-performance processor. More specifically, let
us assume the clock frequencies of MPU1 and MPU2 are
200MHz and 100MHz, respectively, and the power consump-
tions are 8 and 1, respectively.

Consider a task whose execution time is 6. If the task runs
on the MPU1 from the beginning to the end, the energy con-
sumed is 8×6 = 48. If some portion of the task is moved to the
MPU2 and is executed on it so that the deadline of the task is
not violated, the energy consumed is 36 as shown in Figure 1.
In this case, the energy consumption is reduced by 25%. How-
ever, this task migration involves a large overhead depending
on the size of data moved from MPU1 to MPU2. If a stack
segment is allocated in a scratchpad memory (i.e., SPM), all
data in the stack segment have to be moved along with the task
migration. For example in JPEG encoder which is used in our
experiments, the sizes of stacks used for several functions are
more than 2,000 bytes. For those functions, transferring the

MPU-1 Task-segment1 segment2

Task-segment2
MPU-2

time

D ead linePo w er

Po w er migratio n
o v erh ead

20 0 MH z

10 0 MH z

4 6 8

8

1

Figure 1: An Example of Dynamic Task Migration

stack data from MPU1 to MPU2 takes more than 30µ seconds
and consumes about 3µJ in our prototype multi-processor pre-
sented in the following section. This overhead is comparable
with the overhead of DC-DC converters used in DVS proces-
sors. Even if all data in the scratchpad memory is moved from
MPU1 to MPU2 without penalty, the number of cache misses
in MPU2 may drastically increase after the task migration.

C. Our Approach

Our processor consists of multiple processing element (PE)
cores and a selectable-way cache memory as shown in Figure
2. The PE-cores are functionally equal to each other but have
different clock speeds and energy consumptions. Only a sin-
gle PE-core is activated at a time and the other PE-cores are
deactivated using clock gating and signal gating. The PE-core
and cache ways which should be activated can be changed at
run time by software running on the processor. On-chip mem-
ories including cache and scratchpad memories are shared by
PE-cores. However, since only a single PE-core is activated at
a time, a single port SRAM is used for constructing those on-
chip memories. If designers need more task level parallelism,
we can easily implement a chip multi-processor (CMP) by in-
tegrating some of our processor cores on a chip.

PE-core1

PE-core2

PE-core3 memory S
el

ec
tiv

e-
w

ay

Processor 1 Processor 2

PE-core1

PE-core2

PE-core3 memory S
el

ec
tiv

e-
w

ay

Figure 2: Architecture of Multi-Performance Processor

III. MULTI-PERFORMANCE PROCESSOR

A. Architecture

Figure 3 shows a prototype of our multi-performance pro-
cessor. This prototype has three MPUs and these are connected
through AMBA AHBT M bus. The MPU is based on Media
embedded Processor (MeP) developed by Toshiba [15]. The
clock frequency of the bus is a 67MHz and those of PE-cores
are multiple of the bus clock frequency. More specifically, a
high-end PE, a middle-end PE, and a low-end PE are oper-
ated with 1V/200MHz, 0.68V/133MHz, and 0.52V/67MHz,

