
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Optimal Stack Frame Placement and Transfer for
Energy Reduction Targeting Embedded Processors
with Scratch-Pad Memories

Gauthier, Lovic
System LSI Research Center, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/18604

出版情報：Proceedings of the 2009 7th Workshop on Embedded Systems for Real-Time Multimedia.
1, pp.116-125, 2010-10. IEEE
バージョン：
権利関係：

Optimal Stack Frame Placement and Transfer for
Energy Reduction Targeting Embedded Processors

with Scratch-Pad Memories
Lovic Gauthier and Tohru Ishihara

System LSI Research Center
3rd Floor, Institute of System LSI Design Industry, Fukuoka

3-8-33 Momochihama, Sawara-ku, Fukuoka 814-0001 JAPAN
Email: {lovic,ishihara}@slrc.kyushu-u.ac.jp

Abstract—Memory accesses are a major cause of energy con-
sumption for embedded systems and the stack is a frequent target
for data accesses. This paper presents a fully software technique
which aims at reducing the energy consumption related to the
stack by allocating and transferring frames or part of frames
between a scratch-pad memory and the main memory. The
technique utilizes an integer linear formulation of the problem
in order to find at compile time the optimal management for
the frames. The technique is also extended to integrate existing
methods which deal with static memory objects and others which
deal with recursive functions. Experimental results show that our
technique effectively exploits an available scratch-pad memory
space which is only one half of what the stack requires to reduce
the stack-related energy consumption by more than 90% for
several applications and on an average of 84% compared to the
case where all the frames of the stack are placed into the main
memory.

I. INTRODUCTION

The most commonly used memory devices in electronic
systems are static random access memories (SRAM) and
dynamic random access memories (DRAM). Off-chip DRAMs
are cheap in area but slow and very energy consuming while
on-chip SRAMs are expensive in area but fast and far less
energy consuming. Hence, their respective advantages and
drawbacks are usually balanced by using both a large DRAM
for storing data and a small SRAM for reducing the cost of
memory accesses. The management of the data between the
DRAM and the SRAM can be made in hardware if the SRAM
is used for a cache device, or in software if the SRAM is used
for a scratch-pad memory (SPM).

Caches are the preferred solution for desktop systems as
they are transparent to the software. Yet, caches are poorly
deterministic and are significantly larger in both area and
energy consumption than SPMs [1]–[3]. Hence, SPMs tend to
be favored for embedded systems even though it is required to
modify the application code in order to exploit these memories.

The main idea for using an SPM in order to reduce energy
consumption or execution time is to place in it frequently
accessed data or code. Code and static data memory objects are
fixed at compile time and can be easily allocated to the SPM
during this stage. On the contrary, dynamic memory objects,
which include stack and heap data, are more difficult to place

within the SPM since their allocation state evolves at run
time. Dynamic memory objects are however important to treat,
especially the stack whose data are often the most frequently
accessed ones. For instance, stack accesses represent about
64% of the total data accesses on average for the MiBench [4]
benchmark.

This paper presents a fully software technique which aims
at reducing the energy consumption regarding the memory
accesses to the stack by allocating to the SPM the stack
frames which are known to be often accessed. When the SPM
is full, the technique allows to move a part or the totality
of a frame to the main memory (MM). Moved frames can
then be moved back to the SPM if further numerous accesses
are to be performed. The paper defines a set of operations
to insert into the code in order to manage dynamically the
frames between both memories. The optimal use of these
operations is formulated as an integer linear programming
(ILP) problem. Constants used in the formulation are either
extracted from the application code (e.g., size of frames) and
the target architecture configuration (e.g., size of the SPM) or
estimated from profile informations (e.g., stack access rates).

The paper is organized as follows: the next section gives
a motivating example then section III presents some related
works. Section IV explains our management of the SPM
for the stack, then section V describes the ILP formulation
of the stack energy optimization and section VI gives some
extensions of the technique for global variables and recursive
functions. Finally, section VII presents some experimental
results and the last section concludes the paper.

II. MOTIVATING EXAMPLE

Let us assume the example shown in figure 1: function f
whose frame size is 40 bytes calls g, a function whose frame
size is 28 bytes. f accesses its frame 123 times for reading
and 201 times for writing before calling g which accesses 110
times its frame for reading and 118 times for writing. When
returned, f accesses its frame 7 times for reading and 4 times
for writing.

Assuming the power characteristics given in table I
(sources [5], [6]), the energy consumption for accessing the

Fig. 1. Motivating example code

stack will be about 1345nJ if both frames are allocated to the
MM and about 82nJ if they are allocated to the SPM (accesses
to the MM are supposed to be burst for this example).

Memory access type Energy (nJ per word)
SRAM 4kb 0.145
SDRAM/read random 11.747
SDRAM/write random 10.397
SDRAM/burst read 3.373
SDRAM/burst write 1.659

TABLE I
ENERGY CONSUMPTIONS OF SRAM AND SDRAM ACCESSES

Now if we assume that only 64 bytes are available in the
SPM during the execution of f, then both frames cannot be
simultaneously in the SPM. If we choose to put only f’s frame
into the SPM then the energy consumption for accessing the
stack will be about 615nJ and it will be about 812nJ if it is
g’s frame which is put into the SPM.

