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Abstract

Y. Ihara initiated the arithmetic study of a certain Galois representation that
may be seen as an arithmetic analogue of the Artin representation of a pure braid
group. In this thesis, we study arithmetic analogies in Ihara theory further, follow-
ing after some topics in the theory of braids, and try to develop arithmetic topology
in a new direction toward quantum topology. More concrete contents are as follows.

This thesis consists of a topological part (Chapters 1, 2) and an arithmetic
part (Chapters 3, 4). The topological part is concerned with topics such as Mil-
nor invariants, Johnson homomorphisms, and Gassner representations for the pure
braid group, as well as their inter-relations. We give a group-theoretic exposition
that serves as a useful guide for the study of the arithmetic counterpart. In the
arithmetic part, we pursue the analogues of the topological part in the context
of Ihara theory. We introduce l-adic Milnor invariants, pro-l Johnson homomor-
phisms, and pro-l Gassner representations for the absolute Galois group of a number
field, and study their properties and inter-relations. We give arithmetic-topological
interpretations of Jacobi sums and the Ihara power series in terms of l-adic Milnor
numbers.

This thesis is based on [Ko1], [Ko2], and [KMT].
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Notation

We denote by Z, Q and, C the ring of rational integers, the field of rational
numbers, and the field of complex numbers, respectively.

Throughout this paper, l denotes a fixed prime number. We denote by Zl and
Ql the ring of l-adic integers and the field of l-adic numbers, respectively.

For a, b in a group G, a ∼ b means that a is conjugate to b in G. For sub-
groups A,B of a (topological) group G, [A,B] stands for the (closed) subgroup of
G generated by all the commutators [a, b] := aba−1b−1 with a ∈ A, b ∈ B.

For a group G, we define its lower central series by

Γ1G := G, ΓkG := [Γk−1G,G] (k ⩾ 2).

For each k ⩾ 1, we set

grk(G) := ΓkG/Γk+1G.

For a positive integer n and a ring R with an identity element, M(n;R) denotes
the ring of n × n matrices with entries in R, and GL(n;R) denotes the group of
invertible elements of M(n;R). We denote the group of invertible elements of R by
R×.

Throughout this paper, we will write the composition in a fundamental group
from the left, i.e., γγ′ means to go along γ first and γ′ next.
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Intoroduction

In the early part of the 20th century, E. Artin began a mathematical study
of braids and, among other things, found a representation of braid groups, called
the Artin representation today ([Ar]). Since then, braid theory has developed as
a research area in low dimensional topology, and it has provided rich soil for the
growth of quantum topology that started with the discovery of the Jones polynomials
in the 1980’s.

In 1986, Y. Ihara initiated a study of a certain representation of the absolute
Galois group of a number field, which may be seen as an arithmetic analogue of
the Artin representation, and revealed its rich structure in connection with deep
arithmetic such as Iwasawa theory on cyclotomy and complex multiplications of
Fermat Jacobians ([Ih1]). Ihara’s work has been developed extensively in the field
of arithmetic algebraic geometry, including Grothendieck-Teichmüller theory, an-
abelian geometry, and multiple zeta values, etc.

In recent years, arithmetic topology has developed into a guiding principle for
obtaining parallel results and analogies between three-dimensional topology and
number theory ([Ms2]). In particular, it is known that there are intimate analogies
between knot theory and Iwasawa theory. These analogies are mainly based on
analogies between Galois groups (resp. ideal class groups of number fields) and
3-manifold groups (resp. homology groups of 3-manifolds).

This thesis is motivated by the general view that the position of Ihara theory
relative to Iwasawa theory in number theory may be similar to that of braid theory
relative to knot theory in low dimensional topology:

Knot theory

⇓ ⇓
Iwasawa theory←→

←→

Arithmetic topology

Braid theory Ihara theory

On the basis of this viewpoint, in this thesis, we go back to Ihara’s original idea on
the analogy between braid groups and absolute Galois groups and study the anal-
ogy systematically. We hope to extend arithmetic topology by drawing analogies
between quantum topology and Ihara theory in the future.

Now let us introduce a basic dictionary of analogies that we will use in this
thesis. We recall the analogy between the Ihara representation of the absolute
Galois group of a number field and the Artin representation of a pure braid group.

Let l be a prime number. Let S := {P0, . . . , Pr} be a set of ordered r+1 (r ⩾ 2)
distinct Q-rational points Pi (0 ⩽ i ⩽ r) on the projective line P1 over the rational
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number field Q, where Q is an algebraic closure of Q. Let k := Q(S \ {∞}),
the finite algebraic number field generated by coordinates of points in S \ {∞}.
Note that the absolute Galois group Galk := Gal(Q/k) is the étale fundamental
group of Spec k. Thus, it acts on the geometric fiber P1

Q \ {P0, . . . , Pr} of the

fibration P1
k \ {P0, . . . , Pr} → Spec k and hence on the pro-l étale fundamental

group πpro-l
1 (P1

Q \ {P0, . . . , Pr}) ≃ Fr, where Fr denotes the free pro-l group on

the r generators x1, . . . , xr. In [Ih1], Ihara initiated the study of this monodromy
Galois representation

(0.0.1) IhS : Galk −→ Aut(Fr),

particularly for the case S = {0, 1,∞} and k = Q, in connection with deep arith-
metic such as Iwasawa theory on cyclotomy and complex multiplications of Fermat
Jacobians. We note that the image of IhS is contained in the subgroup consisting
of elements φ ∈ Aut(Fr) such that φ(xi) ∼ xαi (conjugate) for 1 ⩽ i ⩽ r and
φ(x1 · · ·xr) = (x1 · · ·xr)α for some α ∈ Z×l .

As explained in [Ih3], the Ihara representation (0.0.1) may be regarded as
an arithmetic analogue of the Artin representation of a pure braid group ([Ar]).
Let PBr be the pure braid group with r strings (r ⩾ 2). Note that PBr is the
topological fundamental group of the configuration space Configr(D

2) of ordered r
points on a 2-dimensional diskD2. For 1 ⩽ i ⩽ r, let pi be mutually distinct interior
points of D2. They define the point (p1, . . . , pr) ∈ Configr(D

2). Then PBr acts, as
the monodromy, on the fiber D2\{p1, . . . , pr} of the universal bundle over the point
(p1, . . . , pr) ∈ Configr(D

2) and hence on the topological fundamental group π1(D
2\

{p1, . . . , pr}) ≃ Fr, where Fr denotes the free group on r generators x1, . . . , xr and
each xi is identified with the isotopy class of a loop encircling pi clockwise with a
base point on the boundary ∂D2. Thus we have the Artin representation

(0.0.2) Arr : PBr −→ Aut(Fr).

This map is an injection and its image is generated by elements φ ∈ Aut(Fr) such
that φ(xi) ∼ xi for 1 ⩽ i ⩽ r and φ(x1 · · ·xr) = x1 · · ·xr.

We can see the following analogy between the Ihara representation (0.0.1) and
the Artin representation (0.0.2):
(0.0.3)

absolute Galois group pure braid group
Galk PBr

P1
k \ {P0, . . . , Pr} → Spec k universal bundle over Configr(D

2)
with geometric fiber P1

Q \ {P0, . . . , Pr} with fibers D2 \ {p1, . . . , pr}
Ihara representation of Galk Artin representation of PBr

on πpro-l
1 (P1

Q \ {P0, . . . , Pr}) = Fr on π1(D
2 \ {p1, . . . , pr}) = Fr

In this thesis, with the help of the dictionaries (0.0.3), we shall investigate the
arithmetic analogues in Ihara theory of the following issues and their inter-relations:

(I) Milnor invariants of links,
(II) Johnson homomorphisms for the pure braid group PBr,
(III) Magnus-Gassner representations of PBr,
(IV) Alexander invariants of links.

Chapters 1 and 2 deal with the topological side of these issues: Chapter 1
covers mainly (I) and (II): the Milnor invariants of a link are the higher order
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linking numbers. They are defined by the coefficients of the Magnus expansion of a
longitude by meridians ([Mi]) and are interpreted in terms of Massey products in
the cohomology of the link group ([Ki], [T]). Johnson homomorphisms are useful
means of studying the structure of the mapping class group of a surface ([J1], [J2],
[Mt1], [Mt2]). The main tools are algebraic and applicable to the study of the
automorphism group of a free group ([Ka], [Sa]). Since the pure braid group PBr
is a subgroup of the mapping class group of an r punctured disk, the theory of
Johnson homomorphisms is also applicable to PBr. In Chapter 1, we show that
the Johnson homomorphisms are described by Milnor invariants of pure braid links.

Chapter 2 covers mainly (III): Magnus cocycles are crossed homomorphisms of
PBr defined by using the Fox free derivative ([Bi1, 3.1, 3.2], [F]). The Gassner
representation is a particular case of Magnus cocycles, and it provides multivariable
link invariants called the Alexander invariants ([Bi1, 3.3]). We show the relations of
the Gassner representations with Johnson homomorphisms and Milnor invariants.

Chapters 3 and 4 deal with the arithmetic side of the above materials: In Chap-
ter 3, we define l-adic Milnor invariants and the pro-l Johnson homomorphism for
absolute Galois groups. Among other things, we prove the following theorem that
is suggested by the Alexander–Markov theorem of braid theory. This “translation”
supports the idea of an analogy between braid groups and absolute Galois groups.

Let IhS : Galk → Aut(Fr) be the Ihara action and χl : Galk → Z×l denote
the l-cyclotomic character. For g ∈ Galk, it turns out that there exists a unique

word yi(g) ∈ Fr (1 ⩽ i ⩽ r) such that IhS(g)(xi) = yi(g)x
χl(g)
i yi(g)

−1 and the
coefficient of the class of xi is 0 in the abelianization of Fr. We call the word
yi(g) ∈ Fr the i-th longitude of g ∈ Galk. We denote by Z⟨⟨X1, . . . , Xr⟩⟩ the ring
of non-commutative formal power series over Zl with variables X1, . . . , Xr and let
Θ : Fr → Zl⟨⟨X1, . . . , Xr⟩⟩ be the pro-l Magnus embedding. Let us consider the
pro-l Magnus embedding of yi(g):

Θ(yi(g)) = 1 +
∑
n⩾1

∑
I=(i1···in)

1⩽i1,...,in⩽r

µ(g; i1 · · · iri)Xi1 · · ·Xin

For a muti-index I, we call the coefficient µ(g; I) the Milnor number of g with
respect to I and we define the l-adic Milnor invariant µ̄(g; I) of g for I to be the
l-adic Milnor number µ(g; I) modulo a certain ideal ∆(g; I) of Zl:

µ̄(g; I) := µ(g; I)mod∆(g; I).

Then, we have the following proposition.

Theorem 3.2.20. For a multi-index I, the l-adic Milnor invariant µ(g; I) of
g ∈ Galk is preserved under the conjugate action of Galk(ζl∞ ) ⊂ Galk. More
precisely, let I be a multi-index with |I| ⩾ 1. Let g ∈ Galk and h ∈ Galk(ζl∞ ). Then

we have ∆(hgh−1; I) = ∆(g; I) and the following equality holds:

µ(hgh−1; I) = µ(g; I).

In Chapter 4, we introduce the notion of pro-l reduced Gassner representa-
tions and study the Ihara power series from the arithmetic topological viewpoints.
Among other things, we give an arithmetic topological interpretation of Jacobi
sums: Let p be a rational prime that satisfies certain conditions on ramifications
and let p be a prime of Q lying over p. Then, p is unramified in Q/Q so that the
Frobenius automorphism σp ∈ GalQ is defined. Let n be a fixed positive integer
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and let pn be the prime of Q(ζln) lying below p, where ζln ∈ Q denotes a primitive

ln-th root of unity. Let

(
x

pn

)
ln

be the ln-th power residue symbol at pn for a unit

x ∈ (Z[ζln ]/pn)×. For 0 ̸= a, b ∈ Z/lnZ with (a, b, l) = 1, we define the Jacobi sum
by

Jln(pn)
(a,b) :=

∑
x,y∈(Z[ζln ]/pn)

×

x+y=−1

(
x

pn

)a
ln

(
y

pn

)b
ln
.

For a multi-index I = (i1 · · · in) and j ∈ {1, 2}, let |I|j denote the number of entries
ik satisfying ik = j.

For integers n1, n2 ⩾ 0 with n1 + n2 ⩾ 1 and g ∈ GalQ, we set

µ(g;n1, n2) :=
∑

|I|1=n1−1,|I|2=n2

µ(g; I12) +
∑

|I|1=n1,|I|2=n2−1

µ(g; I21)

where µ(g; J) denotes the Milnor number of g with respect to the multi-index J .
Let f denote the order of p in (Z/lnZ)×. Then, we have the following theorem.

Theorem 4.3.5. Given the above notation, the Jacobi sum and the l-adic
Milnor invariants satisfy

Jln(pn)
(a,b) = 1 +

∑
n1,n2⩾0
n1+n2⩾1

µ(σfp ;n1, n2)(ζ
a
ln − 1)n1(ζbln − 1)n2 .

We also show a formula that relates l-adic Milnor invariants to Soulé characters:
For a ∈ Z/lnZ, let ⟨a⟩ln denote the integer satisfying a = ⟨a⟩ln mod ln with 0 ⩽
⟨a⟩ln < ln. For a positive integer m, we set

ϵ
(m)
ln :=

∏
a∈(Z/lnZ)×

(ζln − 1)⟨a
m−1⟩ln ,

which is an l-unit in Q(ζln), called a cyclotomic l-unit. Then, we define the m-th
l-adic Soulé character χ(m) : GalQ → Zl as the Kummer cocycle attached to the

system of cyclotomic l-units {ϵ(m)
ln }n⩾1 as

ζ
χ(m)(g)
ln = {(ϵ(m)

ln )1/l
n

}g−1(n ⩾ 1, g ∈ GalQ).

In addition, we set

κm(g) :=
χ(m)(g)

1− lm−1
(g ∈ GalQ).

Then, we have the following theorem.

Theorem 4.3.8. Let g ∈ GalQ(ζl∞ ) and let N1, N2 be integers with N1, N2 ⩾ 0
and N1 +N2 ⩾ 1. Then, the following equality holds:∑

n1+n2⩾1
0⩽n1⩽N1,0⩽n2⩽N2

µ(g;n1, n2)an1
(N1)an2

(N2)

=
∑

1⩽n⩽N1+N2

(
(−1)n

n!

∑ κ
m

(1)
1 +m

(1)
2
(g)

m
(1)
1 !m

(1)
2 !

· · ·
κ
m

(n)
1 +m

(n)
2

(g)

m
(n)
1 !m

(n)
2 !

)
.
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0 Intoroduction

Here, the last sum ranges over the integers m
(1)
1 , . . . ,m

(n)
1 ,m

(1)
2 , . . . ,m

(n)
2 ⩾ 0 such

that m
(i)
1 +m

(i)
2 ⩾ 3 and m

(i)
1 +m

(i)
2 is odd (1 ⩽ i ⩽ n), m

(1)
1 + · · · +m

(n)
1 = N1

and m
(1)
2 + · · ·+m

(n)
2 = N2. For each j = 1, 2, we put

anj (Nj) :=


1 (nj = 0)∑
e1,...,enj

⩾1

e1+···+enj
=Nj

1

e1! · · · enj !
(nj ⩾ 1).
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CHAPTER 1

Pure braid groups, Milnor invariants, and Johnson
homomorphisms

In this chapter, we recall the definitions of pure braid groups, Milnor invariants
and Johnson homomorphisms and show their relations. More precisely, by regarding
a pure braid as a mapping class of the punctured disk, we show that the Johnson
homomorphism of a pure braid can be viewed as being essentially the same as the
first-non-vanishing Milnor invariants of the link obtained by closing a pure braid.
Moreover, we give a description of the Johnson homomorphism of a pure braid in
terms of the Massey product of the associated mapping torus. This chapter is based
on [Ko1].

1.1. Pure braid groups and Artin representations

Here, we recall the definition of the pure braid group and its interpretation as
the mapping class group of the punctured unit disk in the complex plane. Then,
we recall the action of the pure braid group on the free group, called the Artin
representation, as the induced action of the pure braid group on the fundamental
group of the punctured disk.

1.1.1. Pure braid groups. Let r be a integer with r ⩾ 2. Let D2 be the
unit disc in the complex plane C with center ( 12 , 0) and pi = ( i

r+1 , 0) (1 ⩽ i ⩽ r)

be a point in D2. Let I denote the unit interval [0, 1] and Ii (1 ⩽ i ⩽ r) denote its
copy. We consider an embedding b :

⊔r
i=1 Ii (disjoint union) → D2 × I satisfying

the following conditions:

(1) bi(0) = pi, bi(1) = pki for some ki (1 ⩽ ki ⩽ r) with ki ̸= kj (i ̸= j)
(2) bi(t) ∈ D2 × {t}

where we denote the restriction of b to Ii by bi. Note that from the definition b
induces the permutation b of {1, . . . , r}. Hence, condition (1) is written as bi(0) =
pi, bi(1) = pb(i). Such a b is called a braid, and the bi (1 ⩽ i ⩽ r) are called strings.

We often identify a braid b and its image b(
⊔r
i=1 Ii) in D

2 × I.
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1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

By projecting the image of b to the plane R × I, we get its braid diagram, which
possesses information on the crossings of the strands. In a braid diagram, we draw
D2 × {0} as the bottom plane and D2 × {1} as the top plane.

For two braids b, b′, we say that b and b′ are isotopic if there is a level preserving
ambient isotopy Ht : D

2 × I → D2 × I (t ∈ [0, 1]) such that Ht fixes the boundary
of D2 × I and H0 = id,H1(b) = b′.

Now, let Br be the group of isotopy classes of braids. It is called the braid group
with r strings and is generated by σ1, . . . , σr−1 satisfying the following relations:

σiσi+1σi+1 = σi+1σiσi+1 (1 ⩽ i ⩽ r − 2)
σiσj = σjσi ( | i− j |> 1).

The following braid diagram depicts each generator σi.

· · ·

r

· · ·

i+ 221 ii− 1 i+ 1

σi

For b, b′ ∈ Br, its product bb′ is defined by stacking b′ on b, like in the following
picture:

· · ·
b′

· · ·
b

· · ·

Now there exists a natural surjective homomorphism,

χ : Br −→ Sr; b 7→ b

where Sr denotes the r-th symmetric group. We set PBr := Ker(χ) and call it
the pure braid group of n strings. Each generator Aij (1 ⩽ i < j ⩽ r) of PBr is
presented in terms of a generator σi (1 ⩽ i ⩽ r − 1) of Br:

Aij = σiσi+1 · · ·σj−2σ2
j−1σ

−1
j−2 · · ·σ

−1
i+1σ

−1
i

which is depicted as the following braid diagram.

Aij

· · ·

1 i− 1

· · ·

j + 1 ri i+ 1 j − 1 j

· · ·

8



1.1 Pure braid groups and Artin representations

The generators Aij (1 ⩽ i < j ⩽ r) of PBr are subject to the following relations:

ArsAijA
−1
rs =


Aij (if s < i or i < r < s < j),

A−1rj AijArj (if s = i),

A−1rj A
−1
sj AijAsjArj (if i = r < s < j),

A−1rj A
−1
sj ArjAsjAijA

−1
sj A

−1
rj AsjArj (if r < i < s < j).

Noting that in the case of a pure braid b each strand bi connects pi × {0} and
pi × {1}, we call bi the i-th string of b.

1.1.2. The Artin representation of the pure braid group. Next, we
recall the interpretation of the braid group as the mapping class group of a surface.
Let Dr = D2\{p1, . . . , pr} be the 2-dimensional disc in the complex plane with r
punctured points. By tracing the punctured points permuted by a mapping class
of Dr, we have the natural homomorphism,

χ′ :M(Dr) −→ Sr

and we set PM(Dr) := Ker(χ′). Now, the braid group Br induces homeomor-
phisms of Dr as follows: Let us consider a simple proper arc li,i+1 connecting the
i-th and i + 1-th punctures and a disk Di,i+1, which contains only the i-th and
i+ 1-th punctures corresponding to the following picture.

Each generator σi can be viewed as the isotopy of D2 between the identity map
and the roation map which rotates the arc li,i+1 in D2 clockwise about its midpoint
by an angle π. As a result of this isotopy, we have a homeomorphism Hli,i+1 of
Dn with support on Di,i+1, called the half twist along the arc li,i+1, described as
follows.

Hli,i+1

i i+ 1

li,i+1

7−→
i+ 1

li,i+1

i

It turns out that this correspondence gives a homomorphism Br → M(Dr). The
following proposition is known.

Proposition 1.1.1 (see [Bi1, Theorem 1.10], [KT, Theorem 1.33]). The above
correspondence induces an isomorphism

Br ∼=M(Dr)

9



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

and so

PBr ∼= PM(Dr).

Similarly, for each generator Aij of PBr, we have the mapping class represented
by the full twist Tlij along lij , which has support on Dij , and can be described with
the following picture:

Tlijlij 7−→
i j i j

lij

We take a base point p0 on the boundary ∂Dr. The fundamental group of
π1(Dn, p0) is the free group Fr generated by x1, . . . , xr, where xi is a small loop
encircling the i-th puncture clockwise. So the mapping class group PM(Dr) ∼= PBr
acts naturally on Fr from the left. Therefore, we have a homomorphism,

Arr : PBr = PM(Dr) −→ Aut(π1(Dr, p0)) = Aut(Fr); σ 7→ σ∗.

Accordingly, we can prove the following proposition.

Proposition 1.1.2. The homomorphism ψ gives an isomorphism

Arr : PBr
∼−→ Aut0(Fr)

where we set

Aut0(Fr) = {φ ∈ Aut(Fr) | φ(xi) = yixiy
−1
i (1 ⩽ i ⩽ r), φ(x1 · · ·xr) = x1 · · ·xr}

and each yi (1 ⩽ i ⩽ r) is some element of Fr. Furthermore, yi is uniquely
determined under the condition that the exponent sum of xi in yi (1 ⩽ j ⩽ r) is 0.

Proof. The first part is a special case of [Bi1, Corollary 1.8.3] and [Bi1,
Theorem 1.9]. For uniqueness, we assume that there are two elements yi and zi
in Fr that satisfy φ(xi) = yixiy

−1
i = zixiz

−1
i and the condition on the exponent

sum. Then we have xi(y
−1
i zi) = (y−1i zi)xi. Since an element of the centralizer of

xi is given by xli with some l ∈ Z, we have yiz
−1
i = xli. From the condition on the

exponent sum, we have l = 0, and so yi = zi. □

Remark 1.1.3. In [Bi1], the action of the braid group on Fr is given by the
right action. Here, we think that the braid group acts on Fr from the left in the
following manner: For b ∈ Br and x ∈ Fr, we set b∗b

′
∗(x) := x(b∗b

′
∗)

op. Here,
op denotes the reverse order of the product, i.e., (b∗b

′
∗)

op = b′∗b∗. Hence, in our
notation, the action of the braid group is given by

(1.1.4) (σk)∗(xi) =


xi−1 (if k = i− 1),

xixi+1x
−1
i (if k = i),

xi (otherwise).
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1.1 Pure braid groups and Artin representations

The action of the inverse σ−1i is given by

(1.1.5) (σ−1k )∗(xi) =


x−1i xi−1xi (if k = i− 1),

xi+1 (if k = i),

xi (otherwise).

In what follows, we often simply denote by b(x) the action of b ∈ Br on x ∈ Fr.
The action of PBr on the free group Fr is expressed as follows:

(1.1.6) Akl(xi) =


xkxlxix

−1
l x−1k (if k = i),

xkxix
−1
k (if l = i),

xkxlx
−1
k x−1l xixlxkx

−1
l x−1k (if k < i < l),

xi (if i < k or l < i).

(1.1.7) A−1kl (xi) =


x−1l xixl (if k = i),

x−1i x−1k xixkxi (if l = i),

x−1l x−1k xlxkxix
−1
k x−1l xkxl (if k < i < l),

xi (if i < k or l < i).

Example 1.1.8. Let bBorr be the following pure braid.

≃

1 2 3 1 2 3

Moreover, we have bBorr = σ2σ
−1
1 σ2σ

−1
1 σ2σ

−1
1 = A23A12A

−1
23 A

−1
12 . The mapping

class corresponding to bBorr is represented by Tα23
◦ Tα12

◦ T−1α23
◦ T−1α12

. The action
of bBorr on the fundamental group is given by

Ar3(bBorr)(x1) = [x1x2x
−1
1 , x3]x1[x1x2x

−1
1 ]−1,

Ar3(bBorr)(x2) = [x−13 , x−11 ]x2[x
−1
3 , x−11 ],

Ar3(bBorr)(x3) = [x−13 x−11 x3, x1x
−1
2 x−11 ]x3[x

−1
3 x−11 x3, x1x

−1
2 x−11 ]−1

Hence, we have

y1 = [x1x2x
−1
1 , x3]

y2 = [x−13 , x−11 ],

y3 = [x−13 x−11 x3, x1x
−1
2 x−11 ].

Remark 1.1.9. The pure braid group PBr is also considered to be the fun-
damental group of the configuration space Configr(D

2) = {(p1, ..., pr) ∈ (D2)r |
pi ̸= pj (if i ̸= j)}, which is the moduli space of r ordered distinct points on the
2-dimensional disc D2. Let h : E → Configr(D

2) be the universal bundle such
that the fibre of (p1, . . . , pr) ∈ Configr(D

2) is h−1((p1, ..., pr)) = D2\{p1, ..., pr}.

11



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

Then the representation Arr : PBr → Aut(Fr) can be interpreted as the mon-
odromy representation of π1(Configr(D

2)) on the fundamental group of the fibre
h−1((p1, ..., pr)).

1.2. Milnor invariants

Here, we recall the Milnor invariants of a pure braid link and introduce the
Milnor filtration of the pure braid group.

1.2.1. The Magnus expansion and Fox free derivatives. Let Z⟨⟨X1, · · ·Xr⟩⟩
be the algebra of non-commutative formal power series of r variables X1, · · · , Xr

over Z. Let Fr be the free group generated by x1, . . . , xr. Let Z[Fr] be the group
algebra of Fr over Z and let ϵ : Z[Fr] → Z be the augmentation map. We define
the Z-algebra homomorphism, called the Magnus homomorphism,

θ : Z[Fr]→ Z⟨⟨X1, · · · , Xr⟩⟩

by

θ(xi) := 1 +Xi, θ(x−1i ) := 1−Xi +X−2i − · · · (1 ⩽ i ⩽ r).

Remark 1.2.1. It is known that the Magnus homomorphism θ is injective
(cf.[MKS, 5.5]).

For α ∈ Z[Fr], we have

(1.2.2) θ(α) = ϵ(α) +
∑
n⩾1

∑
I=(i1,··· ,in)
1⩽i1,...,in⩽r

µ(I;α)XI , XI := Xi1 · · ·Xin .

We call it the Magnus expansion of α and call the integer µ(I;α) the Magnus
coefficient of α with respect to I.

For 1 ⩽ j ⩽ r, let

∂

∂xj
: Z[Fr]→ Z[Fr]

be the Fox free derivative given by the following properties (cf.[MKS, 5.15]):

∂xi
∂xk

= δi,k,
∂(αβ)

∂xk
=

∂α

∂xk
ϵ(β) + α

∂β

∂xk
(α, β ∈ Z[Fr])

Higher order derivatives are defined inductively by

∂nα

∂xi1 · · · ∂xin
:=

∂

∂xi1

(
∂n−1α

∂xi2 · · · ∂xin

)
(α ∈ Z[Fr]).

The Magnus coefficients can be written in terms of the Fox free derivatives:

(1.2.3) µ(i1 · · · in;α) = ϵ

(
∂nα

∂xi1 · · · ∂xin

)
.

Remark 1.2.4. Note that for m ≥ 2

f ∈ ΓmFr ⇐⇒ for any I with 1 ⩽ |I| < m,we have µ(I; f) = 0

where |I| means the length of multi index I.
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1.2 Milnor invariants

1.2.2. Milnor invariants. Next, we recall Milnor’s theorem on the presen-
tation of a link group in our context. Let x1, · · · , xr be a free generator of Fr =
π1(Dr, p0) and yi (1 ⩽ i ⩽ r) be the word of x1, · · · , xr that is uniquely determined

by a pure braid b, as in Proposition 1.1.2. For a braid b, we denote by b̂ the link

obtained by closing b. In particular, for a pure braid b, we denote by b̂i the i-th

component of b̂ which is obtained by closing the i-th strings bi. Here, one can easily
prove the following proposition, for example, by using the Wirtinger presentation.

