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Abstract

Let a random distribution P on the real line R have the mixture of Dirichlet
processes. Let S(n) = (S1, · · · , Sn) be the random partition of the positive integer
n based on a sample of size n from P. For the order On(S

(n)) of S(n), Yamato
(2013) gives the asymptotic distribution of the statistic logOn(S

(n))/ log2 n and
the rate O(1/ log1/3 n) of its convergence. In this pager we give the Edgeworth
expansions for the statistic with the rates O(1/ log2/5 n) and O(1/ log3/7 n). In
addition, we correct the errors of the proofs of the lemmas 2.5 and 2.6 of Yamato
(2013).

Key Words and Phrases: Edgeworth expansion, Erdős-Turán law, Fourier transform, mixture

of Dirichlet processes, order of partition, random partition, smoothing lemma.

1. Introduction

Let G0 be a continuous distribution on the real line R and B be the σ-field which
consists of the subsets of R. Let θ be a positive random variable having a distribution
γ. We suppose that a random distribution P have the mixture of Dirichlet process
D(θG0) on (R, B) with the mixing distribution γ (for the mixture of Dirichlet process,
see Antoniak (1974)). For a sample of size n from the random distribution P, S1 denotes
the number of observations which occur only once, S2 the number of observations which
occur exactly twice, ... and so on. For the random partition S(n) = (S1, · · · , Sn) of the
positive integer n, the order On(S

(n)) denotes l.c.m.{ j : Sj > 0 ( j = 1, 2, · · · , n) },
where l.c.m. represents the least common multiple. Let H be the distribution functions
(d.f.) of θ/2. For the convergence of the statistic On(S

(n))/ log2 n, Yamato (2013) gives

sup
−∞<x<∞

∣∣∣∣P(
logOn(S

(n))

log2 n
≤ x

)
−H(x)

∣∣∣∣ = O

(
1

log1/3 n

)
.

In the section 2 we give the Edgeworth expansion for the statistic On(S
(n))/ log2 n

with the rate O(1/ log2/5 n), which is the proposition 2.1. In the section 3, we give the

Edgeworth expansion with the rate O(1/ log3/7 n), which is the proposition 3.1. In the
section 4, for the lemmas 2.5 and 2.6 of Yamato (2013), the errors of their proofs are
corrected.
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2. The Edgeworth expansion with the rate O(1/ log2/5 n)

Suppose that Eγ(θ
2) exist, where Eγ denotes the expectation with respect to the

distribution γ. Let h be the bounded density function of the d.f. H (or of the random
variable θ/2). For the smoothing lemma (see, for example, Petrov (1995; Theorem
5.2)) used in the proof of the proposition 2.1, we suppose the followings: (i) h be twice
differentiable, and {xh(x)}′ (= h(x) + xh′(x)) be of bounded variation, (ii) h′(x) and
xh′′(x) be bounded, that is, {xh(x)}(2) be bounded and (iii) h(x) = 0, xh′(x) = 0 for
x = 0 and xh′(x) → 0 as x → +∞. We also use the following lemma.

Lemma 2.1. (Petrov (1995; Lemma 1.8)) Let X and W be arbitrary random vari-
ables, and let F (x) be the distribution functions of X. If T (x) is an arbitrary function
defined on the real line, then for every real x and every positive ε

| P (X +W ≤ x)− T (x) |≤ K + L+ P (| W |> ε),
where K = max

{
| F (x + ε) − T (x + ε) |, | F (x − ε) − T (x − ε) |

}
and L = max

{
|

T (x+ ε)− T (x) |, | T (x− ε)− T (x) |
}
.

We use the same notations as Yamato (2013), except for H and h. Then, we have

Proposition 2.2.

sup
−∞<x<∞

∣∣∣∣∣P
(
logOn(S

(n))

log2 n
≤ x

)
−
[
H(x) +

1

3 logn

{
h(x) + xh′(x)

}]∣∣∣∣∣ = O

(
1

log2/5 n

)
.

(1)

Proof. At first, we note the following relations.

1

log2 n

n∑
j=1

log j

j
=

1

2
+

c1

log2 n
,

1

logi+1 n

n∑
j=1

logi j

j
=

1

i+ 1
+

ci

logi+1 n
(i = 2, 3),

where ci (i = 1, 2, 3) denote generic positive constants. We use also c as a generic
constant. By these relations we get

n∑
j=1

1

j

(
e
it log j

log2 n − 1
)
= i

1

2
t− t2

6 log n
+ c

| t |
log6/5 n

(| t |≤ log2/5 n).

