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Abstract

In this note, we provide the details of the proof of a Bahadur representation of
sample quantiles from a finite population.
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1. Introduction

Sample quantiles such as sample medians have been attracting many survey re-
searchers as well as traditional measures such as means, since skewed distributions are
very common in socio-economic data. Sample quantiles also have information of the tails
of the distribution of the quantity of interest. Therefore, sample quantiles are widely
used in practices of survey sampling. For example, estimates of median and other quan-
tiles of yearly income of Japan household are regularly reported by the Japan Statistics
Bureau.

Using combinatorial arguments, Thompson (1939) gave design-based exact con-
fidence intervals for the sample median under simple random sampling from a finite
population. For other sample quantiles, Wilks (1962) and Sedransk and Smith (1988)
have described design-based exact confidence intervals. Their result was extended to
various complex surveys such as stratified sampling and cluster sampling (Sedransk and
Meyer (1978) and Blesseos (1976)). However, the design-based approach to the con-
struction of confidence intervals is not practical, especially for complex surveys, because
of its complicated combinatorial form. So various attempts were made for evaluating the
distributions of quantiles and constructing their confidence intervals. As for the results
obtained till the early 1980’s, we refer the readers to Sedransk and Smith (1988).

One method in evaluating the distributions is asymptotic distribution based ap-
proach. For the asymptotic normality of sample quantiles for samples from a finite
population, Rosén (1964) first proved the asymptotic normality for simple random sam-
pling without replacement. Francisco and Fuller (1992) derived the asymptotic nor-
mality via establishing the Bahadur representation for sample quantiles for stratified
cluster sampling from a finite population. Shao (1994) also showed the asymptotic
normality via Bahadur representation under stratified multistage sampling under more
mild conditions. Motoyama and Takahashi (2008) established the asymptotic normality
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by using the methods of statistical functionals. Motoyama (2012) succeeded to prove
the asymptotic normality elementarily and included some Monte Carlo evaluations of
the confidence intervals. For recent attempt for this problem, we refer the reader to
Chatterjee (2011) and the references therein.

In this short note, we shall provide the details of the proof of a Bahadur represen-
tation of sample quantiles from a finite population. As we noted above, Francisco and
Fuller (1992) proved the Bahadur representation for sample quantiles and Shao (1994)
also proved the Bahadur representation under mild conditions. However, the majority
of the technical details of the proof in Shao (1994) were left to the reader. This has
sometimes discouraged the potential users from acceptance of this powerful tool. The
aim of this note is making its proof more accessible to wide users. The proof of this
paper is essentially based on the method of the proof of Ghosh (1971) for IID case but
the proof includes some new ideas for treating the finite population. The rest of the
paper is organized as follows. Section 2. describes definitions and notation. The Ba-
hadur representation and asymptotic normality are established in Section 3. Section 4.
presents some Monte Carlo results.

2. Definitions and notation

To fix ideas, let {Pk, k = 1, 2, . . .} be a sequence of finite populations. Throughout
the paper k is used as the index of the finite population. Each Pk has a characteristic
x1, . . . , xNk

of the population size Nk with the population distribution function

FNk
(x) =

1

Nk

Nk∑
i=1

I(xi ≤ x),

where I is the indicator function such that

I(A) =

{
1 if A is true
0 elsewhere

.

Simple random samples X1, . . . , Xnk
of size nk are chosen from the populations

Pk(Cochran (1977), p.18). More precisely, let (π1, . . . , πNk
) take all possible permu-

tations of (1, . . . , Nk) with common probability (Nk!)
−1, and Xi = xπi , 1 ≤ i ≤ nk.

We define the empirical distribution function of X1, . . . , Xnk
as follows:

Fnk
(x) =

1

nk

nk∑
i=1

I(Xi ≤ x),

where I is the indicator function.
Let θk = F−1

Nk
(p) = inf{x : FNk

(x) ≥ p} be the population pth quantile, and let

θ̂k = F−1
nk

(p) = inf{x : Fnk
(x) ≥ p} be the sample pth quantile. We shall give the proof

of the Bahadur representation and asymptotic normality of the sample quantiles.

3. Bahadur representation and asymptotic normality

In what follows, we consider the asymptotics nk, Nk − nk → ∞ as k → ∞. To
prove the Bahadur representation and asymptotic normality of the sample quantiles, we
assume that the following assumptions hold.
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(A1) The sequence {θk} is bounded.
(A2) There is a sequence of functions {fk} such that

lim
k→∞

[FNk
(θk + δk)− p

δk
− fk(θk)

]
= 0,

for any sequence {δk} of order ∼ O(a−1
k ) and

0 < inf
k
fk(θk) ≤ sup

k
fk(θk) < ∞.

Here and in the sequel, ak = (nk(Nk − 1)/(Nk − nk))
1/2.

The assumptions (A1) and (A2) are essentially the same as the assumption (A6)
and (A7) of Shao (1994) p.961. Condition (A2) is a kind of smoothness condition so
that FNk

is nearly differentiable at θk when k is large, although FNk
is not differentiable

for each fixed k.
Under these assumptions, we have the Bahadur representation of the sample quan-

tile θ̂k.