Proposition 1.2.5. Let b a pure braid in PBr with b(xi) = yixiy
−1
i . The link

group Gb̂ := π1(S
3\b̂) of the pure braid link b̂ has the following presentation

Gb̂ = ⟨x1, · · · , xr | [y1, x1] = · · · = [yr, xr] = 1⟩,

where xi and yi may also be regarded as the words representing a meridian and a

longitude of b̂i, respectively.

Now, let us recall the Milnor invariants of b̂. Following [Mi], we consider the
Magnus expansion of the i-th longitude yi in Z⟨⟨X1, ..., Xr⟩⟩:

(1.2.6) θ(yi) = 1 +
∑
n⩾1

∑
I=(i1···in)

1⩽i1,··· ,in⩽r

µ(b; i1 · · · ini)Xi1 · · ·Xin .

and the coefficient µ(b; i1 · · · ini) is called the Milnor number or Milnor µ invariant
of b with respect to the multi-index I = (i1 · · · ini). From (1.2.3), we have the
following description of Milnor numbers in the light of Fox free derivatives:

µ(b; i1 · · · ini) = µ(i1 · · · in; yi) = ϵ

(
∂nyi

∂xi1 · · · ∂xin

)
.

To get the isotopy invariants of links, we need to consider the residue class of µ(b; I)
in order to get rid of the indeterminacies of the choices of meridians and longitudes

and of the group presentation of b̂. Here, we set

µ(̂b; I) := µ(b; I)mod∆(I)

where ∆(I) denotes that the ideal of Z generated by µ(̂b; J) (J runs over all cyclic

permutations of proper subsequences of I). Then µ(̂b; I) is known to be an isotopy

invariant of b̂ and is called the Milnor µ invariant of b̂ with respect to the multi-
index I.

Remark 1.2.7. (1) In [MK, Definition 4.3], the Milnor number µ(b | I) of a
pure braid b is defined for a multi-index I consisting of distinct integers. It coincides
with our µ(b; I).

(2) Let m be a integer greater than 1. If µ(̂b; I) = 0 for |I| ⩽ m, then µ(̂b; I) =
µ(b; I) for |I| = m+ 1.

Example 1.2.8. Let bBorr be the pure braid in Example 1.1.8. Then b̂Borr is
the following link, called the Borromean rings. Here, we give bBorr an orientation
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1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

downward.

b̂Borr 1 b̂Borr 3

b̂Borr 2

From (1.1.9), we have

θ(y1) = 1 +X2X3 −X3X2 + (higher degree terms),

θ(y2) = 1 +X3X1 −X3X1 + (higher degree terms),

θ(y3) = 1 +X1X2 −X2X1 + (higher degree terms).

Hence, we have

µ(̂bBorr; 123) = µ(̂bBorr; 231) = µ(̂bBorr; 312) = 1,

µ(̂bBorr; 132) = µ(̂bBorr; 321) = µ(̂bBorr; 213) = −1,

µ(̂bBorr; ijk) = 0 (otherwise).

The Milnor invariants of pure braid links induce a filtration of PBr as follows.
We denote by PBMil

r (m) the normal subgroup of PBr consisting of elements whose
Milnor invariants of length ⩽ m vanish, i.e.,

PBMil
r (m) := {b ∈ PBr | µ(̂b; I) = 0 (|I| ⩽ m)}.

We then have the descending series

PBr = PBMil
r (1) ⊃ PBMil

r (2) ⊃ · · · ⊃ PBMil
r (m) ⊃ · · · .

and {PMil
r (m)}m⩾1 is called the Milnor filtration of PBr ([Oh]).

1.2.3. Massey products for a link complement. In this section, we recall
the definition of Massey products for cohomology and their relation with Magnus
coefficients. Then, we recall the result of Turaev and Porter that relates Massey
products for a link complement to the Milnor invariant of a link in our context.

Let X be a topological space. In the following, the cohomology group of X
stands for the singular cohomology with integral coefficients. Let α1, . . . , αm ∈
H1(X,Z) be cohomology classes. A Massey product ⟨α1, . . . , αm⟩ is said to be
defined if there is an array A

A = {aij ∈ C1(X,Z) | 1 ⩽ i < j ⩽ m+ 1, (i, j) ̸= (1,m+ 1)}
such that {

[ai,i+1] = ai (1 ⩽ i ⩽ m)

daij =
∑j−1
k=i+1 aik ∪ akj (j ̸= i+ 1).

Such an array A is called a defining system for ⟨α1, . . . , αm⟩. Then, for a defining
system A, we define the cohomology class ⟨α1, . . . , αm⟩A of H2(X,Z) represented
by the 2-cocycle

m∑
k=2

a1k ∪ ak,m+1.

14



1.2 Milnor invariants

We then define a Massey product of α1, . . . , αm as the subset of H2(X,Z) by

⟨α1, . . . , αm⟩ := {⟨α1, . . . , αm⟩A ∈ H2(X,Z) | A ranges over defining systems}.

Remark 1.2.9. (1) The Massey product ⟨α1⟩ is α1 and its defining system A
consists of any 1-cocycle representing α1. The Massey product ⟨α1, α2⟩ is the cup
product α1∪α2. For m ⩾ 3, the Massey product ⟨α1, . . . , αm⟩ is defined and consists
of a single element if ⟨αi1 , . . . , αir ⟩ = 0 for any proper subset {i1, . . . , ir} (r ⩾ 2)
of {1, . . . ,m}.
(2)(The naturality of the Massey products) Let X and X ′ be topological spaces
and f : X → X ′ be a continuous map. We assume that ⟨α1, . . . , αm⟩ is defined
for αi ∈ H1(X ′,Z) (1 ⩽ i ⩽ m) with the defining system A = (aij). Then,
⟨f∗(α1), . . . , f

∗(αm)⟩ is defined for f∗(αi) ∈ H1(X,Z) (1 ⩽ i ⩽ m) with the defin-
ing system A∗ = (f∗(aij)) and we have f∗(⟨α1, . . . , αm⟩) ⊂ ⟨f∗(α1), · · · , f∗(αm)⟩.

Next, let us recall the relation between Massey products and Magnus coeffi-
cients. Let G be a finitiely generated group with minimal generators g1, . . . , gr. The
group cohomology H∗(G,Z) is given by the singular cohomology H∗(K(G, 1),Z)
of the Eilenberg-Maclane space K(G, 1). Let

(1.2.10) 1 −→ R −→ Fr
π−→ G −→ 1

be a presentation of G such that π sends each generator xi (1 ⩽ i ⩽ r) of Fr
to gi and π induces the isomorphism F ab

r
∼= Gab. The subgroup R is generated

normally by the relators of G. Now we have an isomorphism H1(G,Z) ∼= H1(Fr,Z)
induced by π. Moreover, we have an isomorphism, called the Hopf isomorphism
([Br, Theorem 5.3])

(1.2.11) h : H2(G,Z) −→ H1(R,Z)G = R/[R,Fr].

The following proposition yields the relation between Massey products and Magnus
coefficients.

Proposition 1.2.12. With the notation as above, let α1, . . . , αm ∈ H1(G,Z)
and let A = (aij) be a defining system for the Massey product ⟨α1, . . . , αm⟩. Let
f ∈ R and set η := h−1(f mod[R,Fr]). Then we have

⟨α1, . . . , αm⟩A(η)

=

m∑
j=1

(−1)j+1
∑

c1+···cj=m

∑
1⩽i1,··· ,ij⩽s

a1,1+c1(gi1) · · · am+1−cj ,m+1(gij )µ(i1, . . . , ij ; f),

where ci (1 ⩽ i ⩽ j) runs over positive integers satisfying c1 + · · · + cj = m and
gi := π(xi) (1 ⩽ i ⩽ r) and µ(i1 · · · ij ; f) is the Magnus coefficient of f withe respect
to I = (i1 · · · ij).

Next, let us recall the result of Turaev ([T]) and Porter ([P]) on the inter-
pretation of Milnor invariants as Massey products for the cohomology of a link
complement in our context.

For b ∈ PBMil
r (m) (m ⩾ 1), we have its closed pure link b̂. By Proposition

1.2.5, a free basis of H1(S
3\b̂,Z) is given by [x1], . . . , [xr] and its dual basis is

given by x∗1, . . . , x
∗
r in H1(S3\b̂,Z). For a tubular neighborhood Vi around the i-

th component b̂i, we consider the homology class ηi in H2(S
3\b̂,Z) realizing the

boundary ∂Vi. Then Turaev-Porter’s result can be expressed as follows.
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1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

Theorem 1.2.13 ([T],[P]). For 1 ⩽ i1, · · · , im+1 ⩽ r, there is a uniquely

defined Massey product ⟨x∗i1 , · · · , x
∗
im+1
⟩ ∈ H2(S3\b̂,Z) such that we have

⟨x∗i1 , · · · , x
∗
im+1
⟩(ηi)

=


(−1)m+1

(
µ(̂b; i2 · · · im+1i1)− δi1,im+1

µ(̂b; i1 · · · imim+1)
)

(if i = i1)

(−1)m+1
(
µ(̂b; i2 · · · im+1i1)δi1,im+1

− µ(̂b; i1 · · · imim+1)
)

(if i = im+1)

0 (otherwise).

1.3. Johnson homomorphisms

1.3.1. Johnson homomorphisms. Let Σ = Σ1,r
g be an oriented surface of

genus g ⩾ 0 with r ⩾ 0 punctured points and one boundary component ∂Σ. Let
M(Σ) denote the mapping class group of Σ, i.e., the group of isotopy classes of
orientation-preserving self-homeomorphisms of Σ which fix the boundary point-
wisely. Taking a base point p0 ∈ ∂Σ, we have a group isomorphism π1(Σ, p0) ∼=
F2g+r. SinceM(Σ) acts naturally on the fundamental group π1(Σ, p0), we have a
homomorphism

ψ :M(Σ) −→ Aut(π1(Σ, p)) ∼= Aut(F2g+r); ϕ 7→ ϕ∗.

Since ΓmF2g+r is a characteristic subgroup of F2g+r, any mapping class ϕ ∈M(Σ)
induces the automorphism [ϕ∗]m of F2g+r/Γm+1F2g+r. Thus, we have the homo-
morphism

ψm :M(Σ) −→ Aut(F2g+r/Γm+1F2g+r); ϕ 7→ [ϕ∗]m.

We denote the kernel of ψm byM(Σ)Joh(m), i.e.,

M(Σ)Joh(m) := Ker(ψm)

= {ϕ ∈M(Σ) | ϕ∗(g)g−1 ∈ Γm+1F2g+r} (m ⩾ 0).

We then have the descending series

(1.3.1) M(Σ) =M(Σ)Joh(0) ⊃M(Σ)Joh(1) ⊃ · · · ⊃ M(Σ)Joh(m) ⊃ · · ·
and {M(Σ)Joh(m)}m⩾0 is called the Johnson filtration ofM(Σ). Let H denote the
first homology group of Σ with integer coefficients:

HZ := H1(Σ,Z) ∼= Z⊕(2g+r).
Then we define the map

τm :M(Σ)Joh(m) −→ HomZ(HZ, grm+1(F2g+r))

as follows. First, we define a map τm(ϕ) : HZ → grm+1(F2g+r) for any ϕ ∈
M(Σ)Joh(m) in the following way: For [γ] ∈ HZ with γ ∈ F2g+r, we have ϕ∗(γ)γ

−1 ∈
Γm+1. Net, we set τm(ϕ)([γ]) := ϕ∗(γ)γ

−1 mod Γm+2F2g+r ∈ grm+1(F2g+r). We
can easily see that the map τm(ϕ) is well defined homomorphism.

This leads us to the following proposition (for the proof, see [Sa]).

Proposition 1.3.2. For m ⩾ 1, the map τm is a group homomorphism.

For m ⩾ 1, the homomorphism

(1.3.3) τm :M(Σ)Joh(m) −→ HomZ(HZ, grm+1(F2g+r))

is called the m-th Johnson homomorphism.
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1.3.2. Magnus coefficients of Johnson homomorphisms. Let us go back
to the setting of Section 1.2.2. Let us consider the Magnus coefficients of the image
of the Johnson homomorphism of a mapping class.

The ring of non-commutative formal power series Z⟨⟨X1, . . . , X2g+r⟩⟩ can be
identified with the completed tensor algebra of H over Z:

Z⟨⟨X1, . . . , X2g+r⟩⟩ =
∏
m⩾0

H⊗mZ ,

whereH⊗mZ is the submodule generated by monomials ofX1, . . . , X2g+r of degreem.
Noting Remark 1.2.4, the restriction of the Magnus homomorphism θ to Γm+1F2g+r

induces the homomorphism, for m ⩾ 0,

θm : grm+1(F2g+r)→ H
⊗(m+1)
Z ,

which is written as

θm([γ]) =
∑

1⩽i1,··· ,im+1⩽2g+r

µ(i1 · · · im+1; γ)Xi1 · · ·Xim+1

for γ ∈ Γm+1F2g+r. Composing the m-th Johnson homomorphism τm in (1.3.3)
with θm, we have the homomorphism, for m ⩾ 1,

τθm := θm ◦ τm :M(Σ)Joh(m) −→ HomZ(HZ,H
⊗(m+1)
Z ); ϕ 7→ θm ◦ τm(ϕ).

For each ϕ ∈M(Σ)Joh(m) and the basis [xi] (1 ⩽ i ⩽ 2g + r) of HZ, we have

(1.3.4)

τθm(ϕ)([xi]) = θm(τm(ϕ)([xi]))

=
∑

1⩽i1,...,im+1⩽2g+r

µ(i1 · · · im+1;ϕ(xi)x
−1
i )Xi1 · · ·Xim+1 .

One can see that the Magnus coefficients of τθm(ϕ)([xi]) contain all the information
of τm(ϕ)([xi]) as integers.

1.3.3. Johnson homomorphisms for pure braid groups. In this section,
we prove our first theorem, which gives the explicit relation between Johnson coef-
ficients and Milnor invariants of a pure braid link.

From Proposition 1.1.1, we may regard PBr as PM(Dr). We define the John-
son filtration {PBJoh

r (m)}m⩾0 of PBr by

PBJoh
r (m) := PBr ∩ MJoh(Dr)(m).

Lemma 1.3.5. PBr = PBJoh
r (1).

Proof. For any b ∈ PBr, we have

b∗(xi)x
−1
i = yixiy

−1
i x−1i

= [yi, xi] ∈ Γ2Fr.

This implies b ∈ PBJoh
r (1). Hence PBr = PBJoh

r (1). □

Now we can prove the following proposition that shows the equivalence of the
Johnson filtration and the Milnor filtration of the pure braid group.

Proposition 1.3.6. For m ⩾ 1, the Johnson filtration and the Milnor filtration
of the pure braid group coincide, i.e., we have

PBJoh
r (m) = PBMil

r (m).
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Proof. For any b ∈ PBr, from Remark 1.2.4 and (1.2.6), we have

b ∈ PBMil
r (m) ⇐⇒ yi ∈ ΓmFr (1 ⩽ i ⩽ r).

On the other hand,

b ∈ PBJoh
r (m) ⇐⇒ b∗(xi)x

−1
i ∈ Γm+1Fr (1 ⩽ i ⩽ r)

⇐⇒ [yi, xi] ∈ Γm+1Fr (1 ⩽ i ⩽ r)

⇐⇒ yi ∈ ΓmFr (1 ⩽ i ⩽ r).

Therefore, PBJoh
r (m) = PBMil

r (m). □

In the following, we simply denote by PBr(m) the m-th term of the Johnson
(or Milnor) filtration for m ⩾ 0.

The following theorem states that the Johnson homomorphisms of a pure braid
are essentially same as the first non-vanishing Milnor invariants of the pure braid
link.

Theorem 1.3.7. For each b ∈ PBr(m), each basis [xi] ∈ HZ and multi-index
I = (i1 · · · im+1) of length m+ 1, we have

µ(i1 · · · im+1; τm(b)(xi))

=


− µ(̂b; i2 · · · im+1i1) + δi1,im+1µ(̂b; i1 · · · imim+1) (if i = i1)

− µ(̂b; i2 · · · im+1i1)δi1,im+1 + µ(̂b; i1 · · · imim+1) (if i1 = im+1)

0 (otherwise).

Proof. From (1.3.4), we have

τθm(b)([xi]) =
∑

|I|=m+1

µ(I; yixiy
−1
i x−1i )XI .

From proposition 1.3.6, b ∈ PBr(m) ⇐⇒ yi ∈ ΓmFr. Therefore, from Remark

1.2.4 and (1.2.6), we have θ(yi) = 1+ Y where Y =
∑
|I′|⩾m µ(̂b; I

′i)XI′ . Thus, we

have

θ(yixiy
−1
i x−1i ) = θ(yi)θ(xi)θ(y

−1
i )θ(xi)

−1

= (1 + Y )(1 +Xi)(1− Y + Y 2 − · · · )(1−Xi +X2
i − · · · )

= 1 + Y Xi −XiY + (higher degree terms).

Then, the homogeneous degree m+ 1 part of θ(yixiy
−1
i x−1i ) is given by∑

|I′|=m

µ(b; I ′i)(XI′Xi −XiXI′).

By carefully comparing the coefficients, the assertion follows. □

Example 1.3.8. Let bBorr be the pure braid as in Example 1.1.8. As is shown
in Example 1.2.8, we can see that bBorr ∈ P3(2). Then, the image of the Johnson
homomorphism of bBorr is given by

τθ2 (bBorr) = [x1]
∗ ⊗ [[X2, X3], X1] + [x2]

∗ ⊗ [[X3, X1], X2] + [x3]
∗ ⊗ [[X1, X2], X3]

where [xi]
∗ denotes the Kronecker dual of [xi] with 1 ⩽ i ⩽ 3.

Remark 1.3.9. Note that the relation between Milnor invariants and Johnson
homomorphisms is also shown by Habegger in [Ha].
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1.3.4. Massey products for a mapping torus. First, we describe the punc-
tured disc Σ1,r

0 = Dr counterpart of the Kitano’s result on Massey products for a
mapping torus of a surface Σ1,0

g ([Ki]).
Let b ∈ PBr(m) (m ⩾ 1): we consider the mapping torus of b,

Xb := Dr × [0, 1]/ ∼,
where we define the equivalence relation ∼ by identifying x×{0} with b∗(x)×{1}.
The Seifert-van Kampen theorem gives

π1(Xb) = ⟨x1, . . . , xr, t | [x1, t]b∗(x1)x−11 , · · · , [xr, t]b∗(xr)x−1r ⟩
= ⟨x1, . . . , xr, t | [x1, t][y1, x1], · · · , [xr, t][yr, xr]⟩

where xi and yi are the words in Proposition 1.2.5. Now, [x1], · · · , [xr], [t] forms a
free basis of H1(Xb,Z). Let x∗i ∈ H1(Xb,Z) (1 ⩽ i ⩽ r + 1) denote the dual basis
of H1(Xb,Z) given by  x∗i ([xj ]) = δij (1 ⩽ i, j ⩽ r)

x∗r+1([t]) = 1
x∗r+1([xi]) = 0 (1 ⩽ i ⩽ r).

SinceXb is an Eilenberg-Maclane spaceK(π1(Xb), 1), we haveH∗(Xb,Z) ∼= H∗(π1(Xb),Z).
Let ξj be the homology class in H2(Xb,Z), which corresponds to the homology class
of H2(Xb,Z) representing the relator [xj , t][yi, xj ] via the Hopf isomorphism h in
(1.2.11). Then, the punctured disc analogue of Kitano’s result is as follows.

Theorem 1.3.10. Let b ∈ PBr(m). For 1 ⩽ i1, . . . , im+1 ⩽ r, the Massey
product ⟨x∗i1 , . . . , x

∗
im+1
⟩ ∈ H2(Xb,Z) is uniquely defined and its evaluation on ξi ∈

H2(Xb,Z) is given by

⟨x∗i1 , . . . , x
∗
im+1
⟩(ξi) = (−1)mµ(i1 · · · im+1; τm(b)(xi)).

By using Theorems 1.2.13, 1.3.7, and 1.3.10, we can easily show the following.

Corollary 1.3.11. The punctured disk analogue of Kitano’s result and Turaev–
Porter’s result are equivalent.
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CHAPTER 2

Reduced Gassner representations of pure braid
groups

In this chapter, we recall the notions of Gassner representations and the reduced
version. Each representation has two definitions. One is defined as the induced
action of the pure braid group on the first homology group of the universal abelian
covering space of a punctured disc. The other is defined as a special case of the
Magnus representations of the mapping class group of a surface. First, we show
that these definitions are equivalent. Second, we give explicit formulas for the
(reduced) Gassner representation in terms of the Milnor invariants of a pure braid
link. Finally, we give the relation between (reduced) Gassner representations and
Johnson homomorphisms. This chapter is based on [Ko2].

2.1. Gassner representations

In this section, we recall two different definitions of reduced Gassner represen-
tations of pure braid groups: One is a special case of homological representations
and the other is a special case of Magnus representations. Then, we prove the
equivalence of these two different definitions.

2.1.1. Homological Gassner representations. Here, we recall the defini-
tion of the reduced Gassner representation derived from the induced action of the
pure braid group on the abelian covering space of the r-punctured disk Dr. (For
details on the homological representations of the mapping class group, for example,
see [KT].)

Take a base point p0 on the boundary ∂Dr and consider the fundamental group
π1(Dr, p0) = Fr. From Hurewicz theorem, we have a natural homomorphism ab :
π1(Dr, p0) = Fr → H1(Dr) = F ab

r := Fr/Γ2Fr = Z⊕r. Let Dab
r be the universal

abelian covering space of Dr corresponding to Ker(ab) = Γ2Fr. Then, the group
of covering transformations Aut(Dab

r /Dr) of h : Dab
r → Dr is identified with F ab

r .
Let us consider the relative homology group H1(D

ab
r , h

−1(p0)). Since the ac-
tion of F ab

r on Dab
r induces the action on H1(D

ab
r , h

−1(p0)), the relative homol-
ogy group H1(D

ab
r , h

−1(p0)) is endowed with the structure of a Z[F ab
r ]-module.

In the following, we shall identify Z[F ab
r ] with the ring of Laurent polynomials

Λr := Z[t±1 , . . . , t±r ] over Z with variables t1, . . . , tr. Since Dr is homotopy equiva-
lent to a bouquet of r circles, one may see thatH1(D

ab
r , h

−1(p0)) is a free Λr-module
of rank r, i.e., H1(D

ab
r , h

−1(p0)) ∼= Λr
⊕r.

As explained in Section 1.1.2, by viewing the pure braid group PBr as a sub-
group of the mapping class group of Dr, PBr acts on π1(Dr, p0). We can see that
b∗ commutes with ab for each b ∈ PBr by Proposition 1.1.2, i.e., ab◦b∗ = ab. Take
a point p̃0 on the fiber h−1(p0) of p. An automorphism of Dr representing b ∈ PBr
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2.1 Gassner representations

has a unique lift b̃ : Dab
r → Dab

r fixing p̃0. Since b̃ commutes with the action of F ab
r

on Dab
r , we have b̃(gp̃0) = gb̃(p̃0) = gp̃0 (g ∈ F ab

r ). Therefore, the lift b̃ fixes the
fiber h−1(p0) pointwise.

The lift b̃ : Dab
r → Dab

r induces the automorphism

b̃∗ : H1(D
ab
r , h

−1(p0))→ H1(D
ab
r , h

−1(p0))

and b̃∗ is a Λr-linear map since b̃∗ commutes with F ab
r . Hence, we have the homo-

morphism

GassHr : PBr −→ Aut(H1(D
ab
r , h

−1(p0))) = GL(r; Λr); b 7→ b̃∗.

We call this representation the homological Gassner representation of PBr.
By extending this representation to the full braid group Br, we obtain a 1-

cocycle

GassHr : Br −→ GL(r; Λr); b 7→ b̃∗

since b̃ acts on Λn by a permutation of {t1, . . . , tn}. We call this 1-cocycle the
homological Gassner cocycle of Br.

In the following, for each b ∈ PBr as long as there is no risk of confusion, we

will denote the lift b̃∗ by using the same b.
Noting that H1(Dr, h

−1(p0)) is freely generated by the classes [x1], . . . , [xr],
by (1.1.6), the representation matrix of the homological Gassner representation is
explicitly given as follows.

Proposition 2.1.1. For each generator Aij ∈ PBr, we have

Akl([xi]) =


(1 + tk(tl − 1))[xk] + tk(1− tk)[xl] (if k = i),

(1− tl)[xk] + tk[xl] (if l = i),

(1− tl)(1− ti)[xk] + (1− tk)(ti − 1)[xl] + [xi] (if k < i < l),

[xi] (if i < k or l < i).

Similarly, the homological Gassner cocycle is explicitly given as follows by
(1.1.4).

Proposition 2.1.2. For each generator σk ∈ Br, we have

σk([xi]) =


[xi−1] (if k = i− 1),

(1− ti+1)[xi] + ti[xi+1] (if k = i),

[xi] (if otherwise).

2.1.2. Homological reduced Gassner representations. Next, let us de-
fine a free submodule Lprim

r ⊂ H1(Dr, h
−1(p0)) with rank r − 1 and define the

reduced homological reduced Gassner representation of PBr as its induced action
on Lprim

r .
To begin with, let us review the Crowell exact sequence (cf.[Cr]). Let G be a

group with finite presentation

G = ⟨x1, . . . , xr | r1 = · · · = rm = 1⟩.

Let π : Fr → G be a natural projection and we denote the induced Z-linear map
of the group algebra of the same π, i.e., π : Z[Fr]→ Z[G]. Take any group H. Let
Ψ : G → L be a surjective homomorphism and, we will use the same Ψ to denote
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2 Reduced Gassner representations of pure braid groups

the induced Z-linear map Ψ : Z[G] → Z[L]. By setting N := Ker(Ψ), we have the
following exact sequence:

1 −→ N → G
Ψ−→ L −→ 1.

Moreover, by setting

QΨ :=

(
Ψ ◦ π

(
∂ri
∂xj

))
∈ Mm,r(Z[L]),

AΨ := Coker(Z[L]m QΨ→ Z[L]r)
= Z[L]r/Im(QΨ),

we have the following exact sequence of Z[L]-modules

Z[L]m QΨ−→ Z[L]r −→ AΨ → 0.

Since the group L acts on the abelianization Nab := N/[N,N ] through the conju-
gate, Nab is endowed with the structure of a Z[L]-module. In fact, one can easily

see that the L action defined by l · [n] := [l̃nl̃−1] ([n] ∈ Nab, l ∈ L,Ψ(l̃) = l) is
well-defined. Then, we have the following theorem.

Theorem 2.1.3. (Crowell exact sequence [Cr]) The following exact sequence
of Z[L]-modules exists:

0 −→ Nab θ1−→ AΨ
θ2−→ Z[L] ϵ−→ Z −→ 0

where

(2.1.4) θ1(nmod[N,N ]) :=

(
Ψ ◦ π

(
∂f

∂xi

))
mod Im(QΨ) (π(f) = n)

and

θ2((α1, . . . , αr)mod Im(QΨ) :=

n∑
j=1

αj(Ψ ◦ π(xj)− 1).

Here ϵ : Z[L]→ Z is the augmentation map.

We set G = Fr, π = idFr
, L = F ab

r = Fr/[Fr, Fr] and Ψ = ab : Fr → F ab
r .

Then, the kernel N of ab is N = Ker(ab) = [Fr, Fr] and its abelianization Nab is the
meta-abelian quotient Nab = [Fr, Fr]/[[Fr, Fr], [Fr, Fr]] of Fr. Since the free group
Fr has no relation, we have QΨ = 0 and therefore AΨ = Z[L]r = Z[F ab

r ]r = Λr
⊕r.

Then, by Theorem2.1.3, we have the following exact sequence of Z[H]-modules:

0 −→ [Fr, Fr]/[[Fr, Fr], [Fr, Fr]]
θ1−→ Λr

⊕r θ2−→ Λr
ϵ−→ Z −→ 0

where

(2.1.5) θ1(f mod[[Fr, Fr], [Fr, Fr]]) = Ψ

(
∂f

∂xj

)
,

and

θ2((α1, . . . , αr)) =

r∑
j=1

αj(tj − 1).
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2.1 Gassner representations

This exact sequence is called the Blanchfield-Lyndon exact sequence. It can be
identified with the exact sequence of the relative homology group for the pair of
topological spaces (Dab

r , h
−1(p0));

(2.1.6)

0 −→ H1(D
ab
r ) −→ H1(D

ab
r , h

−1(p0)) −→ H0(h
−1(p0)) −→ H0(D

ab
r ) −→ 0.