Yet, in the common case where f’s frame is not accessed
while g is executed, it can be moved from the SPM to the MM
just before g is called. In this paper this transfer of a frame
from the SPM to the MM is called a store. After returning
from g the frame of f can either be left in the MM or moved
back to the SPM; this operation is called a load in this paper.
Both operations have a cost: based on table I and assuming
burst transfers, the respective energy consumptions of the store
and the load are about 72nJ and 141nJ. Therefore, when the
store only is applied, the total energy consumption regarding
the stack will be about 173nJ, and it will be about 294nJ if
the load is also applied.

Finally, it is enough to store 4 bytes of f’s frame in order for
g’s frame to fit in the SPM. With this partial store operation
and the corresponding partial load operation after returning
from g the energy consumption drops to about 103nJ. If the
last load is not performed (assuming f will not access the part
which have been stored), the energy consumption decreases to
about 101nJ.

III. RELATED WORKS

Optimizing the usage of the limited space of the SPM has
been a subject of research for several years. Some approaches
like [1], [3], [7]–[10] are purely static: memory objects are
allocated within the MM and the SPM at compile time and
cannot be moved at run time. These methods are simple
enough to allow ILP formulations like the ones given by [1],
[3], [8]–[10]. However, static approaches are also quickly
limited by the size of the SPM. They are opposed to dynamic
approaches which do allow data to be transfered from one

memory to the other at run time. Dynamic approaches can
utilize additional hardware features like an MMU [11] or be
fully software like [12], [13]. Such approaches can support any
kind of memory objects but suffer from significant overhead
for the dynamic management.

A few research works consider specifically the stack. Some
of them utilize new or existing hardware extensions in order
to reduce energy consumption while accessing the stack. For
instance, [14] remarked that an important part of the stack
accesses consisted of saving and restoring registers and return
addresses when calling and returning from a function. Hence,
they proposed to add a separate small memory for these data.
Without adding any hardware, [15] assumes the existence of
an MMU and uses a paging system in order to manage the
stack between the SPM and the MM.

Fully software methods also exist for optimizing accesses to
the stack, they can be static or dynamic, and they can utilize
two levels of granularity: the frame level where the frames of
the stack are treated as monolithic blocks and the variable level
where the variables of the frames are treated independently
of each other. [10] is a technique which utilizes an ILP
formulation for optimizing the placement of static and stack
data between the SPM and the MM. For the stack data, they
consider both frame-level and variable-level optimizations and
their conclusion is in favor of a hybrid approach using both the
frame and the variable levels of granularity in order to balance
the lack of precision of the first with the larger overhead of the
second. The technique proposed by [16], [17] is dynamic: it
inserts transfer points into the program where stack or global
variables can be moved from the MM to the SPM or evicted
back. They use profile information to determine which and
when variables should be in the SPM. While this paper does
not mention energy consumption, a second publication [18]
does extend their work with this consideration. Compared to
our work, they consider stack variables instead of stack frames
but only use a non-optimal greedy algorithm.

The previous software approaches did not treat the case
of recursive functions, their corresponding frames are simply
left in the stack of the MM. Approaches supporting recursive
functions include [19] and [20]. [19] proposes to use a circular
buffer for managing frames within the SPM. When the SPM
is full, the first frame (the oldest one) is moved to the MM
and is reloaded when the program is back to its corresponding
function. This technique naturally supports recursive functions,
is simple, but is not optimal as the oldest frame eviction is
systematic when the SPM is full even if the cost is larger
than the gain. The technique of [20] consists of looking for
the depths of recursion where there are numerous accesses to
the stack using profiling informations. Frames corresponding
to such depths are stored into the SPM whereas the others
are stored into the MM. It is necessary for this approach
to add a depth counter to the recursive functions’ code in
order to dynamically determine where the frames should be
allocated. This second approach makes the strong assumption
that depths where frames have numerous accesses can be
identified statically which highly depends on the application

code and inputs.

IV. MANAGING THE STACK

A. Using the SPM for the stack

A usual approach for using the SPM in order to reduce the
energy consumption related to the stack is to put its frequently
accessed parts into the SPM while keeping the rest in the
MM. Figure 2 illustrates this scheme: frames 0, 1, 2 and 3 are
successively allocated in this order. First frame 0 then frame 1
are allocated to the stack of the MM, then frame 2 is allocated
to the SPM and finally frame 3 is allocated again to the MM.

Fig. 2. Frames in the SPM and the MM

As seen in the related works of section III, this general ap-
proach can be implemented with static or dynamic allocations
and with a frame or a variable level of granularity.

With static approaches, the locations of stack data are fixed
at compile time and cannot be changed at run time, while
dynamic approaches allow to change them at run time. Even
if static approaches can take into account the limited liveness
of stack data as [10] does, dynamic approaches which can
move stack data at run time can use the SPM space more
efficiently.

The variable level of granularity is more precise than the
frame level one hence can require a smaller SPM size for
achieving the same energy reduction. However, this advantage
is limited by several issues: first, there are several cases where
variable-level techniques cannot be applied while frame-level
ones are still usable. This happens for the frequent cases
where accesses to a variable cannot be ascertained or where
a function code (a library function for instance) cannot be
modified. Second, access overheads are not the same: with
the frame level, stack variables can be accessed traditionally,
i.e., relative to the stack pointer, whereas the variable level
requires either accesses relative to immediate addresses or to
translate the stack pointer every time a stack variable is in
a different memory. These two variable-level access modes
induce important overheads.

B. The proposed technique

Overview: the management technique proposed in this
paper is dynamic, in the sense that frames’ allocation state
can change at run time, and it works at the frame level of
granularity. It follows the usual approach of trying to put
frequently accessed frames into the SPM while keeping the
rest in the MM as described in the previous section and
illustrated by figure 2.

