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ON THE ZEROS OF EISENSTEIN SERIES
ASSOCIATED WITH Γ∗

0(2), Γ∗
0(3)

TSUYOSHI MIEZAKI, HIROSHI NOZAKI, JUNICHI SHIGEZUMI

Graduate school of Mathematics Kyushu University
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1. Introduction

Let k > 4 be an even integer, for z ∈ H := {z ∈ C ; Im(z) > 0}, let

Ek(z) :=
1
2

∑
(c,d)=1

(cz + d)−k(1)

be the Eisenstein series associated with SL2(Z). Then,

F :=
{
|z| > 1, −1

2
6 Re(z) 6 0

}∪{
|z| > 1, 0 6 Re(z) <

1
2

}
is a fundamental domain of SL2(Z).

In [RSD], F. K. C. Rankin and H. P. F. Swinnerton-Dyer considered the problem of locating the
zeros of Ek(z) in F. They proved that for k = 12n + s (s = 4, 6, 8, 10, 0, and 14), then n zeros are in
A := {z ∈ C ; |z| = 1, π/2 < Arg(z) < 2π/3}. They also said in the last part of the paper, “This
method can equally well be applied to Eisenstein series associated with subgroup of the modular group.”
However, it seems unclear how widely this claim holds.

Here, we consider the same problem for Fricke groups Γ∗
0(2) and Γ∗

0(3)(See [K], [Q]), which are com-
mensurable groups of SL2(Z). For a fixed prime p, we define the following;

Γ∗
0(p) := Γ0(p) ∪ Γ0(p) Wp,(2)

where

Γ0(p) :=
{(

a b
c d

)
∈ SL2(Z) ; c ≡ 0 (mod p)

}
, Wp :=

(
0 −1/

√
p√

p 0

)
.(3)

Let k > 4 be an even integer, for z ∈ H, let

E∗
k,p(z) :=

1
pk/2 + 1

(
pk/2Ek(pz) + Ek(z)

)
(4)

be the Eisenstein series associated with Γ∗
0(p). Then the next regions

F∗(2) :=
{
|z| > 1/

√
2, −1

2
6 Re(z) 6 0

}∪{
|z| > 1/

√
2, 0 6 Re(z) <

1
2

}
,

F∗(3) :=
{
|z| > 1/

√
3, −1

2
6 Re(z) 6 0

}∪{
|z| > 1/

√
3, 0 6 Re(z) <

1
2

}
are fundamental domains of Γ∗

0(2) and Γ∗
0(3), respectively.

Define

m2(k) :=
⌊

k

8
− t

4

⌋
, m3(k) :=

⌊
k

6
− t

4

⌋
,(5)

where t = 0 or 2, s.t. t ≡ k (mod 4), and bnc is the largest integer not more than n.
In this paper, we will apply the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD

Method) to the Eisenstein series associated with Γ∗
0(2) and Γ∗

0(3). We will prove the next theorems.
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Theorem 1. Let k > 4 be an even integer. E∗
k,2(z) has m2(k) zeros on A∗

2 := {z ∈ C ; |z| = 1/
√

2, π/2 <

Arg(z) < 3π/4}.

Theorem 2. Let k > 4 be an even integer. E∗
k,3(z) has m3(k) zeros on A∗

3 := {z ∈ C ; |z| = 1/
√

3, π/2 <

Arg(z) < 5π/6}.

2. Γ∗
0(2) (Proof of Theorem1)

2.1. Preliminaries. We give the next definition;

F ∗
k,2(θ) := eikθ/2E∗

k,2

(
eiθ/

√
2
)

.(6)

Before proving Theorem1, we consider an expansion of F ∗
k,2(θ).

By the definition of Ek(z), E∗
k,2(z) (cf. (1),(4)), we have

2(2k/2 + 1)eikθ/2E∗
k,2

(
eiθ/

√
2
)

= 2k/2
∑

(c,d)=1

(ce−iθ/2 +
√

2deiθ/2)−k + 2k/2
∑

(c,d)=1

(ceiθ/2 +
√

2de−iθ/2)−k.

Now, we consider the case if c is even. We have

2k/2
∑

(c,d)=1
c:even

(ce−iθ/2 +
√

2deiθ/2)−k = 2k/2
∑

(c,d)=1
d:odd

(2c′e−iθ/2 +
√

2deiθ/2)−k (c = 2c′)

=
∑

(c,d)=1
d:odd

(
√

2c′e−iθ/2 + deiθ/2)−k =
∑

(c,d)=1
c:odd

(ceiθ/2 +
√

2de−iθ/2)−k.