=
[Fr, Fr]/[[Fr, Fr], [Fr, Fr]]

==

Λ⊕rr

=

Λr Z

Setting the augmentation ideal of Λr by IΛr and Lr := [Fr, Fr]/[[Fr, Fr], [Fr, Fr]],
(2.1.6) leads to the following exact sequence

(2.1.7) 0 −→ Lr
θ1−→ Λ⊕rr

θ2−→ IΛr
−→ 0.

Moreover, we have the isomorphism of Λr-modules induced by θ1, called the Blanchfield-
Lyndon isomorphism,

(2.1.8) θ1 : Lr
∼−→ {(αi) ∈ Λ⊕rr |

r∑
j=1

αj(tj − 1) = 1}.

In particular, we can see that H1(D
ab
r ;Z) = [Fr, Fr]/[[Fr, Fr], [Fr, Fr]] has a basis

[xi, xi+1] with 1 ⩽ i ⩽ r − 1.
To define the reduced Gassner representation, we define the submodule Lprim

r

of H1(D
ab
r ;Z) algebraically. This construction is inspired by the one by Oda ([O2])

of its pro-l analogue. For 1 ⩽ i ⩽ r, let Ri be the normal closure of xi in Fr,

i.e. Ri := ⟨⟨xi⟩⟩. We set F
(i)
r := Fr/Ri and set Λ

(i)
r := Z[t±1 , . . . , t̂

±
i , . . . , t

±
r ] with

the augmentation ideal I
Λ

(i)
r
. Here, t̂±i means deleting t±i . We define a Z-algebra

homomorphism δi : Λr −→ Λ
(i)
r by

δi(tj) =

{
tj (j ̸= i),

0 (j = i).

Note that Λ
(i)
r -module can be regarded as a Λr-module through δi. We set L

(i)
r :=

[F
(i)
r , F

(i)
r ]/[[F

(i)
r , F

(i)
r ], [F

(i)
r , F

(i)
r ]]. Let ξi : Lr → L

(i)
r be the Λr-algebra homomor-

phism induced by the natural homomorphism Fr → F
(i)
r . We define the primitive

part Lprim
r of Lr by

(2.1.9) Lprim
r :=

r∩
i=1

Ker (ξi) ⊂ H1(D
ab
r ;Z).

We set Ui := (1 − t1) · · · ̂(1− ti) · · · (1 − tr). Here ̂(1− ti) means that we remove
the term (1− ti).

Theorem 2.1.10. (1) The Blanchfiled-Lyndon isomorphism θ1 in (2.1.8) is
restricted to the isomorphism of the Λr-module

Lprim
r

∼−→ {(αjUj) ∈ Λ⊕rr | αj ∈ Λr,

r∑
j=1

αj = 0}.

(2) The submodule Lprim
r is stable under the induced action of Br.

(3) As a Λr-module, Lprim
2 = H1(D

ab
2 ;Z), Lprim

r ̸= H1(D
ab
r ;Z) (r ⩾ 3).

(4) Lprim
r ⊗Λn

Q(t1, . . . , tr) = H1(D
ab
r ;Z)⊗Λr

Q(t1, . . . , tr).
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2 Reduced Gassner representations of pure braid groups

Proof. We extend ξ to the Λr-homomorphism ξ̃ : Λ⊕rr → (Λ
(i)
r )⊕(r−1) by

ξ̃i(α1, . . . , αr) := (δi(α1), . . . , δi(αi−1), δi(αi+1), . . . , δi(αr)).

Thus, we have the commutative diagram of Λr-modules:

0 −→ Lr −→ Λ⊕rr −→ IΛr
−→ 0

↓ ξi ↓ ξ̃i ↓ δi
0 −→ L

(i)
r −→ (Λ

(i)
r )⊕(r−1) −→ I

Λ
(i)
r
−→ 0

where the two rows are the Crowel exact sequences. Thus, we can see that Ker(ξ̃i)
is given by

Ker (ξ̃i) = {(α1(ti − 1), . . . , αi−1(ti − 1), αi, αi+1(ti − 1), . . . , αr(ti − 1))}
where αj ∈ Λr (1 ⩽ i ⩽ r). Thus, from (2.1.8) and (2.1.9), we have

Lprim
r = {(αj) ∈ Λ⊕rr |

r∑
j=1

αj(tj − 1) = 0, αj ≡ 0 mod (ti − 1) if i ̸= j}

The assertion (1) follows, since Λr is U.F.D.
(2) Since the Artin representation Arr(σ) sends xi to the conjugate of xχ(σ)(i), the

definition (2.1.9) implies that Lprim
r is stable under the induced action of Br.

(3) and (4) are immediate consequences of (1) and (2). □
Since, for b ∈ Br, we have the induced action,

b̃∗ : H1(D
ab
r )→ H1(D

ab
r )

from the lift b̃ : Dab
r → Dab

r of a homeomorphism representing b and the submodule

Lprim
r is invariant under the action of b̃∗ (Theorem 2.1.10(1)), we obtain a 1-cocycle

GassH,redr : Br −→ Aut(Lprim
r ) = GL(r − 1; Λr) ⊂ Aut(H1(D

ab
r )); b 7→ b̃∗|Lprim

r
.

We call this 1-cocycle the homological reduced Gassner 1-cocycle of Br.
By restricting GassH,redr to PBr, we have the homomorphism

GassH,redr : PBr −→ Aut(Lprim
r ) = GL(r − 1; Λr) ⊂ Aut(H1(D

ab
r )).

We call it the homological reduced Gassner representation of PBr.
As explained in the Appendix, this definition of the reduced Gassner represen-

tation is equivalent to original definition (cf.[Bi1, 3.3]).

2.1.3. A representation matrix of the homological reduced Gassener
representation. Here, we calculate a representation matrix of the homological
reduced Gassner representation of PBr.

For this, we need some lemmas. In what follows, we simply denote by [xi, xj ]
the class [xi, xj ]mod[[Fr, Fr], [Fr, Fr]] for xi, xj ∈ Fr (1 ⩽ i, j ⩽ r).

Lemma 2.1.11. We have

Akl[xi, xi+1] =



titi+1[xi, xi+1] (if k = i < l = i+ 1),

[xi, xi+1] + ti+1(1− ti)[xi+1, xl] (if k = i+ 1 < l),

[xi, xi+1] + (1− ti+1)[xk, xi] (if k < l = i),

[xi, xi+1]− (1− ti+1)[xi, xl] (if k = i < i+ 1 < l),

[xi, xi+1]− ti+1(1− ti)[xk, xi+1] (if k < i < i+ 1 = l),

[xi, xi+1] (otherwise),
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2.1 Gassner representations

and

A−1kl [xi, xi+1] =



t−1i t−1i+1[xi, xi+1] (if k = i < l = i+ 1),

[xi, xi+1]− t−1l (1− ti)[xi+1, xl] (if k = i+ 1 < l),

[xi, xi+1]− t−1k t−1i (1− ti+1)[xk, xi] (if k < l = i),

[xi, xi+1]− t−1i t−1l (1− ti+1)[xl, xi] (if k = i < i+ 1 < l),

[xi, xi+1]− t−1k (1− ti)[xi+1, xk] (if k < i < i+ 1 = l).

[xi, xi+1] (otherwise).

We set Uij := (1 − t1) · · · ̂(1− ti) · · · ̂(1− tj) · · · (1 − tr), where ̂(1− ti) means

that we remove the term (1− ti). We also put Ui := (1− t1) · · · ̂(1− ti) · · · (1− tr).
Moreover, we set

Eij := Uij [xi, xj ] (1 ⩽ i < j ⩽ r).

Then, we have

Lemma 2.1.12. Using the above notation, for 1 ⩽ i < j ⩽ r, we have

Eij =

j−1∑
k=i

Ei,i+1

Proof. From the Blanchfield Lyndon exact sequence, it is enough to prove
that

(2.1.13) θ1(Eij) =

j−1∑
k=i

θ1(Ei,i+1).

By the definition of θ1, we have

θ1(Eij) = (0, . . . , 0,

i-th︷︸︸︷
Ui , 0, . . . , 0,

j-th︷︸︸︷
−Uj , 0, . . . , 0)

and one may easily obtain equation (2.1.13). □
Theorem 2.1.10 enable us to see that Lprim

r is spanned by Ei := Ei,i+1 (1 ⩽
i ⩽ r − 1) as a Λr-module. Then, by direct computation using Lemma 2.1.11 and
Lemma 2.1.12, we arrive at the following.

Proposition 2.1.14. For 1 ⩽ k < l ⩽ n and for 1 ⩽ i ⩽ r − 1, we have

Akl(Ei) =



titi+1Ei (if k = i < l = i+ 1),

Ei + ti+1(1− tl)
l−1∑

m=i+1

Em (if k = i+ 1 < l),

Ei + (1− tk)
i−1∑
m=k

Em (if k < l = i),

tlEi − (1− tl)
l−1∑

m=i+1

Em (if k = i < i+ 1 < l),

(1− ti+1(1− tk))Ei − ti+1(1− tk)
i−1∑
m=k

Em (if k < i < i+ 1 = l),

Ei (otherwise),
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2 Reduced Gassner representations of pure braid groups

and

A−1kl (Ei) =



t−1i t−1i+1Ei (if k = i < l = i+ 1),

Ei + (1− t−1l )

l−1∑
m=i+1

Em (if k = i+ 1 < l),

Ei + t−1i (1− t−1k )

i−1∑
m=k

Em (if k < l = i),

(1− t−1i (1− t−1l ))Ei − t−1i (1− t−1l )

l−1∑
m=i+1

Em (if k = i < i+ 1 < l),

t−1k Ei − (1− t−1k )
i−1∑
m=k

Em (if k < i < i+ 1 = l),

Ei (otherwise).

Example 2.1.15. Let bBorr be a pure braid as in Example 1.1.8. Then, the ho-
mological reduced Gassner representation of bBorr is given by the following matrix:

GassH,red3 (bBorr) =

(
1 0

−t−11 t−12 (t1 − 1)(t2t3 − 1) 1

)
.

Remark 2.1.16. (1) It is known that Gassner representation may be defined
(co)homologically and extended to representations of string links by le Dimet, Kirk,
Livingston, and Wang ([lD], [KLW]). However, our construction of the reduced
Gassner representation is different from their one.
(2)It is known that the monodromy representation of the KZ equation with values
in the null vector space of the tensor product of the Verma module of sl2(C) gives
the reduced Gassner representation with generic parameter (cf. [Koh]). We can
prove this fact by direct computation in terms of the above proposition.

2.1.4. (Reduced) Gassner representations via Magnus representa-
tions. Here, we define the (reduced) Gassner representation as a special case of
the Magnus representations of the pure braid groups. (For more details on the
Magnus representation, we refer the reader to [Bi1], [Mt1], and [Sa].)

To begin with, let us recall the Magnus 1-cocycle of the automorphism group
of free groups. Let Aut(Fr) be the group of automorphisms of Fr and Z[Fr] be
the group ring of Fr over the ring of rational integers Z. For a given free basis
x = {x1, . . . , xr}, let ∂

∂xi
: Z[Fr] → Z[Fr] be the Fox free derivative with respect

to x. Let G be the quotient group of Fr by a characteristic subgroup R ⊂ Fr, i.e.,
G = Fr/R, and let f : Fr → G be the canonical projection.

In the following, we restrict ourselves to the case that G is an abelian group.
Then, for any α ∈ Aut(Fr) and for any free basis x = {x1, . . . , xr} of Fr, we

define the map Mf : Aut(Fr)→ GL(r;Z[G]) by

Mf := t

(
f

(
∂α(xi)

∂xj

))
where t : GL(r;Z[G]) → GL(r;Z[G]) denotes an anti-automorohism that sends
each matrix to its transposed matrix. It is known that the map Mf is a 1-cocycle,
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2.1 Gassner representations

i.e., Mf (αβ) = Mf (α)
α(Mf (β)) for α, β ∈ Aut(Fr). Here, α(Mf (β)) is the matrix

obtained from Mf (β) by the induced action of α on each matrix element.

Remark 2.1.17. Our definition of the Magnus representation is slightly dif-
ferent from that of [Mt1]. If we restrict ourselves to the case that G is an
abelian group, the Magnus representation becomes a 1-cocycle before taking ¯ :
GL(r;Z[G]) → GL(r;Z[G]). Here, ¯ : GL(r;Z[G]) → GL(r;Z[G]) is the automor-
phism induced by the involution g 7→ g−1.1

We take f = ab, G = F ab
r and R = Γ2Fr. By composing the Artin representa-

tion Arr of Br and Mab, we obtain the 1-cocycle,

GassMr := Mab(Arr(b)) : Br −→ GL(r; Λr); b 7→ t

(
ab

(
∂b(xi)

∂xj

))
.

We call this 1-cocycle GassMr the Magnus-Gassner 1-cocycle of Br. By restricting

GassMr to PBr, we obtain the homomorpshism

GassMr : PBr −→ GL(r; Λr),

and we call it the Magnus-Gassner representation of PBr.

Proposition 2.1.18. For each generator Aij ∈ PBr, we have

(
ab

(
∂Akl(xi)

∂xj

))
=



1 + tk(tl − 1) (k = i = j)

tk(tk − 1) (l = j, k = i)

1− tl (l = i, k = j)

tk (l = i = j)

(1− tl)(1− ti) (k < i < l, j = k)

(1− tk)(ti − 1) (k < i < l, l = j)

δij (otherwise)

Proof. We can easily obtain the above formulas by direct computation. □
Remark 2.1.19. Note that the formula of Magnus-Gassner representation in

[Bi1, p119] contains some errors. For more details, see also its errata [Bi2].

From Proposition 2.1.1 and Proposition 2.1.18, we can deduce the following.

Corollary 2.1.20. The homological Gassner representation and Magnus-Gassner
representation are equivalent.

For b ∈ PBr, let us consider the matrix

D−1GassMn (b)D

where the matrix D is given by

D =



U1 0 0 · · · 0 0
−U2 U2 0 · · · 0 0
0 −U3 U3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Ur−1 0
0 0 0 · · · −Ur 1


.

1Note that , in the case that G is not an abelian group, ¯ : Z[G] → Z[G] is an anti-

automorphism.
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2 Reduced Gassner representations of pure braid groups

Here, one can see that the r-th row of the above matrix is (0, . . . , 0, ∗), where ∗
denotes some element of Λr. Hence, the Magnus-Gassner representation can be
reduced to an r − 1 dimensional representation. We denote by GassM,redr (b) the

matrix obtained from D−1GassMr (b)D by eliminating the r-th row and column.

We call this representation GassM,redr : PBr → GL(r − 1; Λr) the reduced
Magnus-Gassner representation of PBr. Then, we have

Theorem 2.1.21. The reduced homological-Gassner representation is equiva-
lent to the reduced Magnus-Gassner representation:, i.e., we have the following
commutative diagram:

PBr
= //

GassM,red
r

��

PBr

GassH,red
r

��
GL(r − 1; Λr)

µ // AutΛr
(Lprim

r )

Proof. For the proof, we need the following lemma, which can be proved by
direct computation:

Lemma 2.1.22. For any A = (aij) ∈ GL(r; Λr), the entries a
′
ij (1 ⩽ i, j ⩽ r−1)

of the matrix
D−1AD = (a′ij)1⩽i<j⩽r

are given by

a′1j =
1− t1
1− tj

a1j −
1− t1
1− tj+1

a1,j+1 (1 ⩽ j ⩽ r − 1)

a′ij = a′i−1,j +
1− ti
1− tj

aij −
1− ti

1− tj+1
ai,j+1 (2 ⩽ i ⩽ r − 1, 1 ⩽ j ⩽ r − 1).

By Lemma 2.1.22, we can see that GassM,redr (Aij) = GassH,redr (Aij) where the
righthand side denotes the representation matrix given in Proposition 2.1.14. This
completes the proof. □

Remark 2.1.23. The above equivalence of the representations also follows from
Corollary 2.1.20 and the Crowell exact sequence. Since each basis Ei (1 ⩽ i ⩽ r)
of Lprim

r corresponds to Ui[xi]− Ui+1[xi+1] in H1(D
ab
n ;h−1(p0)), the above matrix

D is nothing but the basis transformation matrix from [x1], . . . , [xr] to U1[x1] −
U2[x2], . . . , Ur−1[xr−1]− Ur[xr], [xr].

Since the homological and Magnus Gassner representations are equivalent, in
the following, the (reduced) Gassner representation always means the (reduced)

Magnus-Gassner representation, and we will denote them by Gassr and Gassredr ,
respectively.

Remark 2.1.24. By setting t1 = · · · = tr = t, we obtain the Burau represen-
tation of Br

Burr := Gassr|t1=···=tr=t : Br −→ GL(r; Λ)

and the reduced Burau representation of Br

Burredr := Gassredr

∣∣∣
t1=···=tr=t

: Br −→ GL(r − 1; Λ)

form the Gassner representation and the reduced Gassner representation. Here we
put Λ := Z[t±].
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2.2 Gassner representations and Milnor numbers

2.2. Gassner representations and Milnor numbers

In this section, we give some formulas that relate the Gassner representation
and the Milnor number of a pure braid.

Let θab : Λr → Z[[T1, . . . , Tr]] be a homomorphism defined by θab(ti) = 1 + Ti
and let us consider the composition Gassθr := θab ◦Gassr. Here, we denote the map
obtained by applying θab on each matrix element by the same θab. Then, we have

Proposition 2.2.1. For any b ∈ PBr, we write that Gassθr(b) = (θab(aij))1⩽i,j⩽r.
Then, we have

θ(aij) = δij − δij
∑
k⩾1

∑
1⩽ii,...,ik⩽r

µ(i1 · · · ikj)Ti1 · · ·Tik

+
∑
k⩾0

∑
1⩽i1,...,ik⩽r

µ(i1 · · · ikij)Ti1 · · ·TikTj .

Proof. To prove the above proposition, we begin by writing

ab

(
∂[yj , xj ]

∂xi

)
= ab

(
∂yj
∂xi

+ yj
∂xj
∂xi
− yjxjy−1j

∂yj
∂xi
− yjxjy−1j x−1j

∂yj
∂xi

)
= (ab(yj)− 1)ab

(
∂xj
∂xi

)
+ (1− ab(xj))ab

(
∂yj
∂xi

)
Noting that

ab

(
∂[yj , xj ]

∂xi

)
=
∂yjxjy

−1
j

∂xi
− ∂xj
∂xi

,

we have

aij = ab

(
∂[yj , xj ]

∂xi

)
+ δij

where we set (bij) = Gassn(b). Hence, θab(aij) is given by

θab(aij) = δij − δij
∑
k⩾1

∑
1⩽ii,...,ik⩽r

µ(i1 · · · ikj)Ti1 · · ·Tik

+
∑
k⩾0

∑
1⩽i1,...,⩽r

µ(i1 · · · ikij)Ti1 · · ·TikTj .

This completes the proof. □

Theorem 2.2.2. For any b ∈ PBr, we write that Gassredr (b) = (bij)1⩽i,j⩽r.
Then, we have

b1j = ab(y1)δ1j + (1− t1)ab
(
∂yj
∂x1
− ∂yj+1

∂x1

)
bij = bi−1,j + (δij − δi,j+1)ab(yi)

+(1− ti)ab
(
∂yj
∂xi
− ∂yj+1

∂xi

)
(1 < i ⩽ r − 1, 1 ⩽ j ⩽ r − 1).

Proof. By Lemma 2.1.22, the above formulas can be obtained by direct com-
putation. □

Then, by applying θab, we have
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2 Reduced Gassner representations of pure braid groups

Theorem 2.2.3. For any b ∈ PBr, we write that Gassred,θr (b) = (θab(bij)).
Then, we have

θab(b1j) = δ1j

∑
k⩾0

∑
1⩽i1,...,ik⩽r

µ(i1 · · · ik1)Ti1 · · ·Tik


−

∑
k⩾1

∑
1⩽i1,...,ik−1⩽r

(µ(i1 · · · ik−11j)− µ(i1 · · · ik−11j + 1))Ti1 · · ·Tik−1
T1

 ,

θab(bij) = θab(bi−1,j) + (δij − δi,j+1)

∑
k⩾0

∑
1⩽i1,...,ik⩽r

µ(i1 · · · iki)Ti1 · · ·Tik


−

∑
k⩾1

∑
1⩽i1,...,ik−1⩽r

(µ(i1 · · · ik−1ij)− µ(i1 · · · ik−1ij + 1))Ti1 · · ·Tik−1
T1


(1 < i ⩽ r − 1, 1 ⩽ j ⩽ r − 1).

2.3. Gassner representations, Milnor invariants, and Johnson
homomorphisms

Here, we define the Gassner representation of the Johnson homomorphisms of
the automorphism group of free groups as a special case of the Magnus representa-
tion of them ([Mt1],[Sa]). Then, we show the explicit relation between the Gassner
representation of the Johnson homomorphisms and the Milnor invariants for a pure
braid.

Using the notation in §1.3.1, for any τ ∈ HomZ(HZ, grk+1(Fr)), we define the

map || · || : Aut(Fr)→ M(r; IkΛr
/Ik+1

Λr
) by

||τ || := t

(
ab

(
∂τ(xi)

∂xj

))
where we consider any lift of the element τ(xi) in grk+1(Fr) = Γk+1Fr/Γk+2Fr to
Γk+1Fr. Note that the above definition does not depend on the choice of the lift of
τ(xi).

For any b ∈ PBr(k), we obtain the representation

||τk|| : PBr(k) −→ M(r; IkΛr
/Ik+1

Λr
).

We call it the Gassner representation of the k-th Johnson homomorphism for PBr.
Then, we have the following theorem.

Theorem 2.3.1 ([Mt1]). The Gassner representation Gassr : PBr → GL(r; Λr)
induces the homomorphism,

Gass[k]r : PBr(k) −→ GL(r; Λr/I
k+1
Λr

).

Moreover, for any b ∈ PBr(k), we have

Gass[k]r (b) = Er + ||τk(b)||

where Er is the identity matrix of degree r.

Then, from Theorem 2.3.1 and Theorem 2.2.2, we can deduce the following.
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2.3 Gassner representations, Milnor invariants, and Johnson homomorphisms

Corollary 2.3.2. For any b ∈ PBr(k), let ||τθk (b)|| be the matrix obtained
from ||τk(b)|| by applying θab to each entries. Then, we have

||τθk (b)|| = −δij
∑

1⩽ii,...,ik⩽r
µ(i1 · · · iki)Ti1 · · ·Tik

+
∑

1⩽i1,...,ik−1⩽r
µ(i1 · · · ik−1ji)Ti1 · · ·Tik−1

Tj .

We can also define the reduced Gassner representation of the Johnson homo-
morphisms for PBr as follows: For b ∈ PBr(k), let ||τ redk (b)|| be the matrix obtained
from the matrix,

D−1||τk(b)||D,
by eliminating the r-th column and row where the matrix D is as in §2.1.4. We
call this representation the reduced Gassner representation of the k-th Johnson
homomorphism for PBr. Then, we have

Theorem 2.3.3. The reduced Gassner representation Gassredn : PBr → GL(r−
1; Λr) induces a homomorphism

Gassred[k]r : PBr(k) −→ GL(r − 1; Λr/I
k+1
Λr

).

Moreover, for any b ∈ PBr(k), we have

Gassred[k]r (b) = Er−1 + ||τ redk (b)||

where Er−1 is the identity matrix of degree r − 1.

Proof. The first part is clear from the definition. The second part is proven
as follows. From Lemma 2.1.22 and the definition, we can see that the matrix
||τ redk (b)|| = (dij) is given by

d1j = (ab(y1)− 1)δ1j + (1− t1)ab
(
∂yj
∂x1
− ∂yj+1

∂x1

)
dij = di−1,j + (δij − δi,j+1)(ab(yi)− 1)

+(1− ti)ab
(
∂yj
∂xi
− ∂yj+1

∂xi

)
(1 < i ⩽ r − 1, 1 ⩽ j ⩽ r − 1).

By careful computation, we obtain

d1j = b1j − δ1j
dij = bij − δ1j − (δ2j − δ2,j+1)− · · · − (δij − δi,j+1)

= bij − δij (1 < i ⩽ r − 1, 1 ⩽ j ⩽ r − 1)

from Theorem 2.2.2. Here, we use the same notation as in Theorem 2.2.2 for the

induced representation Gassred[k]r . This completes the proof. □

From Theorem 2.3.3 and Theorem 2.2.3, we have the following reduced Gassner
version of Corollary 2.3.2.

Corollary 2.3.4. For any b ∈ Pn(k), let ||τ red,θk (b)|| = (θab(dij))1⩽i,j⩽r−1 be

the matrix obtained from ||τ redk (b)|| by applying θab to each entry. Accordingly, we
have
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2 Reduced Gassner representations of pure braid groups

θab(d1j) = δ1j

 ∑
1⩽i1,...,ik⩽r

µ(i1 · · · ik1)Ti1 · · ·Tik


−

 ∑
1⩽i1,...,ik−1⩽r

(µ(i1 · · · ik−11j)− µ(i1 · · · ik−11j + 1))Ti1 · · ·Tik−1
T1

 ,

θab(dij) = θab(di−1,j) + (δij − δi,j+1)

 ∑
1⩽i1,...,ik⩽r

µ(i1 · · · iki)Ti1 · · ·Tik


−

 ∑
1⩽i1,...,ik−1⩽r

(µ(i1 · · · ik−1ij)− µ(i1 · · · ik−1ij + 1))Ti1 · · ·Tik−1
T1


(1 < i ⩽ r − 1, 1 ⩽ j ⩽ r − 1).
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CHAPTER 3

Absolute Galois groups, l-adic Milnor invariants,
and pro-l Johnson homomorphism

In this chapter, we study the arithmetic analogue of chapter 1. Precisely speak-
ing, we study the action of the absolute Galois group of a number field on the étale
fundamental group of the projective line minus r+1-points by defining and studying
the l-adic Milnor invariants and the pro-l Johnson homomorphism in an analogous
way to which the pure braid group was studied in Chapter 1. This chapter is based
on [KMT, Sections 1, 2, and 3].

3.1. Absolute Galois groups and the Ihara action

In this section, we recall the definition of absolute Galois groups and recall the
set-up and some results on the Galois representation introduced by Ihara in [Ih1].

3.1.1. Absolute Galois groups. Here, we recall basics of absolute Galois
groups. For more details on this materials, see [Sz].

Let k be a field. An extension L/k is called algebraic if every element α of L
is a root of some polynomial with coefficients in k. This polynomial is called the
minimal polynomial of α if it is monic and irreducible over k. We may easily see
that finite extension L/k is algebraic.

A polynomial f ∈ k[x] is separable if it has no multiple roots is some alge-
braic closure of k. An algebraic extension L/k is separable over k if the minimal
polynomial of any α ∈ L/k is separable. Note that, in the case of characteristic 0,
separability automatically follows.

For an extension L of k, let Aut(L/k) denote the group of field automorphisms
of L fixing k elementwise.

An algebraic extension L of k is called a Galois extension of k if the elements
of L that remain fixed under the action of Aut(L/k) are exactly those of k. When
L/k is a Galois extension, we denote Aut(L/k) by Gal(L/k) and call it the Galois
group of L over k.

Remark 3.1.1. It is known that an algebraic extension L/k is Galois if and
only if L/k is separable and the minimal polynomial over k of any α ∈ L splits into
linear factors in L.

Let k be an algebraic closure of k. We define the separable closure ks over k in k
as the compositum of all finite separable subextensions of k. Then, we can see that
ks/k is Galois extension as follows: For α ∈ ks \ k, let α′ ∈ ks be another root of
the minimal polynomial of α. Let us consider the isomorphism of field extensions
k(α) → k(α′) given by sending α to α′. This isomorphism may be extended to
an isomorphism of the algebraic closure k. Noting that each automorphism of
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3 Absolute Galois groups, l-adic Milnor invariants, and pro-l Johnson
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Aut(k/k) sends an element of k to another root of its minimal polynomial, we may
see that ks is stable under the action of Aut(k/k).

The group Gal(ks/k) is called the absolute Galois group of k. It is known that
the absolute Galois group Gal(ks/k) is a profinite group:

Gal(ks/k) = lim←−Gal(L/k)

where L runs over all finite Galois extensions of k.