Given θ, let Z1, · · · , Zn be independent and Zj have the Poisson distribution with mean
θ/j (j = 1, · · · , n). For Z(n) = (Z1, · · · , Zn), we put

On(Z
(n)) = l.c.m.{ j : Zj > 0 (j = 1, 2, · · · , n) }, Tn(Z

(n)) =
n∏

j=1

jZj

and µn(θ) = E
[
log Tn

(
Z(n)

)
− logOn

(
Z(n)

) ∣∣ θ ]. We put

S∗
1n =

log Tn(Z
(n))

log2 n
, S∗

2n =
logOn(Z

(n)) + µn(θ)

log2 n
and S∗

3n =
logOn(S

(n))

log2 n
.

Then, for the characteristic function (c.f.) fn of S∗
1n =

∑n
j=1 Zj log j/ log

2 n, we
have

fn(t) = Eγ exp

{
θ

n∑
j=1

1

j

(
e
it log j

log2 n − 1
)}

= Eγ

[
ei

θ
2 t exp

{
− θ

t2

6 log n
+ cθ

| t |
log6/5 n

}]

= Eγe
i θ
2 t − t2

3 log n
Eγ

(θ
2
ei

θ
2 t
)
+ c1

| t |
log4/5 n

, (| t |≤ log2/5 n). (2)
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Let the c.f. of θ/2 be φH(t) =
∫∞
−∞ eixth(x)dx =

∫∞
−∞ eixtdH(x). Since φH(t) be

the Fourier transform of h, −t2
∫∞
−∞ eixtxh(x)dx is the Fourier transform of {xh(x)}′′

.

Or, φH(t) = Eγe
i θ
2 t corresponds to H and −t2

∫∞
∞ eixtxh(x)dx = −t2Eγ

(
θ
2e

i θ
2 t
)

to

{xh(x)}′. Therefore, by the smoothing lemma, we have

sup
x

∣∣∣P (
S∗
1n ≤ x

)
−

[
H(x) +

1

3 log n

{
h(x) + xh′(x)

}]∣∣∣∣
≤ c1

log4/5 n

∫ log2/5 n

0

dt+
c2

log2/5 n
= O

(
1

log2/5 n

)
. (3)

This corresponds to Proposition 2.3 of Yamato (2013). Next, we derive the results with
S∗
2n and S∗

3n similar to (3), instead of S∗
1n.

(I) We use Lemma 2.1 by taking X = S∗
1n, W = S∗

2n−S∗
1n, T (x) = H(x)+

{
h(x)+

xh′(x)
}
/(3 log n), and K ≤ sup−∞<x<∞ | P (S∗

1n ≤ x)−T (x) |= O(1/ log2/5 n). By (15)

of the section 4, we have P (| W |> ε) = O(1/ log2 n) for any ε > 0. Since h′ and xh′′

are bounded, we get L = O(1/ log2/5 n) with ε = 1/ log2/5 n. Thus we have

sup
−∞<x<∞

∣∣∣∣P (
S∗
2n ≤ x

)
−
[
H(x) +

1

3 log n

{
h(x) + xh′(x)

}]∣∣∣∣ = O

(
1

log2/5 n

)
. (4)

(II) Again, we use Lemma 2.1 by takingX = S∗
2n andW = S∗

3n−S∗
2n, K ≤ sup−∞<x<∞ |

P (S∗
2n ≤ x) − T (x) |= O(1/ log2/5 n). T (x) equals to the one of the above paragraph.

With ε = 1/ log1/2 n, we have P (| W |> ε) ≤ O(log log n/ log1/2 n) = o(1/ log2/5 n) by

(18) of the section 4 and L = O(1/ log1/2 n) = o(1/ log2/5 n) by the boundedness of h′

and xh′′. Thus we have the following (5), which yields (1).

sup
−∞<x<∞

∣∣∣∣P (
S∗
3n ≤ x

)
−
[
H(x) +

1

3 log n

{
h(x) + xh′(x)

}]∣∣∣∣ = O

(
1

log2/5 n

)
. (5)

The assumptions about θ or θ/2 (h) of the section 2 are satisfied, for example, by the
gamma distribution whose density is h(x) = xd−1e−x/Γ(d) (x > 0, d > 2).

3. The Edgeworth expansion with the rate O(1/ log3/7 n)

We suppose that Eγ(θ
3) exist. In addition to the assumption of the first para-

graph of the section 2.1, we suppose that h is differentiable four times. Suppose that
h′(x), xh(2)(x) and x2h(3)(x) are of bounded variation, and that h(2)(x), xh(3)(x) and
x2h(4)(x) are bounded. Suppose that xh(2)(x) = 0, x2h(3)(x) = 0 for x = 0 and xh(2)(x),
x2h(3)(x) → 0 as x → +∞. At first, we note the following relation.

n∑
j=1

1

j

(
e
it log j

log2 n − 1
)
= i

1

2
t− t2

6 log n
− i

t3

24 log2 n
+ c

| t |
log12/7 n

(| t |≤ log3/7 n).

