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Abstract

We construct explicit solutions to discrete motion of discrete plane curves which has been
introduced by one of the authors recently. Explicit formulas in terms the τ function are pre-
sented. Transformation theory of motions of both smooth and discrete curves is developed
simultaneously.
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1 Introduction
Differential geometry has a close relationship with the theory of integrable systems. In fact, many
integrable differential or difference equations arise as compatibility conditions of some geometric
objects. For instance, it is well-known that the compatibility condition of pseudospherical sur-
faces gives rise to the sine-Gordon equation under the Chebyshev net parametrization. For more
information on such connections we refer to a monograph [30] by Rogers and Schief.

The above connection between the differential geometry of surfaces and the integrable systems
has been already known in the nineteenth century (although the theory of integrable systems has not
yet established). However, it is curious that the link between differential geometry of curves and the
integrable systems has been noticed rather recently. Actually G. Lamb [22] and Goldstein–Petrich
[11] discovered an interesting connection between integrable systems and differential geometry of
plane curves. Namely, they found that the modified Korteweg-de Vries equation (mKdV equation
in short) appears as the compatibility condition of a certain motion of plane curves. Here a motion
of curves means an isoperimetric time evolution of arc-length parametrized plane curves. More
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precisely, the compatibility condition implies that the curvature function of a motion should satisfy
the mKdV equation. As a result, the angle function of the motion satisfies the potential modified
Korteweg-de Vries equation (potential mKdV equation, in short).

On the other hand, in the theory of integrable systems, discretization of integrable differential
equations preserving the integrability has been paid much attention, after the pioneering work
of Ablowitz–Ladik [1] and Hirota [12–16]. Later, Date, Jimbo and Miwa developed a unified
algebraic approach from the view of so-called the KP theory [5–9, 21, 26]. For other approaches
to the discrete integrable systems, see, for example, [27, 31]. Thus one can expect the existence
of discretized differential geometric objects governed by the discrete integrable systems. This
idea has been realized by the works of Bobenko–Pinkall [3] and Doliwa [10] where the discrete
analogue of classical surface theory has been proposed, and it is now actively studied under the
name of discrete differential geometry [4].

On the contrary, the discrete analogue of curves has not been studied well in contrast to discrete
surfaces. For instance, Hisakado et al proposed a discretization of arc-length parametrized plane
curve [19]. They obtained from the compatibility condition of the motion of curves a certain semi-
discrete equation (discrete space variable and continuous time variable) which may be considered
as a semi-discretization of the mKdV equation. Hoffmann and Kutz [20] considered discretization
of the curvature function. By using their discrete curvature function and Möbius geometry, they
obtained another semi-discretization of the mKdV equation. However in both works, discretization
of time variable of curve motions was not established.

Recently one of the authors of the present paper formulated a full discretization of motion
of discrete curves [25], where the discrete potential mKdV equation proposed by Hirota [17] is
deduced as the compatibility condition. In the smooth curve theory, the potential function coincides
with the angle function of a curve, the primitive function of the curvature. However in the discrete
case, the potential function and the angle function become different objects. In this framework,
the primal geometric object is the potential function rather than curvature (see [25] and Section 2
of the present paper). Natural and systematic construction of the discrete motion of the curves is
expected by using the theory of discrete integrable systems.

The purpose of the paper is to construct explicit solutions to discrete motion of discrete curves
by using the theory of τ function. This paper is organized as follows. In Section 2, we prepare
fundamental ingredients of plane curve geometry and motions (isoperimetric time evolutions) of
plane curves described by the potential mKdV equation. Next we give a brief review of the discrete
motion of discrete curves [25]. In Section 3, we shall give a construction of motions for both
smooth and discrete curves by the theory of τ function. More precisely we introduce a system of
bilinear equations of Hirota type which can be obtained by a certain reduction of the discrete two-
dimensional Toda lattice hierarchy [21, 32, 33]. We shall give a representation formula for curve
motions in terms of τ function.

One of the central topics in classical differential geometry is the transformation theory of curves
and surfaces. The best known example might be the Bäcklund transformations of pseudospherical
surfaces. The original Bäcklund transformation was defined as a tangential line congruence satis-
fying constant distance property and constant normal angle property (see [30] ). In plane curve
geometry, Bäcklund transformations on arc-length parametrized plane curves can be defined as
arc-length preserving transformations satisfying constant distance property. Such transformations
can be extended to transformations on smooth curve motions via the transformation of solutions
to the potential mKdV equation. Motivated by this fact, we shall introduce Bäcklund transforma-
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tions for discrete motion of discrete curves in Section 4. In particular we shall give another type
of Bäcklund transformations on motions of both smooth and discrete curves, which is related to
the discrete sine-Gordon equation. In Section 5, we shall construct and exhibit some explicit so-
lutions of curve motions, namely, the multi-soliton and multi-breather solutions. We also present
some pictures of discrete motions of discrete curves. We finally give some explicit formulas for
the Bäcklund transformations of both smooth and discrete curve motions via the τ functions.

2 Motion of plane curves
Let γ(x) be an arc-length parametrized curve in Euclidean plane R2. Then the Frenet equation of γ
is

γ′′ =

[
0 −κ
κ 0

]
γ′. (2.1)

Here ′ denotes the differentiation with respect to x, and the function κ is the curvature of γ. Let us
consider the following motion in time t, i.e., isoperimetric time evolution:

∂

∂t
γ′ =


0 κ′′ +

κ3

2
−κ′′ − κ

3

2
0

 γ′. (2.2)

Then the potential function θ(x, t) defined by κ = θ′ satisfies the potential mKdV equation [11,22]:

θt +
1
2

(θx)3 + θxxx = 0. (2.3)

The function θ is called the angle function of γ in differential geometry. Note that γ′ can be
expressed as

γ′ =

[
cos θ
sin θ

]
. (2.4)

For any nonzero constant λ, the following set of equations

∂

∂x

 θ̃ + θ2

 = 2λ sin
θ̃ − θ

2
, (2.5)

∂

∂t

 θ̃ + θ2

 = −λ {(θx)2 + 8λ2
}

sin
θ̃ − θ

2
+ 2λθxx cos

θ̃ − θ
2
+ 4λ2θx, (2.6)

defines a solution θ̃ to the potential mKdV equation [34]. The solution θ̃ is called a Bäcklund
transform of θ.