3.1.2. The outer Galois representation. Let x1, . . . , xr be the r letters
(r ⩾ 2) and let Fr denote the free group of rank r on x1, . . . , xr. Let xr+1 be
the element of Fr defined by x1 · · ·xrxr+1 = 1 so that Fr has the presentation
Fr = ⟨x1, . . . , xr, xr+1|x1 · · ·xrxr+1 = 1⟩. Let Fr denote the pro-l completion of
Fr. Let Aut(Fr) (resp. Int(Fr)) denote the group of topological automorphisms
(resp. inner-automorphisms) of Fr with compact-open topology. We note that
any abstract automorphism of Fr is bicontinuous ([DDMS, Corollary 1.22]) and
that Aut(Fr) is virtually a pro-l group ([DDMS, Theorem 5.6]). Let HZl

be the
abelianization of Fr, HZl

:= Fr/[Fr,Fr], and let π : Fr → HZl
be the abelianization

homomorphism. For f ∈ Fr, we let [f ] := π(f). We set Xi := [xi] (1 ⩽ i ⩽ r + 1)
for simplicity so that HZl

is the free Zl-module with basis X1, . . . , Xr and we have
X1 + · · · + Xr + Xr+1 = 0. Each φ ∈ Aut(Fr) induces an automorphism of the
Zl-module HZl

which is denoted by [φ] ∈ GL(HZl
).

Let Q be the field of algebraic numbers in C. Let S be a given set of ordered
r+1 Q-rational points P1, . . . , Pr+1 on the projective line P1

Q and we suppose that
P1 = 0, P2 = 1 and Pr+1 = ∞. Let k := Q(S \ {∞}), the finite algebraic number
field generated over Q by coordinates of P1, . . . , Pr, so that all Pi’s are k-rational
points of P1. Let Galk := Gal(Q/k) be the absolute Galois group of k equipped
with the Krull topology. Note that Galk is the étale fundamental group πét

1 (Spec k)

with the base point SpecQ→ Spec k. Let πpro-l
1 (P1

Q \ S) denote the maximal pro-l

quotient of the étale fundamental group of P1
Q \S with a base point SpecQ→ P1

Q \S
which lifts SpecQ → Spec k. By [Gr, XII, Corollaire 5.2], πpro-l

1 (P1
Q \ S) is the

pro-l completion of the topological fundamental group π1(P1(C) \ S). We fix an
isomorphism π1(P1(C) \ S) ≃ Fr obtained by associating to each xi the homotopy

class of a small loop around Pi and hence an identification of πpro-l
1 (P1

Q \ S) with

Fr.
The absolute Galois group Galk = πét

1 (Spec k) acts, as the monodromy, on the
geometric fiber P1

Q \S of the fibration P1
k \S → Spec k and hence acts continuously

on the pro-l fundamental group πpro-l
1 (P1

Q \ S) = Fr. The effect of changing a

base point of P1
Q \ S is given as an inner automorphism of Fr. Thus we have the

continuous outer Galois representation

(3.1.2) ΦS : Galk −→ Out(Fr) := Aut(Fr)/Int(Fr).

In terms of the field extensions, the representation ΦS is described as follows.
Let t be a variable over k. We regard P1 as the t-line and so the function field K of
P1
Q is the rational function field Q(t). The k-rational points Pi are identified with

places of K/Q. Let M be the maximal pro-l extension of K unramfied outside Pi
(1 ⩽ i ⩽ r + 1). Then we have an isomorphism ι : Fr

∼→ Gal(M/K) such that each
ι(xi) is a topological generator of the inertia group of an extension PMi of Pi to a
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3.1 Absolute Galois groups and the Ihara action

place of M . Since Pi’s are k-rational, M/k(t) is a Galois extension and so we have
the exact sequence

1→ Fr ≃ Gal(M/K)→ Gal(M/k(t))→ Gal(K/k(t)) = Galk → 1.

For g ∈ Galk, choose g̃ ∈ Gal(M/k(t)) which lifts g. Consider the action of Galk on
Gal(M/K) defined by f 7→ g̃f g̃−1 and regard it as an automorphism of Fr via the
isomorphism ι. The effect of changing a lift g̃ is given as an inner automorphism
of Fr. Thus we obtain the representation ΦS . Note further that g ◦ PMi ◦ g̃−1
is a place of M which coincides with PMi on K (1 ⩽ i ⩽ r + 1). So we have
g ◦PMi ◦ g̃−1 ◦h = PMi for some h ∈ Gal(M/K) so that h−1g̃xig̃

−1h is a topological
generator of the inertia group of PMi . Hence g̃xig̃ ∼ xcii for some ci in Zl, the ring
of l-adic integers. We pass to the abelianization HZl

. Applying the conjugate by g̃
on the equality X1 + · · · +Xr+1 = 0 in HZl

, we have c1X1 + · · · + cr+1Xr+1 = 0.
From these equations, we have c1 = · · · = cr+1. Therefore the action of Galk on Fr
gives an element of the subgroup P̃ (Fr) of Aut(Fr) defined by

P̃ (Fr) := {φ ∈ Aut(Fr) |φ(xi) ∼ xN(φ)
i (1 ⩽ i ⩽ r + 1) for some N(φ) ∈ Z×l }.

Here the exponentN(φ), called the norm of φ, gives a homomorphismN : Aut(Fr)→
Z×l . So each φ ∈ P̃ (Fr) acts on the abelianization HZl

by the multiplication by

N(φ), [φ](Xi) = N(φ)Xi for 1 ⩽ i ⩽ r. It is easy to see Int(Fr) ⊂ P̃ (Fr). Thus we
have the outer Galois representation (3.1.2)

(3.1.3) ΦS : Galk −→ P̃ (Fr)/Int(Fr).

3.1.3. The Ihara representation. We will lift ΦS to a representation in

Aut(Fr). For this, consider the subgroup P (Fr) of P̃ (Fr) defined by
(3.1.4)

P (Fr) :=

{
φ ∈ Aut(Fr)

∣∣∣ φ(xi) ∼ xN(φ)
i (1 ⩽ i ⩽ r − 1) φ(xr) ≈ xN(φ)

r ,

φ(xr+1) = x
N(φ)
r+1 for some N(φ) ∈ Z×l

}
,

where ≈ denotes conjugacy by an element of the subgroup K of Fr generated by
[Fr,Fr] and x1, . . . , xr−2. We denote by P 1(Fr) the kernel of N |P̃ (Fr)

:

P 1(Fr) :=

{
φ ∈ Aut(Fr)

∣∣∣ φ(xi) ∼ xi (1 ⩽ i ⩽ r − 1) φ(xr) ≈ xr,
φ(xr+1) = xr+1

}
.

The following proposition was proved in [Ih1, Proposition 3, page 55] for the
case r = 2 and stated in [Ih3, page 252] for the general case.

Proposition 3.1.5. The natural homomorphism Aut(Fr) → Aut(Fr)/Int(Fr)

induces the isomorphism P (Fr) ≃ P̃ (Fr)/Int(Fr). The representatives in P (Fr) of

P̃ (Fr)/Int(Fr) are called Bely̆ı’s lifts.

Proof. The proof is similar to that for r = 2. First, we note that the central-
izer of xi in Fr is ⟨xi⟩ = xZl

i for 1 ⩽ i ⩽ r + 1.
Injectivity: We must show P (Fr) ∩ Int(Fr) = {1}. Suppose φ ∈ P (Fr) and

φ = Int(f) with f ∈ Fr. Then fxr+1f
−1 = x

N(φ)
r+1 . Passing to HZl

, we see
N(φ) = 1 and so f is in the centralizer of xr+1. Hence f = xar+1 for some a ∈ Zl.
Since φ ∈ P (Fr), fxrf−1 = φ(xr) = gxrg

−1 for some g ∈ K. Therefore we have
g−1fxr(g

−1f)−1 = xr and so g−1f = xbr for some b ∈ Zl. Passing to the abelian-
ization HZl

, we have −[g] + aXr+1 = bXr. Since [g] ∈ ZlX1 + · · · + ZlXr−2, we
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have a = b = 0. Hence f = g = 1 and so φ = 1.

Surjectivity: We must show P (Fr)Int(Fr)/Int(Fr) = P̃ (Fr)/Int(Fr). Take φ ∈
P̃ (Fr). Multiplying φ by an element of Int(Fr), we may assume φ(xr+1) = x

N(ψ)
r+1 .

Set φ(xr) = gxrg
−1 with g ∈ Fr. Write [g] = c1X1 + · · · crXr in HZl

(ci ∈ Zl). Let
φ1 := Int(x

−cr−1

r−1 x−crr ) ◦ φ. Then φ1(xr) = g1xrg
−1
1 and g1 := x

−cr−1

r−1 x−crr g ∈ K.
Hence φ1 ∈ P (Fr) and φ ≡ φ1 mod Int(Fr). □

By Proposition 3.1.5, we can lift ΦS of (3.1.3) to the representation in P (Fr),
denoted by IhS :

(3.1.6) IhS : Galk −→ P (Fr),

which we call the Ihara representation associated to S. Let ΩS denote the subfield
of Q corresponding to the kernel of IhS so that IhS factors through the Galois group
Gal(ΩS/k):

(3.1.7) IhS : Gal(ΩS/k) −→ P 1(Fr).

We recall some arithmetic properties on the ramification in the Galois extension
ΩS/k. For this, let us prepare some notations. Let ζln be a primitive ln-th root of
unity for a positive integer n such that (ζln+1)l = ζln for n ⩾ 1. We set k(ζl∞) :=

∪n⩾1k(ζln). The l-cyclotomic character χl : Galk → Z×l is defined by g(ζln) = ζ
χl(g)
ln

for g ∈ Galk. Finally we define the set RS of finite primes of k associated to S as
follows: Let si be the coordinate of Pi for 1 ⩽ i ⩽ r, and let OS be the integral
closure of Z[l−1, (si − sj)

−1(1 ⩽ i ̸= j ⩽ r)] in k. We then define RS by the
maximal spectrum

(3.1.8) RS := SpmOS .

Theorem 3.1.9. Notations being as above, the following assertions hold:
(1) ([Ih1, Proposition 2, page 53]). N ◦ IhS : Galk → Z×l coincides with χl. In

particular, the restriction of φS to Galk(ζl∞ ) := Gal(Q/k(ζl∞)), denoted by Ih1S,
gives the representation

Ih1S : Galk(ζl∞ ) −→ P 1(Fr)

and we have k(ζl∞) ⊂ ΩS.
(2) ([AI, Proposition 2.5.2, Theorem 3]). The Galois extension ΩS/k is unramified
over RS and ΩS/k(ζl) is a pro-l extension.

Remark 3.1.10. Recall that he Artin representation Arr of the pure braid
group PBr in Section 1.1.2 is given by

Arr : PBr
∼−→ Aut0(Fr).

So the representation

Ih1S : Galk(ζl∞ ) −→ P 1(Fr)

(resp. IhS : Galk → P (Fr)) may be seen as an (resp. extended) arithmetic analogue
of the Artin representation Arr.
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3.2. l-adic Milnor invariants and pro-l link groups

3.2.1. Pro-l Magnus expansions. Let {ΓnFr}n⩾1 be the lower central series
of Fr defined by

Γ1Fr := Fr, Γn+1Fr := [ΓnFr,Fr] (n ⩾ 1).

Note that each ΓnFr is a closed normal subgroup of Fr so that ΓnFr/Γn+1Fr is cen-
tral in Fr/Γn+1Fr, and that each ΓnFr is a finitely generated pro-l group ([DDMS,
1.7, 1.14]). As in Section 3.1, let HZl

denote the abelianization of Fr:

HZl
:= gr1(Fr) = H1(Fr,Zl) = H1(Fr,Z)⊗Z Zl,

which is the free Zl-module with basis X1, . . . , Xr, where Xi is the image of xi
in HZl

. Let T (HZl
) be the tensor algebra of HZl

over Zl defined by
⊕

n⩾0H
⊗n
Zl

,

where H⊗0Zl
:= Zl and H⊗nZl

:= HZl
⊗Zl
· · ·⊗Zl

HZl
(n times) for n ⩾ 1. It is nothing

but the non-commutative polynomial algebra Zl⟨X1, . . . , Xr⟩ over Zl with variables
X1, . . . , Xr:

T (HZl
) =

⊕
n⩾0

H⊗nZl
= Zl⟨X1, . . . , Xr⟩.

Let T̂ (HZl
) be the completion of T (HZl

) with respect to the mT -adic topology,
where mT is the maximal two-sided ideal of T (HZl

) generated by X1, . . . , Xr and
l. It is the infinite product

∏
n⩾0H

⊗n
Zl

, which is nothing but the Magnus algebra

Zl⟨⟨X1, . . . , Xr⟩⟩ over Zl, namely, the algebra of non-commutative formal power
series (called Magnus power series) over Zl with variables X1, . . . , Xr:

T̂ (HZl
) =

∏
n⩾0

H⊗nZl
= Zl⟨⟨X1, . . . , Xr⟩⟩.

For n ⩾ 0, we set T̂ (n) :=
∏
m⩾nH

⊗m
Zl

. The degree of a Magnus power series Φ,

denoted by deg(Φ), is defined to be the minimum n such that Φ ∈ T̂ (n). We note
that H⊗nZl

is the free Zl-module on monomials Xi1 · · ·Xin (1 ⩽ i1, . . . , in ⩽ r) of

degree n and T̂ (n) consists of Magnus power series of degree ⩾ n.
Let Zl[[Fr]] be the complete group algebra of Fr over Zl and let ϵZl[[Fr]] :

Zl[[Fr]] → Zl be the augmentation homomorphism with the augmentation ideal
IZl[[Fr]] := Ker(ϵZl[[Fr]]). The correspondence xi 7→ 1 +Xi (1 ⩽ i ⩽ r) gives rise to
the isomorphism of topological Zl-algebras

(3.2.1) Θ : Zl[[Fr]]
∼−→ T̂ (HZl

),

which we call the pro-l Magnus isomorphism. Here InZl[[Fr]]
corresponds, under Θ,

to T̂ (n) for n ⩾ 0. For α ∈ Zl[[Fr]], Θ(α) is called the pro-l Magnus expansion of
α. In the following, for a multi-index I = (i1 · · · in), 1 ⩽ i1, . . . , in ⩽ r, we set

|I| := n and XI := Xi1 · · ·Xin .

We call the coefficient of XI in Θ(α) the l-adic Magnus coefficient of α for I and
denote it by µ(I;α). So we have

(3.2.2) Θ(α) = ϵZl[[Fr]](α) +
∑
|I|⩾1

µ(I;α)XI .

37



3 Absolute Galois groups, l-adic Milnor invariants, and pro-l Johnson
homomorphism

Restricting Θ to Fr, we have an injective group homomorphism, denoted by the
same Θ,

(3.2.3) Θ : Fr ↪→ 1 + T̂ (1),

which we call the pro-l Magnus embedding of Fr into 1 + T̂ (1).
Here are some basic properties of l-adic Magnus coefficients:

For α, β ∈ Zl[[Fr]] and a multi-index I, we have

(3.2.4) µ(I;αβ) =
∑
I=AB

µ(A;α)µ(B;β),

where the sum ranges over all pairs (A,B) of multi-indices such that AB = I, and
we understand that µ(A;α) = ϵZl[[Fr]](α) (resp. µ(B;β) = ϵZl[[Fr]](β)) if |A| = 0
(resp. |B| = 0).
(Shuffle relation) For f ∈ Fr and multi-indices I, J with |I|, |J | ⩾ 1, we have

(3.2.5) µ(I; f)µ(J ; f) =
∑

A∈Sh(I,J)

µ(A; f),

where Sh(I, J) denotes the set of the results of all shuffles of I and J ([CFL]).
For f ∈ Fr and d ⩾ 2, we have

(3.2.6)
µ(I; f) = 0 for |I| < d i.e., deg(Θ(f − 1)) ⩾ d ⇐⇒ f ∈ ΓdFr

⇐⇒ f − 1 ∈ IdZl[[Fr]]
.

An automorphism φ of the topological Zl-algebra Zl[[Fr]] (resp. T̂ (HZl
)) is

said to be filtration-preserving if φ(InZl[[Fr]]
) = InZl[[Fr]]

(resp. φ(T̂ (n)) = T̂ (n)) for

all n ⩾ 1. Let Autfil(Zl[[Fr]]) (resp. Autfil(T̂ (HZl
))) be the group of filtration-

preserving automorphisms of the topological Zl-algebras Zl[[Fr]] (resp. T̂ (HZl
)).

The pro-l Magnus isomorphism Θ in (3.2.1) induces the isomorphism

(3.2.7) Autfil(Zl[[Fr]])
∼−→ Autfil(T̂ (HZl

)); φ 7→ Θ ◦ φ ◦Θ−1.

In the following we set

(3.2.8) φ∗ := Θ ◦ φ ◦Θ−1.

We note by (3.2.6) that any automorphism φ of Fr can be extended uniquely to a
filtration-preserving topological automorphism of Zl[[Fr]], which is also denoted by

φ. It is easy to see by (3.2.7) that for φ ∈ Autfil(Zl[[Fr]]), α ∈ Zl[[Fr]], we have

(3.2.9) Θ(φ(α)) = φ∗(Θ(α)).

3.2.2. l-adic Milnor invariants. Let IhS : Galk → P (Fr) be the Ihara rep-
resentation associated to S in (3.1.6).

Lemma 3.2.10. Let g ∈ Galk. For each 1 ⩽ i ⩽ r, there exists uniquely
yi(g) ∈ Fr satisfying the following properties:

(1) IhS(g)(xi) = yi(g)x
χl(g)
i yi(g)

−1, where χl is the l-cyclotomic character,

(2) In the expression [yi(g)] = c
(i)
1 X1 + · · ·+ c

(i)
r Xr (c

(i)
j ∈ Zl), c(i)i = 0.
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Proof. Existence: By the definition (3.1.4) of P (Fr) and Theorem 3.1.9 (1),

there is zi ∈ Fr such that IhS(g)(xi) = zix
χl(g)
i z−1i for each i. Let [zi] = a

(i)
1 X1 +

· · ·+ a
(i)
r Xr (a

(i)
j ∈ Zl). We set yi := zix

−a(i)i
i . Then the conditions (1) and (2) are

satisfied for yi.
Uniqueness: Suppose that yi and zi in Fr satisfy the conditions (1) and (2). Since

z−1i yi is in the centralizer of x
χl(g)
i , z−1i yi = xbii for some bi ∈ Zl. Comparing the

coefficients of Xi in [z−1i yi] and [xbii ], we have bi = 0 and hence yi = zi. □

We call yi(g) ∈ Fl in Lemma 3.2.10 the i-th (preferred) longitude of g ∈ Galk
for S. By Lemma 3.2.10, IhS(g) for g ∈ Galk is determined by the l-cyclotomic
value χl(g) and the r-tuple y(g) := (y1(g), . . . , yr(g)) of longitudes of g for S. We
note that IhS(g) acts on the abelianization HZl

of Fr by the multiplication by
χl(g), [IhS(g)](Xi) = χl(g)Xi for 1 ⩽ i ⩽ r. We also note that yi : Galk → Fr is
continuous, since IhS is continuous.

Following the case for pure braids as in Chapter 1, we will define the l-adic
Milnor numbers of g ∈ Galk by the l-adic Magnus coefficients of the i-th longitude
yi(g): Let I = (i1 · · · in) be a multi-index, where 1 ⩽ i1, . . . , in ⩽ r and |I| = n ⩾ 1.
The l-adic Milnor number or l-adic Milnor µ invariant of g ∈ Galk for I, denoted
by µ(g; I) = µ(g; i1 · · · in), is defined by the l-adic Magnus coefficient of yin(g) for
I ′ := (i1 · · · in−1):

(3.2.11) µ(g; I) := µ(I ′; yin(g)).

Here we set µ(g; I) := 0 if |I| = 1. We note that the map µ( ; I) : Galk → Zl is
continuous for each I, since yi : Galk → Fr is continuous. We define a(g) to be the
ideal of Zl generated by χl(g) − 1. Note that a(g) = 0 when g ∈ Galk(ζl∞ ). We
then define the indeterminacy ∆(g; I) by
(3.2.12)

∆(g; I) := the ideal of Zl generated by a(g) and µ(J ; yj(g)), where J
ranges over proper subsequence I ′ and j = in or j is in J

We also write ∆(I ′; yin(g)) for ∆(g; I) for the convenience later. We then set

(3.2.13) µ(g; I) := µ(g; I) mod ∆(g; I),

which we call the l-adic Milnor µ̄ invariant of g ∈ Galk for I.

We will show that the l-adic Milnor invariant µ(g; I) for g ∈ Galk is unchanged
when g is replaced by its conjugate in Galk. To prove this, we prepare some lemmas.

Lemma 3.2.14. For g, h ∈ Galk and 1 ⩽ i ⩽ r, we have
(1)yi(h

−1) = IhS(h
−1)(yi(h)

−1),
(2)yi(hg) = IhS(h)(yi(g))yi(h),
(3)yi(hgh

−1) = IhS(hg)(yi(h
−1))IhS(h)(yi(g))yi(h).

Proof. (1) By Lemma 3.2.10, we have

xi = IhS(h
−1)IhS(h)(xi)

= IhS(h
−1)(yi(h)x

χl(h)
i yi(h)

−1)
= IhS(h

−1)(yi(h))yi(h
−1)xiyi(h

−1)−1IhS(h
−1)(yi(h)

−1),

from which we find IhS(h
−1)(yi(h))yi(h

−1) = xaii for some ai ∈ Zl. Passing to the
abelianization HZl

of Fr and comparing the coefficients of Xi, we find ai = 0 and
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hence we obtain (1).
(2) By Lemma 3.2.10, we have

(3.2.15) IhS(hg)(xi) = yi(hg)x
χl(hg)
i yi(hg)

−1.

On the other hand, we have

(3.2.16)

IhS(hg)(xi) = IhS(h)IhS(g)(xi)

= IhS(h)(yi(g)x
χl(g)
i yi(g)

−1)

= IhS(h)(yi(g))IhS(h)(x
χl(g)
i )IhS(h)(yi(g)

−1)

= IhS(h)(yi(g))yi(h)x
χl(hg)
i yi(h)

−1IhS(h)(yi(g)
−1).

Comparing (3.2.10) and (3.2.16), we have yi(hg)
−1IhS(h)(yi(g))yi(h) = xbii for

some bi ∈ Zl. Passing to the abelianization and comparing the coefficients of Xi,
we find bi = 0 and hence we obtain (2).
(3) By (2), we have

yi(hgh
−1) = IhS(hg)(yi(h

−1))yi(hg) = IhS(hg)(yi(h
−1))IhS(h)(yi(g))yi(h).

□
For ρ ∈ Galk and a multi-index J with |J | ⩾ 1, we define ΘJ(ρ) by

(3.2.17) ΘJ(ρ) := IhS(ρ)
∗(XJ)− χl(ρ)|J|XJ .

Since IhS(ρ)
∗ is filtration-preserving, we note deg(ΘJ(ρ)) ⩾ |J |.

Lemma 3.2.18. Notations being as above, the following assertions hold.
(1) ΘJ(ρ) is a Magnus power series

∑
|A|⩾|J|mA(J ; ρ)XA satisfying the following

properties:
(i) if mA(J ; ρ) ̸= 0, then A contains J as a proper subsequence. So we may
write ΘJ(ρ) =

∑
J⫋AmA(J ; ρ)XA.

(ii) any coefficient mA(J ; ρ) is a multiple of µ(B; yj(ρ)) by an l-adic integer,
where B is some proper subsequence of A and j is in J .

(2) For y ∈ Fr, we have

Θ(IhS(ρ)(y)) = 1 +
∑
|J|⩾1

χl(ρ)
|J|µ(J ; y)XJ +

∑
|J|⩾1

µ(J ; y)ΘJ(ρ)

≡ Θ(y) +
∑
|J|⩾1

µ(J ; y)ΘJ(ρ) mod a(ρ).

Proof. (1) Let 1 ⩽ j ⩽ r and write Θ(yj(ρ)) = 1 + Yj(ρ). By (3.2.9) and
Lemma 3.2.10, we have
(3.2.19)

IhS(ρ)
∗(Xj) = IhS(ρ)

∗(Θ(xj − 1))
= Θ(IhS(ρ)(xj − 1))

= Θ(yj(ρ)x
χl(ρ)
j yj(ρ)

−1)− 1

= Θ(yj(ρ))Θ(xj)
χl(ρ)Θ(yj(ρ)

−1)− 1
= (1 + Yj(ρ))(1 +Xj)

χl(ρ)(1− Yj(ρ) + Yj(ρ)
2 − · · · )− 1

= χl(ρ)Xj +Θj(ρ),

where Θj(ρ) is the sum of terms of the form uYj(ρ)
aXb

jYj(ρ)
c for some a, c ⩾ 0

with a + c ⩾ 1, b ⩾ 1 and u ∈ Zl. Write Θj(ρ) =
∑
|A|⩾2mA(j; ρ)XA. Then

it is easy to see that if mA(j; ρ) ̸= 0, then A must contain j. Moreover, since
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Yj(ρ) =
∑
|B|⩾1 µ(B; yj(ρ))XB , mA(j; ρ) is a multiple of µ(B; yj(ρ)) by an l-adic

integer, where B is some proper subsequence B of A. Let J = (j1 · · · jn). By
(3.2.19), we have∑
|A|⩾|J|mA(J ; ρ)XA := ΘJ(ρ)

:= IhS(ρ)
∗(XJ)− χl(ρ)|J|XJ

= IhS(ρ)
∗(Xj1) · · · IhS(ρ)∗(Xjn)− χl(ρ)|J|XJ

= (χl(ρ)Xj1 +Θj1(ρ)) · · · (χl(ρ)Xjn +Θjn(ρ))− χl(ρ)|J|XJ

= Φj1(ρ) · · ·Φjn(ρ),

where Φj(ρ) is χl(ρ)Xj or Θj(ρ) and at least one Θj(ρ) is involved for some j.
Hence, by the properties of coefficients of Θj(ρ) =

∑
|A|⩾2mA(j; ρ)XA proved

above, we obtain the properties (i) and (ii).
(2) By (3.2.9) and (3.2.17), we have

Θ(IhS(ρ)(y)) = IhS(ρ)
∗(Θ(y))

= IhS(ρ)
∗(1 +

∑
|J|⩾1

µ(J ; y)XJ)

= 1 +
∑
|J|⩾1

µ(J ; y)IhS(ρ)
∗(XJ)

= 1 +
∑
|J|⩾1

µ(J ; y)(χl(ρ)
|J|XJ +ΘJ(ρ))

= 1 +
∑
|J|⩾1

χl(ρ)
|J|µ(J ; y)XJ +

∑
|J|⩾1

µ(J ; y)ΘJ(ρ)

≡ Θ(y) +
∑
|J|⩾1

µ(J ; y)ΘJ(ρ) mod a(ρ).

□

We are ready to prove the following.

Theorem 3.2.20. For a multi-index I, the l-adic Milnor invariant µ(g; I) for
g ∈ Galk is unchanged when g is replaced with its conjugate by an element of
Galk(ζl∞ ). To be precise, let I be a multi-index with |I| ⩾ 1. Let g ∈ Galk and

h ∈ Galk(ζl∞ ). Then we have ∆(hgh−1; I) = ∆(g; I) and

µ(hgh−1; I) = µ(g; I)

.

Proof. Let I be a multi-index with |I| ⩾ 1 and 1 ⩽ i ⩽ r. For g, h ∈ Galk,
we will show

(3.2.21) µ(I; yi(hgh
−1)) ≡ µ(I; yi(g)) mod ∆(I; yi(g)).

By Lemma 3.2.14 (3), we have

(3.2.22) Θ(yi(hgh
−1)) = Θ(IhS(hg)(yi(h

−1)))Θ(IhS(h)(yi(g)))Θ(yi(h)).

For simplicity, we set, for a multi-index J with |J | ⩾ 1,
(3.2.23)

aJ := µ(J ; IhS(hg)(yi(h
−1))), bJ := µ(J ; IhS(h)(yi(g))), cJ := µ(J ; yi(h)).
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Then, from (3.2.22) or (3.2.4), we have
(3.2.24)

µ(I; yi(hgh
−1))

= aI + bI + cI +
∑
AB=I

aAbB +
∑
BC=I

bBcC +
∑
AC=I

aAcC +
∑

ABC=I

aAbBcC ,

where A,B,C are multi-indices with |A|, |B|, |C| ⩾ 1.
First, we look at bB for a subsequence B of I. By Lemma 3.2.18 (1), (2) and

by h ∈ Galk(ζl∞ ), we have

bB = µ(B; yi(g)) + µ(J ; yi(g))(an l-adic integer)

for some proper subsequence J of B. Therefore, by (3.2.24) and the definition of
∆(I; yi(g)), we have

(3.2.25) µ(I; yi(hgh
−1))− µ(I; yi(g)) ≡ aI + cI +

∑
AC=I

aAcC mod ∆(I; yi(g)).