Specificities: the main idea of the technique is to move the
stack pointer between the MM and the SPM depending on the
allocation of the frame of currently executed function. This

is based on the observation that a new frame is allocated by
simply decreasing the stack pointer when entering a function
so that it is enough to translate this pointer just before calling
the function to change the memory which will contain the
frame. When the called function returns, it is enough again to
translate the stack pointer back to its initial memory. While
this approach does require a frame level of granularity, it has
a very low overhead (only one register to translate before and
after calling a function and only in the case where its frame
is in the other memory).

The second idea is to allow to move frames or part of
frames from the SPM to the MM or from the MM to the SPM.
As mentioned in section II these operations are respectively
called store and load. The store operation is used to free
memory from the SPM, whereas the load operation restores
the previous state of the frame. It can be possible to insert
load and store operations anywhere into the code but this is
not pertinent: their goal is to manage the free space in the
SPM when frames are allocated or deallocated. It only happens
when entering or leaving a function so that it is enough to
insert stores and loads respectively just before and just after
call instructions.

Now, there are several issues to address so that such oper-
ations keep the consistency between the memory organization
and the application code.

Frames consistency: as a frame can be partially stored or
loaded, it happens that one of its half is within the SPM while
the other is within the MM. As the technique has a frame
level of granularity, a frame cannot be in such a state when
it is accessed. The solution is to insert a symmetric partial
load for each partial store before the corresponding frame is
accessed.

When a store is full (i.e., the frame is fully stored), it
is possible to leave the frame in the MM and update the
following possible references to the frame instead of inserting
a load, provided dependence analysis is able to explicit all the
accesses to the frame that occur after the corresponding call
instruction. If this is not the case, it is necessary to insert a
symmetric full load in order to prevent accesses to the wrong
memory.

Then, we must consider how frames are allocated within
the SPM. The natural approach is to manage a second stack
structure within the SPM as illustrated in figure 3(a). The
figure is a continuation the scenario of figure 2: after frame
3 is allocated to the MM, frame 4 is allocated to the SPM.
This allocation scheme is compatible with the store and load
operations as shown in figure 3(b): frame 5 requires also an
allocation to the SPM but there is no room left so that a partial
store is necessary. This figure seems to illustrate an apparent
limitation of the technique: if we stick to the second stack
structure, a store will concern frame 4 first even if storing
another frame could have been more interesting (for example,
frame 4 might be in a loop so that the corresponding store
and load operations would be executed much more often that
for frame 2). Yet, it is possible to store a frame ahead of the
need as shown in figure 4 where frame 2 is stored before

(a) (b)
Fig. 3. Storing frame 4 for allocating frame 5, before (a) and after(b) frame
5 is allocated

function 3 is called even if there is still room in the SPM
and even if frame 3 is to allocate to the MM. Actually, frame
2 is stored in prevision of the requirement of frame 5. The

Fig. 4. Storing frame 2 ahead of the need

figure also illustrates a case of partial store: only the space
required by frame 5 is stored from frame 2, frame 2(1) in the
figure, while the remaining frame 2(0) is kept in the SPM.
Additionally, it is enough to allow store and load operations
to deal with current function’s frame as long as it is not
accessed by another function. For instance, with the example
shown in figures 3 and 4, it is enough to allow storing or
loading frame 2 during function 2, frame 4 during function
4 and so on. Indeed, as soon as a frame is not accessed,
it is not necessary to keep it in the SPM so that if a store
is necessary, it can be performed immediately. Furthermore,
if a frame is not accessed by another function, it is enough
to store it during the execution of its corresponding function
only. The same reasoning goes for the load operations. In our
technique, we do enforce each load and store to deal with the
frame of current function only as it can be expressed with low
complexity within the linear formulation of the problem. If
no frame is larger than the SPM (or the space of the SPM
dedicated to the stack), and if no function accesses a frame
other than its current one, this model is optimal. The first
restriction can be solved by splitting the frame as mentioned
for future work in section VIII, and the second one is treated
within the following paragraph.

Function arguments: if there is not enough registers to
pass the totality of a function’s arguments through, the usual
convention is to push them on the top of the stack. We consider
that this area is part of the frame of the called function so that
the corresponding store (if any) have to be inserted before the
arguments are written into the stack.

When one argument is actually a reference to a frame, the
called function gains access to this frame. This is actually the
only safe case where a function can have access to a frame
different from its current one. In theory, it is possible to return
a reference to a frame or to make a global variable point
to a frame, but this is dangerous as when the function ends,
its corresponding frame is deallocated. Yet, making a global

variable point to the frame is still valid as long as the variable
is not used after the corresponding function ends. This last case
can be considered as one where a pointer to current function’s
frame is passed as argument to all its descendant functions in
the call graph. If dependence analysis cannot explicit all the
accesses to a frame passed as argument or global variable, it
must be either fully in the SPM or fully in the MM so that a
partial store becomes impossible. Incidentally, it is only when
a reference to a frame is passed as argument that it could
have become interesting to delay the store of the frame. For
instance, let us assume that function f’s frame is referred by
an argument of function g which does access frequently this
frame before calling another function h. It could be preferable
to store f’s frame during g’s execution, just before calling h.

Pointers to functions: with them, it is sometimes im-
possible to know at compile time which function is called.
When this occurs there is no other choice but to leave the
corresponding frame in the MM.