Definition 2.1 A map γ : Z→ R2; n 7→ γn is said to be a discrete curve of segment length an if∣∣∣∣∣γn+1 − γn

an

∣∣∣∣∣ = 1. (2.7)
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We introduce the angle function Ψn of a discrete curve γ by

γn+1 − γn

an
=

[
cosΨn

sinΨn

]
. (2.8)

A discrete curve γ satisfies
γn+1 − γn

an
= R(Kn)

γn − γn−1

an−1
, (2.9)

for Kn = Ψn − Ψn−1, where R(Kn) denotes the rotation matrix given by

R(Kn) =
(

cos Kn − sin Kn

sin Kn cos Kn

)
. (2.10)

Now let us recall the following discrete motion of discrete curve γm
n : Z2 → R2 introduced by

Matsuura [25]: ∣∣∣∣∣∣γm
n+1 − γm

n

an

∣∣∣∣∣∣ = 1, (2.11)

γm
n+1 − γm

n

an
= R(Km

n )
γm

n − γm
n−1

an−1
, (2.12)

γm+1
n − γm

n

bm
= R(Wm

n )
γm

n+1 − γm
n

an
, (2.13)

where an and bm are arbitrary functions in n and m, respectively. Compatibility of the system
(2.11)–(2.13) implies the existence of the potential function Θm

n defined by

Wn
m =
Θm+1

n − Θm
n+1

2
, Km

n =
Θm

n+1 − Θm
n−1

2
, (2.14)

and it follows that Θm
n satisfies the discrete potential mKdV equation [17]:

tan
(
Θm+1

n+1 − Θm
n

4

)
=

bm + an

bm − an
tan

(
Θm+1

n − Θm
n+1

4

)
. (2.15)

Note that the angle function Ψm
n can be expressed as

Ψm
n =
Θm

n+1 + Θ
m
n

2
. (2.16)

Remark 2.2 The potential discrete mKdV equation (2.15) has been also known as the superposi-
tion formula for the modified KdV equation (2.3) [34] and the sine-Gordon equation [2, 30].
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3 τ function representation of plane curves
In this section, we give a representation formula for curve motions in terms of τ function.

Let τm
n = τ

m
n (x, t; y) be a complex valued function dependent on two discrete variables m and n,

three continuous variables x, t and y, which satisfies the following system of bilinear equations:

1
2

DxDy τ
m
n · τm

n = −
(
τ∗mn

)2 , (3.1)

D2
x τ

m
n · τ∗mn = 0, (3.2)(

D3
x + Dt

)
τm

n · τ∗mn = 0, (3.3)

Dy τ
m
n+1 · τm

n = −anτ
∗m

n+1τ
∗m

n , (3.4)

Dy τ
m+1
n · τm

n = −bmτ
∗m

n+1τ
∗m

n , (3.5)

bmτ
∗m+1

n τ
m
n+1 − anτ

∗m
n+1τ

m+1
n + (an − bm)τ∗m+1

n+1 τ
m
n = 0. (3.6)

Here, ∗ denotes the complex conjugate, and Dx, Dy, Dt are Hirota’s bilinear differential operators
(D-operators) defined by

Di
xD j

yDk
t f · g = (∂x − ∂x′)i(∂y − ∂y′) j(∂t − ∂t′)k f (x, y, t)g(x′, y′, t′)

∣∣∣
x=x′,y=y′,t=t′

. (3.7)

For the calculus of the D-operators, we refer to [18]. In general, the functions satisfying the bilinear
equations of Hirota type are called the τ functions.

Theorem 3.1 Let τm
n be a solution to eqs.(3.1)–(3.6). Define a real function Θm

n (x, t; y) and an
R2-valued function γm

n (x, t; y) by

Θm
n (x, t; y) :=

2
√
−1

log
τm

n

τ∗mn
, (3.8)

γm
n (x, t; y) :=


−1

2
(
log τm

n τ
∗m

n
)

y

1

2
√
−1

(
log
τm

n

τ∗mn

)
y

 . (3.9)

(1) For any m, n ∈ Z and y ∈ R, the functions θ(x, t) = Θm
n (x, t; y) and γ(x, t) = γm

n (x, t; y) satisfy
eqs.(2.1)–(2.3).

(2) For any x, t, y ∈ R, the functions Θm
n = Θ

m
n (x, t; y) and γm

n = γ
m
n (x, t; y) satisfy eqs.(2.11)–

(2.15).

Proof. (1) Express γm
n =

t(Xm
n ,Y

m
n ). Then by using eq.(3.1) together with its complex conjugate,

we have

(
Xm

n
)′
= −1

2
log(τ∗mn τ

m
n )xy = −

1
2

 1
2 DxDy τ

∗m
n · τ∗mn

(τ∗mn )2 +

1
2 DxDy τ

m
n · τm

n

(τm
n )2


=

1
2

( τm
n

τ∗mn

)2

+

(
τ∗mn
τm

n

)2 = cosΘm
n .
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Similarly we obtain
(
Ym

n
)′
= sinΘm

n . Differentiating (γm
n )′ = t(cosΘm

n , sinΘm
n ) by x and noticing

that κ = Θ′ , we obtain eq.(2.1):

(γm
n )′′ =

(
Θm

n
)′ ( − sinΘm

n
cosΘm

n

)
=

(
0 −κ
κ 0

)
(γm

n )′.

On the other hand, differentiating (γm
n )′ by t, we have

(γm
n )′t =

(
Θm

n
)

t

(
− sinΘm

n
cosΘm

n

)
=

(
Θm

n
)

t

(
0 −1
1 0

)
(γm

n )′.

By using the bilinear equations (3.2) and (3.3), (Θm
n )t can be rewritten as

(Θm
n )t =

2
√
−1

Dt τ
m
n · τ∗mn
τm

n τ
∗m

n
= − 2
√
−1

D3
x τ

m
n · τ∗mn
τm

n τ
∗m

n

= − 2
√
−1

(log
τm

n

τ∗mn

)
xxx
+ 3

(
log
τm

n

τ∗mn

)
x

(
log τm

n τ
∗m

n
)

xx +

{(
log
τm

n

τ∗mn

)
x

}3
= − 2

√
−1

(log
τm

n

τ∗mn

)
xxx
− 2

{(
log
τm

n

τ∗mn

)
x

}3 = −κxx −
κ3

2
(3.10)

which yields eq.(2.2). Here we have used the relation

0 =
D2

x τ
m
n · τ∗mn
τm

n τ
∗m

n
=

(
log τm

n τ
∗m

n
)

xx +

(
log
τm

n

τ∗mn

)2

x

which is a consequence of eq.(3.2). The potential mKdV equation (2.3) follows immediately from
eq.(3.10) by noticing that κ = Θ′.