Here we note that the right hand side of (3.2.25) is the coefficient ofXI of Θ(IhS(hg)(yi(h
−1)))Θ(yi(h)).

So, next, we look at Θ(IhS(hg)(yi(h
−1)))Θ(yi(h)). By (3.2.9), Lemma 3.2.14

(1) and Lemma 3.2.18 (2), we have
(3.2.26)
Θ(IhS(hg)(yi(h

−1))) = IhS(hg)
∗(Θ(yi(h

−1)))
= IhS(h)

∗IhS(g)
∗(Θ(yi(h

−1)))

≡ IhS(h)
∗(Θ(yi(h

−1)) +
∑
|J|⩾1

µ(J ; yi(h
−1))ΘJ(g)) (mod a(g))

= Θ(IhS(h)(yi(h
−1))) +

∑
|J|⩾1

µ(J ; yi(h
−1))IhS(h)

∗(ΘJ(g))

= Θ(yi(h)
−1) +

∑
|J|⩾1

µ(J ; yi(h
−1))IhS(h)

∗(ΘJ(g)).

Here let us write MJ(g) =
∑
J⫋AmA(J ; g)XA as in Lemma 3.2.18 (1). Then we

have, by h ∈ Galk(ζl∞ ),

(3.2.27)

IhS(h)
∗(ΘJ(g)) =

∑
J⫋A

mA(J ; g)IhS(h)
∗(XA)

=
∑
J⫋A

mA(J ; g)(XA +ΘA(h)) (mod a(g))

=
∑
J⫋A

mA(J ; g)(XA +
∑
A⫋A′

mA′(A;h)XA′).

By (3.2.26) and (3.2.27), we have
(3.2.28)
Θ(IhS(hg)(yi(h

−1)))

≡ Θ(yi(h)
−1) +

∑
|J|⩾1

∑
J⫋A

µ(J ; yi(h
−1))mA(J ; g)(XA +

∑
A⫋A′

mA′(A;h)XA′)

mod a(g)
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and hence
(3.2.29)
Θ(IhS(hg)(yi(h

−1))Θ(yi(h))

≡ 1 +
∑
|J|⩾1

∑
J⫋A

µ(J ; yi(h
−1))mA(J ; g)(XA +

∑
A⫋A′

mA′(A;h)XA′)Θ(yi(h))

mod a(g).

Here we note by Lemma 3.2.18 (2) that mA(J ; g) is a multiple of µ(B; yj(g)) by an
l-adic integer for some proper subsequence B of A and j in J . By the definition
(3.2.12) of ∆(I; yi(g)), the coefficient of XI in the right hand side of (3.2.29) must
be congruent to 0 mod ∆(I; yi(g)). By (3.2.25), we obtain (3.2.21).

Finally, we show that ∆(I; yi(hgh
−1)) = ∆(I; yi(g)) by induction on |I|. When

|I| = 1, this is obviouly true (both sides are a(g) = a(hgh−1)) by the definition.
Assume that ∆(I; yi(hgh

−1)) = ∆(I; yi(g)) for all I with |I| ⩽ n (n ⩾ 1). Then,
by (3.2.21), we have, for all I with |I| ⩽ n and 1 ⩽ i ⩽ r,

(3.2.30) µ(I; yi(hgh
−1)) ≡ µ(I; yi(g)) mod ∆(I; yi(g)))(= ∆(I; yi(hgh

−1))).

Using (3.2.30) and the definition (3.2.12) of ∆(I; yi(ρ)) for ρ = hgh−1, g, we have
∆(I; yi(hgh

−1)) = ∆(I; yi(g)) for I with |I| = n+ 1. □

Remark 3.2.31. It is known that a braid β and its conjugate γβγ−1 give rise
to the same link as their closures (β 7→ γβγ−1 is one of Markov’s transforms. cf.
[Bi1, 2.2], [MK, Chapter 9]). In particular, they have the same Milnor invariants.
So Theorem 3.2.20 may be seen as an arithmetic analogue of this known fact for
braids.

As a property of l-adic Milnor invariants, we have the following shuffle relation.

Proposition 3.2.32. Let g ∈ Galk. For multi-indices I, J with |I|, |J | ⩾ 1 and
1 ⩽ i ⩽ r, we have∑

H∈PSh(I,J)

µ(g;Hi) ≡ 0 mod g.c.d{∆(Hi) | H ∈ PSh(I, J)},

where PSh(I, J) denotes the set of results of all proper shuffles of I and J ([CFL]).

Proof. By (3.2.5), we have

µ(g; Ii)µ(g; Ji) =
∑

A∈Sh(I,J)

µ(g;Ai).

Taking mod g.c.d{∆(Hi) | H ∈ PSh(I, J)}, the left hand side is congruent to 0
and any term µ(g;Ai) with A /∈ PSh(I, J) is also congruent to 0. So the assertion
follows. □

Let R∞S be the set of primes of k(ζl∞) lying over RS in (3.1.8). For p∞ ∈ R∞S ,
choose a prime P of ΩS lying over p∞. Since P is unramified in the Galois extension
ΩS/k by Theorem 3.1.9 (2), we have the Frobenius automorphism σP ∈ Gal(ΩS/k)
of P. By Theorem 3.2.20, µ(σP; I) is independent of the choice of P lying over p∞.
So we define the l-adic Milnor invariant of p∞ for a multi-index I by

(3.2.33) µ(p∞; I) := µ(σP; I).
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We also set ∆(p∞; I) := ∆(σP; I) so that µ(p∞; I) ∈ Zl/∆(p∞; I). Let p be the
prime of k lying below p∞. Since χl(σP) = Np (the norm of p), in order to have
Zl/∆(p∞; I) ̸= 0, it is necessary for us to consider only primes p∞ in R∞S lying over

R1
S := {p ∈ RS | Np ≡ 1 mod l}.

For p ∈ R1
S , let e(p) denote the maximal integer such that

Np ≡ 1 mod le(p).

It means that p is completely decomposed in k(ζle(p))/k and any prime of k(ζle(p))
lying over p is inert in k(ζl∞)/k(ζle(p)). Hence σP ∈ Gal(ΩS/k(ζle(p))). Then the

indeterminacy ∆(p∞; I) is a quotient ring of Z/le(p)Z. We note that if µ(σP; I) ≡ 0

mod le(p) for all |I| ⩽ n, then µ(p∞; I) is well defined in Z/le(p)Z for |I| = n+ 1.

Remark 3.2.34. In [Ms1] and [Ms2, Chapter 8], the arithmetic Milnor invari-
ants for certain primes of a number field were introduced as multiple generalizations
of power residue symbols and the Rédei triple symbol ([R]). They are arithmetic
analogues for primes of Milnor invariants of links. We see that Milnor invariants for
a pure braid coincide with those for the link obtained by closing the pure braid as
in Chapter 1. Recently, we found a relation between l -adic Milnor invariants, Wo-
jtkowiak’s l-adic iterated integrals and l-adic polylogarithms ([NW], [W1] [W4])
and multiple power residue symbols (in particular, Rédei symbols), which will be
discussed in the forthcoming paper.

Finally, we introduce a filtration on Galk using l-adic Milnor numbers. We set
GalMil

k [0] := Galk. For each integer n ⩾ 1, we define a subset GalMil
k [n] of Galk by

(3.2.35)
GalMil

k [n] := {g ∈ Galk(ζl∞ ) |µ(g; I) = 0 for |I| ⩽ n}
= {g ∈ Galk(ζl∞ ) |deg(Θ(yi(g))− 1) ⩾ n for 1 ⩽ i ⩽ r}.

We then have the descending series

(3.2.36) Galk = GalMil
k [0] ⊃ GalMil

k [1] ⊃ · · · ⊃ GalMil
k [n] ⊃ · · ·

and we call it the Milnor filtration of Galk.

Proposition 3.2.37. For n ⩾ 0, GalMil
k [n] is a closed normal subgroup of Galk.

Proof. We may assume n ⩾ 1. Since µ( ; I) : Galk → Zl is continuous

for each I and GalMil
k [n] =

∩
|I|⩽n µ( ; I)−1(0), GalMil

k [n] is closed in Galk. Let

g, h ∈ GalMil
k [n]. Write Θ(yi(ρ)) = 1 + Yi(ρ) for ρ = g, h and each 1 ⩽ i ⩽ r. Then

deg(Yi(ρ)) ⩾ n. First, we will show g−1 ∈ GalMil
k [n]. By Lemma 3.2.14 (1), we have

(3.2.38)
Θ(yi(g

−1)) = Θ(IhS(g
−1)(yi(g)

−1))
= IhS(g

−1)∗(Θ(yi(g)
−1))

= 1 + IhS(g
−1)∗(−Yi(g) + Yi(g)

2 − · · · ).

Since IhS(g
−1) is filtration-preserving, deg(IhS(g

−1)∗(−Yi(g) + Yi(g)
2 − · · · )) ⩾ n

and hence g−1 ∈ GalMil
k [n]. Next, we will show gh ∈ GalMil

k [n]. By Lemma 3.2.14
(2), we have

Θ(yi(gh)) = Θ(IhS(h)(yi(g)))Θ(yi(h))
= IhS(h)

∗(Θ(yi(g)))Θ(yi(h))
= (1 + IhS(h)

∗(Yi(g)))(1 + Yi(h)).
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Since deg(IhS(h)
∗(Yi(g))),deg(Yi(h)) ⩾ n, we see gh ∈ GalMil

k [n]. Finally, we will

show hgh−1 ∈ GalMil
k [n]. By Lemma 3.2.14 (3), we have

Θ(yi(hgh
−1)) = Θ(IhS(hg)(yi(h

−1)))Θ(IhS(h)(yi(g)))Θ(yi(h))
= IhS(hg)

∗(Θ(yi(h
−1)))IhS(h)

∗(Θ(yi(g)))Θ(yi(h)).

As we have just proved above, deg(Θ(yi(h
−1))−1),deg(IhS(h)

∗(Θ(yi(g)))−1) ⩾ n.

Hence hgh−1 ∈ GalMil
k [n]. Getting all together, the assertion is proved. □

In Section 3.3, we shall give another proof of Proposition 3.2.37 using the
Johnson filtration.

3.2.3. Pro-l link groups and Massey products. Following the analogy
with the link group of a pure braid link as in Chapter 1, we define the pro-l link
group of each Galois element g ∈ Galk associated to IhS by
(3.2.39)

ΠS(g) := ⟨x1, . . . , xr | y1(g)xχl(g)
1 y1(g)

−1 = x1, · · · , yr(g)xχl(g)
r yr(g)

−1 = xr⟩
= ⟨x1, . . . , xr |x1−χl(g)

1 [x−11 , y1(g)
−1] = · · · = x

1−χl(g)
r [x−1r , yr(g)

−1] = 1⟩
:= Fr/NS(g),

where NS(g) denotes the closed subgroup of Fr generated normally by the pro-l

words x
1−χl(g)
1 [x−11 , y1(g)

−1], . . . , x
1−χl(g)
r [x−1r , yr(g)

−1]. We will give a cohomolog-
ical interpretation of l-adic Milnor invariants of g ∈ Galk by Massey products in
the cohomology of the pro-l link group ΠS(g). In the following, we let g ∈ Galk
and a an ideal of Zl such that a ̸= Zl and χl(g) ≡ 1 mod a. We may write a = laZl
for some 1 ⩽ a ⩽ ∞ (la := 0 if a = ∞). When g ∈ Galk(ζ∞l ), we have a = ∞ and
a = 0.

Let Ci(ΠS(g),Zl/a) be the Zl/a-module of continuous i-cochains (i ⩾ 0) of
ΠS(g) with coefficients in Zl/a, where ΠS(g) acts on Zl/a trivially. We con-
sider the differential graded algebra (C•(ΠS(g),Zl/a), d), where the product on
C•(ΠS(g),Zl/a) =

⊕
i⩾0 C

i(ΠS(g),Zl/a) is given by the cup product and the
differential d is the coboundary operator. Then we have the cohomology ring
H∗(ΠS(g),Zl/a) :=

⊕
i⩾0H

i(C•(ΠS(g),Zl/a)) of the pro-l group ΠS(g) with co-

efficients in Zl/a. In the following, we deal with only one and two dimensional
cohomology groups. For the sign convention, we follow [Dw]. For c1, . . . , cn ∈
H1(ΠS(g),Zl/a), an n-th Massey product ⟨c1, . . . , cn⟩ is said to be defined if there
is an array

W = {wij ∈ C1(ΠS(g),Zl/a) | 1 ⩽ i < j ⩽ n+ 1, (i, j) ̸= (1, n+ 1)}

such that 
[ωi,i+1] = ci (1 ⩽ i ⩽ n),

dwij =

j−1∑
a=i+1

wia ∪ waj (j ̸= i+ 1).

Such an arrayW is called a defining system for ⟨c1, . . . , cn⟩. The value of ⟨c1, . . . , cn⟩
relative to W is defined by the cohomology class represented by the 2-cocycle

n∑
a=2

w1a ∪ wa,n+1,
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and denoted by ⟨c1, . . . , cn⟩W . A Massey product ⟨c1, . . . , cn⟩ itself is taken to be
the subset ofH2(ΠS(g),Zl/a) consisting of elements ⟨c1, . . . , cn⟩W for some defining
system W . By convention, ⟨c⟩ = 0. The following lemma is a baisc fact ([Kr]).

Lemma 3.2.40. We have ⟨c1, c2⟩ = c1∪c2. For n ⩾ 3, ⟨c1, . . . , cn⟩ is defined and
consists of a single element if ⟨cj1 , . . . , cja⟩ = 0 for all proper subsets {j1, . . . , ja}
(a ⩾ 2) of {1, . . . , n}.

Next, we recall a relation between Massey products and the Magnus coefficients
for our situation. Let ψ : Fr → ΠS(g) = Fr/NS(g) be the natural homomorphism.
We denote by γi the image of xi under ψ, γi := xi mod NS(g), for 1 ⩽ i ⩽ r.
By the definition (2.3.1) of ΠS(g) and our assumption, π induces the isomorphism

Fr/(Fr)
laFr(2)

∼→ ΠS(g)/ΠS(g)
la [ΠS(g),ΠS(g)] ≃ (Zl/a)⊕r and so we have the iso-

morphism H1(ΠS(g),Zl/a) ≃ H1(Fr,Zl/a). Therefore the Hochschild-Serre spec-
tral sequence yields the isomorphism

tg : H1(NS(g),Zl/a)ΠS(g) → H2(ΠS(g),Zl/a).

Here tg is the transgression defined as follows. For a ∈ H1(NS(g),Zl/a)ΠS(g),
choose a 1-cochain b ∈ C1(Fr,Zl/a) such that b|NS(g) = a. Since the value
db(f1, f2), fi ∈ Fr, depends only on the cosets fi mod NS(g), there is a 2-cocyle
c ∈ Z2(ΠS(g),Zl/a) such that ψ∗(c) = db. Then tg(a) is defined to be the class of
c. The dual to tg is called the Hopf isomorphism:

tg∨ : H2(ΠS(g),Zl/a)
∼→ H1(NS(g),Zl/a)ΠS(g) = NS(g)/NS(g)

la [NS(g),Fr].

Then we have the following proposition (cf. [St, Lemma 1.5], [Ms1, Theorem
2.2.2]).

Proposition 3.2.41. Notations being as above, let c, . . . , cn ∈ H1(ΠS(g),Zl/a)
andW = (wij) a defining system for the Massey product ⟨c1, . . . , cn⟩. Let f ∈ NS(g)
and set r := (tg∨)−1(f mod [NS(g),Fr]). Then we have

⟨c1, . . . , cn⟩W (r)

=

n∑
j=1

(−1)j+1
∑

e1+···+ej=n

∑
I=(i1···ij)

w1,1+e1(γi1) · · ·wn+1−ej ,n+1(γij )µ(I; f)a,

where e1, . . . , ej run over positive integers satisfying e1+· · ·+ej = n and µ(I; f)a :=
µ(I; f) mod a.

Now, let γ∗1 , . . . , γ
∗
r ∈ H1(ΠS(g),Zl/a) be the Kronecker dual to γ1, . . . , γr,

namely, γ∗i (γj) = δij for 1 ⩽ i, j ⩽ r. Let ri := (tg∨)−1(x
1−χl(g)
i [x−1i , yi(g)

−1]) mod
[NS(g),Fr]) for 1 ⩽ i ⩽ r. Let I = (i1 · · · in) be a multi-index such that |I| = n ⩾ 2.
Let g ∈ Galk. We assume the following conditions:

(3.2.42)


(1) µ((j1 · · · ja);x1−χl(g)

i ) ≡ 0 mod a for any subset
{j1, . . . , ja} of {i1, . . . , in} and 1 ⩽ i ⩽ r,

(2) i1, . . . , in are distinct each other, and
µ(g; (j1 · · · ja)) ≡ 0 mod a for any proper subset
{j1, . . . , ja} of {i1, . . . , in}.

We note that the condition (1) is unnecessary when g ∈ Galk(ζl∞ ). The following
theorem gives a cohomological interpretation of µ(g; I)a := µ(g; I) mod a by the
Massey product in the cohomology of ΠS(g).
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Theorem 3.2.43. Notations and assumtions being as above, the Massey product
⟨γ∗i1 , . . . , γ

∗
in
⟩ in H2(ΠS(g),Zl/a) is uniquely defined and we have

µ(g; I)a = (−1)n⟨γ∗i1 , . . . , γ
∗
in⟩(rin).

Proof. First, we compute µ(J ;x
1−χl(g)
i [x−1i , yi(g)

−1]) for a multi-index J =
(j1 · · · ja), where {j1, . . . , ja} is a subset of {i1, . . . , in}. We note that

Θ(x
1−χl(g)
i [x−1i , yi(g)

−1])

= Θ(x
1−χl(g)
i )(1 + Θ(x−1i )Θ(yi(g)

−1)(Θ(xiyi(g))−Θ(yi(g)xi))).

By our assumption (3.2.42) (1), we have
(3.2.44)

µ(J ;x
1−χl(g)
i [x−1i , yi(g)

−1]) ≡ µ(J ;xiyi(g))− µ(J ; yi(g)xi)
+
∑
A

(µ(A;xiyi(g))− µ(A; yi(g)xi))νA mod a,

where A runs over some proper subsequences of J and νA ∈ Zl. By the straight-
forward computation, we have

µ(J ;xiyi(g)) =

{
µ(g; (Ji)) (i ̸= j1),
µ(g; (Jj1)) + µ(g; (j2 · · · jaj1)) (i = j1),

and

µ(J ; yi(g)xi) =

{
µ(g; (Ji)) (i ̸= ja),
µ(g; (Jja)) + µ(g; J) (i = ja).

Hence we have
(3.2.45)

µ(J ;xiyi(g))− µ(J ; yi(g)xi) =

 µ(g; (j2 · · · jaj1))− δj1,jaµ(g; J) (i = j1),
µ(g; (j2 · · · jaj1))δj1,ja − µ(g; J) (i = ja),
0 (otherwise).

Now, let n = 2. Then we have ⟨γ∗i1 , γ
∗
i2
⟩ = γ∗i1 ∪ γ

∗
i2
. By Proposition 3.2.41, (3.2.42)

(2), (3.2.44) and (3.2.45), we have

⟨γ∗i1 , γ
∗
i2⟩(ri2) = −µ(I; [xi2 , yi2(g)])a = µ(g; I)a.

Suppose n ⩾ 3 and let {j1, . . . , ja} be a proper subset of {i1, . . . , in}. Then, by our
assumption (3.2.42) (2), (3.2.44) and (3.2.45), we have

µ(J ;x
1−χl(g)
i [x−1i , yi(g)

−1]) ≡ 0 mod a

for J = (j1 · · · ja) and 1 ⩽ i ⩽ r. So, by Proposition 3.2.41, we have

⟨γ∗j1 , . . . , γ
∗
ja⟩(ri) = 0

for 1 ⩽ i ⩽ r. Since H2(Π(g),Zl/a) is generated by x
1−χl(g)
i [xi, yi(g)] for 1 ⩽ i ⩽ r,

we have

⟨cj1 , . . . , cja⟩ = 0.

Therefore, by Lemma 3.2.40, the Massey product ⟨ci1 , . . . , cin⟩ is uniquely defined.
By Proposition 3.2.41, (3.2.42) (2), (3.2.44) and (3.2.45) again, we have

⟨γ∗i1 , . . . , γ
∗
in
⟩(rin) = (−1)n+1µ(I;x

1−χl(g)
n [xin , yin(g)])a = (−1)nµ(g; I)a. □
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3.3. Pro-l Johnson homomorphisms

3.3.1. Some algebras associated to lower central series. For each integer
n ⩾ 1, we let

grn(Fr) := ΓnFr/Γn+1Fr,

which is a free Zl-module whose rank ℓr(n) is given by the Witt formula ([MKS,
5.6, Theorem 5.11], [Se, Ch. IV, 4, 6]):

ℓr(n) =
1

n

∑
d|n

µ(d)rn/d,

where µ(d) is the Möbius function. The graded Zl-module

gr(Fr) :=
⊕
n⩾1

grn(Fr)

has the structure of a graded free Lie algebra over Zl: For a = s mod Γm+1Fr ∈
grm(Fr) and b = t mod Γn+1Fr ∈ grn(Fr) (s ∈ ΓmFr, t ∈ ΓnFr), the Lie bracket on
gr(Fr) is defined by

[a, b] := [s, t] mod Fr(m+ n+ 1).

We consider the graded associative algebra over Zl defined by

gr(Zl[[Fr]]) :=
⊕
n⩾0

grn(Zl[[Fr]]), grn(Zl[[Fr]]) := InZl[[Fr]]
/In+1

Zl[[Fr]]
.

The map f 7→ f − 1 (f ∈ Fr(n)) defines an injective Zl-linear map

(3.3.1) grn(Fr) ↪→ grn(Zl[[Fr]])

for n ⩾ 1 and the injective Lie algebra homomorphism over Zl
gr(Fr) ↪→ gr(Zl[[Fr]]),

where gr(Z[[Fr]]) is shown to be the universal enveloping algebra of the Lie algebra
gr(Fr). Moreover, by the correspondence xi−1 mod I2Zl[[Fr]]

∈ gr1(Zl[[Fr]]) 7→ Xi ∈
HZl

, we have the isomorphism of Zl-modules

(3.3.2) Θn : grn(Zl[[Fr]]) ≃ H⊗nZl

for each n ⩾ 0 and so gr(Zl[[Fr]]) is identified with the tensor algebra T (HZl
):

gr(Zl[[Fr]]) = T (HZl
) = Zl⟨X1, . . . , Xr⟩.

The composition of the map of (3.3.1) with Θn in (3.3.2), denoted also by Θn :
grn(Fr) ↪→ H⊗nZl

, is the degree n part of the pro-l Magnus embedding in (3.2.3):

(3.3.3) Θn = (Θ− 1)|Fn mod T̂ (n+ 1).

Here we may note that Θ is multiplicative, Θ(f1f2) = Θ(f1)Θ(f2) for f1, f2 ∈ Fr,
while Θn is additive, Θn([f1f2]) = Θn([f1] + [f2]) = Θn([f1]) + Θn([f2]), where [ · ]
stands for the class mod Fr(n+ 1).

Let S(HZl
) be the symmetric algebra of HZl

over Zl and let q : T (HZl
) →

S(HZl
) be the natural map. We let Sm(HZl

) := q(H⊗mZl
) and Ti := q(Xi) for

1 ⩽ i ⩽ r so that S(HZl
) is the graded algebra

⊕
m⩾0 S

m(HZl
) which is noting but

the commutative polynomial algebra over Zl of variables T1, . . . , Tr:

Sm(HZl
) =

⊕
m⩾0

Sm(HZl
) = Zl[T1, . . . , Tr].
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3.3.2. The pro-l Johnson map. For φ ∈ Autfil(T̂ (HZl
)), we denote by [φ]

the induced Zl-endomorphism of HZl
= T̂ (1)/T̂ (2) = Z⊕rl . We firstly recall the

following lemma due to Kawazumi ([Ka]).

Lemma 3.3.4. A Zl-algebra endomorphism φ of T̂ (HZl
) is a filtration-preserving

automorphism of T̂ (HZl
), φ ∈ Autfil(T̂ (HZl

)), if and only if the following condi-
tions are satisfied:

(1) φ(T̂ (n)) ⊂ T̂ (n) for all n ⩾ 0.

(2) the induced Zl-linear map [φ] on T̂ (1)/T̂ (2) = HZl
is an isomorphism.

Proof. Suppose φ ∈ Autfil(T̂ (HZl
)). Since φ is filtration-preserving, the con-

dition (1) holds. To show the condition (2), consider the following commutative
diagram for vector spaces over Zl with exact rows:

0 −→ T̂ (2) −→ T̂ (1) −→ HZl
−→ 0

↓ φ|T̂ (2) ↓ φ|T̂ (1) ↓ [φ]
0 −→ T̂ (2) −→ T̂ (1) −→ HZl

−→ 0.

Since φ(T̂ (n)) = T̂ (n) for all n ⩾ 0, we have Coker(φ|T̂ (i)) = 0 for i = 1, 2,

in particular. Since φ is an automorphism, we have Ker(φ) = 0, in particular,
Ker(φ|T̂ (i)) = 0 for i = 1, 2. By snake lemma applied to the above diagram, we

obtain Ker([φ]) = 0 and Coker([φ]) = 0, hence the condition (2).

Suppose that a Zl-algebra endomorphism φ of T̂ satisfies the conditions (1) and

(2). Let z = (zm) be any element of T̂ with zm ∈ H⊗mZl
for m ⩾ 0. To show that φ

is an automorphism, we have only to prove that there exists uniquely y = (ym) ∈ T̂
such that

(3.3.5) z = φ(y).

Note by the condition (1) and (2) that φ induces a Zl-linear automorphism of

T̂ (m)/T̂ (m + 1) = H⊗mZl
, which is nothing but [φ]⊗m. Then, writing φ(yi)j for

the component of φ(yi) in H
⊗j
Zl

for i < j, the equation (3.3.5) is equivalent to the
following system of equations:

(3.3.6)



z0 = φ(y0) = y0,
z1 = [φ](y1),
z2 = [φ]⊗2(y2) + φ(y1)2,
· · ·
zm = [φ]⊗m(ym) + φ(y1)m + · · ·+ φ(ym−1)m,
· · ·

Since [φ]⊗m is an automorphism, we can find the unique solution y = (ym) of (3.3.6)
from the lower degree. Therefore φ is an Zl-algebra automorphism. Furthermore,
we can see easily that if z0 = · · · = zn−1 = 0, then y0 = · · · = yn−1 = 0 for n ⩾ 1.

This means that φ−1(T̂ (n)) ⊂ T̂ (n) and so φ is filtration-preserving. □

By Lemma 3.3.4, each φ ∈ Autfil(T̂ (HZl
)) induces a Zl-linear automorphism

[φ] of HZl
= T̂ (1)/T̂ (2) and so we have a group homomorphism

[ ] : Autfil(T̂ (HZl
)) −→ GL(HZl

),
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where GL(HZl
) denotes the group of Zl-linear automorphisms of HZl

. We then

define the induced automorphism group of T̂ by

IA(T̂ (HZl
)) := Ker([ ])

= {φ ∈ Aut(T̂ (HZl
)) | φ(h) ≡ h mod T̂ (2) for any h ∈ HZl

}.

We note that there is a natural splitting s : GL(HZl
)→ Autfil(T̂ (HZl

)) of [ ], which
is defined by

s(P )((zn)) := (P⊗n(zn)) for P ∈ GL(HZl
).

In the following, we also regard [P ] ∈ GL(HZl
) as an element of Autfil(T̂ ) through

the splitting s. Thus we have the following

Lemma 3.3.7. We have a semi-direct decomposition

Autfil(T̂ (HZl
)) = IA(T̂ (HZl

))⋊GL(HZl
); φ = (φ ◦ [φ]−1, [φ]).