Library functions: it is common that compilers are
provided with pre-compiled libraries. Although the functions
of such libraries cannot be modified, it is still possible to
integrate them into our optimization technique provided we
know the maximum stack requirement for each of these func-
tions. Without modifying the code of such a library function,
its frame (or frames in the case it calls other functions) can
always be allocated to the SPM instead of the MM as the stack
pointer can be redirected before the library function is called.
Store and load operations are also permitted just before and
after the corresponding calling instructions.

Recursive functions: Recursive functions are also an
important issue as it is often impossible to know at compile
time how many instances of their frames will be allocated.
Section VI-B describes how our technique is extended to
support such functions.

C. Operations on the stack

In the standard managing of the stack, two operations are
used: when entering a function, a first operation allocates a
frame on the top of the stack by decreasing the stack pointer
register by the frame’s size. In this paper, we call this operation
grow. When leaving a function, the second operation frees its
corresponding frame from the top of the stack by increasing
the stack pointer by the frame’s size. We call this second
operation shrink. Both operations take as argument the size of
the frame to allocate as shown in their corresponding pseudo-
code given in figure 5. In the figure, $sp is the stack pointer
register.

For managing the stack between the SPM and the MM our
technique utilizes the following new stack operations whose
pseudo-code is also given in figure 5:

warp: makes $sp point to the SPM instead of the MM.
The operation utilizes two variables, spm_top and
mm_top, which contain the tops of the stack in
respectively the SPM and the MM.

unwarp: makes $sp point to the MM instead of the SPM.
It is the opposite of the warp operation.

Fig. 5. Pseudo-code of the stack operations

store: copies size words from the top of the SPM stack
pointed by $sp to the top of the MM stack pointed
by the mm_top variable. Both $sp and mm_top are
updated to continue to point to the respective SPM
and MM tops. In the figure, the * operator is used to
dereference pointers. This operation is possible only
if $sp points to the SPM.

load: copies size words from the MM to the SPM. This
operation is the opposite of the store as it can be seen
for its pseudo-code given in figure 5. This operation
is possible only if $sp points to the MM.

Note: the actual implementation of the code given in figure
5 is done directly in assembly as it is only at this level that
the stack pointer register and the real size of the frames can
be accessed. In our current implementation, we use a small
space in the SPM for the spm_top and mm_top variables
and for saving the registers used by the stack operations.

D. Functions called several times

It often happens that a same function is called several times
in the same program. Such a function will actually have several
frames. Moreover, when the function is executed, the stack can
be in several different states, so that depending on the case,
different stack operations might be required before and after
the call instructions of the function’s code. Instead of finding
the best compromise between several stack operations, our
approach is to insert predicates which check from where the
function has been called as illustrated in figure 6: f calls g so
that before calling g a predicate is required to know if a store is
to be inserted or not (symmetrically, the same kind of predicate
controls the load). In the figure, the pseudo-code first checks

Fig. 6. A predicate for checking from where function f is called

from which address function f has been called (it is assumed
in the figure that the return address is stored into the last word
of the frame, r_ofs being the corresponding offset relative
to the stack pointer register during f). If it was from the place
where, for instance, a later store is required for g’s frame,
the corresponding block is executed before calling function g.
Otherwise, function g is called without any operation on the
stack.

When a function f does not call another function, no
predicate is required as the corresponding load and store
operations (if any) are located respectively before and after
the call instruction and not within f’s body.

E. Additional optimizations

Store and load operations do consume energy so that
reducing their number is preferable. In the case a function
is called alone within a loop where there is no stack access,
the corresponding store and load can be moved out of the loop.

Another optimization is possible if dependence analysis
can show that the top part of a frame has not yet been
accessed before a call: this part can then be omitted by the
corresponding store and load operations.

Finally, if the target architecture includes a DMA, it can be
used for the store and the load operations in order to reduce
their costs.

V. PROBLEM FORMULATION

A. Initial definitions

We call place a point in the program where a new stack
operation can be inserted. There are two kinds of places: the
store places located just before the call instructions where store
and warp or unwarp operations can be inserted, and the load
places located just after the call instructions where load and
warp or unwarp operations can be inserted. The optimizations
mentioned in section IV-E are performed on the places: they
are moved out of the loops when possible and are annotated
with the part of the corresponding frame that can be omitted
for storing and loading.

In order to formulate the problem, the control flow and call
graph is divided into several sessions. We define a session as a
tree in the graph whose root is a place (i.e., the corresponding
basic block) and whose leaves are the next places encountered
in sequence. In practice sessions are often simple paths within
the graph, but in the case of calls nested within conditional
blocks, the leaves can be multiple. As there are two kinds of
places, there are two kinds of sessions: we call grow session
a session starting from a store place (as it includes a grow
operation) and shrink session a session starting from a load
place1. Figure 7 gives an example of places and sessions in
the call and control graph associated to a small program. In
the figure, double arrows stand for call or return edges while
plain arrows stand for control edges.

1This last session is built by connecting the return block to the correspond-
ing calling block.

Fig. 7. Places and sessions in a control and flow graph

Note: when a function is called from several different points
in the program, there will be equally several different sessions
which will cover the same parts of its code.

Sessions are used to refer to potential new stack operations
in the formulation given in the next section. They are also
used for collecting the profile informations: stack access rates
and executions counts are accumulated at the session level.

B. The ILP formulation

In order to decide which stack operations to insert, the
energy consumed while accessing and transforming the stack
is modeled by a linear function. This function is the objective
to minimize in an ILP whose solution gives the evolution of the
allocation states of the frames and the load and store operations
to use during the execution of the program.

