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Abstract

Y. Thara initiated the arithmetic study of a certain Galois representation that
may be seen as an arithmetic analogue of the Artin representation of a pure braid
group. In this thesis, we study arithmetic analogies in Ihara theory further, follow-
ing after some topics in the theory of braids, and try to develop arithmetic topology
in a new direction toward quantum topology. More concrete contents are as follows.

This thesis consists of a topological part (Chapters 1, 2) and an arithmetic
part (Chapters 3, 4). The topological part is concerned with topics such as Mil-
nor invariants, Johnson homomorphisms, and Gassner representations for the pure
braid group, as well as their inter-relations. We give a group-theoretic exposition
that serves as a useful guide for the study of the arithmetic counterpart. In the
arithmetic part, we pursue the analogues of the topological part in the context
of Thara theory. We introduce l-adic Milnor invariants, pro-/ Johnson homomor-
phisms, and pro-I Gassner representations for the absolute Galois group of a number
field, and study their properties and inter-relations. We give arithmetic-topological
interpretations of Jacobi sums and the Thara power series in terms of l-adic Milnor
numbers.

This thesis is based on [Kol], [Ko2], and [KMT].
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Notation

We denote by Z, Q and, C the ring of rational integers, the field of rational
numbers, and the field of complex numbers, respectively.

Throughout this paper, [ denotes a fixed prime number. We denote by Z; and
Q; the ring of l-adic integers and the field of [-adic numbers, respectively.

For a,b in a group G, a ~ b means that a is conjugate to b in G. For sub-
groups A, B of a (topological) group G, [A, B] stands for the (closed) subgroup of
G generated by all the commutators [a,b] := aba=1b~! with a € A,b € B.

For a group G, we define its lower central series by

G :=G, TyG:=[%-1G,G] (k>=2).
For each k > 1, we set
gl"k(G) = FkG/Fk+1G.

For a positive integer n and a ring R with an identity element, M(n; R) denotes
the ring of n x n matrices with entries in R, and GL(n; R) denotes the group of
invertible elements of M(n; R). We denote the group of invertible elements of R by
R*.

Throughout this paper, we will write the composition in a fundamental group
from the left, i.e., 74" means to go along v first and v’ next.



Intoroduction

In the early part of the 20th century, E. Artin began a mathematical study
of braids and, among other things, found a representation of braid groups, called
the Artin representation today ([Ar]). Since then, braid theory has developed as
a research area in low dimensional topology, and it has provided rich soil for the
growth of quantum topology that started with the discovery of the Jones polynomials
in the 1980’s.

In 1986, Y. Ihara initiated a study of a certain representation of the absolute
Galois group of a number field, which may be seen as an arithmetic analogue of
the Artin representation, and revealed its rich structure in connection with deep
arithmetic such as Iwasawa theory on cyclotomy and complex multiplications of
Fermat Jacobians ([Ih1]). Thara’s work has been developed extensively in the field
of arithmetic algebraic geometry, including Grothendieck-Teichmiiller theory, an-
abelian geometry, and multiple zeta values, etc.

In recent years, arithmetic topology has developed into a guiding principle for
obtaining parallel results and analogies between three-dimensional topology and
number theory ([Ms2]). In particular, it is known that there are intimate analogies
between knot theory and Iwasawa theory. These analogies are mainly based on
analogies between Galois groups (resp. ideal class groups of number fields) and
3-manifold groups (resp. homology groups of 3-manifolds).

This thesis is motivated by the general view that the position of Thara theory
relative to Iwasawa theory in number theory may be similar to that of braid theory
relative to knot theory in low dimensional topology:

Arithmetic topology

Knot theory <—  Iwasawa theory

4 U
Braid theory > Thara theory

On the basis of this viewpoint, in this thesis, we go back to Thara’s original idea on
the analogy between braid groups and absolute Galois groups and study the anal-
ogy systematically. We hope to extend arithmetic topology by drawing analogies
between quantum topology and Thara theory in the future.

Now let us introduce a basic dictionary of analogies that we will use in this
thesis. We recall the analogy between the Ihara representation of the absolute
Galois group of a number field and the Artin representation of a pure braid group.

Let [ be a prime number. Let S := {Py,..., P.} be aset of ordered r+1 (r > 2)
distinct Q-rational points P; (0 < i < r) on the projective line P! over the rational
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number field Q, where Q is an algebraic closure of Q. Let k := Q(S \ {oo}),
the finite algebraic number field generated by coordinates of points in S\ {oo}.
Note that the absolute Galois group Galy := Gal(Q/k) is the étale fundamental
group of Speck. Thus, it acts on the geometric fiber IP’}@ \ {Po,...,Pr} of the
fibration P} \ {Py,...,P.} — Speck and hence on the pro-/ étale fundamental
group w?ro_l(ﬂ% \{Po,...,P-}) =~ §, where §, denotes the free pro-l group on

the r generators xy,...,2,. In [Thl], Thara initiated the study of this monodromy
Galois representation
(001) Thg : Galp, — Aut(&'r),

particularly for the case S = {0,1,00} and k = Q, in connection with deep arith-
metic such as Iwasawa theory on cyclotomy and complex multiplications of Fermat
Jacobians. We note that the image of Thg is contained in the subgroup consisting
of elements ¢ € Aut(F,) such that ¢(z;) ~ x¢ (conjugate) for 1 < ¢ < r and
o1+ ay) = (x1- - 2,)* for some a € Z]°.

As explained in [Ih3], the Ihara representation (0.0.1) may be regarded as
an arithmetic analogue of the Artin representation of a pure braid group ([Ar]).
Let PB, be the pure braid group with r strings (r > 2). Note that PB, is the
topological fundamental group of the configuration space Config, (D?) of ordered
points on a 2-dimensional disk D?. For 1 < i < r, let p; be mutually distinct interior
points of D?. They define the point (pi, ..., p,) € Config,(D?). Then PB, acts, as
the monodromy, on the fiber D?\ {py,...,p,} of the universal bundle over the point
(p1,-..,pr) € Config,(D?) and hence on the topological fundamental group 71 (D?\
{p1,...,pr}) = F,, where F, denotes the free group on r generators z1,...,x, and
each x; is identified with the isotopy class of a loop encircling p; clockwise with a
base point on the boundary D?. Thus we have the Artin representation

(0.0.2) Ar, : PB, — Aut(F)).

This map is an injection and its image is generated by elements ¢ € Aut(F;) such
that (x;) ~x; for 1 <i<rand p(zy---x,) =271 - Xy

We can see the following analogy between the Thara representation (0.0.1) and
the Artin representation (0.0.2):

(0.0.3)
absolute Galois group pure braid group
Galk PB’V‘
P, \ {Po,...,P-} — Speck universal bundle over Config, (D?)
with geometric fiber ]P’}@ \{Po,..., P} with fibers D?\ {p1,...,pr}
Thara representation of Galy Artin representation of PB,
on Trfm‘l(]l% \{Po,...,P}) =3~ on m(D*\ {p1,...,p:}) = F-

In this thesis, with the help of the dictionaries (0.0.3), we shall investigate the
arithmetic analogues in Thara theory of the following issues and their inter-relations:
(I) Milnor invariants of links,
(IT) Johnson homomorphisms for the pure braid group PB,.,
(ITII) Magnus-Gassner representations of PB,.,
(IV) Alexander invariants of links.

Chapters 1 and 2 deal with the topological side of these issues: Chapter 1
covers mainly (I) and (II): the Milnor invariants of a link are the higher order
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linking numbers. They are defined by the coefficients of the Magnus expansion of a
longitude by meridians ([Mi]) and are interpreted in terms of Massey products in
the cohomology of the link group ([Ki], [T]). Johnson homomorphisms are useful
means of studying the structure of the mapping class group of a surface ([J1], [J2],
[Mtl1], [Mt2]). The main tools are algebraic and applicable to the study of the
automorphism group of a free group ([Kal, [Sa]). Since the pure braid group PB,
is a subgroup of the mapping class group of an r punctured disk, the theory of
Johnson homomorphisms is also applicable to PB,.. In Chapter 1, we show that
the Johnson homomorphisms are described by Milnor invariants of pure braid links.

Chapter 2 covers mainly (IIT): Magnus cocycles are crossed homomorphisms of
PB, defined by using the Fox free derivative ([Bil, 3.1, 3.2], [F]). The Gassner
representation is a particular case of Magnus cocycles, and it provides multivariable
link invariants called the Alexander invariants ([Bil, 3.3]). We show the relations of
the Gassner representations with Johnson homomorphisms and Milnor invariants.

Chapters 3 and 4 deal with the arithmetic side of the above materials: In Chap-
ter 3, we define [-adic Milnor invariants and the pro-I Johnson homomorphism for
absolute Galois groups. Among other things, we prove the following theorem that
is suggested by the Alexander—-Markov theorem of braid theory. This “translation”
supports the idea of an analogy between braid groups and absolute Galois groups.

Let Thg : Galy — Aut(§,) be the Thara action and x; : Galy — Z;° denote
the I[-cyclotomic character. For g € Galg, it turns out that there exists a unique
word yi(g) € § (1 < i < r) such that Ths(g)(z:) = yi(g)xYVyi(g)~" and the
coefficient of the class of x; is 0 in the abelianization of §,. We call the word
yi(g) € §, the i-th longitude of g € Gal,. We denote by Z((X1,...,X,)) the ring
of non-commutative formal power series over Z; with variables X1,..., X, and let
O :§r — Zi{((X1,...,X,)) be the pro-l Magnus embedding. Let us consider the
pro-l Magnus embedding of y;(g):

Owi(g) =1+> Y. plgir--ip) X, - Xi,
n>1 I=(i1--in)
1<t eenyin <7
For a muti-index I, we call the coefficient p(g;I) the Milnor number of g with
respect to I and we define the [-adic Milnor invariant fi(g; I) of g for I to be the
l-adic Milnor number u(g; I) modulo a certain ideal A(g;I) of Z;:

fi(g; I) == p(g; I) mod A(g; I).

Then, we have the following proposition.

THEOREM 3.2.20. For a multi-index I, the l-adic Milnor invariant u(g;I) of
g € Galy s preserved under the conjugate action of Galyo) C Galy. More
precisely, let I be a multi-index with |I| > 1. Let g € Galy and h € Galy¢,..). Then
we have A(hgh™; 1) = A(g;I) and the following equality holds:

alhgh™ 1) = a(g; 1)

In Chapter 4, we introduce the notion of pro-I reduced Gassner representa-
tions and study the Ihara power series from the arithmetic topological viewpoints.
Among other things, we give an arithmetic topological interpretation of Jacobi
sums: Let p be a rational prime that satisfies certain conditions on ramifications
and let p be a prime of Q lying over p. Then, p is unramified in Q/Q so that the
Frobenius automorphism o3 € Galg is defined. Let n be a fixed positive integer
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and let p,, be the prime of Q(¢;») lying below p, where (;» € Q denotes a primitive
[™-th root of unity. Let r be the ["-th power residue symbol at p,, for a unit

n n

€ (Z[¢n]/pn)*. For 0 # a,b € Z/I"Z with (a,b,1) = 1, we define the Jacobi sum

by
a b
e T () )
: (p ) Z pn n pn n

z,y€(Z[Gm]/pn) ™
r+y=—1

For a multi-index I = (i1 ---4,) and j € {1,2}, let |I|; denote the number of entries
i satisfying i, = j.
For integers ny,ny > 0 with ny +n2 > 1 and g € Galg, we set
p(gi i, me) = > plg; 112) + > p(g; 121)
[I|1=n1—1,[I|2=n2 [ Il1=n1,|I|2=n2—1
where u(g; J) denotes the Milnor number of g with respect to the multi-index J.
Let f denote the order of p in (Z/I"Z)*. Then, we have the following theorem.

THEOREM 4.3.5. Given the above notation, the Jacobi sum and the [-adic
Milnor invariants satisfy

Jn(pn) @ =14 > ploding,ma)(Gh — D)™ (¢ — D)™
ni,n2=0
ni+n2>1

We also show a formula that relates l-adic Milnor invariants to Soulé characters:
For a € Z/I"Z, let {(a);» denote the integer satisfying a = (a);» mod (™ with 0 <
(a);» < I™. For a positive integer m, we set

= I (G —pt" e,
a€(Z/InZ) >

which is an l-unit in Q((n), called a cyclotomic l-unit. Then, we define the m-th
l-adic Soulé character y(™) : GalQ — Z; as the Kummer cocycle attached to the

system of cyclotomic l-units {eln tn>1 as

(m) m g
GO = {( )V (0 > 1, g € Galg).

In addition, we set

x™(9)
1—m-t
Then, we have the following theorem.

km(g) == (g9 € Galg).

THEOREM 4.3.8. Let g € Galg(¢,.) and let N1, Na be integers with N1, Na > 0
and N1+ No > 1. Then, the following equality holds:

> 1(g; 1, n2)an, (N1)an, (N2)

ni+n2>1
0<n1<N1,0€n2< N2

= 1 n n :
< ),m SOIOE

)
1<n< N1 +No 'my




0 Intoroduction

Here, the last sum ranges over the integers mgl), ceey mgn), mgl), e ,mén) > 0 such
that mgi) + mgi) >3 and mgi) + méi) is odd (1 <i<n), mgl) +---+ mgn) =N
and mél) +o 4 m(Qn) = N,. For each j = 1,2, we put

1 (n; =0)



CHAPTER 1

Pure braid groups, Milnor invariants, and Johnson
homomorphisms

In this chapter, we recall the definitions of pure braid groups, Milnor invariants
and Johnson homomorphisms and show their relations. More precisely, by regarding
a pure braid as a mapping class of the punctured disk, we show that the Johnson
homomorphism of a pure braid can be viewed as being essentially the same as the
first-non-vanishing Milnor invariants of the link obtained by closing a pure braid.
Moreover, we give a description of the Johnson homomorphism of a pure braid in
terms of the Massey product of the associated mapping torus. This chapter is based
on [Kol].

1.1. Pure braid groups and Artin representations

Here, we recall the definition of the pure braid group and its interpretation as
the mapping class group of the punctured unit disk in the complex plane. Then,
we recall the action of the pure braid group on the free group, called the Artin
representation, as the induced action of the pure braid group on the fundamental
group of the punctured disk.

1.1.1. Pure braid groups. Let r be a integer with » > 2. Let D? be the
unit disc in the complex plane C with center (3,0) and p; = (#1,0) 1<i<r)
be a point in D2. Let I denote the unit interval [0,1] and I; (1 < i < 7) denote its
copy. We consider an embedding b : | |/_, I; (disjoint union) — D? x [ satisfying
the following conditions:

(1) b;(0) = p;, bi(1) = pg, for some k; (1 < k; <) with k; # k; (1 # j)

(2) bi(t) € D* x {t}
where we denote the restriction of b to I; by b;. Note that from the definition b
induces the permutation b of {1,...,7}. Hence, condition (1) is written as b;(0) =
pi, bi(1) = pp;)- Such a bis called a braid, and the b; (1 <i <) are called strings.

We often identify a braid b and its image b(| |;_, I;) in D? x I.




1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

By projecting the image of b to the plane R x I, we get its braid diagram, which
possesses information on the crossings of the strands. In a braid diagram, we draw
D? x {0} as the bottom plane and D? x {1} as the top plane.

For two braids b, b’, we say that b and b’ are isotopic if there is a level preserving
ambient isotopy Hy : D? x I — D? x I (t € [0,1]) such that H; fixes the boundary
of l)2 x I and HO = ld,Hl(b) =0.

Now, let B,. be the group of isotopy classes of braids. It is called the braid group

with r strings and is generated by o1,...,0,_1 satisfying the following relations:
0i0i410i41 = 04100511 (1 <i<r—2)
0i0j = 0;0i (li=3[>1).

The following braid diagram depicts each generator o;.

oF}

AN
N\

12 -1 4 t+1 ¢4+2 7

For b,b’ € B, its product bV’ is defined by stacking o’ on b, like in the following
picture:

Now there exists a natural surjective homomorphism,
x:B— S b— b

where S, denotes the r-th symmetric group. We set PB, := Ker(x) and call it
the pure braid group of n strings. Each generator A;; (1 < i < j < r) of PB, is
presented in terms of a generator o; (1 <i<r—1) of B,:

—_— . . ... . 2 _1 DY _1 _1
Aij = 00441 0j—207_10; 5" 0,410,

which is depicted as the following braid diagram.




1.1 Pure braid groups and Artin representations

The generators A;; (1 < i < j < r) of PB, are subject to the following relations:

Ayj (ifs<iori<r<s<jy),
A Ay AL = AL A Ay (if s =),
T A A AGAG A (ifi=r<s<j),

A;jlAgle,ﬂjAsinjA;le;;AsjArj (ifr <i<s<j).

Noting that in the case of a pure braid b each strand b; connects p; x {0} and
p; x {1}, we call b; the i-th string of b.

1.1.2. The Artin representation of the pure braid group. Next, we
recall the interpretation of the braid group as the mapping class group of a surface.
Let D, = D?\{p1,...,p-} be the 2-dimensional disc in the complex plane with
punctured points. By tracing the punctured points permuted by a mapping class
of D,, we have the natural homomorphism,

X : M(D,) — S,

and we set PM(D,) := Ker(x’). Now, the braid group B, induces homeomor-
phisms of D, as follows: Let us consider a simple proper arc /; ;1 connecting the
i-th and 7 4+ 1-th punctures and a disk D; ;41, which contains only the -th and
i + 1-th punctures corresponding to the following picture.

Each generator o; can be viewed as the isotopy of D? between the identity map
and the roation map which rotates the arc l; ;41 in D? clockwise about its midpoint
by an angle 7. As a result of this isotopy, we have a homeomorphism H, , , of
D,, with support on D; ; 1, called the half twist along the arc I; ;41, described as
follows.

H;

PREST

It turns out that this correspondence gives a homomorphism B, — M(D,). The
following proposition is known.

PROPOSITION 1.1.1 (see [Bil, Theorem 1.10], [K'T, Theorem 1.33)). The above
correspondence induces an isomorphism

B, =~ M(D,)
9



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

and so
PB, 2 PM(D,).

Similarly, for each generator A;; of PB,., we have the mapping class represented
by the full twist T;,; along l;;, which has support on D;;, and can be described with
the following picture:

ij

We take a base point py on the boundary 9D,. The fundamental group of
7m1(Dp,po) is the free group F, generated by x1,...,x,, where z; is a small loop
encircling the i-th puncture clockwise. So the mapping class group PM(D,.) = PB,
acts naturally on F,. from the left. Therefore, we have a homomorphism,

Ar, : PB, = PM(D,) — Aut(m1(Dy,po)) = Awt(F,); o 0..
Accordingly, we can prove the following proposition.
ProroSITION 1.1.2. The homomorphism v gives an isomorphism
Ar, : PB, — Auto(F))
where we set
Auto(Fy) = {p € Aut(F) | p(z:) = yaway; P (1 <i <7), p(@r---2,) = 212, }

and each y; (1 < i < r) is some element of F,.. Furthermore, y; is uniquely
determined under the condition that the exponent sum of x; iny; (1< j<r) is0.

PrOOF. The first part is a special case of [Bil, Corollary 1.8.3] and [Bil,
Theorem 1.9]. For uniqueness, we assume that there are two elements y; and z;
in F,. that satisfy o(z;) = yixiyi_l = zixizi_l and the condition on the exponent
sum. Then we have 2;(y; '2;) = (y; '2i)zi. Since an element of the centralizer of
x; is given by xﬁ with some [ € Z, we have y;z; 1= xi From the condition on the
exponent sum, we have [ = 0, and so y; = z;. (I

REMARK 1.1.3. In [Bil], the action of the braid group on F, is given by the
right action. Here, we think that the braid group acts on F, from the left in the
following manner: For b € B, and = € F,, we set b.b,(z) := x(b.b,)°P. Here,
op denotes the reverse order of the product, i.e., (b.b,)°P = blb,. Hence, in our
notation, the action of the braid group is given by

Ti—1 (ifk:i—l),
(1.1.4) (ok)«(x;) = xixiﬂx;l (if k = 1),
T; (otherwise).

10



1.1 Pure braid groups and Artin representations

The action of the inverse o, 1'is given by
J}Z-_ll‘i_ll‘i (lf k=1i— 1),
(1.1.5) (0 Du(@i) = { i1 (if k = 1),
x; (otherwise).

In what follows, we often simply denote by b(x) the action of b € B, on x € F,..
The action of PB, on the free group F,. is expressed as follows:

xkxlmixflxlzl (if k = 1),
—1 . .
TRT; T (if I =4),
(1.1.6) Api(z) = f o ,
vy x wmagx, x, o (ifk<i<l),
X5 (ifi<korl<i).
a:l_lacixl (if k = 1),
-1 -1 . )
T, X, X TRT; if I =1),
(1.1.7) A ) =< g ( )
-1 - =1 -1 . .
x; x rpriey, x, xpxy (ifk<i <),
X (ifi <korl<i).

EXAMPLE 1.1.8. Let bpor be the following pure braid.

Ll
>y [

1

o

>

Moreover, we have bgor = 0'20'1_10'20'1_10'20'1_1 = A23A12A2_31A1_21. The mapping
class corresponding to bper is represented by Ty, 0 Ty, 0 T, 13 oy, 12 The action
of bporr on the fundamental group is given by

Ars(bpor) (#1) = [m12027 b, 23]y [T1 2027 ] 7,
Arz(bporr ) (22) = [xgla xfl}xg[xglwrfl],
Ars(bpor)(x3) = [mglmflxg, xlxglel]xg[xglmflxg, wlmglel}*l

Hence, we have

Y1 = [xlmgxfl,mg,}
Y2 = [x?jlvxfl]v
Y3 = [:cglxl_lmg, xlxz_lel].

REMARK 1.1.9. The pure braid group PB, is also considered to be the fun-
damental group of the configuration space Config,(D?) = {(p1,...,pr) € (D?)" |
p; # p; (if @ # j)}, which is the moduli space of r ordered distinct points on the
2-dimensional disc D?. Let h : & — Config,(D?) be the universal bundle such
that the fibre of (p1,...,p.) € Config,(D?) is h=1((p1,...,pr)) = D*\{p1, .-, Pr-}-

11



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

Then the representation Ar, : PB, — Aut(F,) can be interpreted as the mon-
odromy representation of m(Config,(D?)) on the fundamental group of the fibre

h’il((plv 7p’l“))

1.2. Milnor invariants

Here, we recall the Milnor invariants of a pure braid link and introduce the
Milnor filtration of the pure braid group.

1.2.1. The Magnus expansion and Fox free derivatives. Let Z{(X1, - X))
be the algebra of non-commutative formal power series of r variables Xq,--- , X,
over Z. Let F,. be the free group generated by z1,...,z,. Let Z[F,] be the group
algebra of F,. over Z and let € : Z[F,] — Z be the augmentation map. We define
the Z-algebra homomorphism, called the Magnus homomorphism,

0:Z[F,] = Z{(X1, -, X,))

by
e(xi) =14+ X, 9(%-71) :=1—Xi—|—X;2_... (1<i<7‘).

K3

REMARK 1.2.1. It is known that the Magnus homomorphism 6 is injective
(cf.]MKS, 5.5]).

For a € Z[F},], we have

(1.2.2) Oo)=e)+> Y wle)X;, X=X, X,
n>1 I=(iy, in)
101, yin <7
We call it the Magnus expansion of « and call the integer u(I;«) the Magnus
coefficient of o with respect to I.
For 1 <j<r,let

0
— : Z[F. Z|F.
5 2P~ Z{F)
be the Fox free derivative given by the following properties (cf.[MKS, 5.15]):
ox; olap) O op
= Ok, = - , Z|F.
Oxy ok oz, oz, E(ﬁ) + aaxk (a pe [ D

Higher order derivatives are defined inductively by
oo 0 < oo

al‘il s 8.%‘1‘" 8.’L‘i1

) @ezir).