(2) From eq. (3.4) and its complex conjugate we have(
log
τm

n+1

τm
n

)
y
= −an

τ∗mn+1τ
∗m

n

τm
n+1τ

m
n
,

(
log
τ∗mn+1

τ∗mn

)
y
= −an

τm
n+1τ

m
n

τ∗mn+1τ
∗m

n
. (3.11)

Adding these two equations we obtain

(
log τm

n+1τ
∗m

n+1
)

y −
(
log τm

n τ
∗m

n
)

y = −an

(
τ∗mn+1τ

∗m
n

τm
n+1τ

m
n
+
τm

n+1τ
m
n

τ∗mn+1τ
∗m

n

)
, (3.12)

which yields

Xm
n+1 − Xm

n

an
= cosΨm

n , Ψ
m
n =

1
√
−1

log
(
τm

n+1τ
m
n

τ∗mn+1τ
∗m

n

)
=
Θm

n+1 + Θ
m
n

2
. (3.13)

Subtracting the second equation from the first equation in eq.(3.11) we have

Ym
n+1 − Ym

n

an
= sinΨm

n .

Therefore we obtain
γm

n+1 − γm
n

an
=

(
cosΨm

n

sinΨm
n

)
. (3.14)
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which gives eq.(2.11). Next, from eq.(3.14) we see that

γm
n+1 − γm

n

an
= R(Ψm

n − Ψm
n−1)
γm

n − γm
n−1

an−1
, Ψm

n − Ψm
n−1 =

Θm
n+1 − Θm

n−1

2
= Km

n , (3.15)

which is nothing but eq.(2.12). Similarly, starting from eq.(3.5) and its complex conjugate we
obtain

γm+1
n − γm

n

bm
=

(
cosΦm

n

sinΦm
n

)
, Φm

n =
1
√
−1

log
(
τm+1

n τ
m
n

τ∗m+1
n τ

∗m
n

)
=
Θm+1

n + Θm
n

2
, (3.16)

which yields

γm+1
n − γm

n

bm
= R(Φm

n − Ψm
n )
γm

n+1 − γm
n

an
, Φm

n − Ψm
n =
Θm+1

n − Θm
n+1

2
= Wm

n . (3.17)

This is equivalent to eq.(2.13).
Finally let us derive the discrete potential mKdV equation (2.15). Dividing eq.(3.6) and its

complex conjugate by τ∗mn+1τ
∗m+1

n we have

bm exp


√
−1 Θm

n+1

2

 − an exp
 √−1 Θm+1

n

2

 = −(an − bm)
τ∗m+1

n+1 τ
m
n

τ∗m+1
n τ

∗m
n+1
,

bm exp
 √−1 Θm+1

n

2

 − an exp


√
−1 Θm

n+1

2

 = −(an − bm)
τm+1

n+1 τ
∗m

n

τ∗m+1
n τ

∗m
n+1
,

(3.18)

respectively. Dividing these two equations we obtain

bm exp
( √
−1 Θm

n+1
2

)
− an exp

( √
−1 Θm+1

n
2

)
bm exp

( √
−1 Θm+1

n
2

)
− an exp

( √
−1 Θm

n+1
2

) = exp

−
√
−1

(
Θm+1

n+1 − Θm
n

)
2

 , (3.19)

which is easily verified to be equivalent to eq.(2.15). Thus we have completed the proof of Theorem
3.1. �

Corollary 3.2 (Representation Formula)
γm

n can be expressed in terms of the potential function Θm
n as follows:

γm
n (x, t; y) =


∫ x

cosΘm
n (x′, t; y) dx′∫ x

sinΘm
n (x′, t; y) dx′

 =


n−1∑
n′

an′ cos
(
Θm

n′(x, t; y) + Θm
n′+1(x, t; y)

2

)
n−1∑
n′

an′ sin
(
Θm

n′(x, t; y) + Θm
n′+1(x, t; y)

2

)

. (3.20)

Proof. The first equation is a consequence of

∂

∂x
γm

n (x, t; y) =
[

cosΘm
n (x, t; y)

sinΘm
n (x, t; y)

]
, (3.21)
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and the second equation follows from eq.(3.14). �

It should be noted here that the bilinear equations (3.1)–(3.6) are derived from the reduction of
the following equations,

1
2

DxDy τ
m
n (s) · τm

n (s) = −τm
n (s + 1)τm

n (s − 1), (3.22)(
D2

x − Dz

)
τm

n (s + 1) · τm
n (s) = 0, (3.23)(

D3
x + Dt + 3DxDz

)
τm

n (s + 1) · τm
n (s) = 0, (3.24)

Dy τ
m
n+1(s) · τm

n (s) = −anτ
m
n+1(s + 1)τm

n (s − 1), (3.25)

Dy τ
m+1
n (s) · τm

n (s) = −bmτ
m
n+1(s + 1)τm

n (s − 1), (3.26)

bmτ
m+1
n (s + 1)τm

n+1(s) − anτ
m
n+1(s + 1)τm+1

n (s) + (an − bm)τm+1
n+1 (s + 1)τm

n (s) = 0, (3.27)

for τm
n (s) = τm

n (x, z, t; y; s), which are included in the discrete two-dimensional Toda lattice hierar-
chy [21, 32, 33]. In fact, imposing the condition

∂

∂z
τm

n (s) = B τm
n (s), τm

n (s + 1) = C τ∗mn (s), B,C ∈ R, (3.28)

and denoting τm
n = τ

m
n (0), then eqs.(3.22)–(3.27) yield eqs.(3.1)–(3.6), respectively.

4 Bäcklund transformations
We start with the following fundamental fact on plane curves.

Proposition 4.1 Let γ(x) be an arc-length parametrized curve with angle function θ(x). Take a
nonzero constant λ and a solution θ̃(x) to θ̃ + θ2

′ = 2λ sin
θ̃ − θ

2
. (4.1)

Then

γ̃(x) = γ(x) +
1
λ

R
 θ̃(x) − θ(x)

2

 γ′(x) (4.2)

is an arc-length parametrized curve with angle function θ̃(x). In other words, if γ(x) is a solution
to eq.(2.1), then γ̃(x) is another solution to eq.(2.1) with κ̃(x) = θ̃′(x). The curve γ̃ is called a
Bäcklund transform of γ.

Proposition 4.1 can be verified easily by direct computation. We next extend the Bäcklund trans-
formation to those of motion of curve.