Thus we can write as follows;

F ∗
k,2(θ) =

1
2

∑
(c,d)=1
c:odd

(ceiθ/2 +
√

2de−iθ/2)−k +
1
2

∑
(c,d)=1
c:odd

(ce−iθ/2 +
√

2deiθ/2)−k.(7)

Hence we use this expression as a definition.
In the last part of this section, we compare the two series in this expression. Note that for any pair

(c, d), (ceiθ/2 +
√

2de−iθ/2)−k and (ce−iθ/2 +
√

2deiθ/2)−k are conjugates of each other. The next lemma
follows.

Lemma 2.1. F ∗
k,2(θ) is real, for ∀θ ∈ R.

2.2. Application of the RSD Method. We will apply the method of F. K. C. Rankin and H. P. F.
Swinnerton-Dyer (RSD Method) to the Eisenstein series associated with Γ∗

0(2). We note that N := c2+d2.
Firstly, we consider the case N = 1. Because c is odd, there are two cases, (c, d) = (1, 0) and

(c, d) = (−1, 0). Then

F ∗
k,2(θ) = 2 cos(kθ/2) + R∗

2,(8)

where R∗
2 is the summation of the rest terms.

Let vk(c, d, θ) := |ceiθ/2+
√

2de−iθ/2|−k, then vk(c, d, θ) = 1/
(
c2 + 2d2 + 2

√
2cd cos θ

)k/2
, and vk(c, d, θ) =

vk(−c,−d, θ).
Now we will consider the next three cases, namely N = 2, 5, and N > 10. Note that θ ∈ [π/2, 3π/4].

When N = 2, vk(1, 1, θ) 6 1, vk(1,−1, θ) 6 (1/3)k/2. When N = 5, vk(1, 2, θ) 6 (1/5)k/2, vk(1,−2, θ) 6
(1/3)k. When N > 10, |ceiθ/2 ±

√
2de−iθ/2|2 > (c2 + d2)/3 = N/3, and the rest of the question is

about the number of terms with c2 + d2 = N . Because c is odd, |c| = 1, 3, ..., 2N ′ − 1 6 N1/2, so the
number of |c| is not more than (N1/2 + 1)/2. Thus the number of terms with c2 + d2 = N is not more
than 2(N1/2 + 1) 6 3N1/2, for N > 5. Then we get the upper bound 162

k−3

(
1
3

)k/2.
Thus

|R∗
2| 6 2 + 2

(
1
3

)k/2

+ 2
(

1
5

)k/2

+ 2
(

1
3

)k

+
162

k − 3

(
1
3

)k/2

.(9)

Recalling “RSD Method”, we want to show that |R∗
2| < 2. But the right-hand side is greater than 2.

The point is the case (c, d) = ±(1, 1). We will consider the expansion of the method.



ON THE ZEROS OF EISENSTEIN SERIES ASSOCIATED WITH Γ∗
0(2), Γ∗

0(3) 3

2.3. Expansion of the RSD Method (1). In the previous subsection, the point was the case (c, d) =
±(1, 1). Notice that “vk(1, 1, θ) < 1 ⇔ θ < 3π/4”. So we can easily expect that we get a good bound for
θ ∈ [π/2, 3π/4 − x] for small x > 0. But if k = 8n, we need |R∗

2| < 2 for θ = 3π/4 in this method. We
will consider the case when k = 8n, θ = 3π/4 in the next section.

Let k = 8n+ s (n = m(k), s = 4, 6, 0, and 10). If k < 8, then n < 1. Consequently, F ∗
k,2(θ) has at least

0 zeros, which does not make sense. So we may assume that k > 8.
The first problem is how small x should be. We consider each of the cases s = 4, 6, 0, and 10.
When s = 4, (2n+1)π 6 kθ/2 6 (3n+1)π+π/2. So the last integer point(i.e. ±1) is kθ/2 = (3n+1)π,

then θ = 3π/4−π/k. Similarly, when s = 6, and 10, we have θ = 3π/4−π/2k, 3π/4−3π/2k, respectively.
When s = 0, the second to the last integer point is θ = 3π/4 − π/k.

Thus we need x 6 π/2k.

Lemma 2.2. Let k > 8. For ∀θ ∈ [π/2, 3π/4 − x] (x = π/2k), |R∗
2| < 2.