Let φ ∈ IA(T̂ (HZl
)). Then we have φ(h) − h ∈ T̂ (2) for any h ∈ HZl

, and so
we have a map

(3.3.8) E : IA(T̂ ) −→ HomZl
(HZl

, T̂ (2)); φ 7→ φ|HZl
− idHZl

,

where HomZl
(HZl

, T̂ (2)) denotes the group of Zl-linear maps HZl
→ T̂ (2). The

following Proposition will play a key role in our discussion.

Proposition 3.3.9. The map E is bijective.

Proof. Injectivity: Suppose E(φ) = E(φ′) for φ,φ′ ∈ IA(T̂ (HZl
)). Then we

have φ|HZl
= φ′|HZl

. Since an Zl-algebra endomorphism of T̂ (HZl
) is determined

by its restriction on HZl
, we have φ = φ′.

Surjectivity: Take any ϕ ∈ HomZl
(HZl

, T̂ (2)). We can extend ϕ + idHZl
: HZl

→
T̂ (2) uniquely to a Zl-algebra endomorphism φ of T̂ (HZl

). Then we have obviously

φ(T̂ (n)) ⊂ T̂ (n) for all n ⩾ 0. Since T̂ (1)/T̂ (2) = HZl
and we see that

[φ](hmod T̂ (2)) = φ(h)mod T̂ (2) = h+ ϕ(h)mod T̂ (2) = hmod T̂ (2),

we have [φ] = idHZl
. By Lemma 3.2.1, we have φ ∈ IA(T̂ ) and E(φ) = ϕ. □

By Lemma 3.3.7 and Proposition 3.3.9, we have the following.

Corollary 3.3.10. We have a bijection

Ê : Autfil(T̂ (HZl
)) ≃ HomZl

(HZl
, T̂ (2))×GL(HZl

)

defined by Ê(φ) = (E(φ ◦ [φ]−1), [φ]).

Now, let IhS : Galk → P (Fr) be the Ihara representation associated to S in
(3.1.6). We recall that the correspondence φ 7→ φ∗ := Θ ◦ φ ◦Θ−1 in (3.2.8) gives

the injective homomorphism Aut(Fr) → Autfil(T̂ (HZl
)) and hence the inclusion

P (Fr) ↪→ Autfil(T̂ (HZl
)) which satisfies [φ] = [φ∗] in GL(HZl

). Composing IhS
with this inclusion, we have the homomorphism η̂S : Galk → Autfil(T̂ (HZl

)) defined
by

η̂S(g) := IhS(g)
∗ = Θ ◦ IhS(g) ◦Θ−1.
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We then define the map ηS : Galk → IA(T̂ (HZl
)) by composing η̂S with the pro-

jection on IA(T̂ (HZl
)):

(3.3.11)
ηS(g) := η̂S(g) ◦ [IhS(g)]−1 = IhS(g)

∗ ◦ [IhS(g)]−1 = Θ ◦ IhS(g) ◦Θ−1 ◦ [IhS(g)]−1.
Thus, we have η̂S(g) = (ηS(g), [IhS(g)]) for g ∈ Galk under the semi-direct decom-

position Autfil(T̂ (HZl
)) = IA(T̂ (HZl

))⋊GL(HZl
) of Lemma 3.3.7.

Now, we define the pro-l Johnson map

τS : Galk −→ HomZl
(HZl

, T̂ (2))

by the composing ηS with E in (3.3.8), and define the extended pro-l Johnson map

τ̂S : Galk −→ HomZl
(HZl

, T̂ (2))⋊GL(HZl
)

by composing κ̂S with Ê of Corollary 3.3.10. So we have, for g ∈ Galk,
(3.3.12)
τS(g) := E(ηS(g)) = ηS(g)|HZl

− idHZl
= IhS(g)

∗ ◦ [IhS(g)]−1|HZl
− id|HZl

= Θ ◦ IhS(g) ◦Θ−1 ◦ [IhS(g)]−1|HZl
− id|HZl

,

τ̂S(g) := (τS(g), [IhS(g)]).

For m ⩾ 1, we define the m-th pro-l Johnson map

τ
(m)
S : Galk −→ HomZl

(HZl
,H
⊗(m+1)
Zl

)

by the m-th component of τS :

(3.3.13) τS(g) :=
∑
m⩾1

τ
(m)
S (g) (g ∈ Galk).

We note that the pro-l Johnson map τS is no longer a homomorphism. In fact,
we have the following

Proposition 3.3.14. For g1, g2 ∈ Galk, we have

ηS(g1g2) = ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1.
Proof. By (3.3.11), we have

ηS(g1g2) = IhS(g1g2)
∗ ◦ [IhS(g1g2)]−1

= Θ ◦ (IhS(g1g2) ◦Θ−1 ◦ [IhS(g1g2)]−1
= Θ ◦ IhS(g1) ◦ IhS(g2) ◦Θ−1 ◦ [IhS(g2)]−1 ◦ [IhS(g1)]−1
= Θ ◦ IhS(g1) ◦Θ−1 ◦ [IhS(g1)]−1 ◦ [IhS(g1)] ◦Θ ◦ IhS(g2) ◦Θ−1
◦[IhS(g2)]−1 ◦ [IhS(g1)]−1

= ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1.
□

Proposition 3.3.14 yields coboundary relations among τ
(m)
S . Here we give the

formulas only for τ
(1)
S and τ

(2)
S .

Proposition 3.3.15. For g1, g2 ∈ Galk, we have

τ
(1)
S (g1g2) = τ

(1)
S (g1) + [IhS(g1)]

⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1,
τ
(2)
S (g1g2) = τ

(2)
S (g1) + (τ

(1)
S (g1)⊗ idHZl

+ idHZl
⊗ τ (1)S (g1)) ◦ [IhS(g1)]⊗2

◦τ (1)S (g2) ◦ [IhS(g1)]−1 + [IhS(g1)]
⊗3 ◦ τ (2)S (g2) ◦ [IhS(g1)]−1.
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Proof. By definition (3.3.13), we have

(3.3.16) τS(g1g2) =
∑
m⩾1

τ
(m)
S (g1g2).

On the other hand, by Proposition 3.3.14 and (3.3.12), we have, for h ∈ HZl
,

τS(g1g2)(h) = −h+ ηS(g1g2)(h)
= −h+ (ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1)(h)
= −h+ (ηS(g1) ◦ [IhS(g1)] ◦ (idHZl

+ τS(g2)))([IhS(g1)]
−1(h))

= −h+ (ηS(g1) ◦ [IhS(g1)])

[IhS(g1)]
−1(h) +

∑
m⩾1

(τ
(m)
S (g2) ◦ [IhS(g1)]−1)(h)


= −h+ ηS(g1)

h+
∑
m⩾1

([IhS(g1)]
⊗m+1 ◦ τ (m)

S (g2) ◦ [IhS(g1)]−1)(h)


= −h+ ηS(g1)(h)

+ηS(g1)(([IhS(g1)]
⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h))

+ηS(g1)(([IhS(g1)]
⊗3 ◦ τ (2)S (g2) ◦ [IhS(g1)]−1)(h)) mod T̂ (4).

We note that

ηS(g)|H⊗m
Zl

= (idHZl
+ τS(g))

⊗m : H⊗mZl
−→ HZl

× T̂ (2m)

for any g ∈ Galk and so we have the following congruences mod T̂ (4):

ηS(g1)(h) ≡ h+ τ
(1)
S (g1)(h) + τ

(2)
S (g1)(h),

ηS(g1)(([IhS(g1)]
⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h))

≡ ([IhS(g1)]
⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h)

+((τ
(1)
S (g1)⊗ idHZl

+ idHZl
⊗ τ (1)S (g1)) ◦ [IhS(g1)]⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h),

ηS(g1)(([IhS(g1)]
⊗3 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h)) ≡ ([IhS(g1)]

⊗3 ◦ τ (2)S (g2) ◦ [IhS(g1)]−1)(h).

Therefore we have
(3.3.17)
τS(g1g2)(h)

≡ τ (1)S (g1)(h) + τ
(2)
S (g1)(h)

+([IhS(g1)]
⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h)

+((τ
(1)
S (g1)⊗ idHZl

+ idHZl
⊗ τ (1)S (g1)) ◦ [IhS(g1)]⊗2 ◦ τ (1)S (g2) ◦ [IhS(g1)]−1)(h)

+([IhS(g1)]
⊗3 ◦ τ (2)S (g2) ◦ [IhS(g1)]−1)(h) mod T̂ (4).

Comparing (3.3.16) and (3.3.17), we obtain the assertions. □

3.3.3. Pro-l Johnson homomorphisms. For n ⩾ 0, let πn : Fr → Fr/Γn+1Fr
be the natural homomorphism. Since each ΓnFr is a characteristic subgroup of Fr,
πn induces the natural homomorphism πn∗ : P (Fr) ↪→ Aut(Fr)→ Aut(Fr/Γn+1Fr).

Let Ih
(n)
S denote the composite of IhS with πn∗:

Ih
(n)
S : Galk −→ Aut(Fr/Γn+1Fr).
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In particular, Ih
(1)
S (g) = [IhS(g)] for g ∈ Galk. Let GalJohk [n] denote the kernel of

Ih
(n)
S :

(3.3.18)
GalJohk [n] := Ker(Ih

(n)
S )

= {g ∈ Galk | IhS(g)(f)f−1 ∈ Γn+1Fr for all f ∈ Fr}.
We then have the descending series of closed normal subgroups of Galk:

Galk = GalJohk [0] ⊃ GalJohk [1] ⊃ · · · ⊃ GalJohk [n] ⊃ · · ·

and we call it the Johnson filtration of Galk associated to the Ihara representation
φS (cf.[Aa], [Joh1]). We note by Theorem 3.1.9 (1)

(3.3.19) GalJohk [1] = Ker(Ih
(1)
S : Galk → GL(HZl

)) = Galk(ζl∞ ).

The relation with the Milnor filtration defined in (3.2.35) is given as follows.

Proposition 3.3.20. The Johnson filtration coincides with the Milnor filtra-
tion, namely, for each n ⩾ 0, we have

GalJohk [n] = GalMil
k [n].

Proof. We may assume n ⩾ 1 and hence g ∈ Galk(ζl∞ ). Then we have

g ∈ GalJohk [n] ⇔ IhS(g)(xi)x
−1
i ∈ Γn+1Fr for all 1 ⩽ i ⩽ r

⇔ yi(g)xiyi(g)
−1x−1i ∈ Γn+1Fr for all 1 ⩽ i ⩽ r

⇔ yi(g) ∈ Fr(n) for all 1 ⩽ i ⩽ r
⇔ deg(Θ(yi(g)− 1)) ⩾ n for all 1 ⩽ i ⩽ r

⇔ g ∈ GalMil
k [n]

□

Note that Proposition 3.3.20 yields Proposition 3.2.37. In the following, we
simply write Galk[n] for the n-th term of the Johnson (or Milnor) filtration for
n ⩾ 0 and we denote by k[n] the Galois subextension of k in Q corresponding to
Galk[n]. By (3.3.19), we have k[1] = k(ζl∞).

We give some basic properties of the Johnson filtration.

Lemma 3.3.21. For g ∈ Galk[m] (m ⩾ 0) and f ∈ ΓnFr (n ⩾ 1), we have

IhS(g)(f)f
−1 ∈ Γm+nFr.

Proof. We fix m ⩾ 0 and g ∈ Galk[m]. We prove the assertion by induction
on n. For n = 1, the assertion IhS(g)(f)f

−1 ∈ Γm+1Fr is true by definition (3.3.18)
of Galk[m]. Assume that

(3.3.22) IhS(g)(f)f
−1 ∈ Γm+iFr if f ∈ ΓiFr and 1 ⩽ i ⩽ n.

Let [ΓnFr,Fr]abst denote the abstract group generated by [a, b] (a ∈ ΓnFr, b ∈ Fr).
Since IhS(g) is continuous and [ΓnFr,Fr]abst is dense in Γn+1Fr, it suffices to show
that

IhS(g)(f)f
−1 ∈ Γm+n+1Fr for f ∈ [ΓnFr,Fr]abst.

For this, since any element f of [ΓnFr,Fr]abst can be written in the form

f = [b1, c1]
e1 · · · [bq, cq]eq ,
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where bj ∈ ΓnFr, cj ∈ Fr for each j (1 ⩽ j ⩽ q) and ej ’s are integers, and we have

IhS(g)(f)f
−1 = IhS(g)([b1, c1])

e1 · · · IhS(g)([bq, cq])eq [bq, cq]−eq · · · [b1, c1]−e1 ,
we have only to show

(3.3.23) IhS(g)([b, c])[b, c]
−1 ∈ Fr(m+ n+ 1) if b ∈ ΓnFr, c ∈ Fr.

For simplicity, we shall use the notation: [φ, x] := ψ(x)x−1 and [x, φ] := xφ(x)−1

for x ∈ Fr and φ ∈ Aut(Fr). By the “three subgroup lemma” and the induction
hypothesis (3.3.22), we have

IhS(g)([b, c])[b, c]
−1 = [IhS(g), [b, c]]

∈ [IhS(g), [ΓnFr,Fr]]
⊂ [[IhS(g),ΓnFr],Fr][[Fr, IhS(g)],ΓnFr]
⊂ [Γm+nFr,Fr][Γm+1Fr,ΓnFr]
= Γm+n+1Fr

and our claim (3.3.23) follows. □

Lemma 3.3.21 yields the following

Proposition 3.3.24. For m,n ⩾ 0, we have

[Galk[m],Galk[n]] ⊂ Galk[m+ n] for m,n ⩾ 0.

In particular, the Johnson (or Milnor) filtration is a central series.

Proof. We use the same notation as in the proof of (3.3.23). By Lemma
3.3.21, we have

[[Galk[n],Fr],Galk[m]] ⊂ [Γn+1Fr,Galk[m]] ⊂ Γm+n+1Fr,
[[Fr,Galk[m]],Galk[n]] ⊂ [Γm+1Fr,Galk[n]] ⊂ Γm+n+1Fr.

By the three subgroup lemma, we have

[[Galk[m],Galk[n]],Fr] ⊂ [Galk[n],Fr],Galk[m]][[Fr,Galk[m]],Galk[n]]
⊂ Γm+n+1Fr.

By definition (3.3.18), we obtain the assertion. □

For n ⩾ 0, let

grn(Galk) := Galk[n]/Galk[n+ 1].

Then, by Proposition 3.3.24, the graded Zl-module

gr(Galk) :=
⊕
n⩾0

grn(Galk)

has the structure of a graded Lie algebra over Zl, where the Lie bracket is defined
by the commutator: For a = g mod Galk[m + 1], b = h mod Galk[n + 1] (g ∈
Galk[m], h ∈ Galk[n]),

[a, b] := [g, h] mod Galk[m+ n+ 1].

Now, for m ⩾ 1, we let τ
[m]
S denote the restriction of the m-th l-adic Johnson

map τ
(m)
S in (3.3.13) to Galk[m]:

τ
[m]
S := τ

(m)
S |Galk[m] : Galk[m] −→ HomZl

(HZl
,H
⊗(m+1)
Zl

).

The following theorem asserts that τ
[m]
S describes the action of Galk[m] on Fr/Γm+2Fr.
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Theorem 3.3.25. Notations being as above, the following assertions hold.
(1) For g ∈ Galk[m] and f ∈ Fr, we have

τ
[m]
S (g)([f ]) = Θm+1(IhS(g)(f)f

−1),

where Θm+1 : grm+1(Fr) ↪→ H
⊗(m+1)
Zl

s the degree (m + 1)-part of the Magnus

embedding in (3.2.3).

(2) The map τ
[m]
S is a homomorphism and Ker(τ

[m]
S ) = Galk[m + 1]. Hence τ

[m]
S

induces the injective homomorphism grm(Galk) ↪→ HomZl
(HZl

,H
⊗(m+1)
Zl

).

Proof. (1) We need to show that for g ∈ Galk[m],

(3.3.26) τ
(m)
S (g)(Xi) = Θm+1(IhS(g)(xi)x

−1
i ) 1 ⩽ i ⩽ r.

By (3.3.12) and [IhS(g)] = idHZl
, we have

τS(g)(Xi) = (Θ ◦ IhS(g) ◦Θ−1)(Θ(xi)− 1)− (Θ(xi)− 1)
= Θ(IhS(g)(xi))−Θ(xi).

Therefore, by (3.3.13), we have

(3.3.27) τ
(m)
S (g)(Xi) = the component in H

⊗(m+1)
Zl

of Θ(IhS(g)(xi))−Θ(xi).

On the other hand, since IhS(g)(xi)x
−1
i ∈ Γm+1Fr, we have

Θ(IhS(g)(xi)x
−1
i ) ≡ 1 + Θm+1(IhS(g)(xi)x

−1
i ) mod T̂ (m+ 2).

Multiplying the above equation by Θ(xi) from right, we have

(3.3.28) Θ(IhS(g)(xi)) ≡ Θ(xi) + Θm+1(IhS(g)(xi)x
−1
i ) mod T̂ (m+ 2).

By (3.3.27) and (3.3.28), we obtain (3.3.26).
(2) By (1), for g, h ∈ Galk[m] and f ∈ Fr, we have

τ
[m]
S (gh)([f ]) = Θm+1(IhS(gh)(f)f

−1)
= Θm+1(IhS(g)(IhS(h)(f))f

−1)
= Θm+1(IhS(g)(IhS(h)(f)f

−1)IhS(g)(f)f
−1).

Since IhS(h)(f)f
−1 ∈ Γm+1Fr, we have IhS(g)(IhS(h)(f)f

−1) ≡ IhS(h)(f)f
−1 mod

Γ2m+1Fr by Lemma 3.3.21. Since Γ2m+1Fr ⊂ Γm+2Fr by m ⩾ 1, we have

τ
[m]
S (gh)([f ]) = Θm+1(IhS(g)(f)f

−1) + Θm+1(IhS(h)(f)f
−1).

= (τ
[m]
S (g) + τ

[m]
S (h))([f ])

for any f ∈ Fr. Hence the former assertion is proved. The latter follows from (1)
and (3.3.18). □

By Theorem 3.3.25 (1), τ
[m]
S factors through HomZl

(HZl
, grm+1(Fr))

τ
[m]
S : Galk[m] −→ HomZl

(HZl
, grm+1(Fr)); g 7→ ([f ] 7→ IhS(g)(f)f

−1)

followed by the map HomZl
(HZl

, grm+1(Fr)) → HomZl
(HZl

,H
⊗(m+1)
Zl

) induced by

Θm+1. We call τ
[m]
S : Galk[m] −→ HomZl

(HZl
,H
⊗(m+1)
Zl

) (m ⩾ 1) or the induced

injective homomorphism grm(Galk) ↪→ HomZl
(HZl

,H
⊗(m+1)
Zl

), denoted by the same

τ
[m]
S , the m-th pro-l Johnson homomorphism.
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A relation between them-th pro-l Johnson homomorphisms and l-adic Milnor num-
bers in Section 3.2 is given as follows.

Theorem 3.3.29. For g ∈ Galk[m] (m ⩾ 1), we have

τ
[m]
S (g)(Xi) = −

∑
|J|=m+1

µ(J)XJ ,

where for J = (j1 · · · jm+1),

µ(J) =

 µ(g; j2 · · · jm+1j1)− δj1,jm+1
µ(g; J) (i = j1),

µ(g; j2 · · · jm+1j1)δj1,jm+1
− µ(g; J) (i = jm+1),

0 (otherwise).

Proof. By Theorem 3.3.25 (1), we have

(3.3.30)

τ
[m]
S (g)(Xi) = Θm+1(φS(g)(xi)x

−1
i )

= Θm+1(yi(g)xiyi(g)
−1x−1i )

= −Θm+1([xi, yi(g)])

= −
∑

|J|=m+1

µ(J ; [xi, yi(g)])XJ .

By the computation in the proof of Theorem 3.2.41, we have, for |J | = (j1 · · · jm+1),
(3.3.31)

µ(J ; [xi, yi(g)]) = µ(J ;xiyi(g))− µ(J ; yi(g)xi)

=

 µ(g; j2 · · · jm+1j1)− δj1,jm+1µ(g; J) (i = j1),
µ(g; j2 · · · jm+1j1)δj1,jm+1

− µ(g; J) (i = jm+1).
0 (otherwise).

By (3.3.30) and (3.3.31), the assertion follows. □

We compute the pro-l Johnson homomorphisms on commutators.

Proposition 3.3.32. For g ∈ Galk[m], h ∈ Galk[n] (m,n ⩾ 0) and f ∈ Fr, we
have

τ
[m+n]
S ([g, h])([f ]) = Θm+n+1(IhS(g)(IhS(h)(f)f

−1)(IhS(h)(f)f
−1)−1

−IhS(h)(IhS(g)(f)f−1)(IhS(g)(f)f−1)−1).

Proof. For simplicity, we set ψ := IhS(g), ϕ := IhS(h). By a straightforward
computation, we obtain

[ψ, ϕ](f)f−1

= [ψ, ϕ]((ϕ(f)f−1)−1) · (ψϕψ−1)((ψ(f)f−1)−1) · ψ(ϕ(f)f−1) · ψ(f)f−1.

Since [g, h] ∈ Galk[m+n] by Proposition 3.3.24 and ψ(f)f−1 ∈ Γm+1Fr by Lemma
3.3.21, we have

[ψ, ϕ]((ϕ(f)f−1)−1) ≡ (ϕ(f)f−1)−1 mod Γm+2n+1Fr.

Similarly, we have

(ψϕψ−1)((ψ(f)f−1)−1) ≡ ϕ((ψ(f)f−1)−1) mod Γ2m+n+1Fr.

By these three equations together, we have

[ψ, ϕ](f)f−1

≡ (ϕ(f)f−1)−1 · ϕ((ψ(f)(f−1)−1) · ψ(ϕ(f)f−1) · ψ(f)f−1 mod Γm+n+1Fr.
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3.3 Pro-l Johnson homomorphisms

Since ψ(f)f−1 ∈ Γm+1Fr, ϕ(f)f
−1 ∈ Γn+1Fr) and [Γm+1Fr,Γn+1Fr] ⊂ Γm+n+2F,

we have

[ψ, ϕ](f)f−1

≡ (ϕ(f)f−1)−1 · ψ(ϕ(f)f−1) · ϕ((ψ(f)f−1)−1) · ψ(f)f−1 mod Γm+n+2Fr.

Since we easily see that{
(ϕ(f)f−1)−1ψ(ϕ(f)f−1) ≡ ψ(ϕ(f)f−1)(ϕ(f)f−1)−1 mod Γm+n+2Fr,
ϕ((ψ(f)f−1)−1) · ψ(f)f−1 ≡ (ϕ(ψ(f)f−1) · (ψ(f)f−1)−1)−1 mod Γm+n+2Fr,

we obtain the assertion. □

By Proposition 3.3.32, the direct sum of Johnson homomorphisms τ
[m]
S over all

m ⩾ 1 defines a graded Lie algebra homomorphism from gr(Galk) to the derivation
algebra of gr(Fr) as follows. Recall that a Zl-linear endomorphism of gr(Fr) is
called a derivation on gr(Fr) if it satisfies

δ([x, y]) = [δ(x), y] + [x, δ(y)] (x, y ∈ gr(Fr)).

Let Der(gr(Fr)) denote the associative Zl-algebra of all derivations on gr(Fr) which
has a Lie algebra structure over Zl with the Lie bracket defined by [δ, δ′] := δ ◦ δ′−
δ′ ◦ δ for δ, δ′ ∈ Der(gr(Fr)). For m ⩾ 0, we define the subspace Derm(gr(Fr)) of
Der(gr(Fr)), the degree m part, by

Derm(gr(Fr)) := {δ ∈ Der(gr(Fr)) | δ(grn(Fr)) ⊂ grm+n(Fr) for n ⩾ 1}

so that Der(gr(Fr)) is a graded Lie algebra over Zl:

Der(gr(Fr)) =
⊕
m⩾0

Derm(gr(Fr)).

A derivation δ ∈ Derm(gr(Fr)) is called a special derivation if there are Yi ∈ grm(Fr)
such that

δ(Xi) = [Yi, Xi] (1 ⩽ i ⩽ r)

and moreover if the condition
r∑
i=1

[Yi, Xi] = 0

is satisfied, a special derivation is said to be normalized ([Ih4, §2]). It is easy to
see that normalized special derivations form a graded Lie subalgebra

Dern.s(gr(Fr)) =
⊕
m⩾0

Dern.sm (gr(Fr))

of Der(gr(Fr)). Since a derivation on gr(Fr) is determined by its restriction on
HZl

= gr1(Fr), we have a natural inclusion, for each m ⩾ 1,

Derm(gr(Fr)) ⊂ HomZl
(HZl

, grm+1(Fr)); δ 7→ δ|HZl
.

Hence we have the inclusions

Dern.s+ (gr(Fr)) ⊂ Der+(gr(Fr)) ⊂
⊕
m⩾1

HomZp
(HZl

, grm+1(Fr)),

where Der+(gr(Fr)) (resp. Dern.s+ (gr(Fr))) is the Lie subalgebra of Der(gr(Fr))
(resp. Dern.s(gr(Fr))) consisting of positive degree part.
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3 Absolute Galois groups, l-adic Milnor invariants, and pro-l Johnson
homomorphism

Proposition 3.3.33. The direct sum of τ
[m]
S over m ⩾ 1 defines the Lie algebra

homomorphism

gr(τ) :=
⊕
m⩾1

τ
[m]
S : gr(Galk) −→ Dern.s+ (gr(Fr)).

Proof. (cf. [Da, Proposition 3.18]) By Theorem 3.3.25 (1), it suffices to show
that for g ∈ Galk[m], the map f 7→ IhS(g)(f)f

−1 is indeed a special derivation on
gr(Fr). Let s ∈ Galk[m] (m ⩾ 1) and s ∈ ΓiFr, h ∈ ΓjFr. By using the commutator
formulas

[ab, c] = a[b, c]a−1 · [a, c], [a, bc] = [a, b] · b[a, c]b−1 (a, b, c ∈ G),
we obtain

IhS(g)([s, t])[s, t]
−1

= [IhS(g)(s), IhS(g)(t)][s, t]
−1

= [ss−1IhS(g)(s), IhS(g)(t)t
−1t][s, t]−1

= s[s−1IhS(g)(s), IhS(g)(t)t
−1] · (IhS(g)(t)t−1)[s−1IhS(g)(s), t](IhS(g)(t)t−1)−1s−1

·[s, IhS(g)(t)t−1](IhS(g)(t)t−1)[s, t](IhS(g)(t)t−1)−1[s, t]−1
= s[s−1IhS(g)(s), IhS(g)(t)t

−1] · (IhS(g)(t)t−1)[s−1IhS(g)(s), t](IhS(g)(t)t−1)−1s−1
·[s, IhS(g)(t)t−1][IhS(g)(t)t−1, [s, t]].

Since s−1IhS(g)(s) ∈ Γi+mFr, IhS(g)(t)t
−1 ∈ Γj+mFr by Lemma 4.3.21, we have

[s−1IhS(g)(s), IhS(g)(t)t
−1] ∈ Γi+j+2mFr.

Similarly, we have
[IhS(g)(t)t

−1, [s, t]] ∈ Γi+2j+mFr.

By these three claims together, we have

IhS(g)([s, t])[s, t]
−1

≡ sIhS(g)(t)t−1[s−1IhS(g)(s), t](sIhS(g)(t)t−1)−1[s, IhS(g)(t)t−1] mod Γi+j+m+1Fr.

Noting x[s−1IhS(g)(s), t]x
−1 ≡ [s−1IhS(g)(s), t] mod Γi+j+m+1Fr for x ∈ Fr, we

proved that f 7→ IhS(g)(f)f
−1 is indeed a derivation. That it is special and normal-

ized follows from IhS(g)(xi) = yi(g)xiyi(g)
−1 (1 ⩽ i ⩽ r) and IhS(g)(x1 · · ·xr) =

x1 · · ·xr for g ∈ Galk[m] (m ⩾ 1) and 1 ⩽ i ⩽ r. □
Finally we introduce an analogue of the Morita trace map ([Mt1, 6]). For each

m ⩾ 1, we identify HomZl
(HZl

,H
⊗(m+1)
Zl

) with H∗Zl
⊗Zl

H
⊗(m+1)
Zl

, where H∗Zl
:=

HomZl
(HZl

,Zl) is the dual Zl-module, and let

cm+1 : HomZl
(HZl

,H
⊗(m+1)
Zl

) = H∗Zl
⊗Zl

H
⊗(m+1)
Zl

−→ H⊗mZl

be the contraction at (m+ 1)-component defined by

(3.3.34) cm+1(ϕ⊗ h1 ⊗ · · · ⊗ hm+1) := ϕ(hm+1)h1 ⊗ · · · ⊗ hm
for ϕ ∈ H∗Zl

, hi ∈ HZl
. We then define the m-th pro-l Morita trace map

(3.3.35) Tr[m] : HomZl
(HZl

,H
⊗(m+1)
Zl

) −→ Sm(HZl
)

by the composite map q ◦ cm+1.
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CHAPTER 4

Pro-l reduced Gassner representation and Ihara
power series

In this chapter, we study the arithmetic analogue of Chapter 2. More precisely,
we define the pro-l reduced Gassner representation for the absolute Galois group of
a number field and give a formula in terms of the l-adic Milnor invariant. Moreover,
regarding Ihara power series as a special case of the pro-l Gassner repesentation,
we give an arithmetic topological interpretation of Jacobi sums and give a formula
that relates l-adic Milnor invariants and Soulé characters. This chapter is based on
[KMT, Sections 4 and 5].