1.0V/200MHz

High-end PE

Middle-end PE

Low-end PE

0.68V/133MHz

0.52V/67MHz

1.0V

200MHz

High-end

0.52V

67MHz

Low-end

1.0V

200MHz

High-end

Middle-end

0.68V

133MHz

D
e

d
ic

a
te

d
 B

u
s

LC

LC

LC

LC

Selective-Way

 Cache

I-SPM

D-SPM

DMA
controller

Global Bus Interface

8KB

8KB

16KB

1.0V

LC: Level Converter

MPU0 MPU1 MPU2

Memory 1.0V Memory 1.0V

AMBA AHB 67MHz

GBI DMA GBI DMA

Figure 3: An Example of the Multi-Performance Processor

respectively. An 8K-byte instruction cache, an 8K-byte in-
struction scratchpad and a 16K-byte data scratchpad are em-
ployed by each of those MPUs. Since every on-chip mem-
ory uses 1.0V voltage supply, level converters are needed be-
tween the middle-end PE-core and the on-chip memories, and
between the low-end PE-core and the memories. Only a sin-
gle PE-core in each MPU is activated at a time and the other
PE-cores are deactivated by clock and signal gating. Once a
PE-core is activated, an entire clock frequency of the MPU is
set to the frequency of the active PE-core. A PE-core which
should be activated can be selected by storing a specific value
to a special purpose register. Therefore, programmers can ex-
plicitly specify the PE-core to be used by using a STORE in-
struction. Before switching the active PE-cores, the values of
internal registers are transferred from the currently activated
PE-core to the following PE-core through a dedicated bus and
a stack. In our prototype, the data resided in the general pur-
pose registers is transferred through a stack which is allocated
in the data scratchpad memory. The data in the special purpose
registers is moved directly through the dedicated internal bus.

Each MPU employs a 4-way set-associative instruction
cache which is based on a cache architecture proposed in [16].
The cache memory has an extra flag bits to indicate active
cache-ways as shown in Figure 4. In our prototype, the flags
can be set by storing a specific value to the special purpose
register. Therefore, programmers can explicitly specify cache-
ways to be used. If the flag bit of way1 is ”0”, sense amplifier
circuits in the corresponding cache-way are deactivated. In this
case, the way1 will not be used for replacement even in case
of a cache miss and accessing to the way1 will always cause a
cache miss. We can trade cache associativity for energy saving.

Tag0
0
1
2
3

4
5

6
7

1 0 1 1
f f f f

Way0 Tag1 Way1 Tag2 Way2 Tag3 Way3

Cache Replacement Flow

Figure 4: Selective Way Cache Memory

This mechanism is implemented on an instruction cache only.
Applying the technique to a data cache is our future work.

B. Transition Overhead

Table 2 shows transition time and energy overheads required
for changing PE-cores. High, Middle and Low in the table
represent PE-cores using 1.0V, 0.68V and 0.52V, respectively.
The values in the table include time required for storing reg-
ister values of the currently activated PE-core into stack and
time required for reading them back from the stack to the PE-
core activated next. As one can see from Table 1 and 2, tran-
sition overheads required for our multi-performance processor
is more than two orders of magnitude smaller than those of
commercial DVS processors. These small overheads make it
possible to apply our multi-performance processor to real-time
systems and to perform finer grained dynamic voltage control.

Table 2: Performance Transition Overheads
Direction time [ns] energy [nJ]
High→Middle 1,113 11.84
High→ Low 1,290 11.25
Middle→ High 968 13.04
Middle→ Low 1,443 9.27
Low→ High 1,205 13.39
Low→Middle 1,286 8.93
Cache Way 690 10.35

C. Performance of Low-VDD Operation

Figure 5 shows voltage-delay curve for a critical path ex-
tracted from the high-end PE core in the prototype. A static
timing analysis function of design

¯
compiler is used for extract-

ing the critical path. For calculating delay values in different
voltage settings, HSPICE of SYNOPSYS is used. In this ex-
ample, the path delay at 0.68V is about 12.5ns which corre-
sponds to an 80MHz clock frequency. This means that a typ-
ical DVS processor designed with 1.0V logic cells targeting a
200MHz runs, in the best case, at an 80MHz for 0.68V voltage
supply. Our multi-performance processor runs at a 133MHz
for 0.68V, which is 1.7 times higher performance than the typ-
ical DVS processor. In case of 0.52V, the DVS processor runs

0

5

10

15

0.5 0.6 0.7 0.8 0.9 1.0

20

25

30

35

40

Supply Voltage [V]

P
a
th

 D
e
la

y
 [
n
s
]

200MHz

133MHz

67MHz

27MHz

Our Processor

Our Processor

31% energy reduction

35% energy reduction

Figure 5: Voltage-Delay Curve

at a 27MHz while ours runs at a 67MHz, which is 2.5 times
higher performance than the DVS processor. More precisely,
the critical path for a 1.0V operation may not be a critical path
of the processor in lower voltage operations. Therefore, the
performance of the DVS processor in lower operating voltage
might be worse than the curve shown in Figure 5. This is be-
cause the delays of several cells using high Vth or cells hav-
ing many inputs rapidly increase along with the voltage down-
scaling. This issue can be partially resolved by using a dy-
namic body biasing technique [17]. However it is expensive
and may reduce latch-up immunity.