Proposition 4.2 Let γ(x, t) be a motion of arc-length parametrized curve determined by eqs.(2.2)
and (2.3). Take a Bäcklund transform θ̃(x, t) defined by eqs.(2.5) and (2.6) of θ(x, t). Then

γ̃(x, t) = γ(x, t) +
1
λ

R
 θ̃(x, t) − θ(x, t)

2

 γ′(x, t) (4.3)

is a motion of arc-length parametrized curve with the angle function θ̃(x, t).
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Proof. By the preceding Proposition, γ̃ satisfies the isoperimetric condition |̃γ′| = 1. Computing
the t-derivative of γ̃ by using (2.6), we can show that γ̃ satisfies eq.(2.2) with κ̃ = θ̃′ �

Now we introduce a Bäcklund transformation of discrete curve.

Proposition 4.3 Let γn be a discrete curve of segment length an. Let Θn be the potential function
defined by

γn+1 − γn

an
=

[
cosΨn

sinΨn

]
, Ψn =

Θn+1 + Θn

2
. (4.4)

For a nonzero constant λ, take a solution Θ̃n to the following equation

tan
Θ̃n+1 − Θn

4

 = 1
λ
+ an

1
λ
− an

tan
Θ̃n − Θn+1

4

 , (4.5)

then

γ̃n = γn +
1
λ

R
Θ̃n − Θ̃n+1

2

 γn+1 − γn

an
(4.6)

is a discrete curve with the potential function Θ̃n.

Proof. It suffices to show that

γ̃n+1 − γ̃n

an
=

[
cos Ψ̃n

sin Ψ̃n

]
, Ψ̃n =

Θ̃n+1 + Θ̃n

2
(4.7)

for γ̃n defined by eq.(4.6). This follows from eqs.(4.4) and (4.5). �

We next extend the Bäcklund transformation to those of motion of discrete curve. In order to
do so, we first present the Bäcklund transformation to the discrete potential mKdV equation:

Lemma 4.4 Let Θm
n be a solution to the discrete potential mKdV equation (2.15). A function Θ̃m

n
satisfying the following system of equations

tan

Θ̃m
n+1 − Θm

n

4

 = 1
λ
+ an

1
λ
− an

tan

Θ̃m
n − Θm

n+1

4

 , (4.8)

tan
Θ̃m+1

n − Θm
n

4

 = 1
λ
+ bm

1
λ
− bm

tan
Θ̃m

n − Θm+1
n

4

 , (4.9)

gives another solution to eq.(2.15). We call Θ̃m
n a Bäcklund transform of Θm

n .

Proof. First note that eq.(2.15) is equivalent to

eUm+1
n +Um

n − eUm+1
n+1 +Um

n+1 =
an

bm

(
eUm

n+1+Um
n − eUm+1

n+1 +Um+1
n

)
, (4.10)

where we put
√
−1Θm

n
2 = Um

n for notational simplicity. Similarly, eqs.(4.8) and (4.9) are rewritten as

eŨm
n +Um

n − eŨm
n+1+Um

n+1 = λan

(
eUm

n+1+Um
n − eŨm

n+1+Ũm
n
)
, (4.11)

eŨm
n +Um

n − eŨm+1
n +Um+1

n = λbm

(
eUm+1

n +Um
n − eŨm+1

n +Ũm
n
)
, (4.12)
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respectively, where
√
−1Θ̃m

n
2 = Ũm

n . Subtracting eq.(4.12) from eq.(4.11), we have

eŨm+1
n +Um+1

n − eŨm
n+1+Um

n+1 = λ
(
aneUm

n+1+Um
n − bmeUm+1

n +Um
n
)
− λ

(
aneŨm

n+1+Ũm
n − bmeŨm+1

n +Ũm
n
)
. (4.13)

Similarly, subtracting eq.(4.12)n→n+1 from eq.(4.11)m→m+1, we get

eŨm+1
n +Um+1

n − eŨm
n+1+Um

n+1 = λ
(
aneUm+1

n+1 +Um+1
n − bmeUm+1

n+1 +Um
n+1

)
− λ

(
aneŨm+1

n+1 +Ũm+1
n − bmeŨm+1

n+1 +Ũm
n+1

)
. (4.14)

Subtracting eq. (4.14) from eq.(4.13) yields

an

(
eŨm

n+1+Ũm
n − eŨm+1

n+1 +Ũm+1
n

)
− bm

(
eŨm+1

n +Ũm
n − eŨm+1

n+1 +Ũm
n+1

)
= an

(
eUm

n+1+Um
n − eUm+1

n+1 +Um+1
n

)
− bm

(
eUm+1

n +Um
n − eUm+1

n+1 +Um
n+1

)
.

(4.15)

Now we see that the right hand side of eq.(4.15) vanishes since it is equivalent to eq.(4.10). Then
the left hand side gives eq.(2.15) for Θ̃m

n . �.

Proposition 4.5 Let γm
n be a discrete motion of discrete curve. Take a Bäcklund transform Θ̃m

n of
Θm

n defined in Lemma 4.4. Then

γ̃m
n = γ

m
n +

1
λ

R

Θ̃m
n − Θm

n+1

2

 γm
n+1 − γm

n

an
(4.16)

is a discrete motion of discrete curve with potential function Θ̃m
n .We call γ̃m

n a Bäcklund transform
of γm

n .

Proof. It suffices to show that γ̃m
n satisfies eqs.(2.11)–(2.13) with potential function Θ̃m

n , but
eqs.(2.11) and (2.12) follow from Proposition 4.3 immediately. Noticing the symmetry in n and m,
similar calculations to those in Proposition 4.3 yield

γ̃m+1
n − γ̃m

n

bm
=


cos

(
Θ̃m+1

n +Θ̃m
n

2

)
sin

(
Θ̃m+1

n +Θ̃m
n

2

)
 (4.17)

by using eq.(4.9). Comparing eqs.(4.7) and (4.17) we obtain

γ̃m+1
n − γ̃m

n

bm
= R

Θ̃m+1
n − Θ̃m

n+1

2

 γ̃m
n+1 − γ̃m

n

an
, (4.18)

which implies eq.(2.13). �

It is possible to construct another type of Bäcklund transformations for motions of both smooth
and discrete curves by using the symmetry of the potential modified KdV equation (2.3) and dis-
crete potential modified KdV equation (2.15). In fact, if θ(x, t) is a solution to eq.(2.3), then −θ(x, t)
satisfies the same equation. Combining this symmetry and the Bäcklund transformation defined
by eqs.(2.5) and (2.6), we have the following Bäcklund transformation:
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Lemma 4.6 Let θ(x, t) be a solution to the potential modified KdV equation (2.3). For any nonzero
constant λ, a function θ(x, t) satisfying the following set of equations

∂

∂x

θ − θ2

 = 2λ sin
θ + θ

2
, (4.19)

∂

∂t

θ − θ2

 = −λ {(θx)2 + 8λ2
}

sin
θ + θ

2
− 2λθxx cos

θ + θ

2
− 4λ2θx, (4.20)

gives another solution to eq.(2.3).