Before proving the above lemma, we need the following preliminaries.

Proposition 2.1.
(1) If 0 6 x 6 π/2, then sinx > 1 − cos x.
(2) If 0 6 x 6 π/16, then 1 − cos x > 31

64x2.

Proof of Lemma 2.2. Let k > 8 and x = π/2k, then 0 6 x 6 π/16.

|eiθ/2 +
√

2e−iθ/2|2 > 1 +
31
16

x2. (Prop.2.1)

|eiθ/2 +
√

2e−iθ/2|k > 1 +
k

2
31
16

x2 > 1 +
31
4

x2. (k > 8)

vk(1, 1, θ) 6 1 − (31/4)
1 + (31/4)x2

x2 6 1 − 31 × 256
31π2 + 1024

x2.

Thus

2vk(1, 1, θ) 6 2 − 31 × 512
31π2 + 1024

( π

2k

)2

6 2 − 265
9

1
k2

.

In inequality(15), replace 2 with the bound 2 − 265
9

1
k2 . Then

|R∗
2| 6 2 − 265

9
1
k2

+ 35
(

1
3

)k/2

(k > 8).

Finally, we can show that 35
(

1
3

)k/2
< 265

9
1
k2 . So, the proof is complete.

2.4. Expansion of the RSD Method (2). For the case “k = 8n, θ = 3π/4”, we need the next lemma.

Lemma 2.3. Let k be an integer such that k = 8n for ∃n ∈ N. If n is even, then F ∗
k,2(3π/4) > 0. On

the other hand if n is odd, then F ∗
k,2(3π/4) < 0.

Before proving this lemma, recall that Ek(z) is the modular form of weight k for SL2(Z) for k > 4 : even.
Then

Ek(z + 1) = Ek(z), Ek(−1/z) = zkEk(z).(10)

Proof of Lemma 2.3. Let k = 8n (n > 1). By the definition of E∗
k,2(z), F ∗

k,2(z) (cf. (4),(12)), we have

F ∗
k,2(3π/4) =

ei3(k/8)π

2k/2 + 1

(
2k/2Ek(−1 + i) + Ek

(
−1 + i

2

))
.

By using the equations (10), Ek(−1 + i) = Ek(i), Ek ((−1 + i)/2) = 2k/2Ek(i). Then

F ∗
k,2(3π/4) = 2ei(k/8)π 2k/2

2k/2 + 1
Fk(π/2).

The next question is: “Which one holds; Fk(π/2) < 0 or Fk(π/2) > 0?”.
In [RSD], they showed Fk(θ) := eikθ/2Ek(θ) = 2 cos(kθ/2)+R1. Then they proved |R1| < 2 for k > 12.

Moreover, for k = 8, |R1| is not more than 1.29658... < 2. It is monotonically decreasing in k. Thus we
can show

|R1| < 2 for ∀k > 8.(11)
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When k = 8n,

F ∗
8n,2(3π/4) = 2einπ 24n

24n + 1
F8n(π/2),

where 24n

24n+1 > 0, F8n(π/2) = 2 cos(2nπ) + R1 > 0. So the sign(±) of F ∗
k,2(3π/4) is that of einπ. Thus

the proof is complete.

3. Γ∗
0(3) (Proof of Theorem2)

3.1. Preliminaries. We give the next definition;

F ∗
k,3(θ) := eikθ/2E∗

k,3

(
eiθ/

√
3
)

.(12)

By the definition of Ek(z), E∗
k,3(z) (cf. (1),(4)), we have

2(3k/2 + 1)eikθ/2E∗
k,3

(
eiθ/

√
3
)

= 3k/2
∑

(c,d)=1

(ce−iθ/2 +
√

3deiθ/2)−k + 3k/2
∑

(c,d)=1

(ceiθ/2 +
√

3de−iθ/2)−k.

We consider the case if 3 is divisible by c. Then we can write as follows;

F ∗
k,3(θ) =

1
2

∑
(c,d)=1

3-c

(ceiθ/2 +
√

3de−iθ/2)−k +
1
2

∑
(c,d)=1

3-c

(ce−iθ/2 +
√

3deiθ/2)−k.(13)

The next lemma follows.

Lemma 3.1. F ∗
k,3(θ) is real, for ∀θ ∈ R.