The objective function must account for:
• The reading and writing accesses to the frames located

in the MM;
• The reading and writing accesses to the frames located

in the SPM;
• The storing of frames;
• The loading of frames;

The costs of the warp and the unwarp operations and the cost
of the predicates are initially neglected for simplifying the
presentation.

The variables and the constants of the problem are indexed
by the frame identifier (i) and by the session identifier (j).
Additionally, we note the variables with lower case letters
and the constants with heading upper case letters. With such
conventions, the objective function is computed with the
following variables:

xi,j : is 1 when frame i is fully in the SPM for session j
and 0 otherwise;

sti,j : its value is the number of words of frame i stored at
the beginning of session j;

ldi,j : its value is the number of words of frame i loaded
at the beginning of session j;

The constants used in the objective function are the followings:

Cspmr/w: cost of a single word read (r) / write (w) access
to the MM;

Cmmr/w: cost of a single word read/write access to the
MM.

Cst: cost for storing one word;
Cld: cost for loading one word;
Nar/w,i,j : number of read/write accesses to frame i during

session j, this constant is estimated by profiling the
application;

Nej : number of executions of session j, this constant is
estimated by profiling the application.

Note: the access costs given in this paper are averages and
are used for sake of clarity. It is possible, instead, to use the
exact energy consumption for the SPM, MM, load and store
accesses related to each session.

Although the variables and the constants are indexed by all
the frame and session identifiers they are not always defined:

• variables and constants are defined only when corre-
sponding frames are allocated;

• storing a frame can be performed only before a call
instruction from its corresponding function as mentioned
in section IV-B;

• loading a frame can be performed only when going back
to its corresponding function as mentioned section IV-B;

In order to simplify the notations, we consider that the
undefined variables and constants have the default value 0.

With those conventions, the energy consumption related to
the stack is modeled by the following expression:∑

i,j

(
Nar/w,i,j ∗

(
Cspmr/w ∗xi,j +Cmmr/w ∗ (1−xi,j)

)
+ Nej ∗

(
Cst ∗ sti,j + Cld ∗ ldi,j

))
(1)

This expression is to minimize but is not linear as it includes
constant terms. Hence, the constant terms are removed to
obtain the following function:∑

i,j

(
Nar/w,i,j ∗ (Cspmr/w − Cmmr/w) ∗ xi,j

+ Nej ∗
(
Cst ∗ sti,j + Cld ∗ ldi,j

))
(2)

This expression is the objective function to minimize in the
ILP. As mentioned in section IV-B, we restrict the frames to
be consistent when they are accessed, that is to say fully in the
SPM or fully in the MM. This is translated to the following
constraints:

∀i, j Ai,j ⇒ xai,j = xi,j ∗ Si (3)

In equations (3), each constant Ai,j is false if and only if
the references to frame i are known and it is not accessed
by its function, each constant Si represents the total size of
frame i and each variable xai,j represents the number of
words of frame i present in the SPM for session j. Therefore
constraints (3) force each xai,j to be of the size of frame i if
xi,j is 1 or to be 0 if xi,j is also 0. Variables xai,j are also

used to ensure that the stack data in the SPM does not exceed
Sspm (the SPM size reserved to the stack) as checked by the
following constraints:

∀j
∑

i

xai,j ≤ Sspm (4)

The last constraints are there to apply the effects of stores and
loads to the corresponding xai,j variables (provided they are
defined). Store constraints are the followings:

∀i, j ∀k ∈ Prev(j) xai,j = xai,k − sti,j (5)

And load constraints are the followings:

∀i, j ∀k ∈ Prev(j) xai,j = xai,k + ldi,j (6)

(Please notice that a load and a store cannot appear on a same
session.) In the above equations, Prev(j) is the set of indexes
of the sessions which precede session j in the control and call
graph. The last-in first-out (LIFO) allocation of the SPM stack
is implicitly respected by the store and load variables as they
are only defined when, respectively, calling and returning from
a function. When lack of dependence information enforces
load and store operations to be symmetric, the following
constraints are added (Safei is true when frame i is to be
symmetrically stored and loaded):

Safei ⇒ ldi,j = sti,Call(j) (7)

In the above equations, Call(j) is the index of the session
which called the function returned to during session j.

While the sessions might be numerous, the total number of
allocated frames for a session is rarely high in practice. There-
fore a majority of the variables of the problem are actually
independent with each other. Moreover, the access constraints
force a lot of xai,j variables to be actually pseudo-binary
(having only 2 possible values) so that the ILP is of small
complexity. For instance, for our experiments (section VII),
the time for solving each problem by the ILOG-CLPEX [21]
lp solver did not exceed 0.1 second. However, in the case
where an application contains a deep call graph, the problem’s
complexity might quickly grow. If the solving time becomes
too large, the complexity can be scaled down by formulating
and solving the problem for the most frequently executed
branches of the call graph first.

C. Additional costs

The cost of warps, unwarps and predicates can also be taken
into account in the objective function if such a precision is
required.

Warp and unwarp operations have a fixed cost and are
necessary only when the top frame of the new session is in a
different memory compared to one of the previous sessions. It
is then enough to add the Cw ∗ wj products to the objective
function where Cw is the cost of a warp or an unwarp and
where wj is the binary variable telling if a warp or an unwarp
is necessary for session j. It is constrained as follows:

∀j ∀k ∈ Prev(j) wj ≥ |xFr(j),j − xFr(k),k| (8)

In the above equations, Fr(j) is the frame of the function
which will be executed from session j.