8@2 s 81‘1‘"

The Magnus coefficients can be written in terms of the Fox free derivatives:

(1.2.3) iy ip;a) =€ (&) .
REMARK 1.2.4. Note that for m > 2
f el F. < for any I with 1 < |I| < m,we have u(I;f) =0
where || means the length of multi index 1.

12



1.2 Milnor invariants

1.2.2. Milnor invariants. Next, we recall Milnor’s theorem on the presen-
tation of a link group in our context. Let z1,---,x, be a free generator of F,. =
m1(Dy,po) and y; (1 <4 < ) be the word of 1, - -+ , 2, that is uniquely determined
by a pure braid b, as in Proposition 1.1.2. For a braid b, we denote by b the link
obtained by closing b. In particular, for a pure braid b, we denote by /b\z the i-th
component of b which is obtained by closing the i-th strings b;. Here, one can easily
prove the following proposition, for example, by using the Wirtinger presentation.

PROPOSITION 1.2.5. Let b a pure braid in PB, with b(z;) = yiziyi_l. The link
group Gp 1= 71(S3\b) of the pure braid link b has the following presentation

G/l;: <$L'1,"' s L | [91,3?1] == [yr7x'r] = 1>a

where x; and y; may also be regarded as the words representing a meridian and a
longitude of b;, respectively.

Now, let us recall the Milnor invariants of b. Following [Mi], we consider the
Magnus expansion of the i-th longitude y; in Z{{X7, ..., X,)):

(1.2.6) Oy) =1+ > plbrir-ind)Xs, - X, .
n=l I=(i1ip)
11, in <7

and the coefficient pu(b; iy - - - i,1) is called the Milnor number or Milnor u invariant
of b with respect to the multi-index I = (i;---i,i). From (1.2.3), we have the
following description of Milnor numbers in the light of Fox free derivatives:

(b i) = (i -~ i3 i) Oy

. ey — e g ’ -) = € - v .

N 5 01 n M1 ns Yi axil"'axin

To get the isotopy invariants of links, we need to consider the residue class of u(b; I)
in order to get rid of the indeterminacies of the choices of meridians and longitudes
and of the group presentation of b. Here, we set

7i(b; I) := pu(b; I) mod A(1)
where A(I) denotes that the ideal of Z generated by u(b;J) (J runs over all cyclic
permutations of proper subsequences of I). Then 7i(b; I) is known to be an isotopy

invariant of b and is called the Milnor o invariant of b with respect to the multi-
index I.

REMARK 1.2.7. (1) In [MK, Definition 4.3], the Milnor number u(b | I) of a
pure braid b is defined for a multi-index I consisting of distinct integers. It coincides
with our pu(b; I).

(2) Let m be a integer greater than 1. If ﬁ(g; I) = 0 for |I| < m, then ﬁ@; I =
w(b; I) for [I| =m + 1.

ExXAMPLE 1.2.8. Let bgorr be the pure braid in Example 1.1.8. Then EBOH is
the following link, called the Borromean rings. Here, we give bpo,; an orientation

13



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

downward.

-
Y

bBorr 1 bBorr 3

From (1.1.9), we have
O(y1) =1+ X2X35 — X3X5 + (higher degree terms),
0(y2) = 1+ X3X; — X3X; + (higher degree terms),
O(y3) = 1+ X1 X3 — X2 X1 + (higher degree terms).

Hence, we have
T(bBore; 123) = T(bBorr; 231) = Ti(bpor; 312) = 1,

ﬂ(bBorr; 132) - ﬂ(bBorr; 321) = ﬂ(bBorr; 213) = _17

E(BBOH; ijk) =0 (otherwise).
The Milnor invariants of pure braid links induce a filtration of PB,. as follows.
We denote by PBMil(m) the normal subgroup of PB, consisting of elements whose
Milnor invariants of length < m vanish, i.e.,

PBMi(m) == {b e PB, | b: 1) =0 (1] <m)}.
We then have the descending series
PB, = PBM!(1) > PBM(2) > ... 5 PBM(m) > .- .
and {PMi(m)},,>1 is called the Milnor filtration of PB, (JOh]).

1.2.3. Massey products for a link complement. In this section, we recall
the definition of Massey products for cohomology and their relation with Magnus
coefficients. Then, we recall the result of Turaev and Porter that relates Massey
products for a link complement to the Milnor invariant of a link in our context.

Let X be a topological space. In the following, the cohomology group of X
stands for the singular cohomology with integral coefficients. Let aq,...,ay, €
H'(X,Z) be cohomology classes. A Massey product {ay,...,q,) is said to be
defined if there is an array A

such that
[aiiv1] =a; (1 <i<m)
{ daij :Zi;1+1 aix U ag; (]#Z—‘rl)
Such an array A is called a defining system for (ai,..., ). Then, for a defining
system A, we define the cohomology class (aq, ..., am)a of H2(X,Z) represented

by the 2-cocycle

m
E a1k U ag,m+1-
k=2

14



1.2 Milnor invariants

We then define a Massey product of ay, ..., a,, as the subset of H?(X,Z) by
{1,y o) = {{a1,...,am)a € H*(X,Z) | A ranges over defining systems}.

REMARK 1.2.9. (1) The Massey product (o) is oy and its defining system A
consists of any 1-cocycle representing ay. The Massey product (o, as) is the cup
product ayUay. Form 2= 3, the Massey product (ay, ..., ) is defined and consists
of a single element if (avy,...,a;, ) = 0 for any proper subset {i1,...,i,} (r > 2)
of {1,...,m}.

(2)(The naturality of the Massey products) Let X and X' be topological spaces
and f : X — X' be a continuous map. We assume that (ay,...,q,) is defined
for a; € HY (X', Z) (1 < i < m) with the defining system A = (a;;). Then,
(f*(a1),..., f*(aum)) is defined for f*(c;) € HY(X,Z) (1 < i < m) with the defin-
ing system A* = (f*(a;;)) and we have f*({a1,...,am)) C{(f*(ca), -, f*(am))-

Next, let us recall the relation between Massey products and Magnus coeffi-
cients. Let G be a finitiely generated group with minimal generators g1, ..., g,. The
group cohomology H*(G,Z) is given by the singular cohomology H*(K(G,1),7Z)
of the Eilenberg-Maclane space K(G,1). Let

(1.2.10) 1—-R—F -5G—1

be a presentation of G such that 7 sends each generator x; (1 < i < 7) of F,.
to g; and 7 induces the isomorphism F2b = G*. The subgroup R is generated
normally by the relators of G. Now we have an isomorphism H'(G,Z) = H'(F,,Z)
induced by w. Moreover, we have an isomorphism, called the Hopf isomorphism
([Br, Theorem 5.3])

(1.2.11) h: Hy(G,Z) — Hy(R,Z)c = R/|R, F,).

The following proposition yields the relation between Massey products and Magnus
coefficients.

PROPOSITION 1.2.12. With the notation as above, let ay,...,a,, € HY(G,Z)
and let A = (ai;) be a defining system for the Massey product (a1, ..., ,). Let
f € R and set n := h=(f mod[R, F}]). Then we have

(o1, .y am)a(n)

m
:Z(_l)j+1 Z Z A1, 14 (gil) ".am+1*0j,m+l(gij)u(ila"'77;j;f>7
j=1

c1tee;=m 1iy, i <s

where ¢; (1 < i < j) runs over positive integers satisfying c1 + --- +¢; = m and
g =m(xz;) (1 <i<r)and p(is---i;; f) is the Magnus coefficient of f withe respect
toI=(i1---1j).

Next, let us recall the result of Turaev ([T]) and Porter ([P]) on the inter-
pretation of Milnor invariants as Massey products for the cohomology of a link
complement in our context.

For b € PBM(m) (m > 1), we have its closed pure link b. By Proposition
1.2.5, a free basis of H1(53\3 Z) is given by [z1],...,[r,] and its dual basis is
given by z7,.. % ) in Hl(S3\b Z). For a tubular neighborhood Vi around the i-
th component b;, we consider the homology class 7; in Hy(S3 \b Z) realizing the
boundary dV;. Then Turaev-Porter’s result can be expressed as follows.

15



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

THEOREM 1.2.13 ([T],[P]). For 1 < 41, - ,im+1 < T, there is a uniquely
defined Massey product (x7 ,--- ,z} )€ H?(83\b,Z) such that we have

<IZ T xrm+1 > (Th)

(=1 (A2 imsit) = Gy a IG5 11+ iminsn)) (i i = i0)

= Y (=pmH! (ﬁ@; i i 181) 00 iy y, — B(B; 41 - "imim+1)> (if i = imt1)

0 (otherwise).

1.3. Johnson homomorphisms

1.3.1. Johnson homomorphisms. Let ¥ = 2517*’“ be an oriented surface of
genus g > 0 with » > 0 punctured points and one boundary component 0%. Let
M(X) denote the mapping class group of ¥, i.e., the group of isotopy classes of
orientation-preserving self-homeomorphisms of ¥ which fix the boundary point-

~

wisely. Taking a base point py € 9%, we have a group isomorphism (X, pg) =
Fyg4r. Since M(X) acts naturally on the fundamental group 71 (%, pg), we have a
homomorphism

¢ M(E) — Aut(m (X, p)) = Aut(Fagir); & = ¢

Since 'y, Fogr is a characteristic subgroup of Fhgy,, any mapping class ¢ € M(X)
induces the automorphism [¢.],, of Fogiy/I'yy1Fo54r. Thus, we have the homo-
morphism

Ym : M(E) —> Aut(Fogir/Tmt1F2g40); @ [Bulm.
We denote the kernel of ¥, by M(X)7°!(m), i.e.,
MUY (m) = Ker(dm)
— {6 € M(S) | 6e(9)g™" € Tpns1 Fagir} (m > 0).
We then have the descending series
(1.3.1) M(Z) = M(2)7°1(0) > M(Z)2 (1) o --- D> M(D)°"(m) > ---

and {M(X)7°"(m)},,>0 is called the Johnson filtration of M(X). Let H denote the
first homology group of ¥ with integer coeflicients:

Hy = H,(2,2) = 729039+,
Then we define the map
Tm - M(E)JOh(m) — Homgz (Hz, gr,, 41 (Fag+r))

as follows. First, we define a map 7,,(¢) : Hz — gr,,,1(Fag4r) for any ¢ €
M(2)7°8(m) in the following way: For [y] € Hz withy € Fayy,, we have ¢, (y)y "t €
Lot Net, we set 7, (0)([7]) := ¢u(7)y " mod LpypoFogir € gty i1 (Fogyr). We
can easily see that the map 7,,,(¢) is well defined homomorphism.

This leads us to the following proposition (for the proof, see [Sa]).

ProPOSITION 1.3.2. For m > 1, the map T, is a group homomorphism.

For m > 1, the homomorphism
(1.3.3) T+ M(E)"(m) — Homg (Hz, g1 (Fagir))
is called the m-th Johnson homomorphism.

16



1.3 Johnson homomorphisms

1.3.2. Magnus coefficients of Johnson homomorphisms. Let us go back
to the setting of Section 1.2.2. Let us consider the Magnus coefficients of the image
of the Johnson homomorphism of a mapping class.

The ring of non-commutative formal power series Z((X1,..., Xog4,)) can be
identified with the completed tensor algebra of H over Z:

Z((X1,. .. Xogo)) = [] HF™,
m=0

where Hi@m is the submodule generated by monomials of X1, ..., Xo44, of degree m.
Noting Remark 1.2.4, the restriction of the Magnus homomorphism 6 to I'y;, 11 Fogyr
induces the homomorphism, for m > 0,

Qm : grm+1(FQg+r) — H%(m‘f‘l)’
which is written as
Om([7]) = Z plin i1 ) Xay o Xy
1<in, - yim+1<2g9+7r

for v € T'yt1Fog4r. Composing the m-th Johnson homomorphism 7, in (1.3.3)
with 6,,, we have the homomorphism, for m > 1,

78 = Oy © T : M(E)?" (m) — Homy (Hz, HE); ¢ 6, 0 7 (8).
For each ¢ € M(X)’°"(m) and the basis [z;] (1 <1 < 29+ 7) of Hz, we have
7o () ([2:]) = O (T (0) ([i]))
(1.34) = > plin - imens (@) 2y ) Xy - Xy

1<y, yim+1<2g+7
One can see that the Magnus coefficients of 72 (¢)([x;]) contain all the information
of 7, (¢)([z;]) as integers.

1.3.3. Johnson homomorphisms for pure braid groups. In this section,
we prove our first theorem, which gives the explicit relation between Johnson coef-
ficients and Milnor invariants of a pure braid link.

From Proposition 1.1.1, we may regard PB,. as PM(D,). We define the John-
son filtration {PB°"(m)} >0 of PB, by

PB}"(m) := PB, N M(D,)(m).

LEMMA 1.3.5. PB, = PBJ°"(1).

PrOOF. For any b € PB,., we have

bo(zi)zy' = gy tapt
= [yi,x] € Dok
This implies b € PB°%(1). Hence PB, = PB°%(1). O

Now we can prove the following proposition that shows the equivalence of the
Johnson filtration and the Milnor filtration of the pure braid group.

PRrROPOSITION 1.3.6. Form > 1, the Johnson filtration and the Milnor filtration
of the pure braid group coincide, i.e., we have

PBJ°"(m) = PBMil(m).
17



1 Pure braid groups, Milnor invariants, and Johnson homomorphisms

PROOF. For any b € PB,, from Remark 1.2.4 and (1.2.6), we have
be PBM(m) <= y; €T,,F. (1<i<r).
On the other hand,
be PBI"(m) <= b.(xi)z;' €TpiFr (1<i<r)
= [ypai] €lmul, (1<i<r)
— y, el F (1<i<r).
Therefore, PBJ°"(m) = PBMi(m). O
In the following, we simply denote by PB,.(m) the m-th term of the Johnson
(or Milnor) filtration for m > 0.
The following theorem states that the Johnson homomorphisms of a pure braid

are essentially same as the first non-vanishing Milnor invariants of the pure braid
link.

THEOREM 1.3.7. For each b € PB,(m), each basis [x;] € Hy and multi-index
I = (i1 ims1) of length m + 1, we have

N(il © s Tm<b)(x%))
— bz -+ imy181) + Oiy iy 1 BB 81 -+ Uiniimg1) (if i = i1)

= — by i - i 191) 04y gy T (DL nimy1) (i i1 = dg1)
0 (otherwise).

ProOOF. From (1.3.4), we have
O () = > wlyiwy; =) XD
[I|=m+1

From proposition 1.3.6, b € PB,.(m) <= y; € I',F.. Therefore, from Remark

o~

1.2.4 and (1.2.6), we have 0(y;) = 1+Y where Y =3~ ;5 p(b; )X s, Thus, we
have
Oyiriy; o) = O(ya)O(:)0(y; )O(w:) !
= I+YV)(0+X)1-Y+Y2 - )Q-X;+ X2 —--)
= 14YX;, - X;Y + (higher degree terms).
Then, the homogeneous degree m + 1 part of G(yixiyi_lxi_l) is given by
[1'|=m
By carefully comparing the coefficients, the assertion follows. ]
EXAMPLE 1.3.8. Let bgo,r be the pure braid as in Example 1.1.8. As is shown

in Example 1.2.8, we can see that bgo,y € P3(2). Then, the image of the Johnson
homomorphism of b, is given by

73 (bBore) = [11]" ® [[ X2, Xa], X1] + [22]* @ [[X3, X1], Xo] + [23]" @ [ X1, X2], X3]
where [2;]* denotes the Kronecker dual of [z;] with 1 <14 < 3.

REMARK 1.3.9. Note that the relation between Milnor invariants and Johnson
homomorphisms is also shown by Habegger in [Ha].

18



1.3 Johnson homomorphisms

1.3.4. Massey products for a mapping torus. First, we describe the punc-
tured disc Eé’r = D, counterpart of the Kitano’s result on Massey products for a
mapping torus of a surface X0 ([Ki]).

Let b € PB,(m) (m > 1): we consider the mapping torus of b,

Xy = D, x [0,1]/ ~,

where we define the equivalence relation ~ by identifying x x {0} with b.(z) x {1}.
The Seifert-van Kampen theorem gives

m1(Xp) = (1, .., 2y t | [0, bu (@) - [, ] bu ()2 )
= <-r17 e 7x’mt ‘ [xlat][ylamlL Y [xT7t][yTaxT]>
where z; and y; are the words in Proposition 1.2.5. Now, [z1],- -, [z,], [t] forms a

free basis of Hy(Xy,Z). Let f € H'(X,,Z) (1 <i <1+ 1) denote the dual basis
of H'(Xy,Z) given by

i ([zj]) = 055 (1< i,j <7)

zra(ft]) =1

wr (i) =0 (1 <i <),
Since X} is an Eilenberg-Maclane space K (71 (X3), 1), we have H. (Xy, Z) = H,.(m1(X3), Z).
Let &; be the homology class in Hy (X3, Z), which corresponds to the homology class
of Hy(X4,Z) representing the relator [x;,t][y;, z;] via the Hopf isomorphism A in
(1.2.11). Then, the punctured disc analogue of Kitano’s result is as follows.

THEOREM 1.3.10. Let b € PB.(m). For 1 < i1,...,im+1 < 7, the Massey
product (x} ,...,x} )€ H?(Xy,7Z) is uniquely defined and its evaluation on &; €

) i'rn+ 1

Hy(Xy,7Z) is given by
@iy (&) = (1) dmg1; Tm (0) (2))-
By using Theorems 1.2.13, 1.3.7, and 1.3.10, we can easily show the following.

COROLLARY 1.3.11. The punctured disk analogue of Kitano’s result and Turaev—
Porter’s result are equivalent.
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CHAPTER 2

Reduced Gassner representations of pure braid
groups

In this chapter, we recall the notions of Gassner representations and the reduced
version. Fach representation has two definitions. One is defined as the induced
action of the pure braid group on the first homology group of the universal abelian
covering space of a punctured disc. The other is defined as a special case of the
Magnus representations of the mapping class group of a surface. First, we show
that these definitions are equivalent. Second, we give explicit formulas for the
(reduced) Gassner representation in terms of the Milnor invariants of a pure braid
link. Finally, we give the relation between (reduced) Gassner representations and
Johnson homomorphisms. This chapter is based on [Ko2].

2.1. Gassner representations

In this section, we recall two different definitions of reduced Gassner represen-
tations of pure braid groups: One is a special case of homological representations
and the other is a special case of Magnus representations. Then, we prove the
equivalence of these two different definitions.

2.1.1. Homological Gassner representations. Here, we recall the defini-
tion of the reduced Gassner representation derived from the induced action of the
pure braid group on the abelian covering space of the r-punctured disk D,. (For
details on the homological representations of the mapping class group, for example,
see [KT].)

Take a base point py on the boundary 9D, and consider the fundamental group
m1(Dy,pg) = F,. From Hurewicz theorem, we have a natural homomorphism ab :
71(Dy,po) = F, — Hy(D,) = F2® := F,./T9F, = Z®". Let D?® be the universal
abelian covering space of D,. corresponding to Ker(ab) = I'sF,.. Then, the group
of covering transformations Aut(D2/D,.) of h : D2* — D,. is identified with F2P.

Let us consider the relative homology group Hi(D”,h='(py)). Since the ac-
tion of F2” on D2P induces the action on Hy (D", h~!(py)), the relative homol-
ogy group Hy(D* h~'(py)) is endowed with the structure of a Z[F*]-module.
In the following, we shall identify Z[F2P] with the ring of Laurent polynomials
A, = Z[tli, e 7th] over Z with variables t1,...,t.. Since D, is homotopy equiva-
lent to a bouquet of 7 circles, one may see that Hy (D*P, h=1(pg)) is a free A,-module
of rank 7, i.e., Hy (D2, h=(po)) = A, ®".

As explained in Section 1.1.2, by viewing the pure braid group PB, as a sub-
group of the mapping class group of D,., PB, acts on 71(D,.,pg). We can see that
b, commutes with ab for each b € PB,. by Proposition 1.1.2, i.e., abob, = ab. Take
a point py on the fiber h=1(pg) of p. An automorphism of D, representing b € PB,
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2.1 Gassner representations

has a unique lift b : D3 — D2 fixing py. Since b commutes with the action of FaP
on D we have b(gpy) = gb(po) = gpo (g € F2P). Therefore, the lift b fixes the

ro

fiber h=!(po) pointwise.

The lift b : D2* — D" induces the automorphism
g* : Hl(D?bv h_l(p())) - Hl(D?ba h‘_l(pO))

and b, is a A,-linear map since b, commutes with Ff,"b. Hence, we have the homo-
morphism

Gassl : PB, — Aut(H; (D, h='(po))) = GL(r; A,); b b,.

We call this representation the homological Gassner representation of PB,..
By extending this representation to the full braid group B,, we obtain a 1-
cocycle

Gass? : B, — GL(r;A); b > b,

since b acts on A, by a permutation of {t1,...,t,}. We call this 1-cocycle the
homological Gassner cocycle of B,..

In the following, for each b € PB, as long as there is no risk of confusion, we
will denote the lift b, by using the same b.

Noting that Hy(D,,h !(pg)) is freely generated by the classes [x1],..., [z,],
by (1.1.6), the representation matrix of the homological Gassner representation is
explicitly given as follows.

PROPOSITION 2.1.1. For each generator A;; € PB,., we have

(1+ti(t — 1) [aw] + te(1 = t)[z] (if k = 1),
A N (1 —t1)[wg] + tg[z] (if 1 =4),
rlzd) = (1= t))(1 = t)[we] + (1= t) (ts — D] + [wi]  (ifk <i <),
[x] (if i <k orl <i).

Similarly, the homological Gassner cocycle is explicitly given as follows by
(1.1.4).

PRrROPOSITION 2.1.2. For each generator oy, € B,., we have

[zi-1] (if k=1i-1),
or([zs]) = (1 —tip)[wi] + tilwia]  (if k=1),
2] (if otherwise).

2.1.2. Homological reduced Gassner representations. Next, let us de-
fine a free submodule LP"™ C Hy(D,,h™*(py)) with rank r — 1 and define the
reduced homological reduced Gassner representation of PB, as its induced action
on Lprim,

To begin with, let us review the Crowell exact sequence (cf.[Cr]). Let G be a
group with finite presentation

G=(x1,...,¢ |r1=-=ry=1).

Let 7 : F. — G be a natural projection and we denote the induced Z-linear map
of the group algebra of the same =, i.e., 7 : Z[F,] — Z|G]. Take any group H. Let
U : G — L be a surjective homomorphism and, we will use the same ¥ to denote
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2 Reduced Gassner representations of pure braid groups

the induced Z-linear map V¥ : Z[G] — Z[L]. By setting N := Ker(¥), we have the
following exact sequence:

1—>N—>G1>L—>1.

Moreover, by setting

Op = (\yow ( g)) & My, (ZIL]),

Ay = Coker(Z[L]™ g Z[L]")
= Z[L]" /Im(Qw),

we have the following exact sequence of Z[L]-modules

ZIL)™ 2% Z[L) — Ag — 0.

Since the group L acts on the abelianization N* := N/[N, N| through the conju-
gate, NP is endowed with the structure of a Z[L]-module. In fact, one can easily
see that the L action defined by [ - [n] := [Inl~!] ([n] € N**,1 € L,¥(l) = 1) is
well-defined. Then, we have the following theorem.