D. Energy and Performance Specifications

Figure 6 shows the energy consumptions and the execution
times for processing a fixed amount of data. Bar charts and line
charts represent energy consumptions and execution times, re-
spectively. As one can see from the figure, using a 67MHz
clock with 0.52V voltage supply does not have any advantages
in terms of both energy consumption and execution time. This
is because some portions of the power consumption are inde-
pendent from the clock frequency and these cause an increase
of energy consumptions when the execution time increases.

Since the process technology used in this prototype is a low
standby-power process where the threshold voltage of transis-
tors is high and therefore the leakage energy is very low at
the expense of a switching speed of transistors. The target
clock frequency is a few hundreds of MHz while many high-
performance process technologies target a few GHz which re-
sults in a large amount of leakage energy consumption. For
example, a percentage of leakage energy in our processor is
less than 3% when the clock frequency is 200MHz.

The optimal cache associativity value depends on an appli-
cation program. For example, a direct mapped cache is the best
for ADPCM decoder while a 2-way set-associative cache is the
optimal for JPEG and MPEG2 encoder with respect to the en-
ergy efficiency. In MPEG2 encoder, 2x energy scalability is
achieved by our multi-performance processor.

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 [
m

J
]

E
x
e

c
u

ti
o

n
 T

im
e

 [
m

 s
e

c
]Leakage Energy

Memory Energy

CPU Energy

1.0V

200MHz

0.68V

133MHz

0.52V

67MHz
1.0V

200MHz

0.68V

133MHz

0.52V

67MHz
1.0V

200MHz

0.68V

133MHz

0.52V

67MHz

4 3 2 1 4 3 2 1 4 3 2 1

or
ig

in
al 4 3 2 1 4 3 2 1 4 3 2 1

or
ig

in
al 4 3 2 1 4 3 2 1 4 3 2 1

or
ig

in
al

ADPCM decoder JPEG encoder MPEG2 encoder

0

5

10

15

20

25

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 6: Energy Consumption and Execution Time

IV. APPLICATION

A. Real-Time Power Management

A major application of our multi-performance processor is
a real-time system. According to the survey results published

virtual deadlines actual deadline

slack time

actual execution time

iteration-1 iteration-2 iteration-3 iteration-N

Figure 7: Intra-Task Voltage Scheduling

in [12], most real-time applications demand responses on the
order of tens of microseconds, and many others require hun-
dreds of microseconds and at most thousands of microseconds.
For the applications which require responses of a few tens of
microseconds, conventional DVS processors cannot be applied
since the voltage transition time of the DVS processors is more
than a few tens of microseconds. Dynamic task migration for
a heterogeneous multi-processor is also ineffective for reduc-
ing the energy consumption since the task migration also takes
a few tens of microseconds. Even for applications which re-
quire hundreds or thousands of microseconds, time and energy
overheads in conventional approaches for changing the pro-
cessor speed cannot be neglected since the processors have to
change their speeds every thousands of microseconds for ex-
ploiting the processor slack time without any deadline misses.
The following subsection shows how our multi-performance
processor exploits the processor slack time in real-time appli-
cations which require responses on the order of thousands of
microseconds.

B. Intra-Task Voltage Scheduling

A good application of our multi-performance processor is a
media application where a single main loop spends the most
of the execution time. The energy consumption can be dras-
tically reduced by dynamically selecting the operating voltage
and the clock frequency for each iteration of the loop according
to proximity to a virtual deadline of each iteration. The virtual
deadlines of the loop iterations have to be set beforehand as
shown in Figure 7. Actual execution time for the single iter-
ation can be measured by a timer module of the processor. If
cumulative slack time is large enough for completing the next
loop iteration by the virtual deadline even if the lower clock
frequency is used, the processor uses the lower operating volt-
age and the clock frequency for the next loop iteration.