Lemma 4.6 immediately yields the following Bäcklund transformation for γ(x, t):

Proposition 4.7 Let γ(x, t) be a motion of arc-length parametrized curve determined by eqs.(2.2)
and (2.3). Take a Bäcklund transform θ(x, t) of θ(x, t) defined in Lemma 4.6. Then

γ(x, t) = S
γ(x, t) +

1
λ

R
−θ(x, t) + θ(x, t)

2

 γ′(x, t)
 , S =

[
1 0
0 −1

]
, (4.21)

is a motion of arc-length parametrized curve with angle function θ(x, t).

Note that eqs.(4.19) and (4.20) can be derived from eqs.(2.5) and (2.6) simply by putting θ̃(x, t) =
−θ(x, t). Moreover, noticing eq.(2.4) and Proposition 4.2, we have

γ(x, t) +
1
λ

R
−θ(x, t) + θ(x, t)

2

 γ′(x, t) =
[

cos(−θ(x, t))
sin(−θ(x, t))

]
=

[
cos θ(x, t)
− sin θ(x, t)

]
, (4.22)

which implies Proposition 4.7.
Similarly, if Θm

n is a solution to eq.(2.15), then −Θm
n satisfies the same equation. Therefore

Lemma 4.4 and Proposition 4.5 lead to the following Bäcklund transformations:

Lemma 4.8 Let Θm
n be a solution to the discrete potential mKdV equation (2.15). A function Θm

n
satisfying the following system of equations

tan

Θm
n+1 + Θ

m
n

4

 = 1
λ
+ an

1
λ
− an

tan

Θm
n + Θ

m
n+1

4

 , (4.23)

tan
Θm+1

n + Θm
n

4

 = 1
λ
+ bm

1
λ
− bm

tan
Θm

n + Θ
m+1
n

4

 , (4.24)

gives another solution to eq.(2.15).

Proposition 4.9 Let γm
n be a discrete motion of discrete curve. Take a Bäcklund transform Θm

n of
Θm

n defined in Lemma 4.8. Then

γm
n = S

γm
n +

1
λ

R

−Θm
n + Θ

m
n+1

2

 γm
n+1 − γm

n

an

 , S =
[

1 0
0 −1

]
, (4.25)

is a discrete motion of discrete curve with potential function Θm
n .
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Remark 4.10

(1) It may be interesting to point out that eq.(4.23) and eq.(4.24) are rewritten as

sin

Θm
n+1 − Θm

n+1 − Θm
n + Θ

m
n

4

 = λan sin

Θm
n+1 + Θ

m
n+1 + Θ

m
n + Θ

m
n

4

 , (4.26)

sin
Θm+1

n − Θm+1
n − Θm

n + Θ
m
n

4

 = λbm sin
Θm+1

n + Θm+1
n + Θm

n + Θ
m
n

4

 , (4.27)

respectively, which are essentially equivalent to the discrete sine-Gordon equation [14].

(2) The Bäcklund transformations described in Propositions 4.2 and 4.5 satisfy “constant dis-
tance property”, i.e., |̃γ−γ| ≡ 1/λ or |̃γm

n −γm
n | ≡ 1/λ. These transformations may be regarded

as one-dimensional analogue of the original Bäcklund transformations of the pseudospheri-
cal surface [30]. On the other hand, the Bäcklund transformations proposed in Propositions
4.7 and 4.9 are characterized by the property |γ − S γ| = 1/λ.

5 Explicit Solutions

5.1 Solitons and Breathers
For N ∈ Z≥0 we define a function τm

n (s) = τm
n (x, t; y, z; s) by

τm
n (s) = exp

− x +
n−1∑
n′

an′ +

m−1∑
m′

bm′

 y

 det
(

f (i)
s+ j−1

)
i, j=1,...,N

, (5.1)

for (x, t; y, z) ∈ R4 and (m, n, s) ∈ Z3. Here f (i)
s = f (i)

s (x, t; y, z; m, n) (i = 1, . . . ,N) satisfies the
following linear equations

∂ f (i)
s

∂x
= f (i)

s+1,
∂ f (i)

s

∂z
= f (i)

s+2,
∂ f (i)

s

∂t
= −4 f (i)

s+3,
∂ f (i)

s

∂y
= f (i)

s−1, (5.2)

f (i)
s (m, n) − fs(m, n − 1)

an
= f (i)

s+1(m, n),
f (i)
s (m, n) − fs(m − 1, n)

bm
= f (i)

s+1(m, n). (5.3)

For N = 0, we set det( f (i)
s+ j−1)i, j=1...,N = 1. A typical example for f (i)

s is given by

f (i)
s = eηi + eµi , (5.4)

eηi = αi ps
i

n−1∏
n′

(1 − an′ pi)−1
m−1∏
m′

(1 − bm′ pi)−1epi x+p2
i z−4p3

i t+ 1
pi

y
,

eµ j = βiqs
i

n−1∏
n′

(1 − an′qi)−1
m−1∏
m′

(1 − bm′qi)−1eqi x+q2
i z−4q3

i t+ 1
qi

y
,

(5.5)

where pi, qi, αi and βi are arbitrary complex constants.
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We note that τm
n and f (i)

s are functions of continuous variables x, y, z, t and discrete variables
m, n, s, but we will indicate only the relevant variables according to the context, for notational
simplicity. Then it is well-known that τm

n (s) satisfies the bilinear equations(3.22)–(3.27) [18, 21,
23, 24, 28, 29, 33]. Actually by using the linear relations (5.2) and (5.3), eqs.(3.22)–(3.27) are
reduced to the Plücker relations which are quadratic identities of determinants.