THEOREM 2.1.3. (Crowell exact sequence [Cr]) The following exact sequence
of Z[L]-modules exists:

0— NP 2 4y 270 57— 0

where
(214)  6i(nmod]N, N]) = (qz or <§£ )) modm(Qy)  (x(f) = n)
and

n

O2((0n, ..., 0p) mod Im(Qu) = Y _ a; (W o m(ay) — 1).

j=1
Here € : Z|L] — 7 is the augmentation map.

We set G = F,, 7 = idp,, L = F** = F./[F,,F,] and ¥ = ab : F,, — F?".
Then, the kernel N of ab is N = Ker(ab) = [F}, F,.] and its abelianization N2 is the
meta-abelian quotient N*® = [F,., F,.]/[[F,, F,], [F,, F,]] of F,.. Since the free group

F. has no relation, we have Qg = 0 and therefore Ay = Z[L]" = Z[F*"]" = A,.®".
Then, by Theorem?2.1.3, we have the following exact sequence of Z[H]-modules:

0 —> [, B)/I[F,, F,],[Fr, F]) 2 A9 25 A, -7 —50

where
(215) Ql(fmod[[Fr,FrL[FraFT’H) =V <§l€> ’
and

O2((ar,. . ) = > aj(t; —1).
j=1
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2.1 Gassner representations

This exact sequence is called the Blanchfield-Lyndon exact sequence. It can be
identified with the exact sequence of the relative homology group for the pair of
topological spaces (D*?, h=1(pg));
(2.1.6)
0 — Hy(D") — Hi (D", b~ (po)) — Ho(h™"(po)) — Ho(D;") — 0.
| Il I |
[F,.,F,.]/[[FT-,F,.],[F,-,F,-]] AEBT AT Z

Setting the augmentation ideal of A, by I, and L, := [F,, EF,]/[[F", Fy], [Fr, Fr]],
(2.1.6) leads to the following exact sequence

(2.1.7) 0— L, 25 A% 251, 0.

Moreover, we have the isomorphism of A,.-modules induced by 61, called the Blanchfield-
Lyndon isomorphism,

(2.1.8) 0 : Ly =5 {(c) € A" | D aj(t; — 1) =1}

j=1
In particular, we can see that Hy(D";Z) = [F,, F,]/[[Fy, Fy], [F,, F,]] has a basis
[Z‘i,a)‘i+1] with 1 < ) <r— 1.

To define the reduced Gassner representation, we define the submodule LP™™
of Hy(D2";Z) algebraically. This construction is inspired by the one by Oda ([02])
of its pro-l analogue. For 1 < i < r, let R; be the normal closure of z; in Fi.,
ie. R;:= ((x;)). We set £ = F,./R; and set AD = ZtE, ... tF, ... tF] with

the augmentation ideal I, . Here, fii means deleting tii. We define a Z-algebra
homomorphism §; : A, — A,(j) by

t; (G #1),

sty =" " "

0 (j=1).
Note that Aii)—module can be regarded as a A,-module through J;. We set LY =
[FT(Z), Fy)]/[[Fr(z), F,@], [Fy), Fr(l)]]. Let & : L, — L be the A,-algebra homomor-
phism induced by the natural homomorphism F, — Fr(l). We define the primitive
part LPY™ of L, by

(2.1.9) Lp™™ = () Ker (&) C Hi(D2" Z).
i=1
We set U; == (1 —t1)--- (1/—\151) -+ (1 —t,). Here (1/—\@) means that we remove

the term (1 —¢;).

THEOREM 2.1.10. (1) The Blanchfiled-Lyndon isomorphism 6y in (2.1.8) is
restricted to the isomorphism of the A,.-module

L™ = {(a;U5) € AP | oy € Ay, >y =0}
j=1
(2) The submodule LP*™ is stable under the induced action of B;.

(3) As a A,-module, LY"™ = Hy (D3P Z), L™ # H\(D*;Z) (r > 3).
(4) LPm @y, Q(ty, ... ) = Hi(D3PZ) @4, Q(ty, ..., tr).
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2 Reduced Gassner representations of pure braid groups

PROOF. We extend ¢ to the A,-homomorphism £ : AS" — (AP)@(—1) by
G, ... ap) = (6i(on), .., 0i(ovi—1), 8i(ctizr), - 0s ().

Thus, we have the commutative diagram of A,-modules:

0 — L. — APT — Iy, — 0

L& 1& 10

0 — LY — AR [ — 0
where the two rows are the Crowel exact sequences. Thus, we can see that Ker(gi)
is given by

Ker (&) = {(a1(ti — 1),...,ai_1(t; — 1), aq, azsr (t — 1), ... o (t; — 1))}

where a; € A, (1 <4< r). Thus, from (2.1.8) and (2.1.9), we have

L™ = {(oy) € AP [ ay(t; —1) =0, a; =0mod (t; — 1) if i # j}
j=1
The assertion (1) follows, since A, is U.F.D.
(2) Since the Artin representation Ar.(c) sends z; to the conjugate of xy(4(;), the
definition (2.1.9) implies that LP™™ is stable under the induced action of B,..
(3) and (4) are immediate consequences of (1) and (2). O

Since, for b € B,., we have the induced action,
b, : Hi(D?®) — Hy(D")
from the lift b : Db — Dab of a homegmorphism representing b and the submodule
LP'™ g invariant under the action of b, (Theorem 2.1.10(1)), we obtain a 1-cocycle
Gassp ™! B, — Aut(LE™™) = GL(r — 1;A,) C Aut(Hy(D:?)); b ba pprim.

We call this 1-cocycle the homological reduced Gassner 1-cocycle of B;..
By restricting Gass2"*? to PB,., we have the homomorphism

Gass™°d . PB, — Aut(LP™) = GL(r — 1;A,) C Aut(H,(DP)).

We call it the homological reduced Gassner representation of PB,.
As explained in the Appendix, this definition of the reduced Gassner represen-
tation is equivalent to original definition (cf.[Bil, 3.3]).

2.1.3. A representation matrix of the homological reduced Gassener
representation. Here, we calculate a representation matrix of the homological
reduced Gassner representation of PB,..

For this, we need some lemmas. In what follows, we simply denote by [z;, ;]
the class [z;, ;] mod[[F}, F,.], [F,, F,]] for z;,z; € F, (1 <4,j <7).

LEMMA 2.1.11. We have

titiv1[Ti, Tit1] (ifk=i<l=1i+1),
(@i, @it1] + tip1 (1 — t3) @i, 21 (ifk=i+1<1),
Als o] = [, xip1] + (1 — tig1) [g, Ti] | (sz; <l=1),
[©i, ip1] — (1 — tip1) @4, @] (ifk=i<i+1<l),
[Tiy igp1] — tiv1 (1 — &) [xg, zip1] (FE<i<i+1=1),
[, Tig1] (otherwise),
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2.1 Gassner representations

and
o, [xi,a:,»ﬂ] (ifk=i<l=1i+1),
(@i, 2] — 8 (1 = t3) [@ig1, 2] (ifk=1i+1<1),
L (@5, Tip1] — t 1t YA = tigr)[zh, 4] (if k<l=1),
Akl [xumz+1] = 1
[, ] =t (1 =ty [, 2] (fk=i<i+ 1<),
(i, wig1] — 6, (1 — ) [@ig1, k) (ifk<i<i+1l=1).
[, Zit1] (otherwise).

—

We set Usj := (1 —t1)--- (1 —t;) - (1/—7]) -+ (1 —t;), where (1 —t;) means
that we remove the term (1 —1¢;). We also put U; := (1 —t1)--- (1 —¢;)--- (1 — ;).
Moreover, we set

Eij = Uij[.’lﬁi,.’L‘j] (1 <i1<j < ’I").
Then, we have

LEMMA 2.1.12. Using the above notation, for 1 <i < j < r, we have

j—1
E’Lj - § Ei,iJrl
k=1

PROOF. From the Blanchfield Lyndon exact sequence, it is enough to prove
that

j—1
(2.1.13) 01(Eij) = 01(Eiiy1).
k=i
By the definition of 6, we have
i-th j-th
~~ =
6.(E;;) = (0,...,0, U; ,0,...,0,-U;,0,...,0)
and one may easily obtain equation (2.1.13). O
Theorem 2.1.10 enable us to see that Lﬁrim is spanned by E; := E; ;11 (1 <

i <r—1)as a A-module. Then, by direct computation using Lemma 2.1.11 and
Lemma 2.1.12; we arrive at the following.

ProprosITION 2.1.14. For 1 < k<l<n and for 1 <i<r — 1, we have

-1
Ei+tin(l—t) > En (ifk=i+1<1),
m=i+1
i—1
+ (1 —tg) ZEm (if k <1=1),
Ap(E;) = m:k_
tE; —(1—1t) Z (ifk=i<i+1<]l),
i—1
(1= tip (L= t)Ei —tin(1—te) Y B (ifk<i<i+1=1),
m=k
E; (otherwise),
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2 Reduced Gassner representations of pure braid groups

and
ti 't LB (ifk=i<l=i+1),
-1
Ei+(1—t;") Y En (ifk=i+1<1),
m=i+1
Ei+t7N 1 -t ZEm (if kb <1=1),
A’;ll(E’) o -1
(1—t;7 A=ty ) E —t;7 (1 -t E, (ifk=i<i+1<l),
m=i+1
1—1
' Bi—(1—t;") ) Em (ifk<i<i+1=1),
m=k
E; (otherwise).

EXAMPLE 2.1.15. Let bpo;r be a pure braid as in Example 1.1.8. Then, the ho-
mological reduced Gassner representation of bge,, is given by the following matrix:

H,red — 1 ’
Gassy " (bporr) = <—t1_1t2_1(t1 — 1) (tat3 — 1) 1) '

REMARK 2.1.16. (1) It is known that Gassner representation may be defined

(co)homologically and extended to representations of string links by le Dimet, Kirk,
Livingston, and Wang ([ID], [KLW]). However, our construction of the reduced
Gassner representation is different from their one.
(2)It is known that the monodromy representation of the KZ equation with values
in the null vector space of the tensor product of the Verma module of sly(C) gives
the reduced Gassner representation with generic parameter (cf. [Koh]). We can
prove this fact by direct computation in terms of the above proposition.

2.1.4. (Reduced) Gassner representations via Magnus representa-
tions. Here, we define the (reduced) Gassner representation as a special case of
the Magnus representations of the pure braid groups. (For more details on the
Magnus representation, we refer the reader to [Bil], [Mt1], and [Sa].)

To begin with, let us recall the Magnus 1-cocycle of the automorphism group
of free groups. Let Aut(F,) be the group of automorphisms of F, and Z[F,] be
the group ring of F,. over the ring of rational integers Z. For a given free basis
x = {x1,...,x.}, let a : Z|F,] — Z[F,] be the Fox free derivative with respect
to x. Let G be the quotlent group of F,. by a characteristic subgroup R C F}, i.e.,
G = F,./R, and let f : F,. — G be the canonical projection.

In the following, we restrict ourselves to the case that G is an abelian group.

Then, for any o € Aut(F,) and for any free basis x = {z1,...,2,} of F,., we
define the map My : Aut(F,) — GL(r; Z[G]) by

v (0(%2)

where ! : GL(r;Z|G]) — GL(r;Z[G]) denotes an anti-automorohism that sends
each matrix to its transposed matrix. It is known that the map My is a 1-cocycle,
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2.1 Gassner representations

ie., My(af) = My(a)*(My(B)) for o, 5 € Aut(F,). Here, *(M(B)) is the matrix
obtained from My(3) by the induced action of o on each matrix element.

REMARK 2.1.17. Our definition of the Magnus representation is slightly dif-
ferent from that of [Mtl]. If we restrict ourselves to the case that G is an
abelian group, the Magnus representation becomes a 1-cocycle before taking ~
GL(r; Z|G]) — GL(r; Z[G]). Here, ~ : GL(r; Z[G]) — GL(r; Z|G]) is the automor-
phism induced by the involution g — g~

We take f = ab, G = F2® and R = I';F,. By composing the Artin representa-
tion Ar, of B, and M,;, we obtain the 1-cocycle,

GassM := M,y (Ar,. (b)) : B, — GL(r;A,); b (ab (32(;1-))) .

We call this 1-cocycle Gass the Magnus-Gassner 1-cocycle of B,.. By restricting
Gassff[ to PB,., we obtain the homomorpshism
CassM : PB, — GL(1;A,),
and we call it the Magnus-Gassner representation of PB,..
PROPOSITION 2.1.18. For each generator A;; € PB,., we have
T+tp(t;—1) (k=i=1j)
ety — 1) (L= jok=1)
1-1 (l=1i,k= j)
! (1—t)(1—t;) (k<z<lj—k7)
1—tp)ti—1) (k<i<ll=j})
)

i (otherwise

PROOF. We can easily obtain the above formulas by direct computation. [

REMARK 2.1.19. Note that the formula of Magnus-Gassner representation in
[Bil, p119] contains some errors. For more details, see also its errata [Bi2].

From Proposition 2.1.1 and Proposition 2.1.18, we can deduce the following.

COROLLARY 2.1.20. The homological Gassner representation and Magnus-Gassner
representation are equivalent.

For b € PB,, let us consider the matrix
D~ 'GassM(b)D

where the matrix D is given by

Uy 0 o - 0 0
-Us Us o - 0 0
0 -Us Us --- 0 0
D=| . : . : .
0 0 0 -+ U1 O
0 0 o --- =U, 1
INote that , in the case that G is mot an abelian group, ~ : Z[G] — Z[G)] is an anti-

automorphism.
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2 Reduced Gassner representations of pure braid groups

Here, one can see that the r-th row of the above matrix is (0,...,0,*), where x
denotes some element of A,.. Hence, the Magnus-Gassner representation can be
reduced to an 7 — 1 dimensional representation. We denote by GassM™4(b) the
matrix obtained from D~'Gass} (b)D by eliminating the r-th row and column.

We call this representation Gassy™d : PB, — GL(r — 1;A,) the reduced
Magnus-Gassner representation of PB,.. Then, we have

THEOREM 2.1.21. The reduced homological-Gassner representation is equiva-
lent to the reduced Magnus-Gassner representation:, i.e., we have the following
commutative diagram:

PB,— = . PB,
lGaSS&I‘red \LGaSSE"‘ed
GL(r — 1;A,) —= Auty (Lprim)

PROOF. For the proof, we need the following lemma, which can be proved by
direct computation:

LEMMA 2.1.22. For any A = (a;;) € GL(r; A,.), the entries aj; (1 <4,j <r—1)
of the matrix
D™'AD = (aj;)1<i<j<r

are given by

11—t 11—t ,
ay; = ay; — ai ; 1<j<r—-1
1j 1t 1j 1t Li+1 (1<y < )
1—t 1-t
ap; =aj_q;+ . . 2<i<r—-1,1<j<r—1).

;5 — Qg 541
1_tj ) ]-_tj+1 ©,J+

By Lemma 2.1.22, we can see that Gassy"®(A;;) = Gass "4 (A,;) where the
righthand side denotes the representation matrix given in Proposition 2.1.14. This

completes the proof. O

REMARK 2.1.23. The above equivalence of the representations also follows from
Corollary 2.1.20 and the Crowell exact sequence. Since each basis E; (1 < i < 1)
of LP™ corresponds to U;[x;] — Uiyi[ziv1] in Hy(D2P; h=1(po)), the above matrix
D is nothing but the basis transformation matrix from [z1],...,[z,] to Ui[z1] —
U2 [(Eﬂv L) Urfl[xrfl} - Ur [xr]a [mr]

Since the homological and Magnus Gassner representations are equivalent, in
the following, the (reduced) Gassner representation always means the (reduced)
Magnus-Gassner representation, and we will denote them by Gass, and Gass'™®?,

respectively.

REMARK 2.1.24. By setting t; = --- = t,, = t, we obtain the Burau represen-
tation of B,

Bur, := Gass,|, _. : B, — GL(r; A)

=t,=t
and the reduced Burau representation of B,
Bur®? := Gassi® . iy B, — GL(r — 1;A)
1==lr=

form the Gassner representation and the reduced Gassner representation. Here we
put A := Z[t*].
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2.2 Gassner representations and Milnor numbers

2.2. Gassner representations and Milnor numbers

In this section, we give some formulas that relate the Gassner representation
and the Milnor number of a pure braid.

Let 02" : A, — Z[[T}, ..., T,]] be a homomorphism defined by 62P(¢;) = 1+ T;
and let us consider the composition Gassf := 02" 0 Gass,. Here, we denote the map
obtained by applying 6P on each matrix element by the same #*°. Then, we have

PROPOSITION 2.2.1. For anyb € PB,., we write that Gassf(b) = (Gab(aij))lgi,jgr.
Then, we have

0(ai;) = 6ij — 0ij Z Z iy ixi)Thy - T,

kE>211<i4,...,ig <7

+y > i id)Ty T Ty

k20 1<y, ik ST

PRrROOF. To prove the above proposition, we begin by writing
61‘i
dy; Ox; —10y; 119y,
ab ( Y = Y;T5Y; 9, YiTiy; T B

oz, Y ox; i
+ (1= ab(a;))ab [ 2%
J 61‘2‘

ab 8[2]3',33]‘] - aijjyj_l _ Basj

6$j

ox;

(@b(s5) = )b (

Noting that

we have

o= (2l s,

where we set (b;;) = Gass, (b). Hence, 02" (a;;) is given by

00 (ayy) =0 =05 Y, plii)Ty Ty

k>11<is, .., i <r

+> Y pliaiki)Ty, - T T

E>01<is,....,<r

This completes the proof. (I

THEOREM 2.2.2. For any b € PB,, we write that Gassi*(b) = (bij)i<i j<r-

Then, we have
dyj  Oyj+1
blj = ab(yl)élj + (]. — tl)ab (8.’17]1 — 8]371
bij = bi—1,;+ (8i5 — bi,j+1)ab(y;)

+(1—ti)ab<gyj—agﬂ“) l<i<r—1,1<j<r-1).
Z; X

ProoOF. By Lemma 2.1.22, the above formulas can be obtained by direct com-
putation. (Il

Then, by applying °, we have
29



2 Reduced Gassner representations of pure braid groups

THEOREM 2.2.3. For any b € PB,, we write that Gass’®®’(b) = (8°(b;;)).
Then, we have

020 (by,) = 6y, Z Z p(iy - g )Ty, - Ty,

k>01<in,...,in <7

I S (i) - i a1 )T T

k>11<i1,0nif1 <7

00 (bij) = 0" (bic1 )+ (05— i) | D, Y, mlia--id)T, T,

k>0 1<iy,...,ig<r

B Z Z (u(iy - - ig—11g) — p(iy - - dg—1iy + 1)1, - Thp

k>11<in, . in_1 <7

(l<i<r—1,1<j<r—1).

2.3. Gassner representations, Milnor invariants, and Johnson
homomorphisms

Here, we define the Gassner representation of the Johnson homomorphisms of
the automorphism group of free groups as a special case of the Magnus representa-
tion of them ([Mt1],[Sa]). Then, we show the explicit relation between the Gassner
representation of the Johnson homomorphisms and the Milnor invariants for a pure
braid.

Using the notation in §1.3.1, for any 7 € Homgz(Hz, gr,,((F;)), we define the
map || - || : Aut(F,) = M(r; I} /INT) by

- ((52)

where we consider any lift of the element 7(z;) in gry | (F) = Tpy1 Fr/ThyoF) to
k41 F,. Note that the above definition does not depend on the choice of the lift of
7(x;).

For any b € PB,.(k), we obtain the representation

Ikl : PBy(k) — M(r; I /INT).

We call it the Gassner representation of the k-th Johnson homomorphism for PB,..
Then, we have the following theorem.

THEOREM 2.3.1 ([Mt1]). The Gassner representation Gass, : PB, — GL(r; A,)
induces the homomorphism,

Gass[rk] : PB,.(k) — GL(r; AT/IK:rl).
Moreover, for any b € PB,.(k), we have
Gass('1(b) = E, + |7 ()|
where E,. is the identity matrix of degree .

Then, from Theorem 2.3.1 and Theorem 2.2.2, we can deduce the following.
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2.3 Gassner representations, Milnor invariants, and Johnson homomorphisms

COROLLARY 2.3.2. For any b € PB,(k), let ||}(b)|| be the matriz obtained
from || (b)|| by applying 62 to each entries. Then, we have

2O =0 > pliy---igh) Ty - Ty,

1<ii,...7’ik<T

+ Y iy ik d) T - T Ty

1<ty i —1 <7

We can also define the reduced Gassner representation of the Johnson homo-
morphisms for PB, as follows: For b € PB,.(k), let ||7:¢4(b)|| be the matrix obtained
from the matrix,

D™ |7 (v)]| D,

by eliminating the r-th column and row where the matrix D is as in §2.1.4. We
call this representation the reduced Gassner representation of the k-th Johnson
homomorphism for PB,.. Then, we have

THEOREM 2.3.3. The reduced Gassner representation Gass.® : PB, — GL(r —
1; A,) induces a homomorphism

Gass;*!™ : PB, (k) — GL(r — 1;A,/If ™).
Moreover, for any b € PB,.(k), we have
Gass; M (b) = Eroy + || (0)]
where F,._1 is the identity matrixz of degree v — 1.

PRrROOF. The first part is clear from the definition. The second part is proven
as follows. From Lemma 2.1.22 and the definition, we can see that the matrix
1724 (B)]] = (dij) is given by

Oy Oyjs

dij =di—1,;+ (85 — 6ij+1)(ab(y;) — 1)

dy; Oy
+(1—ti)ab(yj—yj+1> (l<i<r-1L1<j<r—1).

By careful computation, we obtain
dij = by =,
dij = bij =015 — (825 — 62541) — -+ — (0i5 — bij+1)

Zbij—(si]‘ (1<i<7‘—1,1<j<7‘—1)

from Theorem 2.2.2. Here, we use the same notation as in Theorem 2.2.2 for the

induced representation Gassf.cd[k]. This completes the proof. ([l

From Theorem 2.3.3 and Theorem 2.2.3, we have the following reduced Gassner
version of Corollary 2.3.2.

COROLLARY 2.3.4. For any b € P,(k), let ||7i°"°(b)|| = (6?*(di;))1<ij<r1 be
the matriz obtained from ||T5°4(b)|| by applying 62" to each entry. Accordingly, we
have
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2 Reduced Gassner representations of pure braid groups

Gab(dlj) :51J Z M(lekl)ﬂ Tzk

161,y in <7

- > (uline e igaly) = plia il + )Ty - Ty T

1<iy,e i —1<T

0°°(dij) = 0°"(di-1,3) + (8i5 — bijs1) S uli )Ty, - T,

1<ey, i ST

| (i inaid) - plin i+ DT Ty T

1<i1,e i —1<T

I<i<r—1,1<j<r—1).
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CHAPTER 3

Absolute Galois groups, [-adic Milnor invariants,
and pro-/ Johnson homomorphism

In this chapter, we study the arithmetic analogue of chapter 1. Precisely speak-
ing, we study the action of the absolute Galois group of a number field on the étale
fundamental group of the projective line minus r+ 1-points by defining and studying
the [-adic Milnor invariants and the pro-I Johnson homomorphism in an analogous
way to which the pure braid group was studied in Chapter 1. This chapter is based
on [KMT, Sections 1, 2, and 3].

3.1. Absolute Galois groups and the Ihara action

In this section, we recall the definition of absolute Galois groups and recall the
set-up and some results on the Galois representation introduced by Thara in [Th1].