Predicates are necessary when several sessions correspond-
ing to a same piece of code (a function is called from several
different locations) have different states. It is dealt with by
adding the Cp ∗ pj products to the objective function where
Cp is the cost of a predicate and pj is the binary variable
telling if a predicate is required or not for session j. It is
constrained as follows:

∀i, j ∀k ∈ Code(j) pj ≥ |xai,j − xai,k|/Sspm (9)

In the above equations, Code(j) is the set of sessions whose
code is the same as j’s and Sspm is used to ensure that pj is
constrained by values smaller than 1.

Note: all these constraints are actually linear as a ≥ |b| is
equivalent to a ≥ b & a ≥ −b.

VI. EXTENDING THE APPROACH

A. Including static memory objects

Papers like [1], [3], [8]–[10] already shown how to reduce
energy consumption by placing static objects (including code
and data) in the SPM using an ILP formulation. Such ap-
proaches are fully compatible with ours so that a total static
and stack optimization ILP formulation can be made as follows
(objstack is the objective function given in equation (2)):

objstack +
∑

l

Nar/w,l ∗ (Cspmr/w − Cmmr/w) ∗ xl (10)

In the above equation, the l indexes concern the same type
of variables and constants as the ones used in the stack
optimization part but refer to the static objects. The only thing
to change in the constraints is to replace the Sspm constant (the
size of SPM reserved to the stack) by the sstack variable which
represents the same size but in concurrence with the static
objects. Hence, this new variable is constrained as follows:

sstack +
∑

l

Sl ∗ xl ≤ Sspm (11)

In the above equation, constants Sl give the size of the
corresponding static objects and constant Sspm becomes the
size of the SPM reserved to the static objects and the stack.

Please notice that we gave here a simplified formulation for
the static part in order to show clearly how such an extension
can be performed. More complex ones are still compatible
with our approach.

B. Including recursive functions

Section III mentioned two approaches able to manage
recursive functions within the SPM. This section presents how
these approaches are used to extend ours with support for such
functions.

We restrict the approach with the circular buffer [19] to
functions which do not pass any reference to their frames
as arguments of calls or through global variables. If such a
reference were to be passed, it would have been possible that
a frame is accessed while it has been evicted from the buffer.

For each recursive function, a circular buffer is integrated
into the model by adding to the objective function the cost of
accessing the SPM for such frames plus the cost of moving
oldest frames to the MM and, afterward, back to the SPM.
These operations are actually close to our store and load
operations. No cost for the MM accesses is required for such
frames as they are always accessed while being in the SPM.
The oldest frames of the buffer will start to be moved to the
MM when the SPM is full. When this occurs, there will be
exactly one store and one load per such additional frame. The
resulting objective function is the following (objstack is the
objective for non recursive functions):

objstack +
∑
u,j

(
Nar/w,u,j ∗ (Cspmr/w −Cmmr/w) ∗ xu,j

+ (Neu,j − nu,j) ∗ Ccirc ∗ Su

)
(12)

In the above equation, u is the index of the frames of recursive
functions, nu,j is the variable giving the number of times
frame u’s size is allocated to the SPM and Neu,j is the
constant giving the number of times the frame is allocated.
In other words, nu,v represents the threshold of recursion
before the oldest frames start to be stored. Constant Ccirc
represents the cost of replacing one word in the buffer, which
corresponds to one store, one load and a residual cost for
managing the buffer. As in section V-B, the Ccirc∗Su product
could be replaced by the actual cost measured for each buffer
rotation operation. Indexes j still refer to the session numbers.
Variables nu,j , controlling the size of the buffers, are also
linked to variables xau,j in a modified version of equations
(3):

∀u, j Au,j ⇒ xau,j = nu,j ∗ Su (13)

Please notice that the other constraints including xau,j given
by (4), (5), (6) and by (7) are still valid. A final set of
constraints links variables xu,j to variables nu,j by forcing
each xu,j to be 1 when the corresponding nu,j is greater than
0 and to be 0 when the corresponding nu,j is 0:

∀j, u nu,j ∗ Su/Sspm ≤ xu,j ≤ nu,j (14)

In the equation, the value Sspm/Su is guarantied to be greater
or equal to nu,j .

The circular buffer for a recursive function is compatible
with the LIFO allocation of the other functions because it is
considered as a normal frame whose size is nu,j ∗ Su. Even
loads and stores can still be performed as the buffer is not used
when another function called by the recursive one is executed.

For the approach where frames corresponding to a given
depth of recursion are put into the SPM [20], it is enough
to add a grow and a shrink session for the corresponding
recursive function per depth of interest to be treated like a
different non-recursive function.

VII. EXPERIMENTS

A. Experimental environment
We applied our technique on a MeP [22] processor config-

uration including a data SPM. We used the Toshiba’s MeP

Integrator (MPI) tool chain [22], [23] for compiling and
simulating the applications. Compilations were performed with
the −O2 level of optimization.

We evaluated our approach on applications coming from the
EEMBC [24] and MiBench [4] benchmark suites. Informations
related to these examples are shown in table II. In the table, the
stack access rates are given relative to the total data memory
accesses. For the energy consumption, we used the power

Application Benchmark recursion stack
max size access rate

AES EEMBC no 64 bytes 74%
DES EEMBC no 48 bytes 14%
rad2deg MiBench no 224 bytes 65%
Patrical MiBench yes 104 bytes 90%
mp2dec (part) EEMBC no 132 bytes 29%
MD5 EEMBC no 320 bytes 57%
cubic MiBench no 1328 bytes 74%
FFT MiBench no 1012 bytes 62%

TABLE II
PROGRAMS USED FOR THE EXPERIMENTS

characteristics of memories given in table I (source [5], [6]).