It is possible to construct the solutions to the bilinear equations (3.1)–(3.6) by imposing the
reduction condition (3.28) on τm

n (s) in eq.(5.1). Those conditions are realized by putting restric-
tions on parameters of solutions. As an example, we present the multi-soliton and multi-breather
solutions:

Proposition 5.1 Consider the τ function

τm
n = exp

− x +
n−1∑
n′

an′ +

m−1∑
m′

bm′

 y

 det
(

f (i)
j−1

)
i, j=1,...,N

, (5.6)

f (i)
s = eηi + eµi , (5.7)

eηi = αi ps
i

n−1∏
n′

(1 − an′ pi)−1
m−1∏
m′

(1 − bm′ pi)−1epi x−4p3
i t+ 1

pi
y
,

eµ j = βi(−pi)s
n−1∏
n′

(1 + an′ pi)−1
m−1∏
m′

(1 + bm′ pi)−1e−pi x+4p3
i t− 1

pi
y
.

(5.8)

(1) Choosing the parameters as

pi, αi ∈ R, βi ∈
√
−1R (i = 1, . . . ,N), (5.9)

then τm
n satisfies the bilinear equations (3.1)–(3.6). This gives the N-soliton solution to eqs.

(2.3) and (2.15).

(2) Taking N = 2M, and choosing the parameters as

pi, αi, βi ∈ C (i = 1, . . . , 2M), p2k = p∗2k−1 (k = 1, . . . ,M),

α2k = α
∗
2k−1, β2k = −β∗2k−1 (k = 1, . . . ,M),

(5.10)

then τm
n satisfies the bilinear equations (3.1)–(3.6). This gives the M-breather solution to

eqs. (2.3) and (2.15).

Proof. It is sufficient to show that the conditions in eq.(3.28) are satisfied. We first impose the
two-periodicity in s, i.e., τm

n (s + 2) = const. × τm
n (s). For τm

n (s) in eq.(5.1) with entries given by
eqs.(5.4) and (5.5), putting

qi = −pi, (5.11)

we have
f (i)
s+2 = p2

i f (i)
s , (5.12)

which implies

τm
n (s + 2) = AN τ

m
n (s), AN =

N∏
i=1

p2
i . (5.13)
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Note that the condition
∂τm

n (s)
∂z

= BN τ
m
n (s), BN =

N∑
i=1

p2
i , (5.14)

is also satisfied simultaneously. Now we consider case (1) and (2) separately:
Case (1). We see from eqs.(5.7) and (5.8) together with eq.(5.9) that

f (i)
1 = pi f (i)

0
∗ (5.15)

and so

τm
n (1) = CN τ

∗m
n (0), CN =

N∏
i=1

pi ∈ R. (5.16)

Case (2). We see from eqs.(5.7) and (5.8) together with eq.(5.10) that

f (2k)
1 = p∗2k−1 f (2k−1)

0
∗, f (2k−1)

1 = p∗2k f (2k)
0
∗, (5.17)

and so

τm
n (1) = CN τ

∗m
n (0), CN = (−1)M

M∏
i=1

|pi|2 ∈ R. (5.18)

Therefore we have verified that the conditions in eq.(3.28) are satisfied for both cases. Then putting
τm

n = τ
m
n (0), we obtain the desired result. �

We present some pictures of motions of the discrete curves. Figure 1 shows the simplest exam-
ple of curve which corresponds to 1-soliton solution (loop soliton). The next example illustrated

Figure 1. Parameters in eqs.(5.6), (5.7) and (5.8): N = 1, x = 0, y = 0, α1 = −1, β1 =
√
−1,

p1 = 0.3, an = 1, bm = 0.5.

in Figure 2 describes the interaction of two loops which corresponds to the 2-soliton solution.
Figures 3 and 4 show the motions which correspond to the 1-breather and 2-breather solutions,
respectively.

5.2 Solutions via Bäcklund transformations
In the theory of integrable systems, the Bäcklund transformations are obtained from the shift of
a certain discrete independent variable, which also applies to our geometric transformations. We
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m = −46 m = −20

m = −1 m = 30

Figure 2. Parameters in eqs.(5.6), (5.7) and (5.8): N = 2, x = 0, y = 0, α1 = −1, α2 = 1,
β1 = −β2 =

√
−1, p1 = 0.3, p2 = 0.9, an = 1, bm = 0.5.

first introduce discrete variables k, l, and regard the determinant size N as an additional discrete
variable. We then extend the τ function as τm

n (k, l,N) = τm
n (x, t; y; k, l,N) in the following way:

τm
n (k, l,N) = exp

− x +
n−1∑
n′

an′ +

m−1∑
m′

bm′ +

k−1∑
k′

ck′ +

l−1∑
l′

1
dl′

 y

 det
(

f (i)
j−1

)
i, j=1,...,N

, (5.19)

f (i)
s = eηi + eµi , (5.20)

eηi = αi ps
i

n−1∏
n′

(1 − an′ pi)−1
m−1∏
m′

(1 − bm′ pi)−1
k−1∏
k′

(1 − ck′ pi)−1
l−1∏
l′

(
1 − dl′

pi

)−1

× epi x−4p3
i t+ 1

pi
y
,

eµ j = βi(−pi)s
n−1∏
n′

(1 + an′ pi)−1
m−1∏
m′

(1 + bm′ pi)−1
k−1∏
k′

(1 + ck′ pi)−1
l−1∏
l′

(
1 +

dl′

pi

)−1

× e−pi x+4p3
i t− 1

pi
y
.

(5.21)

Accordingly, we extend the relevant dependent variables such as Θ and γ in the same way.

Proposition 5.2

(1) For any k ∈ Z, γ̃(x, t) = γ(x, t; k + 1) is a Bäcklund transform of γ(x, t) = γ(x, t; k) related by
eq.(4.3) with λ = 1

ck
.

(2) For any k ∈ Z, γ̃m
n = γ

m
n (k + 1) is a Bäcklund transform of γm

n = γ
m
n (k) related by eq.(4.16)

with λ = 1
ck

.

(3) For any N ∈ Z≥0, γ̃(x, t) = γ(x, t; N+1) is a Bäcklund transform of γ(x, t) = γ(x, t; N) related
by eq.(4.3) with λ = −pN+1.

(4) For any N ∈ Z≥0, γ̃m
n = γ

m
n (N+1) is a Bäcklund transform of γm

n = γ
m
n (N) related by eq.(4.16)

with λ = −pN+1.
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m = −18 m = −7

m = −1 m = 20

Figure 3. Parameters in eqs.(5.6), (5.7) and (5.8): N = 2, x = 0, y = 0, α1 = α
∗
2 = 1, β1 = −β∗2 = 1,

p1 = p∗2 = 0.2 − 0.2
√
−1, an = 1, bm = 1.5.