3.1.1. Absolute Galois groups. Here, we recall basics of absolute Galois
groups. For more details on this materials, see [Sz].

Let k be a field. An extension L/k is called algebraic if every element « of L
is a root of some polynomial with coefficients in k. This polynomial is called the
minimal polynomial of « if it is monic and irreducible over k. We may easily see
that finite extension L/k is algebraic.

A polynomial f € k[z] is separable if it has no multiple roots is some alge-
braic closure of k. An algebraic extension L/k is separable over k if the minimal
polynomial of any « € L/k is separable. Note that, in the case of characteristic 0,
separability automatically follows.

For an extension L of k, let Aut(L/k) denote the group of field automorphisms
of L fixing k elementwise.

An algebraic extension L of k is called a Galois extension of k if the elements
of L that remain fixed under the action of Aut(L/k) are exactly those of k. When
L/k is a Galois extension, we denote Aut(L/k) by Gal(L/k) and call it the Galois
group of L over k.

REMARK 3.1.1. Tt is known that an algebraic extension L/k is Galois if and
only if L/k is separable and the minimal polynomial over k of any « € L splits into
linear factors in L.

Let k be an algebraic closure of k. We define the separable closure k4 over k in k
as the compositum of all finite separable subextensions of k. Then, we can see that
ks/k is Galois extension as follows: For a € ks \ k, let o’ € kg be another root of
the minimal polynomial of a. Let us consider the isomorphism of field extensions
k(a) — k(') given by sending « to «’. This isomorphism may be extended to
an isomorphism of the algebraic closure k. Noting that each automorphism of
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homomorphism
Aut(k/k) sends an element of k to another root of its minimal polynomial, we may
see that kj is stable under the action of Aut(k/k).

The group Gal(ks/k) is called the absolute Galois group of k. Tt is known that
the absolute Galois group Gal(k,/k) is a profinite group:

Gal(ks /k) = lim Gal(L/k)

where L runs over all finite Galois extensions of k.

3.1.2. The outer Galois representation. Let x1,...,2, be the r letters
(r > 2) and let F,. denote the free group of rank r on z1,...,z,. Let z,41 be
the element of F,. defined by z1---2,2,41 = 1 so that F, has the presentation
F. = {(x1,. ., Zp, Tps1|x1 - 2p2r01 = 1). Let §, denote the pro-I completion of
F.. Let Aut(F,) (resp. Int(F,)) denote the group of topological automorphisms
(resp. inner-automorphisms) of §, with compact-open topology. We note that
any abstract automorphism of §, is bicontinuous ([DDMS, Corollary 1.22]) and
that Aut(§,) is virtually a pro-I group ([DDMS, Theorem 5.6]). Let Hyz, be the
abelianization of §,, Hz, := §,/[8r, §r], and let 7 : . — Hy, be the abelianization
homomorphism. For f € §,, we let [f] := n(f). Weset X; :=[z;] (1 <i<r+1)
for simplicity so that Hz, is the free Z;-module with basis X;,..., X, and we have
X1+ -+ X+ X,41 = 0. Each ¢ € Aut(§,) induces an automorphism of the
Z;-module Hz, which is denoted by [¢] € GL(Hz,).

Let Q be the field of algebraic numbers in C. Let S be a given set of ordered
r 4 1 Q-rational points P, ..., P,y on the projective line I%) and we suppose that
P, =0,P, =1and P41 = 0. Let k := Q(S\ {o0}), the finite algebraic number
field generated over Q by coordinates of Py, ..., P., so that all P;’s are k-rational
points of P1. Let Gal;, := Gal(Q/k) be the absolute Galois group of k equipped
with the Krull topology. Note that Galy, is the étale fundamental group 7$*(Spec k)

with the base point Spec Q — Spec k. Let w?ro'l(ﬂ% \ S) denote the maximal pro-I

quotient of the étale fundamental group of P}@ \\S with a base point Spec Q — IP’}@ \S
which lifts SpecQ — Speck. By [Gr, XII, Corollaire 5.2], wfm'l(lf% \ S) is the
pro-I completion of the topological fundamental group 71 (P!(C) \ S). We fix an
isomorphism 7 (P*(C) \ S) =~ F, obtained by associating to each z; the homotopy
class of a small loop around P; and hence an identification of wfro‘l(]P’}@ \ S) with

Sr-

The absolute Galois group Gal;, = 7$*(Spec k) acts, as the monodromy, on the
geometric fiber IE% \ S of the fibration P} \ S — Spec k and hence acts continuously
on the pro-l fundamental group ﬁ’ro'l(ﬂ% \ S) = F,. The effect of changing a
base point of }P’}@ \ S is given as an inner automorphism of §,.. Thus we have the
continuous outer Galois representation

(3.1.2) O : Galy — Out(F,) := Aut(F,)/Int(F,)-

In terms of the field extensions, the representation ®g is described as follows.
Let ¢ be a variable over k. We regard P! as the t-line and so the function field K of
IP}@ is the rational function field Q(¢). The k-rational points P; are identified with
places of K/Q. Let M be the maximal pro-I extension of K unramfied outside P;
(1 <i<r+1). Then we have an isomorphism ¢ : §, — Gal(M/K) such that each
t(z;) is a topological generator of the inertia group of an extension PM of P; to a
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place of M. Since P;’s are k-rational, M/k(t) is a Galois extension and so we have
the exact sequence
1= 3%, ~Gal(M/K) — Gal(M/k(t)) — Gal(K/k(t)) = Galp — 1.

For g € Gal, choose g € Gal(M/k(t)) which lifts g. Consider the action of Galy on
Gal(M/K) defined by f + gfg~! and regard it as an automorphism of §, via the
isomorphism ¢. The effect of changing a lift g is given as an inner automorphism
of §,. Thus we obtain the representation ®g. Note further that g o PM o g=!
is a place of M which coincides with PZ-M on K (1 <4< r+1). So we have
goPMog=loh = PM for some h € Gal(M/K) so that h=gz;5~'h is a topological
generator of the inertia group of PM. Hence ga;§ ~ x5 for some ¢; in Z;, the ring
of [-adic integers. We pass to the abelianization Hz,. Applying the conjugate by g
on the equality X1 + -+ X,41 = 0in Hz,, we have ¢; Xj + -+ + 41 X;41 = 0.
From these equations, we have ¢; = -+ = ¢, 1. Therefore the action of Galy on F,
gives an element of the subgroup P(§,) of Aut(g,) defined by

P(3,) = {¢ € Aut(,) | o(z;) ~ xf—v(@ (1<i<r+1)for some N(p) € Z/}.
Here the exponent N (), called the norm of ¢, gives a homomorphism N : Aut(F,) —
Z;. So each ¢ € P(§F,) acts on the abelianization Hz, by the multiplication by
N(p), [¢](Xi) = N(p)X; for 1 <i < r. It is easy to see Int(F,) C P(F,). Thus we
have the outer Galois representation (3.1.2)

(3.1.3) ®g : Gal, — P(F,)/Int(3,.).

3.1.3. The Ihara representation. We will lift ®5 to a representation in
Aut(F,). For this, consider the subgroup P(F,) of P(F,) defined by
(3.1.4)

P(Sr) = {90 € AUt(ST’)

plai) ~ o) P (1 <i<r—1) pla) mad ¥
o(Try1) = xﬁ(f) for some N(¢) € Z; '

where /~ denotes conjugacy by an element of the subgroup K of §, generated by
[Fr, &) and @1,..., 7, 2. We denote by P'(F,) the kernel of N|13(3T):

)~w (1<i<r—1) o(ay) =z,
PlA:: EAt’@(m) ZL’( ’ .
@) {@ ut(8) o(Tr41) = Trt1
The following proposition was proved in [Ihl, Proposition 3, page 55] for the
case r = 2 and stated in [Th3, page 252] for the general case.

PROPOSITION 3.1.5. The natural homomorphism Aut(F,) = Aut(F,)/Int(F,)
induces the isomorphism P(F,) ~ P(§,)/Int(F,). The representatives in P(F,) of
P(F,)/Int(F,) are called Belyi’s lifts.

PROOF. The proof is similar to that for » = 2. First, we note that the central-
izer of x; in §, is (x;) = xiZ’ forl1<ig<r+1.
Injectivity: We must show P(F,) N Int(F,) = {1}. Suppose ¢ € P(F,) and
¢ = Int(f) with f € F,.. Then fo, 1 f! = xﬁ(f). Passing to Hy,, we see
N(p) =1 and so f is in the centralizer of x,,;. Hence f =z, for some a € Z;.
Since ¢ € P(5,), fr.f~t = ¢o(x,) = gr,.g~ ' for some g € R Therefore we have
g . (¢g7 f)"t = 2, and so g71f = b for some b € Z;. Passing to the abelian-
ization Hgz,, we have —[g] + aX,+1 = bX,. Since [g] € Z; X1 + -+ + Z; X, _2, we
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have a =b=10. Hence f =g =1 and so p = 1.

Surjectivity: We must show P(F,)Int(F,)/Int(F,) = P(3,)/Int(F,). Take ¢ €

P(3,). Multiplying ¢ by an element of Int(F,), we may assume @(z,,1) = xi\zr(lf)

Set () = gr,.g~! with g € §,. Write [g] = c1 X1+ - ¢ X, in Hy, (c; € Z;). Let

@1 = Int(z, 72, ) o . Then pi(z,) = giz,g; " and gy ==z, " o g € K.
Hence ¢; € P(F,) and ¢ = ¢1 mod Int(5F,). O

By Proposition 3.1.5, we can lift ®g of (3.1.3) to the representation in P(§F,),
denoted by Thg:

(3.1.6) Ihs : Galp, — P(3;),

which we call the Thara representation associated to S. Let {25 denote the subfield
of Q corresponding to the kernel of IThg so that Ihg factors through the Galois group
Gal(Qs/k):

(3.1.7) Ths : Gal(Qs/k) — P*(3,).

We recall some arithmetic properties on the ramification in the Galois extension
Qg /k. For this, let us prepare some notations. Let {;» be a primitive ["-th root of
unity for a positive integer n such that ((ni1)! = (n for n > 1. We set k((j) 1=
Un>1k(¢n). The l-cyclotomic character x; : Gal, — Z; is defined by g((n) = l’ﬁf(g)
for g € Galg. Finally we define the set Rg of finite primes of k associated to S as
follows: Let s; be the coordinate of P; for 1 < i < 7, and let Og be the integral
closure of Z[I7%, (s; — s;)7*(1 < i # j < r)] in k. We then define Rg by the
maximal spectrum

(3.1.8) Rgs := Spm Og.

THEOREM 3.1.9. Notations being as above, the following assertions hold:
(1) ([Ih1, Proposition 2, page 53]). N olhg : Galp — Z,° coincides with x;. In
particular, the restriction of ps to Galye) = Gal(Q/k(¢=)), denoted by Ihls,
gives the representation

Thy : Galg(ge) — P (Fr)

and we have k((=) C Qg.
(2) ([AI, Proposition 2.5.2, Theorem 3]). The Galois extension Qg/k is unramified
over Rg and Qg/k(¢;) is a pro-l extension.

REMARK 3.1.10. Recall that he Artin representation Ar, of the pure braid
group PB, in Section 1.1.2 is given by

Ar, : PB, = Auto(F},).
So the representation
Thg : Galy(coe) — PH(S0)

(resp. Thg : Galp — P(J,)) may be seen as an (resp. extended) arithmetic analogue
of the Artin representation Ar,.
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2. l-adic Milnor invariants and pro-/ link groups

3.2.1. Pro-l Magnus expansions. Let {I',§,}n>1 be the lower central series
of §, defined by

]-—‘13'7" = ‘STv FnJrlgr = []-—‘n%’m%’r] (n > 1)

Note that each I',,§, is a closed normal subgroup of §, so that I',,§, /T, 418, is cen-
tral in §,/T'1+15r, and that each T'),F, is a finitely generated pro-l group ([DDMS,
1.7, 1.14]). As in Section 3.1, let Hz, denote the abelianization of §,:

Hz, :=gr(3r) = Hi($r, Z1) = Hi(F), Z) @z 7y,
which is the free Z;-module with basis Xi,..., X,, where X; is the image of z;
in Hz,. Let T'(Hz,) be the tensor algebra of Hz, over Z; defined by €D, -, H%Z’",
where Hgo := 7Z; and Hg” = Hy, ®g, - - ®gz, Hz, (n times) for n > 1. It is nothing
but the non-commutative polynomial algebra Z;(X;, ..., X,.) over Z; with variables
Xl, N ,XTI
T(Hz) =P HZ" = Zi(X1,.... X,).
n=0

Let f(HZL) be the completion of T(Hyz,) with respect to the mp-adic topology,
where mr is the maximal two-sided ideal of T'(Hz,) generated by X,..., X, and
l. Tt is the infinite product Hn>0 Hg”, which is nothing but the Magnus algebra

Zi{{X1,...,X,)) over Z;, namely, the algebra of non-commutative formal power
series (called Magnus power series) over Z; with variables X1, ..., X,:
T(Hy) = [[ HY" = Z(( X0, ..., X)),
n=0

For n > 0, we set f(n) = [Lusn Hgm. The degree of a Magnus power series @,
denoted by deg(®), is defined to be the minimum n such that ® € T(n). We note
that Hg" is the free Z;-module on monomials X;, --- X; (1 < d1,...,0p < 1) of

degree n and f(n) consists of Magnus power series of degree > n.

Let Zy[[§-]] be the complete group algebra of §, over Z; and let ez, :
Zi[[$r]] — Z; be the augmentation homomorphism with the augmentation ideal
Iz, 1150 = Ker(ez,[,71)- The correspondence z; — 1+ X; (1 < i < r) gives rise to
the isomorphism of topological Z;-algebras

(3.2.1) 0 : Z[[§,]] = T(Hz,),
which we call the pro-l Magnus isomorphism. Here IZ[m.n corresponds, under O,
to T(n) for n > 0. For o € Zy[[§,]], ©(a) is called the pro-l Magnus ezpansion of

a. In the following, for a multi-index I = (i1 - i), 1 <i1,...,0, < 7, We set

|[I| :=nand X;:= X;, - X;

in*

We call the coefficient of X1 in ©(«) the l-adic Magnus coefficient of o for I and
denote it by u(I; ). So we have

(3.2.2) O(a) = ezz,0(@) + D u(l;)Xr.
1131
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Restricting © to §,, we have an injective group homomorphism, denoted by the
same O,

(3.2.3) 0:F — 1+7T(1),

which we call the pro-l Magnus embedding of §, into 1 + f(l)
Here are some basic properties of [-adic Magnus coefficients:
For a, § € Z,[[F-]] and a multi-index I, we have

(3.2.4) plaB) = D p(Asa)u(B; B),

I=AB

where the sum ranges over all pairs (A4, B) of multi-indices such that AB = I, and
we understand that pu(4; ) = ez, z,9(@) (vesp. wu(B;B) = ezz.0(8)) if [A] =0
(resp. |B| =0).

(Shuffle relation) For f € §, and multi-indices I, .J with |I],|J| > 1, we have

(3.2.5) p( DT ) = Y w4 ),

AeSh(I,J)

where Sh(I, J) denotes the set of the results of all shuffles of I and J ([CFL]).
For f € §, and d > 2, we have

w(Il; fy=0for |I] <d ie.,deg(®(f —1)) =2d <= felyF,

3.9.6
(3.2.6) = f-leljz

An automorphism ¢ of the topological Z;-algebra Z;[[§,]] (resp. T(HZ,)) is

~ ~

said to be filtration-preserving if gp(lgl[[&“) =17 15,1 (resp. @(T(n)) = T(n)) for
all n > 1. Let Aut™(Z[[§,]]) (resp. Aut®™(T(Hyz,))) be the group of filtration-

preserving automorphisms of the topological Z;-algebras Z;[[3,]] (resp. T(Hz,)).
The pro-I Magnus isomorphism © in (3.2.1) induces the isomorphism

(3.2.7) Aut™(Z[[3,]]) = Aut™(T(Hy,)); ¢~ Oopo® .
In the following we set
(3.2.8) Y =0opoO L

We note by (3.2.6) that any automorphism ¢ of §, can be extended uniquely to a
filtration-preserving topological automorphism of Z;[[§]], which is also denoted by
. Tt is easy to see by (3.2.7) that for ¢ € Aut™(Z[[F,]]), @ € Z/[[3]], we have

(3.2.9) O(p(@)) = ¢*(0(a)).

3.2.2. [-adic Milnor invariants. Let Ihg : Galy — P(§,) be the Thara rep-
resentation associated to S in (3.1.6).

LEMMA 3.2.10. Let g € Galg. For each 1 < ¢ < r, there exists uniquely
yi(g) € §r satisfying the following properties:

(1) Thg(g)(x;) = yi(g)mz"(g)yi(g)_l, where x; is the l-cyclotomic character,
(2) In the expression [y;(g)] = cgl)X1 oot X, (C;Z) el), cl(-z) = 0.
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PRrROOF. Existence: By the definition (3.1.4) of P(§,) and Theorem 3.1.9 (1),
there is z; € §, such that Thg(g)(z;) = 2@z for each i. Let [z] = a{” X +
s ag)XT (ay) € 7). We set y; := zlx:a() Then the conditions (1) and (2) are
satisfied for y;.

Uniqueness: Suppose that y; and z; in §, satisfy the conditions (1) and (2). Since
z“(g), zi_lyi = xf for some b; € Z;. Comparing the
coefficients of X; in [z;lyi] and [mi’], we have b; = 0 and hence y; = z;. ]

2 'y; is in the centralizer of

We call y;(g) € §; in Lemma 3.2.10 the i-th (preferred) longitude of g € Galy
for S. By Lemma 3.2.10, Thg(g) for g € Galg is determined by the I-cyclotomic
value x;(g) and the r-tuple y(g) := (y1(9),- .., y-(g)) of longitudes of g for S. We
note that Thg(g) acts on the abelianization Hz, of §, by the multiplication by
xi(9), [Ths(9)](X;) = xi(9)X; for 1 < i < r. We also note that y; : Galy — §F, is
continuous, since Ihg is continuous.

Following the case for pure braids as in Chapter 1, we will define the [-adic
Milnor numbers of g € Galy by the l-adic Magnus coefficients of the i-th longitude
yi(g): Let I = (i1 -+ -4,) be a multi-index, where 1 < 41,...,i, <rand [I| =n > 1.
The l-adic Milnor number or l-adic Milnor p invariant of g € Galy for I, denoted
by wu(g; I) = p(g;iy - - -in), is defined by the l-adic Magnus coefficient of y; (g) for
I o= (iy i)t

(3.2.11) w(g: 1) = p(I'3yi,(9))-

Here we set p(g;I) := 0 if |I| = 1. We note that the map u( ;7) : Galy — Z; is
continuous for each I, since y; : Galy — §, is continuous. We define a(g) to be the
ideal of Z; generated by x;(g) — 1. Note that a(g) = 0 when g € Galy(,). We
then define the indeterminacy A(g;I) by
(3.2.12)
A(g;I) :=the ideal of Z; generated by a(g) and u(J;y;(g)), where J
ranges over proper subsequence I’ and j =i, or j is in J

We also write A(I;y;, (g)) for A(g; I) for the convenience later. We then set
(3.2.13) A(g; 1) :== p(g; I) mod A(g; I),
which we call the l-adic Milnor i invariant of g € Galy, for I.

We will show that the l-adic Milnor invariant f(g; I) for g € Galy, is unchanged
when g is replaced by its conjugate in Galg. To prove this, we prepare some lemmas.

LEMMA 3.2.14. For g,h € Galg and 1 <1i < r, we have
(Dyi(h™") = Ths(h=")(yi(h) ),
(2)yi(hg) = Ths(h)(vi(9))yi(h),
(3)yi(hgh™") = Ihg(hg)(y:(h~"))Ths (k) (yi(9))y: ().
PROOF. (1) By Lemma 3.2.10, we have
z; = Thg(h™")Thg(h)(x;)
= Thg(h~ 1) (ya(R)a X Vyi(h) )
= Ths(h= 1) (yi(h))ys (P~ )ziyi(h1) " Ths (A1) (ya(h) 1),
from which we find Thg(h™1)(y;(h))yi(h™1) = xf for some a; € Z;. Passing to the
abelianization Hy, of §, and comparing the coefficients of X;, we find a; = 0 and
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hence we obtain (1).
(2) By Lemma 3.2.10, we have

(3.2.15) Ths(hg)(x;) = yi(hg)z X" y;(hg) ™"
On the other hand, we have
Ths(hg)(x;) =TIhg(h Ihs(g)(ﬂfz‘)
g

(3.2.16)

Comparing (3.2.10) and (3.2.16), we have y;(hg) 'Ths(h)(yi(g))yi(h) = 2% for
some b; € Z;. Passing to the abelianization and comparing the coefficients of X,
we find b; = 0 and hence we obtain (2).

(3) By (2), we have

yi(hgh™') = Ths(hg)(yi(h™"))yi(hg) = Ths(hg)(y:(h™"))Ihs (h)(yi(9))yi(h).
(]

For p € Galy, and a multi-index J with |J| > 1, we define © ;(p) by
(3.2.17) 0.,(p) :=Ths(p)*(X,) — xi(p)! X .
Since Thg(p)* is filtration-preserving, we note deg(©(p)) = |J|.

LEMMA 3.2.18. Notations being as above, the following assertions hold.
(1) ©5(p) is a Magnus power series Z|A|>|J| ma(J; p)Xa satisfying the following
properties:
(1) if ma(J;p) # 0, then A contains J as a proper subsequence. So we may
write © y(p) = ZJ;A ma(J;p)Xa.
(12) any coefficient ma(J; p) is a multiple of p(B;y,(p)) by an l-adic integer,
where B is some proper subsequence of A and j is in J.
(2) Fory € §,, we have

O(hs(p)(¥) =1+ > xi@u(Ti)Xs+ Y ulJ;9)04(p)
171 171>1
=0(y) + > ulJ;9)0,(p) mod alp).
731

PRrROOF. (1) Let 1 < j < r and write ©(y;(p)) = 1+ Y;(p). By (3.2.9) and
Lemma 3.2.10, we have

(3.2.19)
Ths(p)*(X;) = Ths(p)*(O(x; — 1))
= @( hs(p)(z; — 1))
= 0(y;(p)z} Py (p)") — 1
= O(y;(p))O(z;)1 PO (y;(p) ) — 1
— (14 Y5 () (1 + X0 (1 - V() +Yy(p)? — ) — 1

= x1(p)X; +0;(p),

where O;(p) is the sum of terms of the form qu(p)‘lXJl-’Yj(p)C for some a,c > 0
with a +¢ > 1, b > 1 and u € Z;. Write ©;(p) = > 452ma(j;p)Xa. Then
it is easy to see that if ma(j;p) # 0, then A must contain j. Moreover, since
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Yi(p) = 22 p>1 #(B;y;(p) X, ma(j; p) is a multiple of u(B;y;(p)) by an l-adic
integer, where B is some proper subsequence B of A. Let J = (j1--jn). By
(3.2.19), we have

Dz malip)Xa @J(p)

hs(p)*(Xs) — xilp)1 X
=1 s(p)*(X;,) - Ths(p)*(X;,) — xa(p)'1 X
= (xu(p)X; +@j1(p))"'(Xl(p)Xjn +0;,(0) = xulp)1X,
= o, (p)---®;,(p),

where ®;(p) is xi(p)X; or ©,(p) and at least one O;(p) is involved for some j.
Hence, by the properties of coefficients of ©;(p) = Z\A|>2 ma(j; p)Xa proved
above, we obtain the properties (i) and (ii).