Thus, for the c.f. fn of S∗
1n, we have

fn(t) = Eγe
i θ
2 t − t2

3 log n
Eγ

(θ
2
ei

θ
2 t
)
− i

t3

12 log2 n
Eγ

(θ
2
ei

θ
2 t
)

+
t4

18 log2 n
Eγ

[(θ
2

)2

ei
θ
2 t
]
+ c1

| t |
log6/7 n

, (| t |≤ log3/7 n). (6)
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Under the Fourier transform, −it3Eγ

(
θ
2e

i θ
2 t
)
correponds to {xh(x)}(2) and t4Eγ

[(
θ
2

)2
ei

θ
2 t
]

to {x2h(x)}(3). Therefore, by the smoothing lemma, we have

sup
x

∣∣∣∣P (
S∗
1n ≤ x

)
−

[
H(x) +

1

3 log n

{
h(x) + xh′(x)

}
+

1

36 log2 n

{
6h′(x) + 9xh(2)(x) + 2x2h(3)(x)

}]∣∣∣∣ = O

(
1

log3/7 n

)
. (7)

Corresponding to (I) of the section 2, we get L = O(1/ log3/7 n) with ε = 1/ log3/7 n
and the result (7) with S∗

2n instead of S∗
1n. Corresponding to (II) of the section 2,

with ε = 1/ log1/2 n we get P (| W |> ε) ≤ O(log log n/ log1/2 n) = o(1/ log3/7 n),

L = O(1/ log1/2 n) = o(1/ log3/7 n) and the result (7) with S∗
3n instead of S∗

1n. Thus, we
have the following.

Proposition 3.1.

sup
x

∣∣∣∣P(
logOn(S

(n))

log2 n
≤ x

)
−
[
H(x) +

1

3 log n

{
h(x) + xh′(x)

}
+

1

36 log2 n

{
6h′(x) + 9xh(2)(x) + 2x2h(3)(x)

}]∣∣∣∣ = O

(
1

log3/7 n

)
.

The assumptions about θ or θ/2 (h) of the section 3 are satisfied, for example, by
the gamma distribution whose density is h(x) = xd−1e−x/Γ(d) (x > 0, d > 3).

4. Corrections to Yamato (2013)

In the following, we correct the proofs of Lemma 2.5 and 2.6 of Yamato (2013),
which is from the line 6 from the top of page 65 to the line 3 from the bottom of the
same page. The numbers of the equations are equal to the ones of Yamato (2013).

By the proposition 2.3 and its proof of Barbour and Tavaré (1994), it holds that

P

(∣∣∣ log Tn(Z
(n))− logOn(Z

(n))−µn(θ))
∣∣∣ > ε log2 n

∣∣∣θ) = θc1n+θ2c2n for ∀ε > 0 (14)

where c1n = O
(
(log log n)2)/ log3 n

)
and c2n = O(1/ log2 n). Therefore, under the con-

dition Eγθ
2 < ∞, by (13) and (14) we have

P (|S∗
1n − S∗

2n| > ε) = O
( 1

log2 n

)
for ∀ϵ > 0. (15)

We use the relation (4) by taking U = S∗
1n, X = S∗

2n −S∗
1n, H = γ∗, η = O(1/ log1/3 n),

and ε = O(1/ log1/3 n). By the relation (3) and (15), we obtain

sup
−∞<x<∞

|P (S∗
2n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (16)

Proof of Lemma 2.6 By the relation (2.1) and (2.2) of Barbour and Tavaré (1994),
we have

|S∗
2n − S∗

3n| ≤
∣∣∣∣ logOn(Z

(n))− logOn(S
(n))

log2 n

∣∣∣∣+ | µn(θ) |
log2 n

≤ Y +
µn(θ)

log2 n
, given θ (17)
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where Y = (Yn+1)/ log n, E(Yn) = Eγ(E(Yn|θ)) ≤ Eγθ
2 and Eγµn(θ) = O(log n log log n),

where (0 ≤)µ(θ) = θ log n log log n+cθ2 logn (Barbour and Tavaré (1994; p.171)). Thus,
by the Markov’s inequality and (17) we have

P (|S∗
2n − S∗

3n| > ε) ≤ P
(
|Y | > ε

2

)
+ P

( | µn(θ) |
log2 n

>
ε

2

)
≤ c

log log n

ε log n
for ∀ε > 0. (18)

We use the relation (4) by taking U = S∗
2n, X = S∗

3n −S∗
2n, H = γ∗, η = O(1/ log1/3 n),

and ε = O(1/ log1/2 n). By the relation (16) and (18) with log log n/(ε log n) = o(1/ log1/3 n),
we obtain

sup
−∞<x<∞

|P (S∗
3n ≤ x)− γ∗(x)| = O

(
1

log1/3 n

)
. (19)
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