(5) For any l ∈ Z, γ(x, t) = γ(x, t; l + 1) is a Bäcklund transform of γ(x, t) = γ(x, t; l) related by
eq.(4.21) with λ = dl.

(6) For any l ∈ Z, γm
n = γ

m
n (l+1) is a Bäcklund transform of γm

n = γ
m
n (l) related by eq.(4.25) with

λ = dl.

Proof. We first prove (1) and (2). It follows from eq.(3.4) that the τ function satisfies the bilinear
equation

Dy τ
m
n (k + 1) · τm

n (k) = −ckτ
∗m

n (k + 1)τ∗mn (k), (5.22)

because of the symmetry with respect to the discrete variables m, n and k in eqs.(5.19)–(5.21).
Then by the argument similar to that in proof of Theorem 3.1, we see that

γ(k + 1) − γ(k)
ck

=

 cos
(
θ(k+1)+θ(k)

2

)
sin

(
θ(k+1)+θ(k)

2

)
 . (5.23)

From eq.(2.4), we have eq.(4.3) with γ̃ = γ(k + 1) and θ̃ = θ(k + 1)

γ(k + 1) − γ(k)
ck

= R
(
θ(k + 1) − θ(k)

2

)
γ′(k). (5.24)

Similarly from eq.(3.14), we obtain eq.(4.16) with γ̃m
n = γ

m
n (k + 1) and Θ̃m

n = Θ
m
n (k + 1)

γm
n (k + 1) − γm

n (k)
ck

= R
(
Θm

n (k + 1) − Θm
n+1(k)

2

)
γm

n+1(k) − γm
n (k)

an
, (5.25)
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m = −18 m = −7

m = −1 m = 20

Figure 4. Parameters in eqs.(5.6), (5.7) and (5.8): N = 4, x = 0, y = 0, α1 = α
∗
2 = 1, α3 = α

∗
4 =√

−1, β1 = −β∗2 = 1, β3 = −β∗4 =
√
−1, p1 = p∗2 = 0.2 − 0.2

√
−1, p3 = p∗4 = 0.8 + 0.8

√
−1, an = 1,

bm = 1.5.

which proves (1) and (2). The statements (3)–(4) and (5)–(6) can be proved in much the same way
as (1)–(2), by using the bilinear equations

Dy τ
m
n (N + 1) · τm

n (N) =
1

pN+1
τ∗mn (N)τ∗mn (N + 1), (5.26)

Dy τ
m
n (l + 1) · τ∗mn (l) = − 1

dl
τ∗mn (l + 1)τm

n (l), (5.27)

respectively. These bilinear equations will be proved in Appendix. �

Remark 5.3 Here we give a physical interpretations of Bäcklund transformations described above.
The Bäcklund transforms in (1)–(2) and (5)–(6) correspond to changing the phase of solitons
(loops), in other words, positions of solitons. On the other hand, the Bäcklund transforms in
(3)–(4) correspond to increasing the number of solitons (loops).

Computing the potential functions of the Bäcklund transforms of the curves, one can verify the
following result:

Corollary 5.4

(1) For any k ∈ Z, θ̃(x, t) = θ(x, t; k + 1) is a Bäcklund transform of θ(x, t) = θ(x, t; k) related by
eqs.(2.5) and (2.6) with λ = 1

ck
.

(2) For any k ∈ Z, Θ̃m
n = Θ

m
n (k + 1) is a Bäcklund transform of Θm

n = Θ
m
n (k) related by eqs.(4.8)

and (4.9) with λ = 1
ck

.

(3) For any N ∈ Z≥0, θ̃(x, t) = θ(x, t; N + 1) is a Bäcklund transform of θ(x, t) = θ(x, t; N) related
by eqs.(2.5) and (2.6) with λ = −pN+1.

17



(4) For any N ∈ Z≥0, Θ̃m
n = Θ

m
n (N + 1) is a Bäcklund transform of Θm

n = Θ
m
n (N) related by

eqs.(4.8) and (4.9) with λ = −pN+1.

(5) For any l ∈ Z, θ(x, t) = θ(x, t; l + 1) is a Bäcklund transform of θ(x, t) = θ(x, t; l) related by
eqs.(4.19) and (4.20) with λ = dl.

(6) For any l ∈ Z, Θm
n = Θ

m
n (l + 1) is a Bäcklund transform of Θm

n = Θ
m
n (l) related by eqs.(4.23)

and (4.24) with λ = dl.

A Derivation of bilinear equations (5.26) and (5.27)
In this appendix, we show that the τ function given in eqs.(5.19)–(5.21) actually satisfies the bi-
linear equations (5.26) and (5.27). For this purpose, we first introduce the generic τ function
τm

n (k, l,N; s) = τm
n (x, t; y, z; k, l,N; s) by

τm
n (k, l,N; s) = exp

− x +
n−1∑
n′

an′ +

m−1∑
m′

bm′ +

k−1∑
k′

ck′ +

l−1∑
l′

1
dl′

 y

 det
(

f (i)
s+ j−1

)
i, j=1,...,N

, (A.1)

for (x, t; y, z) ∈ R4, (m, n, k, l, s) ∈ Z5 and N ∈ Z≥0. We require f (i)
s = f (i)

s (x, t; y, z; m, n; k, l,N)
(i = 1, . . . ,N) to satisfy the linear equations (5.2), (5.3) and

f (i)
s (k, l) − fs(k − 1, l)

ck
= f (i)

s+1(k, l),
f (i)
s (k, l) − fs(k, l − 1)

dl
= f (i)

s−1(k, l). (A.2)

A typical example for f (i)
s is given by

f (i)
s = eηi + eµi , (A.3)

eηi = αi ps
i

n−1∏
n′

(1 − an′ pi)−1
m−1∏
m′

(1 − bm′ pi)−1
k−1∏
k′

(1 − ck′ pi)−1
l−1∏
l′

(
1 − dl′

pi

)−1

epi x−4p3
i t+ 1

pi
y
,

eµ j = βi(−pi)s
n−1∏
n′

(1 − an′qi)−1
m−1∏
m′

(1 − bm′qi)−1
k−1∏
k′

(1 − ck′qi)−1
l−1∏
l′

(
1 − dl′

qi

)−1

× eqi x−4q3
i t+ 1

qi
y
,

(A.4)

where pi, qi, αi and βi are arbitrary complex constants. We put

σm
n (y; k, l,N; s) = det

(
f (i)
s+ j−1

)
i, j=1,...,N

. (A.5)

Proposition A.1 σ satisfies the following bilinear equations:

Dy σ
m
n (N + 1; s) · σm

n (N; s) = σm
n (N; s + 1)σm

n (N + 1; s − 1), (A.6)(
Dy −

1
dl

)
σm

n (l + 1; s) · σm
n (l; s + 1) = − 1

dl
σm

n (l + 1; s + 1)σm
n (k; s). (A.7)
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We apply the determinantal technique in order to prove Proposition A.1. The bilinear equations
are reduced to the Plücker relations which are quadratic identities of determinants whose columns
are appropriately shifted. To this end, we construct such formulas that express the determinants in
the Plücker relations in terms of derivative or shift of discrete variable of σm

n (k, l,N; s) by using the
linear relations of the entries. For the details of the technique, we refer to [18, 23, 24, 28, 29].