(2) By (3.2.9) and (3.2.17), we have

O(Ihs(p)(y)) =TIhs(p ) (©(y))
=Ths(p)*(1+ Y u(J;9)X,)

14 Z T hs(p)" ()

—1+ Jflu(J; ) 0a(p)1X s +0(p))
:1+‘§1Xl( W J)Xs+ > 1l J59)0.(p)
E@(y)Jf:%IM(J;y)GJ( ) molfJiD;( )

We are ready to prove the following.

THEOREM 3.2.20. For a multi-index I, the l-adic Milnor invariant f(g;I) for
g € Galg is unchanged when g is replaced with its conjugate by an element of
Galy(¢,). To be precise, let I be a multi-index with |I| > 1. Let g € Galy and
h € Galy(¢,). Then we have A(hgh=1) = A(g; I) and

fi(hgh™" ;1) = m(g; 1)

PROOF. Let I be a multi-index with |[I| > 1 and 1 < i < r. For g,h € Galy,
we will show

(3.2.21) w(L;yi(hgh™)) = p(I;yi(g9)) mod A(L;y(g)).
By Lemma 3.2.14 (3), we have

(3.2.22) O(yi(hgh™")) = ©(Ihs(hg)(yi(h™")))O(Ths (1) (yi(9)))© (yi(h)).

For simplicity, we set, for a multi-index J with |J]| > 1
(3.2.23)
ay := p(J;Ths(hg) (yi(h ™)), by == p(J; Ths(h)(yi(9))), e5 == n(J; yi(h)).
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Then, from (3.2.22) or (3.2.4), we have
(3.2.24)
(L yi(hgh™))
=a;+br+cr+ Z aabp + Z bpce + Z aasco + Z aabpeo,
AB=I BC=I AC=I ABC=I

where A, B, C are multi-indices with |Al,|B|,|C| > 1
First, we look at bp for a subsequence B of I. By Lemma 3.2.18 (1), (2) and
by h € Galg(¢,), we have

bg = u(B;yi(9)) + w(J;yi(g)) (an l-adic integer)

for some proper subsequence J of B. Therefore, by (3.2.24) and the definition of
A(L;y:(g)), we have

(3.2.25)  pu(L;yi(hgh™ ) — w(I;yi(9)) = ag +c1 + Z ascc mod A(I;yi(g)).
AC=I

Here we note that the right hand side of (3.2.25) is the coefficient of X; of ©(Ihg(hg)(y;(h=1)))O(y;(h)).
So, next, we look at ©(Thg(hg)(y;(h~1)))O(y;(h)). By (3.2.9), Lemma 3.2.14
(1) and Lemma 3.2.18 (2), we have

(3.2.26)
O(Ths(hg)(yi(h™"))) = Ths(hg)*(O(yi(h1)))
= Ths(h)*Ths(g)*(O(y:(h™1)))
=Ths(h)*(O(yi(h™") + D w(J;5:i(h71))O(9)) (mod a(g))
1J1>1
= O(Ihs(h)(yi(h™))) + Y p(J5yi(h™1))Ihs(h)*(©s(9))
E
=0(wi(h) )+ Y ulJ;yi(h)Ths(h)"(©,(g)).

Here let us write Ms(g9) = > ;c 4 ma(J;9)X4 as in Lemma 3.2.18 (1). Then we
Z
have, by h € Galy(¢,e ),

Ths(h)*(©4(9)) = Y_ ma(J;g)Ths(h)*(Xa)

JGA
(3.2.27) = J;AmA(J; 9)(Xa+©4(h)) (mod a(g))
= i ma(J;9)(Xa+ Y ma(A; )X ).
JGA AGA!
By (3.2.26) and (3.2.27), we have
(3.2.28)
@(Ihs(hg)(yz(h’l)))
=0y ()™ + D Y ul Ty ) ma(Jig)(Xa+ D mar(A;h)Xar)
|7[>17GA AGAY

mod a(g)
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and hence
(3.2.29)
O(Ths (hg)(yi(h"))O(yi(h))
=14 > > uliuh)malTi9)(Xa+ Y mar(A;h)Xa)O(yi(h)
721G A ACA
mod a(g).

Here we note by Lemma 3.2.18 (2) that m4(J; g) is a multiple of x(B;y;(g)) by an
l-adic integer for some proper subsequence B of A and j in J. By the definition
(3.2.12) of A(I;y:(g)), the coefficient of X in the right hand side of (3.2.29) must
be congruent to 0 mod A(I;y;(g)). By (3.2.25), we obtain (3.2.21).

Finally, we show that A(I;y;(hgh™')) = A(I;y:(g)) by induction on |I|. When
|I| = 1, this is obviouly true (both sides are a(g) = a(hgh™!)) by the definition.
Assume that A(I;y;(hgh™')) = A(I;yi(g)) for all I with [I| < n (n > 1). Then,
by (3.2.21), we have, for all I with [I| <nand 1 <i<r,

(3.2.30)  u(L;yi(hgh™")) = (L3 yi(9)) mod A(L;yi(9))) (= A(L;y;(hgh™))).
Using (3.2.30) and the definition (3.2.12) of A(I;y;(p)) for p = hgh™!, g, we have
A(I;y;(hgh™)) = A(I;yi(g)) for I with |[I| =n+ 1. O

REMARK 3.2.31. It is known that a braid 3 and its conjugate y3y~! give rise
to the same link as their closures (8 +— vB8y~! is one of Markov’s transforms. cf.
[Bil, 2.2], [IMK, Chapter 9]). In particular, they have the same Milnor invariants.
So Theorem 3.2.20 may be seen as an arithmetic analogue of this known fact for
braids.

As a property of l-adic Milnor invariants, we have the following shuffle relation.

PROPOSITION 3.2.32. Let g € Galy. For multi-indices I, J with |I|,|J| > 1 and
1 <i<r, we have

> filg; Hi) = 0 mod g.c.d{A(Hi) | H € PSh(I, J)},
HEPSh(1,J)

where PSh(I, J) denotes the set of results of all proper shuffles of I and J ([CFLI]).

PROOF. By (3.2.5), we have

g Tiu(g; Jiy = > plgs Ad).
AESh(I,J)

Taking mod g.c.d{A(Hi) | H € PSh(I,J)}, the left hand side is congruent to 0
and any term u(g; Ai) with A ¢ PSh(I,J) is also congruent to 0. So the assertion
follows. O

Let RZ be the set of primes of k({;~) lying over Rg in (3.1.8). For po, € RY,
choose a prime P of Qg lying over p,. Since P is unramified in the Galois extension
Qg/k by Theorem 3.1.9 (2), we have the Frobenius automorphism o € Gal(Q2g/k)
of . By Theorem 3.2.20, fi(o; I) is independent of the choice of 9 lying over po.
So we define the [-adic Milnor invariant of p., for a multi-index I by

(3.2.33) ilpoc: 1) = Filop: 1),
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We also set A(poo; ) := A(og;I) so that T(peo; ) € Zi/A(poo; I). Let p be the
prime of k lying below po. Since x;(ogp) = Np (the norm of p), in order to have
Zi/A(pso; I) # 0, it is necessary for us to consider only primes po, in R lying over

RY:={p € Rs|Np=1modli}.

For p € R}, let e(p) denote the maximal integer such that
Np = 1 mod 1¢®¥).

It means that p is completely decomposed in k((je»))/k and any prime of k(e )
lying over p is inert in k(oo )/k((ery). Hence o € Gal(Qg/k((er))). Then the
indeterminacy A(poo; I) is a quotient ring of Z/1°(P)Z. We note that if u(oq; 1) =0
mod ¢ for all |I| < n, then 7i(poo; 1) is well defined in Z/1°P)Z for |I| = n + 1.

REMARK 3.2.34. In [Ms1] and [Ms2, Chapter 8], the arithmetic Milnor invari-
ants for certain primes of a number field were introduced as multiple generalizations
of power residue symbols and the Rédei triple symbol ([R]). They are arithmetic
analogues for primes of Milnor invariants of links. We see that Milnor invariants for
a pure braid coincide with those for the link obtained by closing the pure braid as
in Chapter 1. Recently, we found a relation between [ -adic Milnor invariants, Wo-
jtkowiak " s l-adic iterated integrals and l-adic polylogarithms ([NW], [W1] [W4])
and multiple power residue symbols (in particular, Rédei symbols), which will be
discussed in the forthcoming paper.

Finally, we introduce a filtration on Galy using l-adic Milnor numbers. We set
Galy"™'[0] := Galy. For each integer n > 1, we define a subset Gal}™"[n] of Gal;, by

Gali"[n] = {g € Galy(ge) | u(g: 1) = 0 for |I] < n}
= {g € Galy(¢) [ deg(O(yi(g)) — 1) Z nfor 1 <i<r}

(3.2.35)
We then have the descending series
(3.2.36) Galp = Gal}™0] © GalM'[1] 5 --- D Gal}![n] > - -
and we call it the Milnor filtration of Galy.
PROPOSITION 3.2.37. Forn > 0, Gal)![n] is a closed normal subgroup of Galy,.

PROOF. We may assume n > 1. Since u( ;I) : Galpy — Z; is continuous
for each I and Gal}"[n] = Nir1<n M :1)71(0), Gal}™[n] is closed in Galg. Let
g, h € Gal}"[n). Write ©(y;(p)) = 1+ Y;(p) for p = g, h and each 1 < i < r. Then
deg(Y;(p)) = n. First, we will show g~! € Gal}""[n]. By Lemma 3.2.14 (1), we have

Oyi(g™") =O(hs(g H(wil9)™)

(3.2.38) =Ths(g~")*(©wi(9)™"))
=1+Ths(g~")*(~Yi(g) + Yi(g)* —---).

Since Thg(g~1) is filtration-preserving, deg(Ihg(g~1)*(— Y( ) +Yi(g)2 =) =n
and hence g~! € Gal}[n]. Next, we will show gh € Gal}[n]. By Lemma 3.2.14
(2), we have

O(yi(gh)) = O(hs(h)(yi(9)))O(yi(h))

= Ths(h)"(O(yi(9)))O(yi(h))
= (1+Ths(n)*(Yi(9)) (1 + Y;(h)).
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Since deg(Ihs(h)*(Yi(g))), deg(Y;i(h)) = n, we see gh € Gal}"'[n]. Finally, we will
show hgh~! € Gal}[n]. By Lemma 3.2.14 (3), we have

O(yi(hgh™")) = O(Ihs(hg)(y:(h~")))O(Ths(h)(yi(9)))O(yi(h))
= Ths(hg)*(©(yi(h™")))Ths (h)*(O(yi(9)))O(ys (h))-

As we have just proved above, deg(©(yi(h™1)) —1),deg(Thg(h)*(O(y:i(g))) —1) = n.
Hence hgh~' € Gal}"![n]. Getting all together, the assertion is proved. O

In Section 3.3, we shall give another proof of Proposition 3.2.37 using the
Johnson filtration.

3.2.3. Pro-l link groups and Massey products. Following the analogy
with the link group of a pure braid link as in Chapter 1, we define the pro-l link
group of each Galois element g € Galy associated to Thg by
(3.2.39)

Is(g) = (21,20 |91(0) 2 Pyr(9) =1, ye(9)aX Py (9) ™ = 20)
1=

RS f;'“"l O (o) = = O (o)
=8 /Ns

where ‘ﬂg( ) denotes the closed subgroup of §, generated normally by the pro-I
words z; Xl(g)[ T (/) I N gy X9 [z, y-(9)~1]. We will give a cohomolog-
ical interpretation of [-adic Milnor invariants of g € Gal, by Massey products in
the cohomology of the pro-l link group Ig(g). In the following, we let g € Galy
and a an ideal of Z; such that a # Z; and x;(g) = 1 mod a. We may write a = [%Z,
for some 1 < a < oo (I*:=0if a = o0). When g € Galk(cloo), we have ¢ = co and
a=0.

Let C*(Ils(g),Z;/a) be the Z;/a-module of continuous i-cochains (i > 0) of
II5(g) with coefficients in Z;/a, where IIg(g) acts on Z;/a trivially. We con-
sider the differential graded algebra (C®(Ilg(g),Z;/a),d), where the product on
C*(Us(9),Zi/a) = DBiso C'(Ils(g),Z;/a) is given by the cup product and the
differential d is the coboundary operator. Then we have the cohomology ring
H*(Ts(g), Zi/a) := @, H(C*(s(g), Zi/a)) of the pro-I group IIs(g) with co-
efficients in Z;/a. In the following, we deal with only one and two dimensional
cohomology groups. For the sign convention, we follow [Dw|. For ¢,...,¢, €
HY(Ils(g),Z/a), an n-th Massey product {(cy,...,c,) is said to be defined if there
is an array

W = {w;; € C'(Is(g), Zifa) | 1< i < j <n+1,(i,j) # (Ln+ 1)}

1)

such that
(Wi iv1] = G (1<i<n),
dw;; = Z Wig U Wqj (J 7&2"_1)
a=1+1
Such an array W is called a defining system for {c1,...,c,). The value of {(c1,...,¢p)

relative to W is defined by the cohomology class represented by the 2-cocycle

n
E W1q U wa,n+17
a=2
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and denoted by (c1,...,cn)w. A Massey product {ci,...,c,) itself is taken to be
the subset of H2(Ils(g),Z;/a) consisting of elements (cy, . .., c,)w for some defining
system W. By convention, (¢) = 0. The following lemma is a baisc fact ([Kr]).

LEMMA 3.2.40. We have {c1, ) = c1Uca. Forn > 3, {(c1,...,c,) is defined and
consists of a single element if (c;,,...,cj,) = 0 for all proper subsets {j1,...,Ja}
(a>2) of {1,...,n}.

Next, we recall a relation between Massey products and the Magnus coefficients
for our situation. Let ¢ : §, — IIs(g) = §»/Ms(g) be the natural homomorphism.
We denote by ~; the image of x; under v, v; := x; mod MNg(g), for 1 < i < r.
By the definition (2.3.1) of IIg(g) and our assumption, 7 induces the isomorphism
5/ (T T (2) B TIs(g) /T (9) [MTs(9), s (g)] ~ (Z;/a)®" and so we have the iso-
morphism H'(Ils(g),Z;/a) ~ H(F.,Z;/a). Therefore the Hochschild-Serre spec-
tral sequence yields the isomorphism

tg: H'(Ns(g), Zi/a)"'s\ — H(Ts(g), Zi/a).

Here tg is the transgression defined as follows. For a € H'(Ms(g), Zi/a)"s(9),
choose a 1-cochain b € C*(§,,Z;/a) such that blm,) = a. Since the value
db(f1, f2), fi € §r, depends only on the cosets f; mod 9g(g), there is a 2-cocyle
c€ Z*(ls(g),Z;/a) such that ¢*(c) = db. Then tg(a) is defined to be the class of
c. The dual to tg is called the Hopf isomorphism:

tg" : Ha(Ils(9), Zi/a) = Hi(MNs(9), Zi/a)ug(q) = Ns(9)/Ns(9)" [Ms(9), +]-

Then we have the following proposition (cf. [St, Lemma 1.5], [Msl, Theorem
2.2.2]).

PROPOSITION 3.2.41. Notations being as above, letc, ..., c, € H (Ils(g), Z;/a)
and W = (w;;) a defining system for the Massey product (c1, ..., c,). Let f € Ng(g)
and set v:= (tg¥)~1(f mod [Ms(g),T+]). Then we have

(c1y - yen)w ()
n
= Z(—l)ﬁl Z Z W14, (Vir) W1 —ej 1 (Vi )5 f)as
j=1 ert-te;=n I=(i1---i;)

where e, . .., e; run over positive integers satisfying ey +---+e; =n and p(l; f)q =
w(I; f) mod a.

Now, let ~f,...,vF € H'(Ils(g),Zi/a) be the Kronecker dual to vi,...,7r,
namely, 77 (v;) = 0;; for 1 < 4,5 <r. Let v; := (tgv)_l(xfx’(g) (27, vi(9)~1]) mod

MNs(g),Sr]) for 1 <i < r. Let I = (4 - -iy,) be a multi-index such that |I| =n > 2.
Let g € Galg. We assume the following conditions:

(1) (47 - ~ja);x37Xl(g)) = 0 mod a for any subset
{j1,-- - Jat of {i1,...,intand 1 <i < r,
(3.2.42) (2) i1, ...,y are distinct each other, and
1(g; (41 -+ ja)) = 0 mod a for any proper subset
{jl, . ,ja} of {il, . ,’Ln}

We note that the condition (1) is unnecessary when g € Galy(¢,). The following
theorem gives a cohomological interpretation of u(g;I), := p(g;I) mod a by the
Massey product in the cohomology of IIs(g).

46



3.2 l-adic Milnor invariants and pro-l link groups

THEOREM 3.2.43. Notations and assumtions being as above, the Massey product
(Vi) in H*(ILg(g), Zi/a) is uniquely defined and we have

M(g; I)a = (_1)n<7;<17. e ,'7;”>(tin)'

PRrROOF. First, we compute u(J;x%fX’(g) (27, vi(g)~ 1)) for a multi-index J =

(1 Ja), where {j1,...,7a} is a subset of {i1,...,4,}. We note that

Oz} XL, yi(g) 7))
= 0911 ()0 (4 (9) 1) (O (iwi(a)) — Oui(9):))).
By our assumption (3.2.42) (1), we have
(3.2.44)
wl Ty} X 27 i)Y = ul T ai(g)) — <J w(g)x»
+Z (A;2iyi(9)) — n(A;yi(9)x:))va mod g,

where A runs over some proper subsequences of J and v4 € Z;. By the straight-
forward computation, we have

oy ol (Ji)) (i # J1),
u( s 2iyi(9)) _{ w(g; (Jg1)) + plg; (2 -+ - Jagr)) (i = j1),

and

(V) — 4 195 (JD) (i # ja),
o) ={ WD) g G20

Hence we have
(3.2.45)
g; (J2 -+~ Jag1)) = 05, jum(gs J) (i = j1),
w(J;2iyi(9) — u(Jsyi(g)zi) = S wlg; (Go -+ Jad1))d4 g0 — 1(g; ) (i = Ja),
0 (otherwise).

Now, let n = 2. Then we have (v; ,7;,) =7;, Ui, By Proposition 3.2.41, (3.2.42)
(2), (3.2.44) and (3.2.45), we have
iy Yin) (vin) = =l [y, Yiy (9)])a = p1(g5 D)

Suppose n > 3 and let {j1,...,ja} be a proper subset of {i1,...,4,}. Then, by our
assumption (3.2.42) (2), (3.2.44) and (3.2.45), we have

w(J; wl Xl(g)[ 1 yi(9)7 ) =0mod a

for J = (j1---ja) and 1 <@ < 7. So, by Proposition 3.2.41, we have
<’V;1a s 77;a>(ti) =0
for 1 < i < r. Since Ha(II(g),Z;/a) is generated by a:}fx"(g) [, yi(g)] for 1 <4 < r,
we have
<Cj1,. . .,Cja’> =0.

Therefore, by Lemma 3.2.40, the Massey product (c;,,...,¢;, ) is uniquely defined.
By Proposition 3.2.41, (3.2.42) (2), (3.2.44) and (3.2.45) again, we have

(i) () = (U w0y (9))e = (-1)"u(g; Da. - O
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3.3. Pro-/ Johnson homomorphisms

3.3.1. Some algebras associated to lower central series. For each integer
n>=1, welet

grn(sr) = Fn%r/rnﬁ-lgrv
which is a free Z;-module whose rank ¢,.(n) is given by the Witt formula ([MKS,
5.6, Theorem 5.11], [Se, Ch. IV, 4, 6]):

1
_ = n/d
- n Z ’[,L(d)’l" ’
d|n
where u(d) is the Mébius function. The graded Z;-module
() = Per,(3r)

n>1
has the structure of a graded free Lie algebra over Z;: For a = s mod I',,, 115, €
gr,.(§-) and b =t mod 'y, 115, € gr,,(Fr) (s € T'nFr, t € Ty ), the Lie bracket on
gr(§,) is defined by
[a,b] :=[s,t] mod F,(m +n+1).
We consider the graded associative algebra over Z; defined by
gr(Z[[3.)) = Pera@lF ), era(Zill3]) = 12,50/ s

n=0

The map f+— f—1 (f € §-(n)) defines an injective Z;-linear map
(331) grn(sr) — grn(Zl[[ST]D

for n > 1 and the injective Lie algebra homomorphism over Z;

gr(§r) = gr(Zi[3]]),
where gr(Z[[§,]]) is shown to be the universal enveloping algebra of the Lie algebra
gr(§,). Moreover, by the correspondence z; — 1 mod I%l[[gr]] € gry(Z[[3:]]) — X; €
Hyz,, we have the isomorphism of Z;-modules

(3.3.2) O, : gr,(Z[[3,)) ~ HE"

for each n > 0 and so gr(Z;[[§]]) is identified with the tensor algebra T'(Hz, ):
gr(Zi[[8]]) = T(Hz,) = Zu( X1, ..., X;).

The composition of the map of (3.3.1) with ©,, in (3.3.2), denoted also by ©, :

gr, () — H%", is the degree n part of the pro-l Magnus embedding in (3.2.3):

(3.3.3) O, = (0 — 1)z, mod T(n+1).

Here we may note that © is multiplicative, O(f1f2) = ©(f1)O(f2) for fi1, fo € Fr,
while ©,, is additive, O, ([f1f2]) = O ([f1] + [f2]) = On([f1]) + ©n([f2]), where [-]
stands for the class mod §,(n + 1).

Let S(Hz,) be the symmetric algebra of Hy, over Z; and let ¢ : T(Hz,) —
S(Hz,) be the natural map. We let S™(Hyz,) := q(H%m) and T; = ¢q(X;) for
1 <i < rsothat S(Hg,) is the graded algebra B, 5™ (Hz,) which is noting but

the commutative polynomial algebra over Z; of variables T1,...,T,:
"(Hz,) = @ S™(Hy,) = Z[T1, ..., T,].
m2=0
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3.3.2. The pro-l Johnson map. For ¢ € Autﬁl(f(HZl)), we denote by [¢]
the induced Z;-endomorphism of Hz, = T(1)/T(2) = Z7". We firstly recall the
following lemma due to Kawazumi ([Ka]).

LEMMA 3.3.4. A Z;-algebra endomorphism o off(HZl) is a filtration-preserving
automorphism of f(HZl), p € Autﬁl(f(HZl)), if and only if the following condi-
tions are satisfied:

(1) (T(n)) € T(n) for alln > 0.
(2) the induced Z;-linear map [¢] on T(1)/T(2) = Hy, is an isomorphism.

PROOF. Suppose ¢ € Autﬁl(f(HZl)). Since ¢ is filtration-preserving, the con-

dition (1) holds. To show the condition (2), consider the following commutative
diagram for vector spaces over Z; with exact rows:

0 — T(2) — T(1) —  Hz, — 0
/J: <P|:T“(2) i ‘P|f(1) )
0 — T(2) — T(1) —  Hy, — 0.

~

Since ¢(T'(n)) = T(n) for all n > 0, we have Coker(<p|f(i)) =0 for i = 1,2,
in particular. Since ¢ is an automorphism, we have Ker(¢) = 0, in particular,
Ker(<p|f(i)) = 0 for ¢ = 1,2. By snake lemma applied to the above diagram, we
obtain Ker([¢]) = 0 and Coker([¢]) = 0, hence the condition (2).