This voltage scheduling can be done by embedding a check-
point at the top of the loop as shown in Figure 8. Every time
a program reaches to the checkpoint, a timer module is ac-
cessed and the actual execution time of the loop iteration is
obtained. Then the cumulative slack time is calculated. Pro-

CHECKPOINT;

function foo

for (i = 0; i < n; i++){

}

m ain body of the
loop iteration

Obtain tim er value;

Accum ulate slack;

Lower VDD & clock,
if it satisfies the
constraint of the
next loop iteration;

Figure 8: DVS Control using Program Checkpoints

cessor speed and operating voltage for the next loop iteration
are lowered if they still satisfy the time constraint of the next
loop iteration. The idea of intra-task voltage scheduling us-
ing program checkpoints is proposed in [18]. The main focus
of [18] is a compilation technique for generating the program
checkpoints automatically for reducing the energy consump-
tion in DVS processors. This paper is focused on the evalua-
tion of our multi-performance processor when a program with
checkpoints runs on the processor.

C. Experimental Setup

The energy and time overheads required for changing the
clock frequency of processors are shown in Table 3. These
values are based on results obtained by our original multi-
processor designed using 90nm process technology. In [13],
an energy efficient DC-DC converter is presented. Internal ca-
pacitance of the DC-DC converter is 5µF while typical inter-
nal capacitance is 100µF. The delay and energy overheads re-
quired for changing the output voltage of the converter are 20x
smaller than those of the typical DC-DC converter. DVS-2 in
Table 3 corresponds to a DVS processor with this DC-DC con-
verter. Heterogeneous MP represents a heterogeneous multi-
processor where the performances and energy consumptions
of the CPU cores are different from each other as presented in
subsection II.B. In the heterogeneous MP, if there is enough
slack time to slow down the CPU speed, a task is migrated
from a high performance CPU to a lower performance CPU
for saving the energy consumption.

Table 3: Voltage and Clock Transition Overheads
Processor Transition time energy
DVS-1 [9] High→Middle 500µs 3,276nJ

Middle→ High 500µs 3,276nJ
DVS-2 [13] High→Middle 26µs 164nJ

Middle→ High 26µs 164nJ
Heterogeneous MP Task Migration 30µs 3,000nJ
Multi-Performance High→Middle 1.1µs 11.84nJ
Processor Middle→ High 1.0µs 13.04nJ

The average and the worst case execution times (WCETs)
for each iteration of main loops in ADPCM decoder, JPEG en-
coder and MPEG2 encoder are shown in Table 4, respectively.
HMP and MPP represent a heterogeneous multi-processor and
multi-performance processor, respectively. We assume that the
WCET is 1.2 times of the longest measured execution time for
the loop iterations. The measured execution times of the target
loop iterations are obtained by RTL simulations and the longest
ones are selected for ADPCM, JPEG and MPEG2, respectively
for estimating the worst case execution times.

The average power consumption of ADPCM decoder, JPEG
encoder and MPEG2 encoder executed on a conventional
DVS processor, heterogeneous multi-processor, and our multi-
performance processor are shown in Table 5. Note that the
DVS processor uses 0.82V for 133MHz operations while our
multi-performance processor uses 0.68V for 133MHz opera-
tions. These values are based on the results presented in Figure

Table 4: Average and Worst Case Execution Time [ms]
DVS & HMP MPP

clock [MHz] 200 133 200 133
ways 2 2 2 1 2 1

Average Case Execution Time [ms]
ADPCM 0.36 0.54 0.36 0.36 0.54 0.54

JPEG 1.8 2.8 1.8 2.0 2.8 3.1
MPEG2 2.3 3.4 2.3 3.0 3.4 4.5

Worst Case Execution Time [ms]
ADPCM 0.45 0.67 0.45 0.45 0.67 0.67

JPEG 2.4 3.6 2.4 2.7 3.6 4.0
MPEG2 3.3 4.9 3.3 4.7 4.9 7.1

5. Since each CPU core of the heterogeneous multi-processor
can be optimally designed for a specific supply voltage, it is
also supposed to use 0.68V for 133MHz operational clock.