3.2. Application of the RSD Method. We note that N := c2 + d2, and consider the case N = 1.
Then we can write;

F ∗
k,3(θ) = 2 cos(kθ/2) + R∗

3. (∃R∗
3 ∈ R)(14)

Let vk(c, d, θ) := |ceiθ/2+
√

3de−iθ/2|−k. Now we will consider the next cases, namely N = 2, 5, 10, 13, 17,
and N > 25. Considering θ ∈ [π/2, 5π/6], we calculate vk(c, d, θ) for N = 2, 5, 10, 13, 17. Furthermore,
for N > 25, we get the upper bound 352

√
6

k−3

(
1
2

)k. Thus

|R∗
3| 6 4 + 176

(
1
2

)k

(15)

Now, we want to show that |R∗
3| < 2. But the right-hand side is much greater than 2. The points are

the cases (c, d) = ±(1, 1), ±(2, 1).

3.3. Expansion of the RSD Method (1). In this subsection, we will prove following lemma.

Lemma 3.2. Let k > 8. For ∀θ ∈ [π/2, 5π/6 − x] (x = π/3k), |R∗
3| < 2.

Before proving the above lemma, we need the following preliminaries.

Proposition 3.1.

(1) For k > 8,
(

3
2

)2/k 6 1 +
(
2 log 3

2

)
1
k + 1

2

(
2 log 3

2

)2 ( 3
2

)2/k 1
k2 .

(2) For k > 8, 3 + 2
√

3 cos
(

5π
6 − π

3k

)
> π√

3
1
k .

(3) For k > 8, and let x = π/3k, then 4 + 2
√

3 cos
(

5π
6 − x

)
>
(

3
2

)2/k
(
1 + 256×7×13

3×127×k x2
)
.

Proposition 3.2.

(1) For k > 8, 32/k 6 1 + (2 log 3) 1
k + 1

2 (2 log 3)232/k 1
k2 .

(2) For k > 8, 6 + 4
√

3 cos
(

5π
6 − π

3k

)
> 2π√

3
1
k .

(3) For k > 8, and let x = π/3k, then 7 + 4
√

3 cos
(

5π
6 − x

)
> 32/k

(
1 + 256×7×13

3×127×k x2
)
.
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Proof of Lemma 3.2. Let k > 8 and x = π/3k, then 0 6 x 6 π/24.
By Proposition 3.1

|eiθ/2 +
√

3e−iθ/2|2 >
(

3
2

)2/k (
1 +

256 × 7 × 13
3 × 127 × k

x2

)
. (Prop.3.1(3))

vk(1, 1, θ) 6 2
3
− 107

8
x2.

Similarly, by Proposition 3.2

|2eiθ/2 +
√

3e−iθ/2|2 > 32/k

(
1 +

256 × 7 × 13
3 × 127 × k

x2

)
. (Prop.3.1(3))

vk(2, 1, θ) 6 1
3
− 107

16
x2.

In inequality(15), replace 4 with these bounds. Then

|R∗
3| 6 2 − 107π2

24
1
k2

+ 176
(

1
2

)k

.

We can show that 176
(

1
2

)k
< 107π2

24
1
k2 .

3.4. Expansion of the RSD Method (2). For the case “k = 12n, θ = 5π/6”, we need the next lemma.

Lemma 3.3. Let k be the integer such that k = 12n for ∃n ∈ N. If n is even, then F ∗
k,3(5π/6) > 0. On

the other hand, if n is odd, then F ∗
k,3(5π/6) < 0.

Proof. Let k = 12n (n > 1). By the definition of E∗
k,3(z), F ∗

k,3(z) (cf. (4),(12)), we have

F ∗
k,3(5π/6) =

ei5(k/12)π

3k/2 + 1

(
3k/2Ek

(
−3 +

√
3i

2

)
+ Ek

(
−
√

3 + i

2
√

3

))
.

By using the equations (10), for k = 12n,

F ∗
12n,3(5π/6) = 2einπ 36n

36n + 1
F12n(2π/3),

where 36n

36n+1 > 0, F12n(2π/3) = 2 cos(4nπ) + R1 > 0(cf. (11)). So the sign(±) of F ∗
k,3(5π/6) is that of

einπ. Thus the proof is complete.

Remark 1. Getz[G] considered a similar problem for the zeros of extremal modular forms of SL2(Z). It
seems that similar results do not hold for extremal modular forms of Γ∗

0(2) and Γ∗
0(3). We plan to look

into this in the near future.
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