Suppose that a Z;-algebra endomorphism ¢ of T satisfies the conditions (1) and
(2). Let z = (2 ) be any element of T with 2, € H%m for m > 0. To show that ¢

is an automorphism, we have only to prove that there exists uniquely y = (y,) € T
such that

(3.3.5) z=p(y).

Note by the condition (1) and (2) that ¢ induces a Z;-linear automorphism of
T(m)/T(m +1) = HZ™, which is nothing but [¢]®™. Then, writing ¢(y;); for
the component of ¢(y;) in H%j for i < j, the equation (3.3.5) is equivalent to the
following system of equations:

20 = ¢(Yo) = Yo,
z = [@]é@y;),
(3.3.6) 2= [$]%%(y2) + @ (y1)2,

Zm = (2% (Ym) + ©W1)m + -+ + @(Ym—1)m,

Since [¢]®™ is an automorphism, we can find the unique solution y = (y,,) of (3.3.6)
from the lower degree. Therefore ¢ is an Z;-algebra automorphism. Furthermore,
we can see easily that if zg =+ =2,1 =0,thenyp=---=y,_1 =0 forn > 1.
This means that ¢=1(T(n)) C T'(n) and so ¢ is filtration-preserving. O

By Lemma 3.3.4, each ¢ € Autﬁl(f(HZl)) induces a Z;-linear automorphism
[¢] of Hz, =T(1)/T(2) and so we have a group homomorphism
[ ]+ Aut®™(T(Hz,)) — GL(Hz,),
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where GL(Hyz,) denotes the group of Z;-linear automorphisms of Hyz,. We then
define the induced automorphism group of T by

A(F () = Ker([ ] i
={pe Aut(T (Hz,)) | ¢(h) = h mod T(2) for any h € Hy, }.

We note that there is a natural splitting s : GL(Hgz,) — Aut(T (Hz,)) of [ ], which
is defined by

s(P)((2n)) := (P®"(2,)) for P € GL(Hz,).

In the following, we also regard [P] € GL(Hyz,) as an element of Aut®(T) through
the splitting s. Thus we have the following

LEMMA 3.3.7. We have a semi-direct decomposition
Aut™(T(Hz,)) = IA(T(Hz,)) % GL(Hz,); o= (polel ™ [e]).

Let p € IA(T (HZZ)). Then we have p(h) — h € f(2) for any h € Hyz,, and so
we have a map

(3.3.8) E : IA(T) — Homg, (Hz,, T(2)); ¢ — ¢lm,, —idu,,,

where Homy, (Hz,, T(2)) denotes the group of Z-linear maps Hy, — T(2). The
following Proposition will play a key role in our discussion.

ProprosITION 3.3.9. The map E is bijective.

PROOF. Injectivity: Suppose E(p) = E(¢') for ¢, ¢’ € IA(T(Hz,)). Then we
have ¢|m,, = ¢'|m,,. Since an Zl—algebra endomorphism of f(HZl) is determined
by its restriction on Hyz,, we have ¢ = ¢'.

Surjectivity: Take any ¢ € Homg, (Hz,,T(2)). We can extend ¢ + idu,,  Hy —

T(2) uniquely to a Z;-algebra endomorphism ¢ of T(HZL). Then we have obviously
©(T'(n)) C T(n) for all n > 0. Since T( )/T(2) = Hz, and we see that

[¢](hmod T(2)) = ¢(h) mod T(2) = h + ¢(h) mod T(2) = hmod T(2),
we have [p] = idp, . By Lemma 3.2.1, we have ¢ € IA(ZA“) and E(p) = ¢. O

By Lemma 3.3.7 and Proposition 3.3.9, we have the following.
COROLLARY 3.3.10. We have a bijection
E : Aut®™(T(Hy,)) ~ Homy, (Hz,, T(2)) x GL(Hyz,)

defined by E(p) = (E(p o [¢] 1), [¢]).

Now, let Thg : Galp, — P(F,) be the Thara representation associated to S in
(3.1.6). We recall that the correspondence ¢ + p* ;= © 0o ©~! in (3.2.8) gives
the injective homomorphism Aut(g,) — Aut™(7(Hz,)) and hence the inclusion
P(3,) — Aut™(T(Hy,)) which satisfies [¢] = [¢*] in GL(Hz,). Composing Ihg
with this inclusion, we have the homomorphism 7s : Gal, — Autﬁl( (Hz,)) defined
by

75(9) = Ths(g)" = © oThs(g) 0O,
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We then define the map ng : Galy — TIA(T (HZL)) by composing 7js with the pro-
jection on IA(T(Hz,)):
(3.3.11)

ns(g) = 1s(g) o [Ths(g)] ™! =Ths(g)" o [Ths(g)] ™" = © o Ths(g) 0O~ " o [Ihs(g)] "
Thus, we have 75(g9) = (1s(g9), [Ihs(g)]) for g € Galy under the semi-direct decom-
position Aut™ (T(Hz,)) = IA(T(Hz,)) x GL(Hz,) of Lemma 3.3.7.

Now, we define the pro-l Johnson map
S Galk — Hole(HZ“T\@))
by the composing ns with E in (3.3.8), and define the extended pro-l Johnson map
5 : Galy — Homy, (Hz,,T(2)) x GL(Hz,)

by composing Rg with E of Corollary 3.3.10. So we have, for ¢ € Galy,
(3.3.12)

7s(9) = EMms(9)) =ns(9)|m,, —idm,,

=Thg(g)* o [Ths(9)] |, —id|m,, = © o Thg(g) 0 ©~" o [Ths(9)] |, — id|,,,

75(9) == (7s(g9), [Ths(g)]).

For m > 1, we define the m-th pro-l Johnson map
7™ : Galy, — Homy, (Hy,, Hy ™)
by the m-th component of 7g:
(3.3.13) 7s(g) == > 75" (9) (g € Galy).
m>1

We note that the pro-I Johnson map 7g is no longer a homomorphism. In fact,
we have the following

ProrosiTION 3.3.14. For g1, g2 € Galy, we have

ns(g192) = ns(g1) © [Ths(g1)] 0 ns(g2) o Ths(g1)] .
ProOOF. By (3.3.11), we have

ns(g192) =Ths(g192)* o [Ihs(g19
=00 (Ihs(g192) c O~ ! [Ih (9192)] !
=0 olhg(g1)o Ihs(gz) o [Ths(ga)]~" o [Ths(g1)] "
=0 olhg(g1) 0O " o [lhg(g 1)]71 o [Ths(g1)] 0 © o Thg(ga) 0 O~!
o[Ths(g2)] ™" o [Ths(g1)]~
=ns(g1) o [Ths(g1)] 0 1s(g2) © [Ths(g1)] "

2)]

o]
O

O
Proposition 3.3.14 yields coboundary relations among Tém). Here we give the

formulas only for Tsl) and (2).

ProPOSITION 3.3.15. For g1, g2 € Galg, we have
0 (g1g2) =78 (1) + uhs<gl>]®2or§>< 2) o [[hs (1))~
()(9192) =7 (g1) + (7§ (gl>®1dHL +id, ®rs< ) o [Ihs(g))%?
or$”(g2) o [Ihs(g1)] ™" + [Ths(g1)]®3 0 75 (g2) © [Ths(g1)] 7.
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PROOF. By definition (3.3.13), we have

(3.3.16) s(g192) Z TS glgg

m2=1

On the other hand, by Proposition 3.3.14 and (3.3.12), we have, for h € Hy,,

75(9192)(h) = —h +ns(g192)(h)
= —h+ (ns(g1) o [Ths(g1)] 0 ns(g2) o [Ths(g1)] ") (h)
= —h+ (ns(g1) o [Ths(g1)] o (idm,, +75(92)))([Ths(g1)] " (h))

= —h+ (ns(g1) o [Ths(g1)]) ([Ihs g7 ) + 3 (8™ (92) © [Ths (1))~ 1)(’0)

m2>1

= —h+ns(g) [ h+ Y ([Ths(gn)]®™ o §>(gg>o[1hs(gl)]—1)(h>)

S
+1s(91)(([Ths(91)]22 0 75" (g2) © [Ths (g1)] 1) (h))
+15(91)(([Ths (91)]®% 0 75

Q
S
~
o
=
=
n
—
)
=
=
|
—
~—
—
>
~
N~—
Q
o
S
—~
N~—

‘We note that

05 (9)| g = (da, +7s(9)™ « HE™ — Haz, x T(2m)

for any g € Galg and so we have the following congruences mod f(4):

ns(g1)(h) = h+ T“)( D) + 7 (g0) (),
ns(91)(([Ths(g1)]® oré>< 2) o [ths(g1)] ™) ()
= ([Ths(91)]®? 0 75" (g2) 0 [Ihs<gl>11
+(( é)<gl>®1dHZ +idp,, ® 75 (01
s (90) (s (91)]2 o 75 (g2) © s (g1)] ) (h

Therefore we have
(3.3.17)

7s(9192)(h)

76 (1) (0) + 78 (91) ()

+([hs (91)1° © 75(g2) o Mhs ()] ~)(h)

+H(§ <1>®1de +idi, ® 757 (91)) © [Ths(91)]2 0 7§ (g2) o [Ths (91)] ) (b)
+([ths (91)]% 0 78 (92) © [Ihs(91)] ) (k) mod T(4).

Comparing (3.3.16) and (3.3.17), we obtain the assertions. O

3.3.3. Pro-l Johnson homomorphisms. Forn > 0,let 7, : §» — §-/Tnt15r
be the natural homomorphism. Since each I',,§, is a characteristic subgroup of g,
T induceb the natural homomorphism 7, : P(§,) <= Aut(F,) — Aut(F,/Trni1Sr).

Let Ih ) denote the composite of Thg with 7, ,:

Ih(Sn) s Galy — Aut(F,/Thi1Sr).
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In particular, Ih(sl)(g) = [Thg(g)] for g € Galy. Let Gal}°"[n] denote the kernel of
h{:
Gall®"[n] = Ker(Ihgn))
={g € Galy, | Ths(g9)(f)f~! € T, 413, for all f € F..}.
We then have the descending series of closed normal subgroups of Gal:
Gal, = Gal}°"[0] D Gal*"[1] > --- D Gal{*"[n] > ---

and we call it the Johnson filtration of Galy associated to the Thara representation
vs (cf.]Aal, [Johl]). We note by Theorem 3.1.9 (1)

(3.3.19) Gall*"[1] = Ker(Ih : Galy — GL(Hz,)) = Galy¢,n)-
The relation with the Milnor filtration defined in (3.2.35) is given as follows.

(3.3.18)

ProPOSITION 3.3.20. The Johnson filtration coincides with the Milnor filtra-
tion, namely, for each n > 0, we have
Gal}*"[n] = Gal}"'[n].
PROOF. We may assume n > 1 and hence g € Galk(clw). Then we have
g € Gali®[n] & The(g)(zi)z; ' € Tp1Fp for all 1 <i <
& yi(g)xiyi(g)_lel el 1§ foralll <i<r
& yi(g) €Fr(n)foralll <i<r
< deg(O(yi(9) —1)) Znforalll <i<r
& g e GalM[n]
O
Note that Proposition 3.3.20 yields Proposition 3.2.37. In the following, we
simply write Galg[n] for the n-th term of the Johnson (or Milnor) filtration for

n > 0 and we denote by k[n] the Galois subextension of k in Q corresponding to
Galg[n]. By (3.3.19), we have k[1] = k({j).

We give some basic properties of the Johnson filtration.

LEMMA 3.3.21. For g € Galg[m| (m > 0) and f € T',§, (n > 1), we have
Ths(9)(f)f ™" € Donyns-

Proor. We fix m > 0 and g € Galg[m]. We prove the assertion by induction
on n. For n = 1, the assertion Thg(g)(f)f ™! € T'pny13, is true by definition (3.3.18)
of Galg[m]. Assume that
(3.3.22) Ths(9)(f)f " € Tpyir if f € TyFr and 1 < i < .

Let [[')§r, Sr]abst denote the abstract group generated by [a,b] (a € T',,Fr, b € Fyr).
Since Thg(g) is continuous and [I',,Fr, §r]abst 1S dense in Ty, 115, it suffices to show
that

IhS(g)(f)f71 € ]-—‘m+n+1gr fOI‘ f S [Fn'sjra%r]abst-
For this, since any element f of [I',§,, §r|abst can be written in the form
f= [bla 01}61 to [bQ’cq]eqa
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where b; € I',§,, ¢; € §, for each j (1 < j < ¢) and e;’s are integers, and we have
Ths () ()f " = Ths(g) (b1, ci]) - Ths(g)([bg, cql)“ by cg] =7 -+ [br, 1],

we have only to show

(3.3.23) Ths(g)([b, )byt € Fr(m+n+1)ifb € T,Tr,c € T

For simplicity, we shall use the notation: [p,z] := ¢ (z)z~! and [z, ] := xp(zx)~
for z € §, and ¢ € Aut(F,). By the “three subgroup lemma” and the induction
hypothesis (3.3.22), we have

IhS(g)([b7 C])[b7 c]_l

1

[Ths(9), [b, ]

€ [Ihs( )7[ ngrzgr]]
C [[IhS( ) nST] STH[ST;IhS(g)]aFnST]
C [ m+n§rvgr][ m+1grarn3’r]
- ]-—‘m+n+1gr
and our claim (3.3.23) follows. O

Lemma 3.3.21 yields the following

PROPOSITION 3.3.24. For m,n > 0, we have
[Gal[m], Galg[n]] C Galg[m +n] for m,n > 0.
In particular, the Johnson (or Milnor) filtration is a central series.

PROOF. We use the same notation as in the proof of (3.3.23). By Lemma
3.3.21, we have

[[Galk[n]a S’r‘]v Galk [mH C [Fn+13’r7 Galk [mH C ]-—‘m+n+13;7‘;
[[3r, Galg[m]], Galg[n]] C [Lms18r, Galg[n]] C Timpni1Sr-
By the three subgroup lemma, we have
[[Galk[m], Galg[n]],&r] C [Galg[n],§r], Galk[m]][[§r, Galk[m]], Galg[n]]
- Fm+n+1%r-
By definition (3.3.18), we obtain the assertion. O
For n > 0, let
gr, (Galy) := Galg[n]/Galg[n + 1].
Then, by Proposition 3.3.24, the graded Z;-module
gr(Galg) : @gr (Galy)
n>0

has the structure of a graded Lie algebra over Z;, where the Lie bracket is defined
by the commutator: For ¢ = g mod Galg[m + 1], b = h mod Galg[n + 1] (g €
Galy, [m], h € Gal, [n]),
[a,b] := [g, h] mod Galg[m +n + 1].
Now, for m > 1, we let Tg ™| denote the restriction of the m-th l-adic Johnson

map Té " | in (3.3.13) to Galg[m]:
75" = 7™ |Gatyfm) : Gal[m] — Homg, (Hz,, Hy ™).

The following theorem asserts that Té ™| describes the action of Galg[m] on §, /T 125
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THEOREM 3.3.25. Notations being as above, the following assertions hold.
(1) For g € Galg[m] and f € §,, we have

(@) (1)) = Omia (Ths(g) (F)F L),

where Opq1 : gr, 1 (§r) — Hg(mﬂ) s the degree (m + 1)-part of the Magnus

embedding in (3.2.3).

(2) The map Té ™ is @ homomorphism and Ker(r [m]) = Galg[m + 1]. Hence Tgm]

induces the injective homomorphism gr,, (Gal) — Homyg, (HZ“Hg(mH)).
PrOOF. (1) We need to show that for g € Galg[m],
(3.3.26) 78 (9)(Xi) = Oyt (Ihs(g) (zi)e; ) 1< i <.
By (3.3.12) and [Ihs(g)] = idp,, , we have
7s(9)(Xi) = (©olhs(g) 0O )(O(zi) — 1) — (O(xi) — 1)
= O(Ihs(g)(x )) O(xi).
Therefore, by (3.3.13), we have
(3.3.27) 75" (9)(Xi) = the component in H "V of ©(Ihs(g)(x7)) — O ().
On the other hand, since Ihs(g)(aci)ac;1 € I'yi15r, we have
6(Ihs(g)(z:)a7") = 1+ Ot (Ths(g) (@) ) mod F(m +2).
Multiplying the above equation by O(z;) from right, we have
(33.28)  O(Ths(g)(w:)) = O(:) + Oy (Ths(g)(wi)z; ') mod T(m + 2).

y (3.3.27) and (3.3.28), we obtain (3.3.26).
(2) By (1), for g, h € Galg[m] and f € §,, we have

TN () = Omra(Ths(gh)(f) )
= Om1(Ihs(g)(Ths(R)())f)
= O, 41(Ths(g)(Ths(R)(f) f~)Ths(9)(f)f ).

Since Ihs(h)(f)f~" € Tnt1y, we have Ths(g)(Ths(h)(f) f~1) = Ths(h)(f)f~! mod
Tom4138r by Lemma 3.3.21. Since I'ypp118r C I'io8r by m > 1, we have

SN ([f]) = Omir (hs(9)(£)f 1) + Oyt (Ths(A)(F)F ).
= (v g) + 75 () (1)

for any f € §,. Hence the former assertion is proved. The latter follows from (1)
and (3.3.18). O

By Theorem 3.3.25 (1), 7¢ ) factors through Homg, (Hz, , gr,, 1(5+))

74"+ Galg[m] — Homz, (Hz,, 88,41 (§)); 9= ([f] = Ths(g)(/)F )

followed by the map Homy, (Hz,,gr,, ,(§»)) — Homg, (HZ“Hg(mH)) induced by

Omy1. We call Tgm] : Galg[m] — Hole(HZl,Hg(mH)) (m = 1) or the induced

injective homomorphism gr,, (Galy) — Homg, (Hz,, Hg(mH)), denoted by the same

[

TSm], the m-th pro-l Johnson homomorphism.
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A relation between the m-th pro-I Johnson homomorphisms and l-adic Milnor num-
bers in Section 3.2 is given as follows.

THEOREM 3.3.29. For g € Galg[m] (m > 1), we have
§loX) =~ 3 X,
|J|=m+1
where for J = (ji - jm+1),

{ ﬂ(g;jQ e 'jerljl) - 5j1,j,,t+1/1(9; J) (Z = jl)a

IU‘(J) = “(g;j2 e 'jm+1j1)6j1,jm+1 - /”'(9; J) (Z = jm-i-l)v

0 (otherwise).
Proor. By Theorem 3.3.25 (1), we have

T(9)(X) = Omia(ps(o)(e >x;1>
= Om1(¥i(9)wivi(g ) )
(3330) = 7@m+1([f5uyl( )])

= - Z ,U/(J, [x'nyl(g)])XJ
|J|=m+1
By the computation in the proof of Theorem 3.2.41, we have, for |J| = (j1 - Jm+1)s
(3.3.31)
p( i [2iyi(9)]) = n(Jiiyi(9)) — p(J3v:(9)w:) o
(g3 J2 -+ Jm1J1) = Gi s (95 ) (0 = ),
=9 H(Gd2 Tm41d1)05s Ggn — 193 ) (6= Jmsa)-
0 (otherwise).

By (3.3.30) and (3.3.31), the assertion follows. O
We compute the pro-I Johnson homomorphisms on commutators.

PROPOSITION 3.3.32. For g € Galg[m], h € Galg[n] (m,n > 0) and f € §,, we
have

A g S = Ot (ths(9)(Ms(B) () ) (Ihs(R)(H) )"
~Ihs () (hs(9) ()~ H(Ihs(9) ()7

PRrROOF. For simplicity, we set ¢ := Thg(g), ¢ := Thg(h). By a straightforward
computation, we obtain

[, ¢1(f)f
= [, (BN fH) ) - W™ (W)™ - le(f)f ) - f

Since [g, h] € Galg[m+n] by Proposition 3.3.24 and (f)f~! € [';,415, by Lemma
3.3.21, we have

[, el((6(£)F)™)
Similarly, we have

W™ H)((W(NHF )™ = (((f)fH) ™) mod PampnirFr-

By these three equations together, we have

[, el(f) "
= (N7 SN (@)Y () f 7 mod Drpgnga o
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Since ¢(f)f71 c Fm+1%r;¢(f)f71 € Fn—&-l%r) and [Fm+1%r7rn+15r] C Fm+n+2§a

we have

[, 1)
= (N D@ (WD) () f 7 mod T2

Since we easily see that

{ (@) f ) (b)) = (@) f D))~ mod TrpraFr,
() (N = (W (N - @ ()™ ! mod D2,
we obtain the assertion. ]

By Proposition 3.3.32, the direct sum of Johnson homomorphisms Tém] over all
m > 1 defines a graded Lie algebra homomorphism from gr(Galy) to the derivation
algebra of gr(F,) as follows. Recall that a Z;-linear endomorphism of gr(F,) is
called a derivation on gr(§,) if it satisfies

§([,y]) = [6(z), y] + [2,0(y)] (2,9 € gr(Tr)).

Let Der(gr(§,)) denote the associative Z;-algebra of all derivations on gr(§,) which
has a Lie algebra structure over Z; with the Lie bracket defined by [d, '] := §od’ —
§’ 00 for §,6" € Der(gr(F,)). For m > 0, we define the subspace Der,, (gr(F,)) of
Der(gr(§,)), the degree m part, by

Deryn (gr(3r)) := {6 € Der(gr(3,)) [ 0(gr,(8r)) C &y (§r) for n > 1}
so that Der(gr(F,)) is a graded Lie algebra over Z;:
Der(gr(3-)) = @ Dery, (gr(3r))-
m=0

A derivation § € Der,, (gr(§,)) is called a special derivation if there are Y; € gr,. ()
such that

6(Xi) = [V, Xi] (1<i<r)

and moreover if the condition

r

> Vi X =0

i=1
is satisfied, a special derivation is said to be normalized ([Ih4, §2]). It is easy to
see that normalized special derivations form a graded Lie subalgebra

Der"*(gr(§,)) = € Derpy(er(F,))
m=0

of Der(gr(§,)). Since a derivation on gr(§,) is determined by its restriction on
Hy, = gr{(3:), we have a natural inclusion, for each m > 1,

Dery, (gr(§r)) C Homg, (Hz,, grp41(8r)); 61— 5|Hzl'

Hence we have the inclusions

Der't*(gr(§)) C Der(ex(3:)) € €D Homz, (Hz,, g1,41(30)),
m>1
where Der (gr(§,)) (resp. Der'}*(gr(g,))) is the Lie subalgebra of Der(gr (g, ))
(resp. Der™®(gr(F,))) consisting of positive degree part.
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PrOPOSITION 3.3.33. The direct sum of Tl Foverm >1 defines the Lie algebra
homomorphism

EB g+ gr(Galy) — Der}®(gr(3,)).

m2>1

PrOOF. (cf. [Da, Proposition 3.18]) By Theorem 3.3.25 (1), it suffices to show
that for g € Galg[m], the map f — Thg(g)(f)f " is indeed a special derivation on
gr(3,). Let s € Galg[m] (m > 1) and s € I;§,, h € I';§,. By using the commutator
formulas

[ab,c] = a[b,cla™* - [a,c], [a,bc] = [a,b] - bla,c]b™! (a,b,c € G),
we obtain
Ths(g)([s. t])[s,2]"
),

[Ihs( )(5), Ihs (9) (1), #] "
= [ss7'Ths(g)(s), Ths(g)(t)t~ ][5, ] 7"
= s[s™'Ths(g)(s), Ths(g) ()t '] - (Ths(g)(t)t™1)[s ™ Ths(g)(s), t](Ths(g) ()t 1) s~
‘[s,Ths(g)(t)t~"](Ihs (g )t s, t)(Ths(g) (#)t) s, ¢

= s[s™'Ths(g)(s), Ths(g) ()t ] - (Ths(g)(t)t*)[s™ ' Ths(g)(s), t](Ths(g)(t)t ) ~'s ™"
(s, Ths(g)(t)t ] [Ths(g) ()t [s, ).