We introduce a notation

σm
n (l,N; s) = | 0l, 1l, · · · , N − 2l, N − 1l | , (A.8)

where “ jl” denotes the column vector

jl =


f (1)
s+ j(l)
...

f (N)
s+ j (l)

 . (A.9)

Lemma A.2 The following formulas hold:

∂yσ
m
n (l,N; s) = | − 1, 1, · · · , N − 2, N − 1 | , (A.10)

σm
n (l + 1,N; s) = | 0l+1, 1, · · · , N − 2, N − 1 | , (A.11)

dlσ
m
n (l + 1,N; s) = | 1l+1, 1, · · · , N − 2, N − 1 | , (A.12)

−
(
dl∂y − 1

)
σm

n (l + 1,N; s) = | 0, 1l+1, 2, · · · , N − 2, N − 1 | . (A.13)

Note that the subscript of column vectors are shown only when l is shifted for notational simplicity.

Proof. Eq. (A.10) can be verified by direct calculation by using the fourth equation in eq.(5.2).
We have

σm
n (l + 1,N; s) = | 0l+1, 1l+1, · · · , N − 2l+1, N − 1l+1 | . (A.14)

Adding the (N − 1)-th column multiplied by dl+1 to the N-th column and using eq.(A.2), we have

σm
n (l + 1,N; s) = | 0l+1, 1l+1, · · · , N − 2l+1, N − 1l | . (A.15)

Similarly, adding the (i− 1)-th column multiplied by dl+1 to the i-th column and using eq.(A.2) for
i = N − 1, . . . , 2, we obtain

σm
n (l + 1,N; s) = | 0l+1, 1, · · · , N − 2, N − 1 | , (A.16)

which is eq. (A.11). Multiplying dl+1 to the first column of eq. (A.11) and using eq.(A.2), we
obtain eq. (A.12). Finally, differentiating eq.(A.12) with respect to y yields

dl∂yσ
m
n (l + 1,N; s) = | 0l+1, 1, 2, · · · , N − 2, N − 1 | + | 1l+1, 0, 2, · · · , N − 2, N − 1 |

= σm
n (l + 1,N; s) − | 0, 1l+1, 2, · · · , N − 2, N − 1 | , (A.17)

which is equivalent to eq.(A.13). This completes the proof. �
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Proof of Proposition A.1 Consider the Plücker relation (see, for example, [29]),

0 = | − 1, 0, 1 · · · ,N − 2 | × | 1, · · · ,N − 2,N − 1, φ |
+ | 0, 1 · · · ,N − 2,N − 1 | × | − 1, 1, · · · ,N − 2, φ |
− | 0, 1 · · · ,N − 2, φ | × | − 1, 1, · · · ,N − 2,N − 1 | ,

(A.18)

where φ is a column vector given by

φ =


0
...
0
1

 . (A.19)

By using eqs.(A.8) and (A.10), expanding the determinant with respect to the column φ, eq.(A.18)
is rewritten as

0 = σm
n (N; s − 1) σm

n (N − 1; s + 1) + σm
n (N; s) ∂yσ

m
n (N − 1; s) − σm

n (N − 1; s) ∂yσ
m
n (N; s), (A.20)

which implies eq.(A.6). Similarly, applying Lemma A.2 on the Plücker relation

0 = | − 1, 0, 1, · · · ,N − 2 | × | 0l+1, 1, · · · ,N − 2,N − 1 |
− | 0l+1, 0, 1, · · · ,N − 2 | × | − 1, 1, · · · ,N − 2,N − 1 |
− | 0, 1, · · · ,N − 2,N − 1 | × | − 1, 0l+1, 1, · · · ,N − 2 | ,

(A.21)

we obtain

0 = σm
n (l; s − 1) × σm

n (l + 1; s) − dlσ
m
n (l + 1; s − 1) × ∂yσ

m
n (l; s)

− σm
n (l; s) ×

[
−(dl∂y − 1)σm

n (l + 1; s − 1)
]
,

(A.22)

which is equivalent to eq.(A.7). This completes the proof. �

From Proposition A.1 and eq.(A.1), we see that τm
n (k, l,N; s) satisfies

Dy τ
m
n (N + 1; s) · τm

n (N; s) = τm
n (N; s + 1)τm

n (N + 1; s − 1), (A.23)

Dy τ
m
n (l + 1; s) · τm

n (l; s + 1) = − 1
dl
τm

n (l + 1; s + 1)τm
n (k; s). (A.24)

We finally obtain eqs.(5.26) and (5.27) from eqs.(A.23) and (A.24), respectively, by imposing the
reduction condition (3.28).
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served Univariate SDE

MI2008-11 Hiroyuki CHIHARA & Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds

MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L2 a priori error estimates to the finite element solution of elliptic
problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek
polynomials

MI2008-14 Takashi NAKAMURA
Riemann zeta-values, Euler polynomials and the best constant of Sobolev in-
equality

MI2008-15 Takashi NAKAMURA
Some topics related to Hurwitz-Lerch zeta functions

MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings

MI2009-2 Hidetoshi MATSUI & Sadanori KONISHI
Regularized functional regression modeling for functional response and predic-
tors

MI2009-3 Hidetoshi MATSUI & Sadanori KONISHI
Variable selection for functional regression model via the L1 regularization

MI2009-4 Shuichi KAWANO & Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI & Yuichiro TAGUCHII
Flat modules and Groebner bases over truncated discrete valuation rings



MI2009-6 Kenji KAJIWARA & Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous 1+1
dimensional discrete soliton equations

MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation
around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI & Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization

MI2009-9 Takeshi TAKAISHI & Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO
Generalisation of Mack’s formula for claims reserving with arbitrary exponents
for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE & Teruhisa TSUDA
Ultradiscretization of a solvable two-dimensional chaotic map associated with
the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type E
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