4.1. Pro-l Magnus-Gassner cocycles

4.1.1. Pro-l Fox free derivation. The pro-l Fox free derivative ∂
∂xj

: Zl[[Fr]]→
Zl[[Fr]] (1 ⩽ j ⩽ r) is a continuous Zl-linear map satisfying the following property:
For any α ∈ Zl[[Fr]],

(4.1.1) α = ϵZl[[Fr]](α) +

r∑
j=1

∂α

∂xj
(xj − 1).

We note by (4.1.1) that
∂α

∂xj
∈ In−1Zl[[Fr]]

if α− ϵZl[[Fr]](α) ∈ InZl[[Fr]]
for n ⩾ 1.

Here are some basic rules for the pro-l free calculus:

(i)
∂xi
∂xj

= δij .

(ii)
∂αβ

∂xj
=

∂α

∂xj
ϵZl[[Fr]](β) + α

∂β

∂xj
(α, β ∈ Zl[[Fr]]).

(iii)
∂f−1

∂xj
= −f−1 ∂f

∂xj
(f ∈ Fr).

(iv)
∂fα

∂xj
= β

∂f

∂xj
(f ∈ Fr, α ∈ Zl[[Fr]]), where β is any element of Zl[[Fr]]

such that β(f − 1) = fα − 1 if exists.

(v)
∂φ(α)

∂φ(xj)
= φ(

∂α

∂xj
) (φ ∈ Aut(Fr), α ∈ Zl[[Fr]]). (Note that φ(x1), . . . , φ(xr)

are free generators of Fr.)
(vi) If F′ is an open free subgroup of Fr with free generators y1, · · · , ys, we

have the chain rule:
∂α

∂xj
=

s∑
i=1

∂α

∂yi

∂yi
∂xj

(α ∈ Zl[[F′]]).
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4 Pro-l reduced Gassner representation and Ihara power series

The higher derivatives are defined inductively and the l-adic Magnus coefficient
µ(I;α) of α ∈ Zl[[Fr]] for I = (i1 · · · in) is expressed by

µ(I;α) = ϵZl[[Fr]]

(
∂nα

∂xi1 · · · ∂xin

)
so that the pro-l Magnus expansion (3.2.2) is written as

Θ(α) = ϵZl[[Fr]](α) +
∑

1⩽i1,...,in⩽r
ϵZl[[Fr]]

(
∂nα

∂xi1 · · · ∂xin

)
Xi1 · · ·Xin .

4.1.2. Pro-l Magnus cocycles. Let IhS : Galk → P (Fr) ⊂ Aut(Fr) be the
Ihara representation associated to S in (3.1.6). Let ¯ : Zl[[Fr]] → Zl[[Fr]] denote
the anti-automorphism induced by the involution Fr ∋ f 7→ f−1 ∈ Fr. We define
the pro-l Magnus cocycle MS : Galk → M(r;Zl[[Fr]]) associated to IhS by

(4.1.2) MS(g) :=

(
∂IhS(g)(xj)

∂xi

)
for g ∈ Galk. In fact, we have the following

Lemma 4.1.3. The map MS is a 1-cocycle of Galk with coefficients in GL(r;Zl[[Fr]])
with respect to the action IhS. To be precise, for g, h ∈ Galk, we have

MS(gh) = MS(g)IhS(g)(MS(h)),

where IhS(g)(MS(h)) is the matrix obtained by applying IhS(g) to each enty of
MS(h).

Proof. Let yj := IhS(h)(xj) for 1 ⩽ j ⩽ r. Then we have

(4.1.4)
∂IhS(gh)(xj)

∂xi
=
∂IhS(g)(yj)

∂xi
.

Using the basic rules (v), (vi) of the pro-l Fox derivatives, we have

(4.1.5)

∂IhS(g)(yj)

∂xi
=

r∑
a=1

∂IhS(g)(yj)

∂IhS(g)(xa)

∂IhS(g)(xa)

∂xi

=

r∑
a=1

IhS(g)

(
∂yj
∂xa

)
∂IhS(g)(xa)

∂xi
.

By (4.1.4) and (4.1.5), we have

∂IhS(gh)(xj)

∂xi
=

r∑
a=1

∂IhS(g)(xa)

∂xi
· IhS(g)

(
∂yj
∂xa

)
.

Since IhS(g) and ¯ are commutative operators, we obtain the desired equality of the
matrices. Taking h = g−1, we see that MS(g) ∈ GL(r;Zl[[Fr]]) for g ∈ Galk. □

For m ⩾ 1, we let M
[m]
S be the composite of MS restricted to Galk[m] with the

natural homomorphism GL(r;Zl[[Fr]])→ GL(r;Zl[[Fr]]/Im+1
Zl[[Fr]]

)

M
[m]
S : Galk[m] −→ GL(r;Zl[[Fr]]/Im+1

Zl[[Fr]]
).

A relation between M
[m]
S and the m-th pro-l Johnson homomorphism is given as

follows. First, recall the identification Θn : grn(Fr) ≃ H⊗nZl
by the degree n part
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4.1 Pro-l Magnus-Gassner cocycles

of the Magnus isomorphism in (3.2.1). We then have a matrix representation of

HomZl
(HZl

,H
⊕(m+1)
Zl

) for m ⩾ 1

|| || : HomZl
(HZl

,H
⊕(m+1)
Zl

) −→ M(r; grm(Zl[[Fr]]))

by associating to each element τ ∈ HomZl
(HZl

,H
⊕(m+1)
Zl

) the matrix

(4.1.6) ||τ || :=

(
∂(Θ−1m+1 ◦ τ)(Xj)

∂xi

)
∈ M(r; grm(Zl[[Fr]])).

Proposition 4.1.7. For g ∈ Galk[m], we have

M
[m]
S (g) = I + ||τ [m]

S (g)||.

Proof. By Theorem 3.3.6, we have

(Θ−1m+1 ◦ τ
[m]
S (g))(Xj) = IhS(g)(xj)x

−1
j

and so
∂(Θ−1m+1 ◦ τ

[m]
S )(Xj)

∂xi
=
∂IhS(g)(xj)x

−1
j

∂xi

=
∂IhS(g)(xj)

∂xi
− IhS(g)(xj)x

−1
j δij .

Since IhS(g)(xj)x
−1
j ∈ Γm+1Fr, we have IhS(g)(xj)x

−1
j δij ≡ δij mod Im+1

Zl[[Fr]]
and

hence the assertion is proved. □

In terms of || · ||, the m-th pro-l Morita trace Tr[m](τ) in (3.3.35) is, in fact,
written as the trace of the matrix ||τ || .

Proposition 4.1.8. For m ⩾ 1 and , τ ∈ HomZl
(HZl

,H
⊗(m+1)
Zl

), we have

Tr[m](τ) = qm(tr(Θm(||τ ||))),
where qm : H⊗mZl

→ Sm(HZl
) is the natural map.

Proof. We identify HomZl
(HZl

,H
⊗(m+1)
Zl

) with H∗Zl
⊗ H⊗mZl

. Let τ = ϕ ⊗
Xi1 ⊗ · · · ⊗Xim+1

(ϕ ∈ H∗Zl
). By (4.1.6), we have

(4.1.9) tr(||τ ||) =
r∑
i=1

∂(Θ−1m+1 ◦ τ)(Xi)

∂xi
=

r∑
i=1

ϕ(Xi)
∂Θ−1m+1(Xi1 ⊗ · · · ⊗Xim+1)

∂xi
.

We note that any element Y of H
⊗(m+1)
Zl

can be written uniquely as

Y = Y1 ⊗X1 + · · ·+ Yr ⊗Xr, Yi ∈ H⊗mZl

and then we have, by (4.1.1),

∂Θ−1m+1(Y )

∂xi
= Θ−1m (Yi).

Therefore we have

∂Θ−1m+1(Xi1 ⊗ · · · ⊗Xim+1
)

∂xi
= δi,im+1

Xi1 ⊗ · · · ⊗Xim

and hence, by (4.1.9),

tr(Θm(||τ ||)) = ϕ(Xim+1
)Xi1 ⊗ · · · ⊗Xim ,
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4 Pro-l reduced Gassner representation and Ihara power series

where the right-hand side is cm+1(τ) by (3.3.34). By (3.3.35), the assertion proved.
□

Now, for some application later on, we extend the construction of the pro-l
Magnus cocycle to a relative situation. Let G be a pro-l group and let ψ : Fr →
G be a continuous surjective homomorphism. We also denote by ψ the induced
surjective homomorphism Zl[[Fr]] → Zl[[G]] of complete group algebras over Zl.
Let N := Ker(ψ) so that Fr/N ≃ G. We assume that N is stable under the action
of Galk through IhS , namely IhS(g)(N) ⊂ N for all g ∈ Galk (This is certainly
satisfied if N is a characteristic subgroup of Fr). Then we have a homomorphism
IhS,ψ : Galk → Aut(Zl[[G]]) defined by

(4.1.10) IhS,ψ(g)(ψ(α)) := ψ(IhS(g)(α)) (α ∈ Zl[[Fr]]).

Let Galk[ψ] be the subgroup of Galk defined by

(4.1.11)
Galk[ψ] := Ker(IhS,ψ)

= {g ∈ Galk | ψ ◦ IhS(g) = ψ}

and let k[ψ] denote the subfield of Q/k corresponding to Galk[ψ]. Now we define
the pro-l Magnus cocycle MS,ψ : Galk → GL(r;Zl[[G]]) associated to IhS and ψ by

MS,ψ(g) := ψ(MS(g)) (g ∈ Galk),

where the right hand side is the matrix obtained by applying ψ to each entry of

MS(g). For m ⩾ 1, let M
[m]
S,ψ be the composite of M

[m]
S with the natural homomor-

phism GL(r;Zl[[Fr]]/Im+1
Zl[[Fr]]

)→ GL(r;Zl[[G]]/Im+1
Zl[[G]]) induced by ψ. Lemma 4.1.3

and Proposition 4.1.7 are extended to the following.

Proposition 4.1.12. Notations being as above, the following assertions hold.
(1) For g, h ∈ Galk, we have

MS,ψ(gh) = MS,ψ(g)IhS,ψ(g)(MS,ψ(h)).

(2) For g ∈ Galk, we have

M
[m]
S,ψ(g) = I + ψ(||τ [m]

S (g)||).

(3) The restriction of MS,ψ to Galk[ψ], denoted by the same MS,ψ,

MS,ψ : Galk[ψ] −→ GL(r;Zl[[G]/Im+1
Zl[[G]])

is a homomorphism and factors through the Galois group Gal(ΩS/k[ψ]), where ΩS
is the subfield of Q corresponding to Ker(IhS) as in (3.1.7). We call it the pro-l
Magnus representation of Galk[ψ] associated to IhS and ψ.

Proof. (1) The formula is obtained by applying ψ to the both sides of the
formula in Lemma 4.1.3. (2) This is also obtained by applying ψ to the matrices
of the both sides of the formula in Proposition 4.1.7. (3) Suppose g, h ∈ Galk,ψ.
Since ψ ◦ IhS(g) = ψ, we have IhS,ψ(g)(MS,ψ(h)) = MS,ψ(h) and so MS,ψ(gh) =
MS,ψ(g)MS,ψ(h). Since MS,ψ(g) = I for g ∈ Ker(IhS), we have Ker(MS,ψ) ⊃
Ker(IhS) and hence MS,ψ factors through Gal(ΩS/k[ψ]). □

62



4.1 Pro-l Magnus-Gassner cocycles

For n ⩾ 0, let πn : Fr → Fr/Γn+1Fr be the natural homomorphism. We

consider the case that ψ = πn and so IhS,ψ = Ih
(n)
S . By (3.3.18) and Lemma 3.3.21,

we have

Galk[πn] = {g ∈ Galk | πn ◦ IhS(g) = πn}
= {g ∈ Galk | IhS(g)(f) ≡ f mod Γn+1Fr for all f ∈ Fr}
= Galk[n].

Then we have a family of pro-l Magnus cocycles

(4.1.13) MS,πn
: Galk −→ GL(r;Zl[[Fr/Γn+1Fr]]),

and the pro-l Magnus representation

(4.1.14) MS,πn : Galk[n] −→ GL(r;Zl[[Fr/Γn+1Fr]])

associated to IhS and πn for n ⩾ 0.

4.1.3. Pro-l Gassner cocycles. The pro-l Gassner cocycle is defined by

MS,π1 in (4.1.13). To be precise, let Λ̂r := Zl[[T1, . . . , Tr]] denote the algebra of
commutative formal power series over Zl of variables T1, . . . , Tr, called the Iwasawa
algebra of r variables. The correspondence xi mod Γ2Fr 7→ 1 + Ti (1 ⩽ i ⩽ r) gives
the abelianized pro-l Magnus isomorphism

Θab : Zl[[Fr/Γ2Fr]]
∼−→ Λ̂r.

We let π := π1 and

(4.1.15) χΛ̂r
:= IhS,Θab◦π : Galk → Aut(Λ̂r),

which is defined by (4.1.10) with ψ = Θab ◦ π. In fact, by Lemma 3.2.10, χΛ̂r
is

given by

(4.1.16) χΛ̂r
(g)(Ti) = (Θab ◦ π)(IhS(g)(xi − 1)) = (1 + Ti)

χl(g) − 1 (1 ⩽ i ⩽ r).

Then the pro-l Gassner cocycle of Galk associated to IhS

GassS : Galk −→ GL(r; Λ̂r)

is defined by

(4.1.17) GassS(g) :=

(
(Θab ◦ π)

(
∂IhS(g)(xj)

∂xi

))
(g ∈ Galk),

where we note that we do not need to take the anti-automorphism ¯ in (4.1.17) to
obtain the 1-cocycle relation

GassS(gh) = GassS(g)χΛ̂r
(g)(GassS(h)) (g, h ∈ Galk),

since Λ̂r is commutative. Here χΛ̂r
(g)(GassS(h)) is the matrix obtained by applying

χΛ̂r
(g) to each entry of GassS(h). We can express GassS(g) in terms of l-adic Milnor

numbers as follows.
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4 Pro-l reduced Gassner representation and Ihara power series

Proposition 4.1.18. The (i, j)-entry of GassS(g) (g ∈ Galk) is expressed by

GassS(g)ij =



χΛ̂r
(g)(Ti)

Ti

1 +
∑
n⩾1

∑
1⩽i1,...,in⩽r

in ̸=i

µ(g; i1 · · · ini)Ti1 · · ·Tin

 (i = j),

−χΛ̂r
(g)(Tj)

µ(g; ij) +∑
n⩾1

∑
1⩽i1,...,in⩽r

µ(g; i1 · · · inij)Ti1 · · ·Tin

 (i ̸= j).

Proof. By Lemma 3.2.10 and a straightforward computation, we have

∂IhS(g)(xj)

∂xi
=
∂yj(g)x

χl(g)
j yj(g)

−1

∂xi

= yj(g)
x
χl(g)
j − 1

xj − 1
δij + (1− yj(g)xχl(g)

j yj(g)
−1)

∂yj(g)

∂xi

and hence, by (4.1.16),
(4.1.19)

(Θab ◦ π)
(
∂IhS(g)(xj)

∂xi

)
= (Θab ◦ π)(yj(g))

(1 + Tj)
χl(g) − 1

Tj
δij + (1− (1 + Tj)

χl(g))(Θab ◦ π)
(
∂yj(g)

∂xi

)
=
χΛ̂r

(g)(Tj)

Tj
(Θab ◦ π)(yj(g))δij − χΛ̂r

(g)(Tj)(Θ
ab ◦ π)

(
∂yj(g)

∂xi

)
.

Here we have

(4.1.20) (Θab ◦ π)(yj(g)) = 1 +
∑
|I|⩾1

µ(g; Ij)TI ,

where we set TI := Ti1 · · ·Tin for I = (i1 · · · in), and (4.1.1) yields

(4.1.21) (Θab ◦ π)
(
∂yj(g)

∂xi

)
=
∑
|I|⩾0

µ(g; Iij)TI .

By (4.1.17), (4.1.19), (4.1.20) and (4.1.21), we have

GassS(g) = (Θab ◦ π)
(
∂IhS(g)(xj)

∂xi

)
= δij

χΛ̂r
(g)(Tj)

Tj

1 +
∑
|I|⩾1

µ(g; Ij)TI

− χΛ̂r
(g)(Tj)

∑
|I|⩾0

µ(g; Iij)TI .

By µ(g; ii) = 0 and a simple observation, we obtain the assertion. □

By (4.1.14), when GassS is restricted to Galk[1], we have a representation

GassS : Galk[1] −→ GLr(Λ̂r),

which we call the pro-l Gassner representation of Galk[1] associated to IhS . It
factors through the Galois group Gal(ΩS/k[1]) by Theorem 4.1.12 (3).

In the following, for simplicity, we let

F′r := Γ2Fr,F
′′
r := [F′r,F

′
r], and Lr := F′r/F

′′
r = H1(F

′
r,Zl).
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We consider L as a Λ̂r-module by conjugation: For f ∈ Fr and f ′ ∈ F′r, we set

[f ].(f ′ mod F′′r ) := ff ′f−1 mod F′′r .

and extend it by the Zl-linearity and continuity. The structure of the Λ̂r-module
Lr can be described by means of the pro-l Crowell exact sequence ([Ms2; Chapter
9]). Attached to the surjective homomorphism π : Fr −→ Fr/F

′
r, the pro-l Crowell

exact sequence reads as the exact sequence of Λ̂r-modules:

0 −→ Lr
ν1−→ Λ̂⊕rr

ν2−→ IΛ̂r
−→ 0,

where IΛ̂r
is the (augmentation) ideal of Λ̂r generated by T1, . . . , Tr and ν1, ν2 are

Λ̂r-homomorphisms defined by

(4.1.22) ν1(f
′ mod F′′r ) := ((Θab ◦ π)

(
∂f ′

∂xi

)
) (f ′ ∈ F′r); ν2((λi)) :=

r∑
i=1

λiTi.

(Convention: An element (λi) of Λ̂
⊕r
r is understood as a column vector.) Hence we

have the isomorphism of Λ̂r-modules induced by ν1, called the Blanchfield-Lyndon
isomorphism:

(4.1.23) ν1 : Lr
∼−→ {(λi) ∈ Λ̂⊕rr |

r∑
i=1

λiTi = 0}.

We define the action MetaS of Galk on Lr through the Ihara representation
IhS : For g ∈ Galk and f ′ ∈ F′r,

MetaS(g)(f
′ mod F′′r ) := IhS(g)(f

′) mod F′′r .

It is easy to see that MetaS(g) is a χΛ̂r
-linear automorphism of Lr, namely, a

Zl-linear automorphism and satisfies

MetaS(g)(λ.(f
′ mod F′′r )) = χΛ̂r

(g)(λ).(f ′ mod F′′r )

for λ ∈ Λ̂r and f ′ ∈ F′r. When MetaS is restricted to Galk[1], we have the repre-
sentation, which we call the pro-l meta-abelian representation of Galk[1] associated
to φS ,

MetaS : Galk[1] −→ GLΛ̂r
(Lr),

where GLΛ̂r
(Lr) is the group of Λ̂r-module automorphisms of Lr. Regarding Lr

as a Λ̂r-submodule of Λ̂⊕rr by the isomorphism (4.1.23), MetaS and GassS has the
following relation.

Proposition 4.1.24. For g ∈ Galk and f ′ ∈ F′r, we have

(ν1 ◦MetaS(g))(f
′ mod F′r) = GassS(g)(χΛ̂r

(g) ◦ ν1)(f ′ mod F′′r ).

When MetaS and GassS |Lr
are restricted to Galk[1], they are equivalent represen-

tations over Λ̂r.
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Proof. The first assertion follows from the direct computation: By (4.1.15),
(4.1.17) and (4.1.22), we have, for any g ∈ Galk and f ′ ∈ F′r,

(ν1 ◦MetaS(g))(f
′ mod F′′r ) = ν1(IhS(g)(f

′) mod F′′r )

= ((Θab ◦ π)
(
∂IhS(g)(f

′)

∂xi

)
)

= ((Θab ◦ π)

(
r∑
a=1

∂IhS(g)(f
′)

∂IhS(g)(xa)

∂IhS(g)(xa)

∂xi

)
)

= (

r∑
a=1

(Θab ◦ π)
(
∂IhS(g)(xa)

∂xi

)
(Θab ◦ π ◦ IhS(g))

(
∂f ′

∂xa

)
)

= GassS(g)χΛ̂r
(g)(ν1(f

′ mod F′′r )).

When MetaS and GassS are restricted to Galk[1], by the first assertion, we have

the commutative diagram of Λ̂r-modules for any g ∈ Galk[1]:

Lr
ν1
↪→ Λ̂⊕rr

MetaS(g) ↓ ↓ GassS(g)

Lr
ν1
↪→ Λ̂⊕rr ,

from which the latter assertion follows. □

Next, following Oda ([O2]), we introduce the pro-l reduced Gassner cocycle as-

sociated to the Ihara representation IhS . For this, we define a certain Λ̂r-submodule
Lprim
r of Lr, which Oda calls the primitive part of L, as follows. For 1 ⩽ i ⩽ r,

let Ni be the closed subgroup generated normally by xi and let F
(i)
r := Fr/Ni.

Let Λ̂
(i)
r := Zl[[T1, . . . , T̂i, . . . , Tr]] ≃ Zl[[F(i)

r /(F
(i)
r )′]] (T̂i means deleting Ti) with

augmentation ideal I
Λ̂

(i)
r
, and let δi : Λ̂r → Λ̂

(i)
r be the Zl-algebra homomorphism

defined by δi(Tj) := Tj if j ̸= i and δi(Ti) := 0. Note that any Λ̂
(i)
r -module is

regarded as a Λ̂r-module via δi. Let L
(i)
r := (F

(i)
r )′/(F

(i)
r )′′ and let ξi : Lr → L

(i)
r

be the Λ̂r-homomorphism induced by the natural homomorphism Fr → F
(i)
r . Then

the primitive part Lprim
r of Lr is defined by

(4.1.25) Lprim
r :=

r∩
i=1

Ker(ξi).

We set w := T1 · · ·Tr.

Theorem 4.1.26. Notations being as above, the following assertions hold.
(1) The Blanchfield-Lyndon isomorphism ν1 in (4.1.23) restricted to Lprim

r induces

the following isomorphism of Λ̂r-modules

Lprim
r ≃ {(λj

w

Tj
) ∈ Λ̂⊕rr | λj ∈ Λ̂r,

r∑
j=1

λj = 0}.

In particular, Lprim
r is the free Λ̂r-module of rank r − 1 on the basis

v1 := t(− w
T1
,
w

T2
, 0, . . . , 0), . . . ,vr−1 := t(0, . . . , 0,− w

Tr−1
,
w

Tr
).

(2) Lprim
r is stable under the action of Galk through MetaS and defines 1-cocycle

GassredS : Galk −→ GLr−1(Λ̂r)
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4.1 Pro-l Magnus-Gassner cocycles

with respect to the basis v1, . . . ,vr−1 and the action χΛ̂r
in (4.1.15).We call GassredS

the pro-l reduced Gassner cocycle of Galk associated to IhS .

Proof. (1) (due to Oda)We define the Λ̂r-homomorphism ξ̃i : Λ̂
⊕r
r → (Λ̂

(i)
r )⊕(r−1)

by

ξ̃i(
t(λ1, . . . , Λ̂r)) :=

t(δi(λ1), . . . , δi(λi−1), δi(λi+1), . . . , δi(Λ̂r)).

Then we have ξi = ξ̃i|Lr
for 1 ⩽ i ⩽ r and the commutative diagram of Λ̂r-modules:

0 −→ Lr −→ Λ̂⊕rr −→ IΛ̂r
−→ 0

↓ ξi ↓ ξ̃i ↓ δi
0 −→ L

(i)
r −→ (Λ̂

(i)
r )⊕(r−1) −→ I

Λ̂
(i)
r
−→ 0,

where two rows are the pro-l Crowell exact sequences. It is easy to see that Ker(ξ̃i)
is given by

Ker(ξ̃) = { t(λ1Ti, . . . , λi−1Ti, λi, λi+1Ti, . . . , Λ̂rTi) | λj ∈ Λ̂r (1 ⩽ j ⩽ r)}

and hence, by (4.1.23) and (4.1.25), we have

Lprim
r = {(λj) ∈ Λ̂⊕rr |

r∑
j=1

λjTj = 0, λj ≡ 0 mod Ti if i ̸= j}.

Since Λ̂r is a regular local ring, it is factorial. Therefore we have the first assertion

Lprim
r = {(λj) ∈ Λ̂⊕rr |

r∑
j=1

λjTj = 0, λj ≡ 0 mod
w

Tj
(1 ⩽ j ⩽ r)}.

The assertion for a basis of Lprim
r is clear.

(2) Since IhS(g)(xi) is conjugate to x
χl(g)
i for g ∈ Galk and 1 ⩽ i ⩽ r, the definition

(4.1.25) implies that Lprim
r is Galk-stable under the action MetaS . So we may write,

for 1 ⩽ j ⩽ r − 1,

(4.1.27) IhS(g)(vj) =

r−1∑
i=1

GassredS (g)ijvi,

where GassredS (g)ij ∈ Λ̂r is the (i, j)-entry of the representation matrix of IhS(g)
with respect to v1, . . . ,vr−1. Then we have, for g, h ∈ Galk,

IhS(gh)(vj) = IhS(g)(IhS(h)(vj))

= IhS(g)

(
r−1∑
i=1

GassredS (h)ijvi

)

=

r−1∑
i=1

χΛ̂r
(GassredS (h)ij)IhS(g)(vi) (by (4.1.15))

=

r−1∑
t=1

(
r−1∑
i=1

GassredS (g)tiχΛ̂r
(g)(GassredS (h)ij)

)
vt,

which means the cocycle relation

GassredS (gh) = GassredS (g)χΛ̂r
(g)(GassredS (h)).

Hence the assertion is proved. □
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When we restrict GassredS to Galk[1], we have a representation

GassredS : Galk[1] −→ GL(r − 1; Λ̂r),

which we call the pro-l reduced Gassner representation of Gal[1] associated to IhS .

Let Γ be a free pro-l group of rank 1 generated by x so that Zl[[Γ]] is identified
with the Iwasawa algebra Λ̂ := Zl[[T ]] (x ↔ 1 + T ). Let z : Fr → Γ be the
homomorphism defined by z(xi) := x for 1 ⩽ i ⩽ r. Let χΛ̂ be the action of Galk

on Λ̂ defined by χΛ̂(g)(u) := (1 + T )χl(g) − 1 for g ∈ Galk Then we have the pro-l
Magnus cocycle associated to IhS and z

BurS : Galk −→ GL(r; Λ̂),

which we call the pro-l Burau cocycle of Galk associated to IhS . It is the 1-cocycle

of Galk with coefficients in GL(r; Λ̂) with respect to the action χΛ̂. By definition,
we have

BurS(g) = GassS(g)|T1=···=Tr=T .

Similarly, we have the pro-l reduced Burau cocycle associated to IhS

BurredS : Galk −→ GL(r − 1; Λ̂)

defined by
BurredS (g) := GassredS (g)|T1=···=Tr=T .

Since (z ◦ IhS(g))(xi) = z(yi(g)xiyi(g)
−1) = z(xi) for g ∈ Galk[1], we have

z ◦ IhS(g) = z (g ∈ Galk[1]).