Since s 'Ths(g)(s) € LitmTr, Ths(g)(#)t™! € T4 by Lemma 4.3.21, we have

[s"'Ths(9)(s), s (9) ()t '] € Tisjro2mBr

Similarly, we have
[Ths(g) ()t~ [s,t] € Titoj4mSr-
By these three claims together, we have

Ihs(g)([&t})[s,t]*l
= sThs(g) ()t~ [~ 'Ths(g)(s), t](sIhs(g) (1)t 1) "' [s, Ths(g) ()t ~"] mod T'itjsm+18r-

Noting z[s~'Ths(g)(s), ]~ = [s~'Ths(g)(s),t] mod Tyt jimi1§r for x € §,, we
proved that f +— Thg(g)(f)f ! is indeed a derivation. That it is special and normal-
ized follows from Thg(g)(z;) = vi(9)z:vi(g)™ (1 <i < r) and Ths(g)(z1---2,) =
x1--xp for g € Galg[m] (m > 1) and 1 <i < r O

Finally we introduce an analogue of the Morita trace map ([Mt1, 6]). For each
m > 1, we identify Homg, (Hz,, Hi "™ *") with Hj gz, Hy "™, where Hj, :=
Homg, (Hz,,Z;) is the dual Z;-module, and let

Cm+1 * HOHlZl (HZ“Hg(erl)) = HZZ ®Zl Hg(m+1) — H%m
be the contraction at (m + 1)-component defined by
(3.3.34) Cmt1(@@h1 @+ @ hypy1) = d(hmy1)h1 @ -+ @ hyy,
for ¢ € Hj , h; € Hz,. We then define the m-th pro-l Morita trace map
(3.3.35) Tel™ : Homy, (Hz,, Hy "™ *V) — 5™ (Hz,)

by the composite map q o ¢p41.
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CHAPTER 4

Pro-/ reduced Gassner representation and Ihara
power series

In this chapter, we study the arithmetic analogue of Chapter 2. More precisely,
we define the pro-I reduced Gassner representation for the absolute Galois group of
a number field and give a formula in terms of the [-adic Milnor invariant. Moreover,
regarding Thara power series as a special case of the pro-l Gassner repesentation,
we give an arithmetic topological interpretation of Jacobi sums and give a formula
that relates [-adic Milnor invariants and Soulé characters. This chapter is based on
[KMT, Sections 4 and 5].

4.1. Pro-l Magnus-Gassner cocycles

4.1.1. Pro-l Fox free derivation. The pro-l Fox free derivative 52— : Z;[[§,]] —

Zi|[3+]] (1 < j <) is a continuous Z;-linear map satisfying the f0110w1ng property:
For any « € Z;[[§+]],

(4.1.1) o= GZZ[[?T )+ Z 833
J

O n ) "
We note by (4.1.1) that — Py IZL[[I if o — ez,(3,))(@) € 17,5,y for n > 1.
Here are some basic rules for the pro-l free calculus:
(i) Oz _ 5
3mj o
.. oap Oa 0B
(i) Ba; = T%fzz[[sr]](ﬂ) ‘*‘agj (a, B € Zi[[37]])-
L OF 71 1 af
i) S =
., of¢ af .
(iv) =— = (f € §r,x € Zi[[5+]]), where § is any element of Z;[[§,]]
8xj 8ZEJ

such that 8(f — 1) = f* — 1 if exists.

(f €3r)-

Op(a) O
— (2> Aut(F,), a € Z[[3,]]). (Note that ool
(v) 9o(z,) @(6%) (v € Aut(Sr), o € Zi[[3r]]). (Note that (z1),..., (z,)
are free generators of §,.)
(vi) If § is an open free subgroup of §F, with free generators y1,- - ,ys, we

have the chain rule: 8704 = O Oy,

Oxj = Oy; Ox;

(v € Zu[[F]))-
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The higher derivatives are defined inductively and the I-adic Magnus coefficient
w(I; o) of a € Zy[[§r]] for I = (i1 ---iy) is expressed by

a’ﬂ
(s ) = ez,(3,]] (M)

so that the pro-l Magnus expansion (3.2.2) is written as
"o
O(a) = ez,(3,) () + Z €7, [[3+]] (M) Xiy - X,

161 ,.yin <7

4.1.2. Pro-l Magnus cocycles. Let Thg : Galy, — P(F,) C Aut(F,) be the
Thara representation associated to S in (3.1.6). Let ~ : Z[[§,]] — Zi[[§]] denote
the anti-automorphism induced by the involution g, > f — f~! € §,. We define
the pro-l Magnus cocycle Mg : Gal, — M(r; Z[[r]]) associated to Thg by

(4.1.2) Ms(g) i (amgg)()>

for g € Galg. In fact, we have the following

LEMMA 4.1.3. The map Mg is a 1-cocycle of Galy, with coefficients in GL(r; Z,[[5r]])
with respect to the action Ihg. To be precise, for g, h € Galy, we have

Ms(gh) = Ms(g)Ths(g)(Ms(h)),
where Thg(g)(Mg(h)) is the matriz obtained by applying Ths(g) to each enty of
Mg(h).
PrROOF. Let y; :=Ihg(h)(x;) for 1 < j < r. Then we have
OThs(gh)(z;) _ Olhs(g)(y;)
Using the basic rules (v), (vi) of the pro-l Fox derivatives, we have

Olhs(g)(y;) Z dlhs(g)(y;) Olhs(g)(za)
ox; < Olhs(g)(za) O

9y, \ Olhs(g)(za)
=3 Ihs(g) I8 9)\Fa)
azzl s\ <8(Ea> axl

(4.1.4)

(4.1.5)

By (4.1.4) and (4.1.5), we have

Olhg(gh)(z; "~ OThg(g) (7, dy;
S(agzi>( ):Z s(;iz( )'Ihs(g)(aia)'

a=1

Since Thg(g) and ~ are commutative operators, we obtain the desired equality of the
matrices. Taking h = g~1, we see that Mg(g) € GL(r; Z[[S,]]) for g € Galy. O

For m > 1, we let M[ ™ be the composite of Mg restricted to Galy[m] with the

natural homomorphism GL(T Zi[[5r]]) — GL(r; Zl[[ST]]/IZ[J[%lT )

M Galy [m] — GL(r; Zal[§:11/ 17, {3, )-

A relation between Mgn] and the m-th pro-l Johnson homomorphism is given as
follows. First, recall the identification O,, : gr, (§,) ~ ng" by the degree n part
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4.1 Pro-l Magnus-Gassner cocycles

of the Magnus isomorphism in (3.2.1). We then have a matrix representation of
Hole(HZl,Hg(mH)) form > 1

111+ Homz, (Hz,, Hz, ™) — M(r; gty (Za[[3: 1)
by associating to each element 7 € Homg, (Hz,, Hg(mﬂ)) the matrix

] = (a(@ml+1 o) (X

(4.1.6) 9 j)> € M(r; gr,,, (Zu[[S+]]))-

PROPOSITION 4.1.7. For g € Galg[m], we have
M (g) = I+ |75 (9)]-
ProoOF. By Theorem 3.3.6, we have
(O 1 78" (9))(X;) = Thg(g)(w))aj

and so
80, oty ) (X;)  Olhs(g)(xy)a; !
o oms(ele)
X -~
= I Ihs(g) () g

Since Ihg(g)(wj)a:j_l € I'ypt1Sr, we have Ihs(g)(xj)xj_léij = ¢;; mod IZ[‘E%” and
hence the assertion is proved.

In terms of || - ||, the m-th pro-I Morita trace Tr™)(7) in (3.3.35) is, in fact,
written as the trace of the matrix ||7]| .

PROPOSITION 4.1.8. For m > 1 and ,7 € Homg, (HZ“Hg(mH)), we have

Te"(7) = g (t2(Om II711))),
where gy, : Hgm — S™(Hgy,) is the natural map.
PRrOOF. We identify Homy, (Hy,, Hy ™) with H;, © HE™. Let T = ¢ ®
Xi,®---®X,,,, (p€Hy). By (4.1.6), we have
" 5(@7_”1 oT)(X;) " 3@;1 (X, @@ X, )
(11.9) tn(irl) = Y2 TOmeL 2IE) _ §m ) P Z0 B B Rnia)
x; — x;

i=1

We note that any element Y of Hg(mﬂ)

V=YX +--+Y,®X,, Y;e HJ™
and then we have, by (4.1.1),

00,1,(Y) _
al‘i m

can be written uniquely as

Therefore we have
89;&-1(‘)(11 Q- Xim+1)
axi

= 0iiy 1 Xiy ® - ®X;

1/771,

and hence, by (4.1.9),
tr(Om([I7]])) = ¢(Xi, . )Xi, ©@ - @ X
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4 Pro-l reduced Gassner representation and Ihara power series

where the right-hand side is ¢;,+1(7) by (3.3.34). By (3.3.35), the assertion proved.
([

Now, for some application later on, we extend the construction of the pro-I
Magnus cocycle to a relative situation. Let & be a pro-I group and let ¥ : §,. —
® be a continuous surjective homomorphism. We also denote by ¢ the induced
surjective homomorphism Z;[[§,]] — Z;[[®]] of complete group algebras over Z;.
Let 9N := Ker () so that §,/M ~ &. We assume that 9 is stable under the action
of Galy through Thg, namely Thg(g)(9) C 91 for all g € Galy, (This is certainly
satisfied if 9 is a characteristic subgroup of §,). Then we have a homomorphism
Thg y : Galy — Aut(Z;[[®]]) defined by

(4.1.10) Ihs,y(9)(1(a)) := P(Ihg(g)(@)) (a € Z[[3:]])-
Let Galg[¢)] be the subgroup of Galy, defined by

Galg[y)] = Ker(Ihg )
= {g € Galg | wOIhS(g) = w}

and let k[¢)] denote the subfield of Q/k corresponding to Galg[t)]. Now we define
the pro-l Magnus cocycle Mgy : Galp, — GL(r; Z;[[®]]) associated to Thg and ¢ by

Mgy (9) :==1¥(Ms(g)) (g9 € Galy),

where the right hand side is the matrix obtained by applying ¥ to each entry of
Ms(g). For m > 1, let M[m] be the composite of M[S ™ with the natural homomor-

phism GL(r; Zl[[gr]]/fg[“ ”) — GL(r; Zy[[& ]]/I%”[J[ré] ) induced by 9. Lemma 4.1.3

and Proposition 4.1.7 are extended to the following.

(4.1.11)

PROPOSITION 4.1.12. Notations being as above, the following assertions hold.
(1) For g,h € Galy, we have

Mg,y (gh) = Mg,y (9)Ihs ¢ (g) (Mg, (h))-

(2) For g € Galy, we have

M (o) = T+ u(lirE" ().
(3) The restriction of Mgy to Galg[y], denoted by the same Mgy,

M : Galx[y] — GL(r; Zi[[8]/ Iy

is a homomorphism and factors through the Galois group Gal(Qg/k[]), where Qg
is the subfield of Q corresponding to Ker(Thg) as in (3.1.7). We call it the pro-l
Magnus representation of Galy[)] associated to Thg and .

PRrOOF. (1) The formula is obtained by applying ¢ to the both sides of the
formula in Lemma 4.1.3. (2) This is also obtained by applying % to the matrices
of the both sides of the formula in Proposition 4.1.7. (3) Suppose g,h € Gal .
Since ¢ o Thg(g) = v, we have Ihg y(9)(Ms,y(h)) = Mgy (k) and so Mg (gh) =
Mg ¢ (g9)Ms,y(h). Since Mgy (g) = I for g € Ker(Thg), we have Ker(Mg ) D
Ker(Ihg) and hence Mg, factors through Gal(Qs/k[y]). O
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4.1 Pro-l Magnus-Gassner cocycles

For n > 0, let m, : § — &-/Tn+18- be the natural homomorphism. We

consider the case that ¢ = m, and so lhg 4 = Ihgb). By (3.3.18) and Lemma 3.3.21,
we have

Galg[r,] ={g € Galy | 7, oThg(g) = 7}

= {g € Galy, | Thg(g)(f) = f mod T',, 115, for all f € F,.}
= Galg[n].

Then we have a family of pro-I Magnus cocycles

(4.1.13) Ms,x, + Galy — GL(r; Zi[[8r/Tns13:]]),
and the pro-I Magnus representation

(4.1.14) Mg ., @ Galg[n] — GL(r; Zi[[§,/Tn+15+]])

associated to Ihg and =, for n > 0.

4.1.3. Pro-l Gassner cocycles. The pro-l Gassner cocycle is defined by
Mg, in (4.1.13). To be precise, let A, := Z[[T1,...,T},]] denote the algebra of
commutative formal power series over 7Z; of variables T4, ..., T, called the Iwasawa

algebra of r variables. The correspondence x; mod IaF, — 1+ T; (1 < i < r) gives
the abelianized pro-l Magnus isomorphism

0% : Z,[[3+/T23]] = A,
We let 7 := m; and
(4.1.15) Xz, = Ihg @avor : Galy — Aut(Kr),

which is defined by (4.1.10) with ¢» = ©2" o 7. In fact, by Lemma 3.2.10, Xz, is
given by

(4.1.16) X3 (9)(Ti) = (0 om)(Ihs(g)(zi — 1)) = 1+ T)¥9 —1 (1 <i<r).
Then the pro-l Gassner cocycle of Galy associated to Ihg
Gassg : Gal, — GL(r; KT)

is defined by

(4.1.17) Gasss(9) = (@ om) (T2 ) ) (g € Galy),

where we note that we do not need to take the anti-automorphism ~ in (4.1.17) to
obtain the 1-cocycle relation

Gasss(gh) = Gasss(9)xz, (9)(Gasss(h))  (g,h € Galy),

since A, is commutative. Here X3, (9)(Gassg(h)) is the matrix obtained by applying
X7 (g) to each entry of Gassg(h). We can express Gassg(g) in terms of [-adic Milnor
numbers as follows.
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4 Pro-l reduced Gassner representation and Ihara power series

PROPOSITION 4.1.18. The (i, j)-entry of Gasss(g) (g € Galy) is expressed by

Xz, (9)(T3) L
e 14+ Z Z w(giiy i)y, - T

n21 1<i,...,in <7

Gasss(9)ij = in i
Xz, O@) [ wlgin) +> . > plgiir--inif)T, -
n>11<i,..., in<T
PRrROOF. By Lemma 3.2.10 and a straightforward computation, we have
OMhs(g)(z;) _ Owi(9)r} Vys(9)”"
x)_(z g9) _ 1 O
_ @, (1,99 (9)
= yj(g);ji_l&j + (1 =y (9" y;(9) )57%
and hence, by (4.1.16),
(4.1.19)
dlhs(g)(z;)
ab J
(©* o) ( D,
14T ) 1 .
= (6" 0 7) 05 (0) T (1= (L T e o) (20
J 2
Xz, (9)(T5) a dy;(g
= X 6 0 )0y ()0 — 3, ()(T) O o) (250
J 7
Here we have
(4.1.20) (O om)(y;(9) =1+ > ulg: Ij)T1,
[1]>1
where we set Ty :=T;, -+ T;, for I = (i1 ---1i,), and (4.1.1) yields
, 9y,(9) g
ab J _ .
(4.1.21) CRETD) (8x = > ulg; Iij)Tr.
1150
By (4.1.17), (4.1.19), (4.1.20) and (4.1.21), we have
Th ;
Gasss(g) _ (eab 07'(') 0 S(g)(xj)>
al‘i
Xz, (9)(T; g
= 5ij¥ L+ > w(g INTL | = xz, (@(Ty) D wlg: Tig)Tr.
T; [I]>1 |1]>0

By p(g;ii) = 0 and a simple observation, we obtain the assertion.

T;

By (4.1.14), when Gassg is restricted to Galg[1], we have a representation

Gassg : Galg[l] — GLT(/A\r)7

which we call the pro-l Gassner representation of Galg[l] associated to Ihg.

factors through the Galois group Gal(Q2s/k[1]) by Theorem 4.1.12 (3).

In the following, for simplicity, we let
%pr = P2‘3’T7g;{ = [g;vgﬂa and ’ST = ‘3’;/8’;{ - Hl(‘,lsjflmzl)
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4.1 Pro-l Magnus-Gassner cocycles

We consider £ as a A,-module by conjugation: For f € §, and f’ € 5., we set
[f1.(f' mod &) == ff'f~ mod .

and extend it by the Z;-linearity and continuity. The structure of the A,-module
£, can be described by means of the pro-l Crowell exact sequence ([Ms2; Chapter
9]). Attached to the surjective homomorphism = : §, — §./§.., the pro-l Crowell
exact sequence reads as the exact sequence of Kr-modules:

0— & AP 5 1 —0,
where I3 is the (augmentation) ideal of /A\T generated by T1,...,T, and vy, v are
Kr-homomorphisms defined by
of'

(4.1.22) vy (f mod F) := ((©* o 1) (89&)) (fredl); ra((N):= Z/\sz

(Convention: An element ();) of /A\?T is understood as a column vector.) Hence we

o~

have the isomorphism of A,-modules induced by vy, called the Blanchfield-Lyndon
isomorphism:

(4.1.23) v € S5 {(\) € AP | Y NT =0}
=1

We define the action Metag of Galy on £, through the Ihara representation
Thg: For g € Galg and [’ € §/,

Metas (g)(f' mod §7) := Tns(g)(f') mod F.-

It is easy to see that Metag(g) is a xj -linear automorphism of £,, namely, a
Zi;-linear automorphism and satisfies

Metas (g) (\.(f' mod §)) = vz (9)(N).(f' mod §)

for A € A, and f' € §.. When Metag is restricted to Galy[1], we have the repre-
sentation, which we call the pro-l meta-abelian representation of Galy[1] associated

to ¢s,
Metag : Galg[l] — GLz (L),

where GL& (£,) is the group of Kr—module automorphisms of £,.. Regarding £,

as a A,-submodule of Kf‘?r by the isomorphism (4.1.23), Metag and Gassg has the
following relation.

PROPOSITION 4.1.24. For g € Galy, and f' € §'., we have
(1 0 Metas(g))(f mod §;) = Gasss(g)(xz_(9) o v1)(f mod §7).

When Metag and Gassg|g, are restricted to Galg[1], they are equivalent represen-
tations over A,.
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4 Pro-l reduced Gassner representation and Ihara power series

PROOF. The first assertion follows from the direct computation: By (4.1.15),
(4.1.17) and (4.1.22), we have, for any g € Galy, and f' € §,

(v1 © Metas(g))(f" mod §) = v1(Ths(g)(f’) mod §7)

— (O™ o) (51}158(;]3@')))

OThg( ) 0Ih
(S ),

- (i(eab o) (8”158“”> (@ omoths(s)) (52 ))

a=1

= Gasss(9)xz, (9)(v1(f mod §)).

When Metag and Gassg are restricted to Galg[l], by the first assertion, we have
the commutative diagram of A,-modules for any g € Gal[1]:

Vi

£, = AP

Metas(g) | 1 Gasss(g)
e, & Ao
from which the latter assertion follows. O

Next, following Oda ([02]), we introduce the pro-I reduced Gassner cocycle as-
sociated to the Thara representation Ihg. For this, we define a certain A,.-submodule
£prim of ¢ which Oda calls the primitive part of £, as follows. For 1 < i < 7,

let 91; be the closed subgroup generated normally by z; and let 35“ = §/N.
Let AY = z([Ty,....T),...,T)]] ~ Z[F /(7)) (T; means deleting T) with
augmentation ideal I INGE and let §; A — K " be the Zi-algebra, homomorphism
defined by 6;(T;) := T, if j # ¢ and §;(T;) := 0. Note that any A module is
regarded as a Kr—module via 0;. Let STZ') = (g@)’/(&&“)” and let & : £, — SSD
be the Kr-homomorphism induced by the natural homomorphism §, — &(f). Then
the primitive part £2'™ of £, is defined by

(4.1.25) epim = (1) Ker(&).

We set w:=1Ty---T,.

THEOREM 4.1.26. Notations being as above, the following assertions hold.
(1) The Blanchfield-Lyndon isomorphism vy in (4.1.23) restricted to 2™ induces

the following isomorphism of A,.-modules

gprim {(Aj%) eA® N e, Y A =0}
J j=1

In particular, £P'™ js the free ]\\T -module of rank r — 1 on the basis
wow woow

I e T _ —_
vy = ( T17T2,0,...,0),...,’07~_1. (O,...,O, TT717TT).

(2) £PHim s stable under the action of Galy through Metag and defines 1-cocycle
Gass¥? : Gal, — GL,_1(A,)
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with respect to the basis v1,...,v,._1 and the action Xz, in (4.1.15).We call Gasser
the pro-l reduced Gassner cocycle of Galy, associated to Thg.

PrOOF. (1) (due to Oda) We define the A,-homomorphism &; : A®" — (7\5"))@“*1)
by

E(TA - A) = 10 (A), - 0i(Nim1), Bi(Nign), - 6i(A)).
Then we have &; = £Z|£ for 1 < ¢ < r and the commutative diagram of A -modules:

o — £ — N — Iz — 0
L& L& 16

0 — &9 — @WMer-n i — 0,
where two rows are the pro-l Crowell exact sequences. It is easy to see that Ker(fi)
is given by
Ker(f) = {t()‘lTiw-~7>\i71Ti7>\i7)\i+1Ti7...,//{TTZ') | Aj € K,, 1<j<r)}
and hence, by (4.1.23) and (4.1.25), we have
gprim — £\ ) € AP | XT:)\jTj =0, \;=0modT;ifi# j}.
j=1

Since A, is a regular local ring, it is factorial. Therefore we have the first assertion

eim = ((\)) € A" | 3" NT; =0, A =0mod % 1<j<n)}
j=1 I
The assertion for a basis of £P'™ is clear.

(2) Since Thg(g)(z;) is conjugate to xza(g) for g € Galy and 1 < i < r, the definition
(4.1.25) implies that £P*™ is Galy-stable under the action Metag. So we may write,
for1 <j<r—1,

(4.1.27) Ths(g Z Gassred 9)ijvi,

where Gassi(g);; € A, is the (i, )-entry of the representation matrix of Thg(g)
with respect to vq,...,v,._1. Then we have, for g, h € Galy,

Ths(gh)(v;) = Ths(g )(Ihs(h)( i)
= Ths(g ZGassmd z]vi>

= ZXf\r(Gassf;d(h)ij)IhS(g)(vi) (by (4.1.15))

r—1 /r—1
=> (Z Gass§(9)ixz, (9)(Gass§ d(’l)u)) vy,
t=1 \i=1
which means the cocycle relation
Cassyd(gh) = Gassred(g))(xr( )(Gasswd(h)).
Hence the assertion is proved. O
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4 Pro-l reduced Gassner representation and Ihara power series

When we restrict Gassis® to Galg[1], we have a representation

Gass¥ : Galy[1] — GL(r — 1;A,),

which we call the pro-l reduced Gassner representation of Gal[l] associated to Ihg.