At the checkpoint of the program, the processors select one
of clock frequencies so that the energy consumption is mini-
mized with satisfying the time constraint of the next loop it-
eration even if the worst case occurs. Our multi-performance
processor also selects one of cache associativity values so that
the energy consumption is minimized. For example in AD-
PCM, our processor selects a direct map cache while the other
processors use a fixed 2-way set-associative cache.

Table 5: Average Power Consumption [mW]
DVS HMP MPP

clock [MHz] 200 133 200 133 200 133
ways 2 2 2 2 2 1 2 1

ADPCM 34 18 34 14 35 32 14 12
JPEG 32 17 33 13 33 31 13 11

MPEG2 34 18 35 14 35 32 14 12

D. Experimental Results

Figure 9 shows the energy comparison results. TCs shown
at the bottom of the figure represent time constraints. ORIG
represents a processor always using a 1.0V voltage supply and
a 200MHz clock. We suppose that every processors can be
immediately shutdown if a task running on the processors is
completed. As can be seen from the results, the energy con-
sumption of our multi-performance processor is smallest of all
in every cases. More specifically, our multi-performance pro-
cessor reduces the energy consumption by 33% compared to
the DVS processor having an energy efficient DC-DC con-
verter. Although the heterogeneous multi-processor is en-
ergy efficient, its large time overhead required for changing
the clock frequency prevents us to use it in real-time sys-
tems. Unlike the conventional heterogeneous multi-processor,
our multi-performance processor realizes very low energy with
short response time.

V. CONCLUSIONS

Intel recently has produced a multi-core processor which
employs 80 CPU cores on a chip. This is a proof of the high

0

0.2

0.4

0.6

0.8

1

1.2

ADPCM JPEG MPEG2 ADPCM JPEG MPEG2

N
o
rm
a
liz
e
d
 E
n
e
rg
y

TC=2.4TC=0.45 TC=3.3 TC=2.8TC=0.5 TC=3.6

ORIG

DVS-1

DVS-2

HMP

MPP

Figure 9: Energy Consumption Results

quality manufacturing process technology which makes it pos-
sible to integrate many cores on a chip. However, the problem
is that there are not so many applications which require 80 par-
allel processing cores. Especially for embedded applications,
since they do not always need their peak performances, multi-
performance heterogeneous characteristics and quickly transi-
tioning their performances are preferred rather than many par-
allel processing cores.

This paper presents a multi-performance processor which
can be used as an alternative for the DVS processors. The
processor realizes 2x energy scalability with preserving the
peak performance of the processor. The gate-level simulation
results demonstrate that our processor can change its perfor-
mance within 1.5 microsecond and dissipates only about 10
nano-joule for the performance transition. These small over-
heads are more than two orders of magnitude less than those of
conventional DVS processors. This makes it possible to apply
our processor to many real-time systems and to perform finer
grained and more sophisticated dynamic voltage control. The
paper also presents how the multi-performance processor can
be effectively used in embedded real-time applications. The
experimental results obtained using ADPCM decoder, JPEG
and MPEG2 encoders demonstrate that the multi-performance
processor reduces the energy consumption by 25% compared
to the conventional DVS processors. Our future work will be
devoted to come up with more general algorithms for select-
ing optimal PE-core and cache ways statically by a compiler
and dynamically by a real-time OS. Investigating new multi-
performance architectures which increase energy and perfor-
mance scalability is our future work as well.

ACKNOWLEDGMENT

This work is supported by Toshiba and VDEC, the Univ. of Tokyo
with the collaboration of Renesas Technology, STARC, Panasonic,
NEC Electronics, Toshiba, Synopsys, Cadence Design Systems and
Mentor Graphics. This work is also supported by CREST ULP pro-
gram of JST.

REFERENCES

[1] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for Dy-
namically Variable Voltage Processor,” in Proc. of International
Symposium on Low Power Electronics and Design, pp.197–202,
Aug., 1998.