B. Results

The technique proposed in this paper is compared with
the circular buffer (circular) approach proposed by [19] and
the static frame-level (static) approach proposed by [10]. The
comparison has been made possible by reimplementing both
approaches within our framework. The experiments’ results
are shown in figure 8. In the figure, each diagram displays, for
the given application, the quotient between the stack-related
energy consumption obtained after applying an optimization
technique with the stack-related one obtained when the stack
data are all within the MM. For each diagram, several SPM
sizes are considered depending on the total size of the corre-
sponding stack.

If we consider an SPM size which is only one half of
the maximum stack size, as considered in the last diagram
of figure 8, our technique achieves an energy reduction of
84% on average whereas with the circular buffer technique
the reduction is about 64% and with the static technique it is
about 79%. But these averages hide important disparities in
efficiency between the circular and the static techniques while
ours is always equivalent or more efficient than the best of
the two. This is not surprising as both can be seen as subsets
of our technique: they are part of the solution space which is
explored while solving the ILP presented in this paper. This
is obvious for the static frame-level technique, but this is also
true for the circular buffer one even though the data structure
used in the SPM is different. Indeed, the possibility to store
frames ahead of the need includes the possibility to store the
frames which would have been evicted from the circular buffer.
Actually, even if partial loads and stores were not allowed, our
technique would still be a superset of the two other techniques.

While the circular buffer approach can outperform the
static frame-level one, some artifacts frequently occur which
jeopardize the result. It is actually a consequence of the

Fig. 8. Stack-related energy consumptions normalized relatively to the case
where the stack is fully in the MM

systematic eviction of the oldest frames when the space left
in the SPM for a new frame is too low. This leads some-
times to frame moves that are more expensive than the gain
obtained by accessing the SPM. Cubic is a typical example
for such artifacts, but they occur at lower degrees in the other
applications.

The patricia application includes recursive functions and
therefore the static approach gives poorer results than the
circular buffer one and ours when, for a given input data set,
there is enough space in the SPM for containing the totality of
the stack. When the SPM is too small, our technique performs
better than the pure circular buffer technique thanks to the
optimal sizing of the buffer added into the ILP as presented
in section VI-B.

When the SPM is large enough to include the totality of the
stack, all the approaches obtain the same result (provided there
is no recursive function). Hence, more than the absolute energy
consumption reduction, it is the reduction rate compared to
the reduction obtained when the stack is fully in the SPM
which makes sense. Figure 9 gives such rates for the previous

Fig. 9. Stack-related energy reductions normalized relatively to the reduction
obtained when the stack is fully in the SPM

applications and SPM sizes. If we consider an SPM size which
is only one half of the maximum stack size, our technique
achieves an energy reduction which represents 56% on average
of the reduction obtained when the stack is fully allocated to
the SPM. The circular buffer approach only achieves 27% and
the static approach 41%.

The hybrid frame/variable-level mentioned by [10] is com-
plex to formulate and implement in practice, but can be
qualitatively compared to our technique. The low granularity
of the frame level is usually compensated by partial loads
and stores whose overhead can be compared favorably with
the overhead of accessing the dispatched variables of a frame.
Moreover, the dynamic evolution of the frames allocation state
permitted by our approach allows it to surpass the hybrid
method. Remains the case where a frame is larger than the
SPM space available for the stack: if the variables of such a
frame can be separated at low cost, the hybrid approach has
an advantage as it can allocate a part of this frame to the SPM
while our technique cannot as it requires it to be either fully
in the SPM or fully in the MM when accessed.

We plan to address this limitation as future work by splitting
frames when possible and pertinent during a preprocessing
stage. Then each part of the split frames can be dealt with
like any other frame by our current technique.

Finally, it can be mentioned that performance too is im-
proved by using the scratch-pad memory. If we consider that
the processor is running at 200Mhz, then the access latency of
the main memory is about 24 cycles in sequential access for
the SDRAM considered for our experiments [6] which mean
than the ratio with the SPM latency (1 cycle) is even larger
than the energy-related one.

VIII. CONCLUSION

In this paper, a software technique has been proposed to
reduce the energy consumption of stack accesses by managing
its frames between a scratch-pad (SPM) and the main memory
(MM). The optimization which includes the possibility of
moving partially of fully frames from one memory to the other
is formulated as an integer linear programming problem. Then
it has been shown how the technique is extended with support
for static memory objects and recursive functions.

Experimental results showed that the approach gives similar
or better results than a static ILP-based approach and a
dynamic approach managing the SPM like a circular buffer
of frames. With an available SPM space which is only one
half of what the stack requires, the technique allows to benefit
from an energy reduction of 84% on average, which represents
56% of what is obtained when the stack can fully fit in the
SPM.

While the approach allows partial loads and stores, it still
requires the frames to be fully in the SPM or fully in the MM
when accessed. Less energy consumption could be expected
if this last constraint could be relaxed. For future work we
consider to add a step which split frames. Each part of a split
frame could then be allocated, stored or loaded independently
of the others.

Another future work is to include the heap in our global
memory optimization technique. This last enhancement is
however much more complex to model as heap objects are
allocated and freed in a completely random manner. A track
could be to use a pool-based memory allocation system.

ACKNOWLEDGEMENTS

This work is supported by Toshiba and the CREST ULP
program of JST.