Let T be a free pro-l group of rank 1 generated by « so that Z;[[I']] is identified

with the Iwasawa algebra A = Z[[T]] (z <+ 1+ T). Let 3 : § — I be the
homomorphism defined by 3(z;) := x for 1 <7 < r. Let x3 be the action of Galy

on A defined by xz(9)(w) == (1 + T)X19) —1 for g € Gal, Then we have the pro-l
Magnus cocycle associated to Thg and 3
Burg : Galy, — GL(T;/A\),

which we call the pro-l Burau cocycle of Galy associated to Thg. It is the 1-cocycle
of Galy, with coefficients in GL(r; A) with respect to the action x;. By definition,
we have

Burg(g) = Gasss(9)|ry=...=1,=7-
Similarly, we have the pro-l reduced Burau cocycle associated to Thg
Burs? : Gal, — GL(r — 1; K)
defined by
Bur¥d(g) := Gass¥(9)|r,=..—1,—7-
Since (3 0 Thg(g))(x;) = 3(vi(9)wiyi(9)~1) = 3(z;) for g € Galg[1], we have

30lhs(g) =35 (g9 € Galg[l]).

So, when we restrict Burg and Burg?d to Galg[1], we have representations

Burg : Galy[1] — GL,(A), Burs?: Gal,[1] — GL._1(A),

which are called the pro-I Burau representation and the pro-l reduced Burau repre-
sentation of Galg[1] associated to Thg, respectively.

4.2. l-adic Alexander invariants

4.2.1. Pro-! link modules. Let g € Gali. As in (3.2.39), let IIs(g) be the
pro-l link group of g associated to the Thara representation ¢g:

: )}k @y, (g) =)

Us(g) = (1, vz |91(9)2Y Pyn(g) " art = = yo(g

- %’r /mS (g)v
where 915(g) is the closed subgroup of §, generated normally by the pro-l words

1(9)2Y Pyi(9) M2t (9)eX Py(g) eyt Let 1§, — TIs(g) be the nat-
ural homomorphism and let v; := ¥(x;) (1 < ¢ < r). Recall that a(g) denotes the
ideal of Z; generated by x;(g) — 1. Then we have

s(9)/Ms(g)' = Zifa(g)ln] @ - & Zu/alg)[re] = (Za/a(g))"",

where [v;] := 7; mod IIg(g)’ (1 < i < r). The correspondence v; — T; induces the
Z;-algebra isomorphism

0™ (9) : Zu[[ls(9)/Ms(g)' ] = K, /(L + T O™ — 1, (14 T~ — 1),
We denote the right hand side by A,(g):
Arlg) = A /(L4 )@= — 1, (14 Tt 1),
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and by IT\T(g) the augmentation ideal of A, (g)-
We define the pro-l link module £s(g) of g associated to Thg by

Ls(g) :=s(g)'/Ts(g)”,

which is considered as a A,(g) = Z/[[Ils(g)/Ils(g)']]-module. It may be seen as an
analogue of the classical link module in link theory (cf. [Hi], [Ms2, Chapter 9]).

Let w : lg(g) — s(g)/Ts(g)" be the abelianization map. We define the pro-
I Alexander module As(g) of g associated to Thg by the pro-l differential module
associated to w, namely the quotient module of the free /A\T (g)-module on symbols
dv for v € TIg(g) by the /A\T(g)—submodule generated by d(v172) — dy1 — w(y1)dy2
for 1,72 € Hs( ) ([MSZ 93])

= P A@dv/{dmr) —dyn —@(n)dy (11,72 € Ts(9)))5, (-
~v€Ells(g)

We define the l-adic Alezander matriz Qs(g) by the Jacobian matrix of the relators
of ls(g):

O .,L,Xl(g) X —lel
(42.1) Qs(g) = ((eawg)owow)( v (9)z,) a;{:(g) : ))

PROPOSITION 4.2.2. Notations being as above, the following assertions hold.

(1) The correspondence dy — ((6*(g) 0w o ¢) <§f ,

>) gives the isomorphism

As(g) > Coker(Qs(g) : Ar(9)®" — Ar(9)®"),

where [ is any element of §, such that v =¥ (f).

(2) (Pro-I Crowell exact sequence) We have the following exact sequence of A, (g)-
modules:

0 — Ls(g) = As(g) == Iz (5 — 0,
where v1,vy are given by
vi(7 modIls(g)") = dy (v € ls(g)'); va(dy) := (0*"(g) ow)(7) — 1 (v € Is(g)).
PrOOF. We refer to [Ms2, Theorems 9.3.6, 9.4.2]. O

Let ¢y : A, — A, (g) be the natural Z;-algebra homomorphism.
PROPOSITION 4.2.3. We have

Qs(g) = dg(Gasss(g) — 1)
and its (i, j)-entry is given by

YooY wgiind)T, T, (i = 4),

n>l 1<i1,...,in <7

Qs(9)ij = T A
bg | =Ty | wlgsi)+ > D> wlgsin---inii)Ti, - T, (i # J).

n211<iy,. . in ST
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4 Pro-l reduced Gassner representation and Ihara power series

PROOF. By the definition (4.2.1), we have
dy;(g)a} !y, (9)‘1%1)

Qs(g)ij = (O(9) ow o) ( i

By the basic rules of pro-l Fox free derivatives, we have

0y ()2} Vy;(9) a7t Dyilg)ay Wy;(g)
6xi o 8951

By (4.1.17) and ©2"(g) o w o ¢ = ¢, 0 O o 7, we have

Dy ()2 y;(g)~
0:52-

— 85y (9)xX Dy (g)ta

(6™ (g) 0w o ¥))

) = ¢4(Gasss(9)ij),

and we also have
(@ab(g) 0w o ¢)(yj(g)ngl(g)yj(g)flxjfl) _ @ab(g)(,y;a(g)—l) =1+ Tj)Xz(Q)*l - 1.
Therefore we have
Qs(9)ij = dg(Gasss(g)ij — bi)-
The second assetion follows from Proposition 4.1.18 and
$9(xz, (9)(T))) = g((L+ T3 = 1) = ¢(T5).
O

COROLLARY 4.2.4. For g,h € Galg[l], we have the following isomorphisms of
A, -modules

As(hgh™!) = As(g), Ls(hgh™") = Ls(g).
PROOF. Since Gassg : Galp, — GL(r; /A\r) is a representation, we have

Qs(hgh™") = ¢g(Gassg(hgh™") — I) = ¢4(Gasss(h))Qs(g)dy(Gasss(h))
by Proposition 4.2.3. Then the first assertion follows from Proposition 4.2.2 (1).
The second assertion follows from Proposition 4.2.2 (2). (]
4.2.2. [-adic Alexander invariants. For n > 0, we define the n-th l-adic
Alezander ideal €g(g)™ of g € Galy associated to Thg by the n-th Fitting ideal of
the pro-l Alexander module 2g(g) over A,.(¢g). The n-th l-adic Alexander invariant
As(g)™ is then defined by a generator of the divisorial hull of €g(g)("™. By Propo-
sition 4.2.2 (1), €5(g)™ is the ideal generated by all (r — n)-minors of Qgs(g) if
r—n>0and €g(g)™ = A,.(g) if r —n <0, and Ag(g)™ is the greatest common
divisor of all (7 — n)-minors of Qg(g)) if r —n > 0 and Ag(g)™ :=1ifr —n > 0:
(n) ._ | g-c.dofall (r—mn)minors of Qs(g) (r—n>0),
As(g)™ { 1 (r—n=0).
We note that Ag(g)™ is defined up to multiplication of a unit of A,(g). We write

€s(g) (resp. As(g)) for €5(g)@ (resp. Ags(g)@) and call €5(g) (resp. Ag(g))
the l-adic Alexander ideal (resp. l-adic Alexander invariant) of g associated to Ihg.
From Proposition 4.2.3, the following proposition is immediate.

PROPOSITION 4.2.5. For g € Galg, we have

As(g) = dg(det(Gassg(g) — 1))
When g € Galg[l], As(g) = 0 if and only if Gasss(g) has the eigenvalue 1.
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4.3 The Thara power series

Moreover, since the l-adic Alexander matrix Qg(g) is described by l-adic Milnor
numbers as in Proposition 4.2.3, n-th l-adic Alexander invariants are also described
by l-adic Milnor numbers (cf. [Ms2, Chapter 10], [Mul]).

4.3. The Thara power series

In this section, we suppose that S = {0,1,00} and so k = Q. In the following,
we will omit S in the notations. The Thara representation in this case is

Th : Galg — P(32),

which factors through the Galois group Gal(€2;/Q) by Theorem 3.1.9 (2), where €,
denotes the maximal pro-l extension of Q[1] = Q({;~) unramified outside I.

4.3.1. The Thara power series. The following lemma is a restatement of
[Ih1, Theorem 2 (i)]. Our proof is different from Thara’s.

LEMMA 4.3.1. We have £9 = £§rim with basis ' (=T, Ty ) over KQ, and (=T, Ty) =
1/1([%1,%2})'

PROOF. By Theorem 4.1.26 (1), £5™™ is the free Ap-module with basis * (=15, T}).
On the other hand, we note that A\{7T7 + A2T> = 0 implies \; = —aT5, Ay = a1} for
some a € /A\g, because Kg is U.F.D. Therefore £ is also the free Kg—module with
basis *(—Ty, T}) by (4.1.23). Hence £5 = £5"™™. The second assertion follows from

(@ o) (CW) =Ty, (6 on) (W) =T.
0

Thanks to Lemma 4.3.1, Thara introduced a power series Fj;(T1,T5) € /A\g, called
the Thara power series, by the follwoing equality in £

(4.3.2) Ths(g)([z1, z2]) = Fy(T1,T2)[z1, 22] mod F.

The following theorem gives an arithmetic topological interpretation of F,(T1,T»).
For a multi-index I = (i - - - i) with i; = 1 or 2, we denote by |I|; (resp. |I|2) the
number of j’s (1 < j < n) such that i; = 1 (resp. i; = 2). For integers nq,n2 > 0
with ny +ng > 1 and g € Galg, we let

p(gin1,na) == > p(g: 112) + > p(g; I21).

|I|1:n1—1,\1|2:n2 |I|1:n1,|I|2:n2—1

We recall the pro-I Gassner and the pro-l reduced Gassner cocycles in (4.1.17) and
(4.1.27):

Gass : Galg — GL(2:Ay); Gass™ : Galg — AL
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4 Pro-l reduced Gassner representation and Ihara power series

THEOREM 4.3.3. Notations being as above, we have, for g € Galg,

Fy(Ty,T») = Gass™(g)

Xz, (9)(T1T3) ‘ .
CROTT) [ i T T

T,T:
152 N1 1K1 i <2
inFint1

Xz, (9)(T1T3) .
- 2T1TQ 1+ Z plg; na,n2) Ty 15

ni,me2>=>0
ni+ni>1

PrOOF. Applying the Kg-homomorphism vy to (4.3.2), we have, for g € Galy,

=T
1 (Th(9) (o1, 20) = BT, Tap(fen,al) = BT o) (1 ).
On the other hand, by the definition of Gassis?(g) (cf. (4.1.27)), we have

v (Th(g) (11, 2))) = Gass™(g) ( EX ) -

Hence we have
Fy(Th, Ty) = Gass™(g).
By Proposition 4.1.24 and Lemma 4.3.1, we have

vi(Ih(g)([z1,22])) = Gass(g)xz, (9)(v [xlafiz]))

1 (
R

A straightforward calculation using Proposition 4.1.18 yields

s (9)(T)
Gass(g) ( i l9)(T) )

X3, (9)(T1T3) . . —T
= 2.5 A it 1+ Z Z M(g;ll"'lnlnle)Til "'T‘i" T12

T
152 n>1 1<i1,.in<2

in#"‘n«#l
Xz, (9)(T1T3) n Ty
= |1+ sny,me) T T2 .
VT, Z Higini,nz) 2 T,
ni,n220
ni+ni>1
Getting these together, we obtain the assertion. O

Thara also interpret £o in terms of Fermat Jacobians. For a positive integer n,
let C,, be the non-singular, projective curve over Q defined by

x4yt =2"

and let Jac,, be the Jacobian variety of C,,. Let T(Jac,) be the l-adic Tate module
of Jac,:

T(Jac,) := Hom(Q,/Z;, Jac, (Q)) ~ H™8(C,,(C), Z) ® Zi,
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4.3 The Thara power series

and let
T := lim T(Jacy,),

n

where the inverse limit is taken with respect to the maps T(Jac, 1) — T(Jac,)
induced by the morphisms Cy, 11 — Cy; (X,Y, Z) — (X, Y1, ZY). Let gx n, gy.n be
the automorphisms of C,, := C,, X specQ Spec Q over P}@ defined by

9xm (XY, 2) = ((n XY, Z), gym: (X,Y,2) = (X, (nY, Z)
and set gx = {iﬂlgx,n, gy = l}ilgy,n. Then Gal(C’in/IP’}@) = (Z)1"71)gx n®D(Z)1"ZL) gy n,
and so li;nZl [Gal(C’in/IP’}@)] ~ A, by the correspondence gx — 1+ T, gy — 1+ Tb.
Thus T is regarded as a Ay-module. Then we have the isomorphism of As-modules
Lo ~T.
For an explicit construction of the basis of T corresponding to [z1, z2], we consult

[Ae, §13].

Now, the main results in [Ih1] are arithmetic descriptions of
o values of F,(T1,T») at [-powerth roots of unity in terms of the Jacobi sums which
arise from the Galois action on T(Jac,), and
o coefficients of Fy(T1,T5) in terms of [-adic Soulé cocycles which are defined by
the Galois action on higher cyclotomic [-units.

We will describe these, using Theorem 4.3.3, from the view point of arithmetic
topology.

4.3.2. Values of the Thara power series. Let p be a rational prime which

is in Rs of (3.1.8) and let p be a prime of Q lying over p. By Theorem 3.1.9 (2),

P is unramified in Q/Q and so we have the Frobenius automorphism o5 € Galg.

Let n be a fixed positive integer. Let p,, be the prime of Q((») lying below p and

let :c) denote the {"-th power residue symbol at p,, for z € (Z[(in]/pn)*. For
n

Pn ) n
a,b € Z/I"Z\ {0} with (a,b,l) =1, we define the Jacobi sum by

a b
T
T (po) @ =Y (p) <py> .
n n n m

z,y€(Z[Gn]/pn)™
rz+y=—1

—1\*?
For | = 2, Jin (p,)(*® must be multiplied by (p) . Let f be the order of p in

n

(z/1"Z)*. We note that O'% € Galg(¢n). By using Weil’s theorem, Thara showed
the following

THEOREM 4.3.4 ([Ih1, Theorem 7]). Let a,b € Z/I"Z\ {0} such that a+b# 0
and (a,b,a+b,1) = 1. Then we have

Foy (G = 1. = 1) = Jin (pn) ).

Combining Theorem 4.3.3 and Theorem 4.3.4, we obtain the following [-adic
expansion of the Jacobi sum Jp» (p,,)(®*) with coefficients I-adic Milnor numbers.
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4 Pro-l reduced Gassner representation and Ihara power series

THEOREM 4.3.5. Notations being as above, we have

Jin (pn) ' =1+ Z M(%{;nl,m)(éﬁl — )™M (G — 1)

ny,n220
nit+n2>1
. xi(al) f
PROOF. Since we have (,, 7 = (¢, = (» by p/ = 1 mod ", the formula
follows from Theorem 4.3.3 and Theorem 4.3.4. O

4.3.3. Coefficients of the Thara power series. We will combine Theorem
4.3.3 with the result of Ihara, Kaneko and Yukinari on the Thara power series
(IKY]) and deduce some formulas relating our l-adic Milnor numbers with the
Soulé cocycles ([So]). As in Section 3.1.3, let (;» be a primitive ["-th root of unity
for a positive integer n such that ({jn+1)! = (i for n > 1. For a € Z/I"Z, let {a);n
denote the integer such that 0 < {(a);» < !™ and a = (a);» mod . For a positive

interger m, we let
et = JI Gl e,
a€(Z/InZ) >
which is an l-unit in Q({;), called a cyclotomic l-unit. Then we define the m-th
l-adic Soulé cocycle x(™ : Galg — Z; by the Kummer cocycle attached to the
system of cyclotomic l-units {e\7"”},51

(m) m n _
G = (€M) (0> 1,9 € Galg).
It is easy to see the cocycle relation

X" (gh) = x"(g9) + xi(9)x™ (h) (g, h € Galg)

and hence the restriction of X(m)\GaIQm is a character. Let Q?b be the maximal
abelian subextension of €;/Q[1]. Since Q((n, (el(,:,n))l/l”) is a cyclic extension of
Q(¢r) unramified outside I, we have ((7”)/"" € O and so the Soulé character
X(m)|Ga1Q[1] factors through the Galois group Gal(2#”/Q[1]). We note by Theorem

red

4.1.12 (3) that the pro-l reduced Gassner representation Gass™ also factors through

Gal(Q°/Q[1]).
We set

(m)
X g
inlg) = 2L (g € Galg),

and introduce new variables Uy, U defined by
e n

T =epU) = Y E @] (=1,2)

n=0
and set
J—"g(Ul, Ug) = Fg(Tl,TQ)

Ty=exp(U;)—1-

THEOREM 4.3.6 (IKY, Theorem As]). Notations being as above, we have, for
g € Gal(Qj*/Q[1)),

umun
Fo(U1,Us) =exp{ = > kim(9) > =

m1! m2!
mz=3 my,mae>1
odd mi+mao=m
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4.3 The Thara power series

Combining Theorem 4.3.3 and Theorem 4.3.6, we can deduce relations between
l-adic Milnor numbers and l-adic Soulé characters. For this, we prepare the follow-
ing.

LEMMA 4.3.7. Let a(ny,n2) and c¢(my, ma) be given l-adic numbers for integers
my, Mo, Ny, Ng = 0 with my +ms,ny +no > 1. Let

AT, Ty) =1+ > alnm,n)uftuy® € QT4 T3]

ny,mz>0
ni+nz>1

and set
B(U1,Us) = A(T1,T2)|1,—exp(vi)—1
=1+ > (L N)UNUL? € QU Us).

N1,N22>0
N1+N3>1
Then we have
b(vaNQ) = Z a(nl’n2)an1 (Nl)anz (N2)7
ni+ne>1

0<n1<N1,0<n2 < N2

where for j = 1,2,

71 >1
an; (Nj) == > L, alen! (n; > 1).
€1;.-€n 2 :
Gl+"‘+@n2:Nj

Let
C(ULUz) = Y. clmy,mp)UUS™ € Q[Uy, U]
777711-;-%222201
and set

D(Ul,UQ) = eXp(C(UlaU2))
=14+ Z d(Ny, N)) UM UY? e Q[[Uy, Uy)).

N1,N22>0
Ni+N2>1
Then we have
AN = 3D S elml ) el ),
ISnKN1+N
where the second sum ranges over integers mgl), . mgn) (1), . mén) > 0 satis-

fyingmP+m§ =11 <i <n), mP - 4m{M = Ny and m! )+ 4mi™ = Ny.

Proor. Both formulas for b(N7, N2) and d(N7, Na) follow from straightforward
computations. O

We apply Lemma 4.3.7 to the case that A(u;,us) = Gass™?(g), where
a(nla n2) = /J/(gv ni, n2)
and C(Uy,Us) = log(Fy(Ui,Us)), where

_ Fmi4ms (9)
c(my,mg) = mq! mo!
0 otherwise.
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Pro-l reduced Gassner representation and IThara power series

Then, by comparing coefficients of UlN1 UQN"‘ in Gass™4(g) |7, —exp(Ui)—1 = Fg(U1,U2),

we obtain the following.

THEOREM 4.3.8. Notations being as above, we have the following equality for
g < GalQ[l]:
> 1(g; n1, m2)an, (N1)an, (N2)
ni+n2>1

0<n1 <N1,0<n2 <N2
(1>+m(1) ) /fm(ln)er(Qn) (g)

= Z Z m(1), m§”>!mg”>! )

1SnKN1+ N2

where the last sum ranges over integers mgl), .. mﬁ“) mél), .. mé”) > 0 satisfying
(n) _ = N.
2.

) 4m® > 3: odd (1< i <n), mD o 4m® = Ny andmi 4 4m§

For example, lower terms are given by
1(g; (12)) = p(g; (21)) = 0, p(g; (212)) + pu(g; (121)) = 0,

11(g; (221)) + p(g; (2212)) + p(g; (1221)) + p(g; (2121)) = — Fis%(g) 7
w(g; (112)) + p(g; (1121)) + u(g; (2112)) 4 p(g; (1212)) = — ”329) ,
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APPENDIX A

On definitions of reduced Gassner representations

In this appendix, we prove the equivalence of the two definitions of reduced
Gassner representations: the homological one given in this article and the original
one as in [Bil].

To begin with, let us recall the original reduced Gassner representation

Gass? ™ : PB, — GL(r — 1;A,)

where r is a positive integer with r» > 2, PB,. denotes the pure braid group with r
strings and A, denotes the ring of Laurent polynomials Z[tli, ..., tF] over Z with
indeterminate tq,...,%,.

Take a basis set g = {¢1,...,9-} of F,. where g; := 21 ---2;. By Proposition
1.1.2, PB, acts trivially on g, = x1 ---x,. Hence the r-th column of the Gassner
representation with respect to the basis g = {¢1,...,9,}

(B
89]'
can be written as ¥(0,...,0,1). Hence, the Gassner representation of PB, is re-
ducible to an r — 1 dimensional representation. The representation obtained from
the Gassner representation with respect to g = {g1, ..., g,} by eliminating the r-th
column and r-th row is called the original reduced Gassner representation and is
denoted by Gassf?’red. The original reduced Gassner representation can also be ob-

tained from the conjugate C'~!Gass,(b)C by eliminating the r-th column and row,
where the matrix C' is given by

1 1 1 1
0 tl tl tl
C = t <ab (gg’ )) — 0 0 tltg tltg
T :
0 0 0 b1t

By direct computation, we have

ImI NG 1989 G109y g1 (R <m <)
Im (otherwise)

Api(gm) = {

where we understand that go = 1. Then, we have the following.
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PROPOSITION A.1. For each generator A;; € PB,, we have

teli+1

1—1t
te e tm(1— 1)
te(ti —1)+1

<ab <8Akl(gi))> _ e it —1)
9g; 2

tH—ll tf—ll (tk -

1

Here, we prove the following theorem.

1 —1
tivr ot (1 —t)

(k=i=j4l=k+1)
(k=il=k+1=}j)
(k<i<l,j=k-1)
(k=i<l,j=k)
(k<i<l,j=k)
(i=j=1-1)
<i<l-1,j=1-1)
(k<i<lj=1)
(k<i<l,j=1)
(otherwise).

THEOREM A.2. There exists a group isomorphism u : Auty, (LP"™) — GL(r —

1;A,) such that the diagram

PB,——— > PB,

red
i Gass),

Auty, (LPrim) s GL(r

commutes.

PROOF. In order to prove the theorem, we must first prepare a lemma.

direct computation proves the following,

LEMMA A.3. Let F be the matriz,

1 0
0 to
F =
0 c. :
0 0 ... totg---

in GL(r — 1; A,.). For any matriz A =

O,red
lGassT

- la Ar)

t'r—l
(aij) € GL(r — 1;A,), we put A" = (a};

F~'AF and s; :=t, ---t;. Then, the following equality holds:

(a’{ij) (SZSJ 10’1])
We have only to prove the assertion for each generator A;; of PB,. By taking
a basis E; of LP™™ we can identify Auty, (LP*™) with GL(r — 1; A,.). From Lemma

A.3, Proposition 2.1.14, and Proposition A.1, a direct computation leads to

F~'Gass? (A, F =

t; — t;l. Hence, an automorphism defined by

WA =F (tF) FL

(Gassred (Aij)*) .
Here, = : A, — A, is the automorphism of GL(r

for any A € GL(r — 1; A,.) satisfies the condition. This completes the proof.

—1;A,) induced by the involution
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