[2] T. Pering, T. Burd, and R. W. Brodersen, “The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms,” in Proc. of

International Symposium on Low Power Electronics and Design,
pp.76–81, Aug., 1998.

[3] T. Burd, T. Pering, A Stratakos and R. W. Brodersen, “A Dynamic
Voltage Scaled Microprocessor System”, IEEE Journal of Solid-
State Circuits, vol.35, issue 11, pp.1571–1580, Nov., 2000.

[4] J. Pouwelse, K. Langendoen and H. Sips, “Dynamic Voltage
Scaling on a Low-Power Microprocessor,” in Proc. of Inter-
national Conference on Mobile Computing and Networking,
pp.251-259, July, 2001.

[5] T. Ishihara, S. Yamaguchi, Y. Ishitobi, T. Matsumura, Y. Kuni-
take, Y. Oyama, Y. Kaneda, M. Muroyama and T. Sato, “AMPLE:
An Adaptive Multi-Performance Processor for Low-Energy Em-
bedded Applications,” in Proc. of International Symposium on
Application Specific Processors, pp.83–88, June, 2008.

[6] T. Okuma, T. Ishihara, and H. Yasuura, “Real-Time Task
Scheduling for a Variable Voltage Processor,” in Proc. of Interna-
tional Symposium on System Synthesis, pp.24–29, Nov., 1999.

[7] Y. Shin, K. Choi and T. Sakurai, “Power Conscious Fixed Priority
Scheduling for a Variable Voltage Processor,” in Proc. of Interna-
tional Conference on Computer Aided Design, pp.365–368, Nov.,
2000.

[8] R. Jejurikar, C. Pereira and R. Gupta, “Leakage Aware Dynamic
Voltage Scaling for Real-Time Embedded Systems,” in Proc. of
Design Automation Conference, pp.275–280, June, 2004.

[9] S. Lee, and T. Sakurai, “Run-time Voltage Hopping for Low-
power Real-time Systems,” in Proc. of Design Automation Con-
ference, pp.806–809, June, 2000.

[10] D. Shin and J. Kim, “Intra-task voltage scheduling on DVS-
enabled hard real-time systems”, IEEE Trans. on CAD of In-
tegrated Circuits and Systems, Vol.24, Issue 10, pp.1530–1549,
Oct., 2005

[11] N. Allah, Y. Wang, J. Xing, W. Nisar and A. Kazmi, “Towards
Dynamic Voltage Scaling in Real-Time Systems - A Survey,” In-
ternational Journal of Computer Sciences and Engineering Sys-
tems, Vol.1, No.2, pp.93–104, April 2007

[12] J. A. Carbone, “RTOSes Balance Performance with Ease of
Use,” COTS Journal, November, 2004.

[13] T. Burd, and R. W. Brodersen, “Design Issues for Dynamic Volt-
age Scaling,” in Proc. of International Symposium on Low Power
Electronics and Design, pp.9–14, July, 2000.

[14] P. Yang and F. Katthoor, “Dynamic Mapping and Ordering
Tasks of Embedded Real-Time Systems on Multiprocessor Plat-
forms,” in Proc. of International Workshop on Software and Com-
pilers for Embedded Systems, pp.167-181, Sept., 2004.

[15] Toshiba Corp., “MeP Core (MeP-c4) User’s Manual,”
http://www.semicon.toshiba.co.jp/eng/product/micro/

[16] D. H. Albonesi, “Selective Cache Ways: On-Demand Cache Re-
source Allocation,” in Proc. of International Symposium on Mi-
croarchitecture, pp.248-259, Nov., 1999.

[17] S. M. Martin, K. Flautner, T. Mudge and D. Blaauw, “Com-
bined Dynamic Voltage Scaling and Adaptive Body Biasing for
Lower Power Microprocessors under Dynamic Workloads,” in
Proc. of International Conference on Computer Aided Design,
pp.721-725, Nov., 2002.

[18] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A Veiden-
baum, A. Nicolau “Profile-based Dynamic Voltage Scheduling
using Program Checkpoints,” in Proc. of Design Automation and
Test in Europe, pp.168-178, March, 2002.