REFERENCES

[1] L. Wehmeyer, U. Helmig, and P. Marwedel, “Compiler-optimized usage
of partitioned memories,” in WMPI ’04: Proceedings of the 3rd work-
shop on Memory performance issues. New York, NY, USA: ACM,
2004, pp. 114–120.

[2] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel,
“Scratchpad memory: design alternative for cache on-chip memory in
embedded systems,” in CODES ’02: Proceedings of the tenth interna-
tional symposium on Hardware/software codesign. New York, NY,
USA: ACM, 2002, pp. 73–78.

[3] S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel, “Assigning program
and data objects to scratchpad for energy reduction,” in DATE ’02:
Proceedings of the conference on Design, automation and test in Europe.
Washington, DC, USA: IEEE Computer Society, 2002, p. 409.

[4] University of Michigan, “MiBench benchmark suite.” [Online].
Available: http://www.eecs.umich.edu/mibench/

[5] Samsung Semiconductor, “K4X51163PC Mobile DDR SRAM.”
[6] Micron Technology, Inc., “MT48H8M16LF Mobile SDRAM.”
[7] P. R. Panda, N. D. Dutt, and A. Nicolau, “Efficient utilization of

scratch-pad memory in embedded processor applications,” in EDTC
’97: Proceedings of the 1997 European conference on Design and Test.
Washington, DC, USA: IEEE Computer Society, 1997, p. 7.

[8] J. Sjödin and C. von Platen, “Storage allocation for embedded proces-
sors,” in CASES ’01: Proceedings of the 2001 international conference
on Compilers, architecture, and synthesis for embedded systems. New
York, NY, USA: ACM, 2001, pp. 15–23.

[9] M. Verma, S. Steinke, and P. Marwedel, “Data partitioning for maximal
scratchpad usage,” in ASP-DAC ’03: Proceedings of the 2003 Asia and
South Pacific Design Automation Conference. New York, NY, USA:
ACM, 2003, pp. 77–83.

[10] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation
scheme for scratch-pad-based embedded systems,” ACM Trans. Embed.
Comput. Syst., vol. 1, no. 1, pp. 6–26, 2002.

[11] B. Egger, J. Lee, and H. Shin, “Dynamic scratchpad memory manage-
ment for code in portable systems with an mmu,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 2, pp. 1–38, 2008.

[12] E. G. Hallnor and S. K. Reinhardt, “A fully associative software-
managed cache design,” SIGARCH Comput. Archit. News, vol. 28, no. 2,
pp. 107–116, 2000.

[13] C. A. Moritz, M. Frank, and S. P. Amarasinghe, “Flexcache: A frame-
work for flexible compiler generated data caching,” in IMS ’00: Revised
Papers from the Second International Workshop on Intelligent Memory
Systems. London, UK: Springer-Verlag, 2001, pp. 135–146.

[14] M. Mamidipaka and N. Dutt, “On-chip stack based memory organization
for low power embedded architectures,” in DATE ’03: Proceedings of
the conference on Design, Automation and Test in Europe. Washington,
DC, USA: IEEE Computer Society, 2003, p. 11082.

[15] S. Park, H.-w. Park, and S. Ha, “A novel technique to use scratch-
pad memory for stack management,” in DATE ’07: Proceedings of the
conference on Design, automation and test in Europe. San Jose, CA,
USA: EDA Consortium, 2007, pp. 1478–1483.

[16] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems,” in CASES ’03:
Proceedings of the 2003 international conference on Compilers, archi-
tecture and synthesis for embedded systems. New York, NY, USA:
ACM, 2003, pp. 276–286.

[17] R. Barua and S. Udayakumaran, “Compiler-decided dynamic memory
allocation methodology for scratch-pad based embedded systems,” U.S.
Patent 7 367 024, 2008.

[18] S. Udayakumaran, A. Dominguez, and R. Barua, “Dynamic allocation
for scratch-pad memory using compile-time decisions,” ACM Trans.
Embed. Comput. Syst., vol. 5, no. 2, pp. 472–511, 2006.

[19] A. Kannan, A. Shrivastava, A. Pabalkar, and J.-e. Lee, “A software
solution for dynamic stack management on scratch pad memory,” in
ASP-DAC ’09: Proceedings of the 2009 Asia and South Pacific Design
Automation Conference. Piscataway, NJ, USA: IEEE Press, 2009, pp.
612–617.

[20] A. Dominguez, N. Nguyen, and R. K. Barua, “Recursive function data
allocation to scratch-pad memory,” in CASES ’07: Proceedings of the
2007 international conference on Compilers, architecture, and synthesis
for embedded systems. New York, NY, USA: ACM, 2007, pp. 65–74.

[21] ILOG, “CPLEX LP solver.” [Online]. Available: http://www.ilog.com/
products/cplex

[22] Toshiba, “MeP processor.” [Online]. Available: http://www.semicon.
toshiba.co.jp/eng/product/micro/mep/document/index.html

[23] A. Mizuno, H. Uetani, and H. Eichel, “Design methodology and
system for a configurable media embedded processor extensible to vliw
architecture,” in ICCD ’02: Proceedings of the 2002 IEEE International
Conference on Computer Design: VLSI in Computers and Processors
(ICCD’02). Washington, DC, USA: IEEE Computer Society, 2002,
p. 2.

[24] Embedded Microprocessor Benchmark Consortium, “EEMBC
benchmark suite.” [Online]. Available: http://www.eembc.org/home.php