So, when we restrict BurS and BurredS to Galk[1], we have representations

BurS : Galk[1]→ GLr(Λ̂), BurredS : Galk[1]→ GLr−1(Λ̂),

which are called the pro-l Burau representation and the pro-l reduced Burau repre-
sentation of Galk[1] associated to IhS , respectively.

4.2. l-adic Alexander invariants

4.2.1. Pro-l link modules. Let g ∈ Galk. As in (3.2.39), let ΠS(g) be the
pro-l link group of g associated to the Ihara representation φS :

ΠS(g) = ⟨x1, . . . , xr | y1(g)xχl(g)
1 y1(g)

−1x−11 = · · · = yr(g)x
χl(g)
r yr(g)

−1x−1r = 1⟩
= Fr/NS(g),

where NS(g) is the closed subgroup of Fr generated normally by the pro-l words

y1(g)x
χl(g)
1 y1(g)

−1x−11 , . . . , yr(g)x
χl(g)
r yr(g)

−1x−1r . Let ψ : Fr → ΠS(g) be the nat-
ural homomorphism and let γi := ψ(xi) (1 ⩽ i ⩽ r). Recall that a(g) denotes the
ideal of Zl generated by χl(g)− 1. Then we have

ΠS(g)/ΠS(g)
′ = Zl/a(g)[γ1]⊕ · · · ⊕ Zl/a(g)[γr] ≃ (Zl/a(g))⊕r,

where [γi] := γi mod ΠS(g)
′ (1 ⩽ i ⩽ r). The correspondence γi 7→ Ti induces the

Zl-algebra isomorphism

Θab(g) : Zl[[ΠS(g)/ΠS(g)′]] ≃ Λ̂r/((1 + T1)
χl(g)−1 − 1, . . . , (1 + Tr)

χl(g)−1 − 1).

We denote the right hand side by Λ̂r(g):

Λ̂r(g) := Λ̂r/((1 + T1)
χl(g)−1 − 1, . . . , (1 + Tr)

χl(g)−1 − 1),
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4.2 l-adic Alexander invariants

and by IΛ̂r(g)
the augmentation ideal of Λ̂r(g).

We define the pro-l link module LS(g) of g associated to IhS by

LS(g) := ΠS(g)
′/ΠS(g)

′′,

which is considered as a Λ̂r(g) = Zl[[ΠS(g)/ΠS(g)′]]-module. It may be seen as an
analogue of the classical link module in link theory (cf. [Hi], [Ms2, Chapter 9]).

Let ϖ : ΠS(g)→ ΠS(g)/ΠS(g)
′ be the abelianization map. We define the pro-

l Alexander module AS(g) of g associated to IhS by the pro-l differential module

associated to ϖ, namely the quotient module of the free Λ̂r(g)-module on symbols

dγ for γ ∈ ΠS(g) by the Λ̂r(g)-submodule generated by d(γ1γ2)− dγ1 −ϖ(γ1)dγ2
for γ1, γ2 ∈ ΠS(g) ([Ms2, 9.3]):

AS(g) :=
⊕

γ∈ΠS(g)

Λ̂r(g)dγ/⟨d(γ1γ2)− dγ1 −ϖ(γ1)dγ2 (γ1, γ2 ∈ ΠS(g))⟩Λ̂r(g)
.

We define the l-adic Alexander matrix QS(g) by the Jacobian matrix of the relators
of ΠS(g):

(4.2.1) QS(g) :=

(
(Θab(g) ◦ϖ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)

−1x−1j
∂xi

))
.

Proposition 4.2.2. Notations being as above, the following assertions hold.

(1) The correspondence dγ 7→ ((Θab(g) ◦ϖ ◦ ψ)
(
∂f

∂xi

)
) gives the isomorphism

AS(g)
∼−→ Coker(QS(g) : Λ̂r(g)

⊕r → Λ̂r(g)
⊕r),

where f is any element of Fr such that γ = ψ(f).

(2) (Pro-l Crowell exact sequence) We have the following exact sequence of Λ̂r(g)-
modules:

0 −→ LS(g)
ν1−→ AS(g)

ν2−→ IΛ̂r(g)
−→ 0,

where ν1, ν2 are given by

ν1(γ
′ mod ΠS(g)

′′) := dγ (γ′ ∈ ΠS(g)
′); ν2(dγ) := (Θab(g) ◦ϖ)(γ)− 1 (γ ∈ ΠS(g)).

Proof. We refer to [Ms2, Theorems 9.3.6, 9.4.2]. □

Let ϕg : Λ̂r → Λ̂r(g) be the natural Zl-algebra homomorphism.

Proposition 4.2.3. We have

QS(g) = ϕg(GassS(g)− I)

and its (i, j)-entry is given by

QS(g)ij =



ϕg

∑
n⩾1

∑
1⩽i1,...,in⩽r

in ̸=i

µ(g; i1 · · · ini)Ti1 · · ·Tin

 (i = j),

ϕg

−Tj
µ(g; ij) +∑

n⩾1

∑
1⩽i1,...,in⩽r

µ(g; i1 · · · inii)Ti1 · · ·Tin

 (i ̸= j).
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4 Pro-l reduced Gassner representation and Ihara power series

Proof. By the definition (4.2.1), we have

QS(g)ij := (Θab(g) ◦ϖ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)

−1x−1j
∂xi

)
.

By the basic rules of pro-l Fox free derivatives, we have

∂ yj(g)x
χl(g)
j yj(g)

−1x−1j
∂xi

=
∂ yj(g)x

χl(g)
j yj(g)

−1

∂xi
− δijyj(g)xχl(g)

j yj(g)
−1x−1j .

By (4.1.17) and Θab(g) ◦ϖ ◦ ψ = ϕg ◦Θab ◦ π, we have

(Θab(g) ◦ϖ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)

−1

∂xi

)
= ϕg(GassS(g)ij),

and we also have

(Θab(g) ◦ϖ ◦ ψ)(yj(g)xχl(g)
j yj(g)

−1x−1j ) = Θab(g)(γ
χl(g)−1
j ) = (1 + Tj)

χl(g)−1 = 1.

Therefore we have
QS(g)ij = ϕg(GassS(g)ij − δij).

The second assetion follows from Proposition 4.1.18 and

ϕg(χΛ̂r
(g)(Tj)) = ϕg((1 + Tj)

χl(g) − 1) = ϕg(Tj).

□
Corollary 4.2.4. For g, h ∈ Galk[1], we have the following isomorphisms of

Λ̂r-modules
AS(hgh

−1) ≃ AS(g), LS(hgh
−1) ≃ LS(g).

Proof. Since GassS : Galk → GL(r; Λ̂r) is a representation, we have

QS(hgh
−1) = ϕg(GassS(hgh

−1)− I) = ϕg(GassS(h))QS(g)ϕg(GassS(h))
−1

by Proposition 4.2.3. Then the first assertion follows from Proposition 4.2.2 (1).
The second assertion follows from Proposition 4.2.2 (2). □

4.2.2. l-adic Alexander invariants. For n ⩾ 0, we define the n-th l-adic
Alexander ideal ES(g)

(n) of g ∈ Galk associated to IhS by the n-th Fitting ideal of

the pro-l Alexander module AS(g) over Λ̂r(g). The n-th l-adic Alexander invariant
AS(g)

(n) is then defined by a generator of the divisorial hull of ES(g)
(n). By Propo-

sition 4.2.2 (1), ES(g)
(n) is the ideal generated by all (r − n)-minors of QS(g) if

r−n > 0 and ES(g)
(n) := Λ̂r(g) if r−n ⩽ 0, and AS(g)

(n) is the greatest common
divisor of all (r − n)-minors of QS(g)) if r − n > 0 and AS(g)

(n) := 1 if r − n ⩾ 0:

AS(g)
(n) :=

{
g.c.d of all (r − n)-minors of QS(g) (r − n > 0),
1 (r − n ⩾ 0).

We note that AS(g)
(n) is defined up to multiplication of a unit of Λ̂r(g). We write

ES(g) (resp. AS(g)) for ES(g)
(0) (resp. AS(g)

(0)) and call ES(g) (resp. AS(g))
the l-adic Alexander ideal (resp. l-adic Alexander invariant) of g associated to IhS .
From Proposition 4.2.3, the following proposition is immediate.

Proposition 4.2.5. For g ∈ Galk, we have

AS(g) = ϕg(det(GassS(g)− I)).
When g ∈ Galk[1], AS(g) = 0 if and only if GassS(g) has the eigenvalue 1.
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4.3 The Ihara power series

Moreover, since the l-adic Alexander matrix QS(g) is described by l-adic Milnor
numbers as in Proposition 4.2.3, n-th l-adic Alexander invariants are also described
by l-adic Milnor numbers (cf. [Ms2, Chapter 10], [Mu]).

4.3. The Ihara power series

In this section, we suppose that S = {0, 1,∞} and so k = Q. In the following,
we will omit S in the notations. The Ihara representation in this case is

Ih : GalQ −→ P (F2),

which factors through the Galois group Gal(Ωl/Q) by Theorem 3.1.9 (2), where Ωl
denotes the maximal pro-l extension of Q[1] = Q(ζl∞) unramified outside l.

4.3.1. The Ihara power series. The following lemma is a restatement of
[Ih1, Theorem 2 (i)]. Our proof is different from Ihara’s.

Lemma 4.3.1. We have L2 = Lprim
2 with basis t(−T2, T1) over Λ̂2, and

t(−T2, T1) =
ν1([x1, x2]).

Proof. By Theorem 4.1.26 (1), Lprim
2 is the free Λ̂2-module with basis t(−T2, T1).

On the other hand, we note that λ1T1 + λ2T2 = 0 implies λ1 = −aT2, λ2 = aT1 for

some a ∈ Λ̂2, because Λ̂2 is U.F.D. Therefore L2 is also the free Λ̂2-module with
basis t(−T2, T1) by (4.1.23). Hence L2 = Lprim

2 . The second assertion follows from

(Θab ◦ π)
(
∂[x1, x2]

∂x1

)
= −T2, (Θab ◦ π)

(
∂[x1, x2]

∂x2

)
= T1.

□

Thanks to Lemma 4.3.1, Ihara introduced a power series Fg(T1, T2) ∈ Λ̂2, called
the Ihara power series, by the follwoing equality in L2

(4.3.2) IhS(g)([x1, x2]) ≡ Fg(T1, T2)[x1, x2] mod F′′2 .

The following theorem gives an arithmetic topological interpretation of Fg(T1, T2).
For a multi-index I = (i1 · · · in) with ij = 1 or 2, we denote by |I|1 (resp. |I|2) the
number of j’s (1 ⩽ j ⩽ n) such that ij = 1 (resp. ij = 2). For integers n1, n2 ⩾ 0
with n1 + n2 ⩾ 1 and g ∈ GalQ, we let

µ(g;n1, n2) :=
∑

|I|1=n1−1,|I|2=n2

µ(g; I12) +
∑

|I|1=n1,|I|2=n2−1

µ(g; I21).

We recall the pro-l Gassner and the pro-l reduced Gassner cocycles in (4.1.17) and
(4.1.27):

Gass : GalQ −→ GL(2; Λ̂2); Gassred : GalQ −→ Λ̂×2 .
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4 Pro-l reduced Gassner representation and Ihara power series

Theorem 4.3.3. Notations being as above, we have, for g ∈ GalQ,

Fg(T1, T2) = Gassred(g)

=
χΛ̂2

(g)(T1T2)

T1T2

1 +
∑
n⩾1

∑
1⩽i1,...,in⩽2
in ̸=in+1

µ(g; i1 · · · inin+1)Ti1 · · ·Tin


=
χΛ̂2

(g)(T1T2)

T1T2

1 +
∑

n1,n2⩾0
n1+n1⩾1

µ(g;n1, n2)T
n1
1 Tn2

2

 .

Proof. Applying the Λ̂2-homomorphism ν1 to (4.3.2), we have, for g ∈ Galk,

ν1(Ih(g)([x1, x2])) = Fg(T1, T2)ν1([x1, x2]) = Fg(T1, T2)

(
−T2
T1

)
.

On the other hand, by the definition of GassredS (g) (cf. (4.1.27)), we have

ν1(Ih(g)([x1, x2])) = Gassred(g)

(
−T2
T1

)
.

Hence we have

Fg(T1, T2) = Gassred(g).

By Proposition 4.1.24 and Lemma 4.3.1, we have

ν1(Ih(g)([x1, x2])) = Gass(g)χΛ̂2
(g)(ν1([x1, x2]))

= Gass(g)

(
−χΛ̂2

(g)(T2)

χΛ̂2
(g)(T1)

)
.

A straightforward calculation using Proposition 4.1.18 yields

Gass(g)

(
−χΛ̂2

(g)(T2)

χΛ̂2
(g)(T1)

)

=
χΛ̂2

(g)(T1T2)

T1T2

1 +
∑
n⩾1

∑
1⩽i1,...,in⩽2
in ̸=in+1

µ(g; i1 · · · inin+1)Ti1 · · ·Tin

( −T2T1

)

=
χΛ̂2

(g)(T1T2)

T1T2

1 +
∑

n1,n2⩾0
n1+n1⩾1

µ(g;n1, n2)T
n1
1 Tn2

2

( −T2T1

)
.

Getting these together, we obtain the assertion. □

Ihara also interpret L2 in terms of Fermat Jacobians. For a positive integer n,
let Cn be the non-singular, projective curve over Q defined by

X ln + Y l
n

= Zl
n

and let Jacn be the Jacobian variety of Cn. Let T(Jacn) be the l-adic Tate module
of Jacn:

T(Jacn) := Hom(Ql/Zl, Jacn(Q)) ≃ Hsing
1 (Cn(C),Z)⊗ Zl,
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4.3 The Ihara power series

and let

T := lim←−
n

T(Jacn),

where the inverse limit is taken with respect to the maps T(Jacn+1) → T(Jacn)
induced by the morphisms Cn+1 → Cn; (X,Y, Z) 7→ (X l, Y l, Zl). Let gX,n, gY,n be

the automorphisms of Cn := Cn ×SpecQ SpecQ over P1
Q defined by

gX,n : (X,Y, Z) 7→ (ζlnX,Y, Z), gY,n : (X,Y, Z) 7→ (X, ζlnY, Z)

and set gX := lim
←−

gX,n, gY := lim
←−

gY,n. Then Gal(Cn/P1
Q) = (Z/lnZl)gX,n⊕(Z/lnZ)gY,n

and so lim
←−

Zl[Gal(Cn/P1
Q)] ≃ Λ̂2 by the correspondence gX 7→ 1+ T1, gY 7→ 1+ T2.

Thus T is regarded as a Λ̂2-module. Then we have the isomorphism of Λ̂2-modules

L2 ≃ T.

For an explicit construction of the basis of T corresponding to [x1, x2], we consult
[Ae, §13].

Now, the main results in [Ih1] are arithmetic descriptions of
• values of Fg(T1, T2) at l-powerth roots of unity in terms of the Jacobi sums which
arise from the Galois action on T(Jacn), and
• coefficients of Fg(T1, T2) in terms of l-adic Soulé cocycles which are defined by
the Galois action on higher cyclotomic l-units.

We will describe these, using Theorem 4.3.3, from the view point of arithmetic
topology.

4.3.2. Values of the Ihara power series. Let p be a rational prime which
is in RS of (3.1.8) and let p be a prime of Q lying over p. By Theorem 3.1.9 (2),
p is unramified in Q/Q and so we have the Frobenius automorphism σp ∈ GalQ.
Let n be a fixed positive integer. Let pn be the prime of Q(ζln) lying below p and

let

(
x

pn

)
ln

denote the ln-th power residue symbol at pn for x ∈ (Z[ζln ]/pn)×. For

a, b ∈ Z/lnZ \ {0} with (a, b, l) = 1, we define the Jacobi sum by

Jln(pn)
(a,b) =

∑
x,y∈(Z[ζln ]/pn)

×

x+y=−1

(
x

pn

)a
ln

(
y

pn

)b
ln
.

For l = 2, Jln(pn)
(a,b) must be multiplied by

(
−1
pn

)a
. Let f be the order of p in

(Z/lnZ)×. We note that σfp ∈ GalQ(ζln ). By using Weil’s theorem, Ihara showed
the following

Theorem 4.3.4 ([Ih1, Theorem 7]). Let a, b ∈ Z/lnZ \ {0} such that a+ b ̸= 0
and (a, b, a+ b, l) = 1. Then we have

Fσf
p
(ζaln − 1, ζbln − 1) = Jln(pn)

(a,b).

Combining Theorem 4.3.3 and Theorem 4.3.4, we obtain the following l-adic
expansion of the Jacobi sum Jln(pn)

(a,b) with coefficients l-adic Milnor numbers.
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4 Pro-l reduced Gassner representation and Ihara power series

Theorem 4.3.5. Notations being as above, we have

Jln(pn)
(a,b) = 1 +

∑
n1,n2⩾0
n1+n2⩾1

µ(σfp ;n1, n2)(ζ
a
ln − 1)n1(ζbln − 1)n2 .

Proof. Since we have ζ
χl(σ

f
p )

ln = ζp
f

ln = ζln by pf ≡ 1 mod ln, the formula
follows from Theorem 4.3.3 and Theorem 4.3.4. □

4.3.3. Coefficients of the Ihara power series. We will combine Theorem
4.3.3 with the result of Ihara, Kaneko and Yukinari on the Ihara power series
([IKY]) and deduce some formulas relating our l-adic Milnor numbers with the
Soulé cocycles ([So]). As in Section 3.1.3, let ζln be a primitive ln-th root of unity
for a positive integer n such that (ζln+1)l = ζln for n ⩾ 1. For a ∈ Z/lnZ, let ⟨a⟩ln
denote the integer such that 0 ⩽ ⟨a⟩ln < ln and a = ⟨a⟩ln mod ln. For a positive
interger m, we let

ε
(m)
ln :=

∏
a∈(Z/lnZ)×

(ζln − 1)⟨a
m−1⟩ln ,

which is an l-unit in Q(ζln), called a cyclotomic l-unit. Then we define the m-th
l-adic Soulé cocycle χ(m) : GalQ → Zl by the Kummer cocycle attached to the

system of cyclotomic l-units {ε(m)
ln }n⩾1

ζ
χ(m)(g)
ln = {(ε(m)

ln )1/l
n

}g−1 (n ⩾ 1, g ∈ GalQ).

It is easy to see the cocycle relation

χ(m)(gh) = χ(m)(g) + χl(g)χ
(m)(h) (g, h ∈ GalQ)

and hence the restriction of χ(m)|GalQ[1]
is a character. Let Ωab

l be the maximal

abelian subextension of Ωl/Q[1]. Since Q(ζln , (ε
(m)
ln )1/l

n

) is a cyclic extension of

Q(ζln) unramified outside l, we have (ε
(m)
ln )1/l

n ∈ Ωab
l and so the Soulé character

χ(m)|GalQ[1] factors through the Galois group Gal(Ωab
l /Q[1]). We note by Theorem

4.1.12 (3) that the pro-l reduced Gassner representation Gassred also factors through
Gal(Ωab

l /Q[1]).
We set

κm(g) :=
χ(m)(g)

1− lm−1
, (g ∈ GalQ),

and introduce new variables U1, U2 defined by

1 + Ti = exp(Ui) =

∞∑
n=0

Uni
n!
∈ Ql[[Ui]] (i = 1, 2)

and set

Fg(U1, U2) := Fg(T1, T2)|Ti=exp(Ui)−1.

Theorem 4.3.6 ([IKY, Theorem A2]). Notations being as above, we have, for
g ∈ Gal(Ωab

l /Q[1]),

Fg(U1, U2) = exp

−
∑
m⩾3
odd

κm(g)

 ∑
m1,m2⩾1
m1+m2=m

Um1
1 Um2

2

m1!m2!


 .
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4.3 The Ihara power series

Combining Theorem 4.3.3 and Theorem 4.3.6, we can deduce relations between
l-adic Milnor numbers and l-adic Soulé characters. For this, we prepare the follow-
ing.

Lemma 4.3.7. Let a(n1, n2) and c(m1,m2) be given l-adic numbers for integers
m1,m2, n1, n2 ⩾ 0 with m1 +m2, n1 + n2 ⩾ 1. Let

A(T1, T2) := 1 +
∑

n1,n2⩾0
n1+n2⩾1

a(n1, n2)u
n1
1 un2

2 ∈ Ql[[T1, T2]]

and set

B(U1, U2) := A(T1, T2)|Ti=exp(Ui)−1

= 1 +
∑

N1,N2⩾0
N1+N2⩾1

b(N1, N2)U
N1
1 UN2

2 ∈ Ql[[U1, U2]].

Then we have

b(N1, N2) =
∑

n1+n2⩾1
0⩽n1⩽N1,0⩽n2⩽N2

a(n1, n2)an1
(N1)an2

(N2),

where for j = 1, 2,

anj (Nj) :=


1 (nj = 0),∑
e1,...,enj

⩾1

e1+···+enj
=Nj

1

e1! · · · enj !
(nj ⩾ 1).

Let
C(U1, U2) :=

∑
m1,m2⩾0
m1+m2⩾1

c(m1,m2)U
m1
1 Um2

2 ∈ Ql[[U1, U2]]

and set

D(U1, U2) := exp(C(U1, U2))

= 1 +
∑

N1,N2⩾0
N1+N2⩾1

d(N1, N2)U
N1
1 UN2

2 ∈ Ql[[U1, U2]].

Then we have

d(N1, N2) =
∑

1⩽n⩽N1+N2

1

n!

∑
c(m

(1)
1 ,m

(1)
2 ) · · · c(m(n)

1 ,m
(n)
2 ),

where the second sum ranges over integers m
(1)
1 , . . . ,m

(n)
1 ,m

(1)
2 , . . . ,m

(n)
2 ⩾ 0 satis-

fying m
(i)
1 +m

(i)
2 ⩾ 1 (1 ⩽ i ⩽ n), m

(1)
1 +· · ·+m(n)

1 = N1 and m
(1)
2 +· · ·+m(n)

2 = N2.

Proof. Both formulas for b(N1, N2) and d(N1, N2) follow from straightforward
computations. □

We apply Lemma 4.3.7 to the case that A(u1, u2) = Gassred(g), where

a(n1, n2) = µ(g;n1, n2)

and C(U1, U2) = log(Fg(U1, U2)), where

c(m1,m2) =

 −
κm1+m2

(g)

m1!m2!
(m1 +m2 ⩾ 3, odd),

0 otherwise.
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Pro-l reduced Gassner representation and Ihara power series

Then, by comparing coefficients of UN1
1 UN2

2 in Gassred(g)|Ti=exp(Ui)−1 = Fg(U1, U2),
we obtain the following.

Theorem 4.3.8. Notations being as above, we have the following equality for
g ∈ GalQ[1]: ∑

n1+n2⩾1
0⩽n1⩽N1,0⩽n2⩽N2

µ(g;n1, n2)an1(N1)an2(N2)

=
∑

1⩽n⩽N1+N2

(−1)n

n!

∑ κ
m

(1)
1 +m

(1)
2
(g)

m
(1)
1 !m

(1)
2 !

· · ·
κ
m

(n)
1 +m

(n)
2

(g)

m
(n)
1 !m

(n)
2 !

,

where the last sum ranges over integers m
(1)
1 , . . . ,m

(n)
1 ,m

(1)
2 , . . . ,m

(n)
2 ⩾ 0 satisfying

m
(i)
1 +m

(i)
2 ⩾ 3; odd (1 ⩽ i ⩽ n), m

(1)
1 +· · ·+m(n)

1 = N1 and m
(1)
2 +· · ·+m(n)

2 = N2.

For example, lower terms are given by

µ(g; (12)) = µ(g; (21)) = 0, µ(g; (212)) + µ(g; (121)) = 0,

µ(g; (221)) + µ(g; (2212)) + µ(g; (1221)) + µ(g; (2121)) = −κ3(g)
2

,

µ(g; (112)) + µ(g; (1121)) + µ(g; (2112)) + µ(g; (1212)) = −κ3(g)
2

.
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APPENDIX A

On definitions of reduced Gassner representations

In this appendix, we prove the equivalence of the two definitions of reduced
Gassner representations: the homological one given in this article and the original
one as in [Bi1].

To begin with, let us recall the original reduced Gassner representation

GassO,redr : PBr −→ GL(r − 1; Λr)

where r is a positive integer with r ⩾ 2, PBr denotes the pure braid group with r
strings and Λr denotes the ring of Laurent polynomials Z[t±1 , . . . , t±r ] over Z with
indeterminate t1, . . . , tr.

Take a basis set g = {g1, . . . , gr} of Fr where gi := x1 · · ·xi. By Proposition
1.1.2, PBr acts trivially on gr = x1 · · ·xr. Hence the r-th column of the Gassner
representation with respect to the basis g = {g1, . . . , gr}

t

(
ab

(
∂b(gi)

∂gj

))
can be written as t(0, . . . , 0, 1). Hence, the Gassner representation of PBr is re-
ducible to an r − 1 dimensional representation. The representation obtained from
the Gassner representation with respect to g = {g1, . . . , gr} by eliminating the r-th
column and r-th row is called the original reduced Gassner representation and is
denoted by GassO,redr . The original reduced Gassner representation can also be ob-
tained from the conjugate C−1Gassr(b)C by eliminating the r-th column and row,
where the matrix C is given by

C = t

(
ab

(
∂gi
∂xj

))
=


1 1 1 · · · 1
0 t1 t1 · · · t1
0 0 t1t2 · · · t1t2
...

...
...

. . .
...

0 0 0 · · · t1 · · · tr−1

 .

　 By direct computation, we have

Akl(gm) =

{
gmg

−1
l−1glg

−1
k−1gkg

−1
l gl−1g

−1
k gk−1 (k ⩽ m < l)

gm (otherwise)

where we understand that g0 = 1. Then, we have the following.
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Proposition A.1. For each generator Aij ∈ PBr, we have

(
ab

(
∂Akl(gi)

∂gj

))
=



tktk+1 (k = i = j, l = k + 1)

1− tk (k = i, l = k + 1 = j)

tk · · · tm(1− tl) (k ⩽ i < l, j = k − 1)

tk(tl − 1) + 1 (k = i < l, j = k)

tk · · · ti(tl − 1) (k < i < l, j = k)

tk (i = j = l − 1)

t−1i+1 · · · t
−1
l−1(tk − 1) (k ⩽ i < l − 1, j = l − 1)

t−1i+1 · · · t
−1
l−1(1− tk) (k ⩽ i < l, j = l)

1 (k < i < l, j = i)

δij (otherwise).

Here, we prove the following theorem.

Theorem A.2. There exists a group isomorphism µ : AutΛn
(Lprim

r )→ GL(r−
1; Λr) such that the diagram

PBr
= //

Gassredr

��

PBr

GassO,red
r

��
AutΛr

(Lprim
r )

µ // GL(r − 1; Λr)

commutes.

Proof. In order to prove the theorem, we must first prepare a lemma. A
direct computation proves the following,

Lemma A.3. Let F be the matrix,

F :=


1 0 · · · 0
0 t2 0

0
. . .

...
0 0 . . . t2t3 · · · tr−1


in GL(r − 1; Λr). For any matrix A = (aij) ∈ GL(r − 1; Λr), we put A′ = (a′ij) :=

F−1AF and si := t1 · · · ti. Then, the following equality holds:

(a′ij) = (sis
−1
j aij).

We have only to prove the assertion for each generator Aij of PBr. By taking
a basis Ei of L

prim
r , we can identify AutΛr

(Lprim
r ) with GL(r−1; Λr). From Lemma

A.3, Proposition 2.1.14, and Proposition A.1, a direct computation leads to

F−1GassO,redr (Aij)F = t
(
Gassredr (Aij)−1

)
.

Here, ¯ : Λr → Λr is the automorphism of GL(r− 1; Λr) induced by the involution
ti 7→ t−1i . Hence, an automorphism defined by

µ(A) = F
(
tA−1

)
F−1.

for any A ∈ GL(r − 1; Λr) satisfies the condition. This completes the proof.
□



Bibliography

[AM] F. Amano, M. Morishita, Arithmetic Milnor invariants and multiple power residue symbols

in number fields, arXiv:1412.6894, 2014.
[Ae] G. Anderson, The hyperadelic gamma function, Invent. Math. 95, (1989), no. 1, 63–131.

[AI] G. Anderson, Y. Ihara, Pro-l branched coverings of P1 and higher circular l-units, Ann. of

Math. (2) 128 (1988), no. 2, 271–293.
[Aa] S. Andreadakis, On the automorphisms of free groups and free nilpotent groups, Proc.

London Math. Soc. 15 (1965), 239–268.
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