Theorem 3.1. Under the assumptions (A1) and (A2), we have as k → ∞

θ̂k = θk +
p− Fn(θk)

fk(θk)
+ op(a

−1
k ). (1)

To prove the theorem, we need the following lemma.

Lemma 3.2. (Ghosh (1971) Lemma) Let {Vn} and {Wn} be two sequence of random
variables satisfying the following conditions.

(I) For all ϵ > 0 there exists λ depending on ϵ such that P(|Wn| > λ) < ϵ for large
n > n(ϵ).

(II) For all y and all ϵ > 0

lim
n→∞

P(Vn ≤ y, Wn ≥ y + ϵ) = 0

lim
n→∞

P(Vn ≥ y + ϵ, Wn ≤ y) = 0.

Then Vn −Wn → 0 in probability as n → ∞.

The proof of the lemma is given in Ghosh (1971)(or Rao (1987) p.157, David and Na-
garaja (2003) pp.286-287). Now we shall prove the theorem.

Proof. Define Gnk
(x) = 1−Fnk

(x), GNk
(x) = 1−FNk

(x), and let Vk = ak(θ̂k −
θk). Note that the event

[Vk ≤ t]

is equivalent to the event [
p ≤ Fnk

(
θk + ta−1

k

)]
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which in turn is equivalent to the event

[Zt,k ≤ tk] ,

where

Zt,k = ak{Gnk
(θk + ta−1

k )−GNk
(θk + ta−1

k )}/fk(θk)

and

tk = ak(FNk
(θk + ta−1

k )− p)[fk(θk)]
−1.

From the assumptions (A1) and (A2), we have

FNk
(θk + ta−1

k )− p− fk(θk)ta
−1
k = o(a−1

k ).

So, tk = ak[ta
−1
k (fk(θk) + o(1))]/fk(θk) → t as k → ∞. Let

Wk = ak{Gnk
(θk)−GNk

(θk)}/fk(θk).

Then for every ϵ > 0, we have

P(Vk ≤ t, Wk ≥ t+ ϵ) = P(Zt,k ≤ tk, Wk ≥ t+ ϵ) (2)

and similarly

P(Vk ≥ t+ ϵ, Wk ≤ t) = P(Zt,k ≥ t′k, Wk ≤ t), (3)

where

t′k = ak(FNk
(θk + (t+ ϵ)a−1

k )− p)[fk(θk)]
−1

= ak[(t+ ϵ)a−1
k (fk(θk) + o(1))]/fk(θk) → t+ ϵ as k → ∞.

Since

Wk − Zt,k = ak

fk(θk)
{(Gnk

(θk)−GNk
(θk))− (Gnk

(θk + ta−1
k )−GNk

(θk + ta−1
k ))}

= ak

fk(θk)
{Fnk

(θk + ta−1
k )− Fnk

(θk)− (FNk
(θk + ta−1

k )− FNk
(θk))},

we have (from the mean and variances of hypergeometric distribution)

E[Wk − Zt,k] = 0

and

Var[Wk − Zt,k] = E[(Wk − Zt,k)
2] = a2kp

∗
k(1− p∗k)(Nk − nk)/{fk(θk)}2nk(Nk − 1)

= p∗k(1− p∗k)/{fk(θk)}2,

where p∗k = |FNk
(θk + ta−1

k )− FNk
(θk)| → 0. So Var[Wk − Zt,k] → 0, we have

Wk − Zt,k → 0 in probability. (4)

From the finite population central limit theorem (Erdös and Rényi (1959), Hájek (1960).
See also Eeden and Runnenburg (1960).), Wk has an asymptotic normal distribution as
nk, Nk − nk → ∞ which ensures the assumption (I) of the lemma. And, by (2),(3) and
(4), Wk and Vk satisfy the conditions(II) of the lemma. Thus Vk−Wk → 0 in probability
and the theorem is proved.
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Using this representation, we have the following asymptotic normality of sample quan-
tiles.

Theorem 3.3. Under the assumptions (A1) and (A2), we have

P(ak(θ̂k − θk)/(p(1− p)/f2
k (θk))

1/2 ≤ x)
d→ N(0, 1) as k → ∞. (5)

Proof. Using the Bahadur representation,

ak(θ̂k − θk)/(p(1− p)/f2
k (θk))

1/2 = ak(p− Fnk
(θk))/(p(1− p))1/2 + op(1)

Since nnk
Fnk

(θk) has the hypergeometric distribution, Fnk
(θk) has the expectation

FNk
(θ)

p→ p and akFnk
(θk) has the variance (FNk

(θk)(1−FNk
(θk)))

p→ p(1− p). Hence,
using the finite population central limit theorem (Erdös and Rényi (1959), Hájek (1960).
See also Eeden and Runnenburg (1960).) and Slutzky’s lemma, we have the desired re-
sult.

4. Monte Carlo Simulations

In order to evaluate the fruits of theoretical facts, we compare the empirical distri-
butions of studentized quantiles to the cumulative distribution of the standard normal
distribution. (As for the performance of the interval estimations, we refer the readers
to Motoyama (2012).) Finite populations of size Nk = 1000, 5000, 10000 are gener-
ated from the lognormal distribution with mean 3 and standard deviation 0.4 of the
distribution on the log scale, and fixed over all simulation runs to observe properties
in simple random sampling without replacement from the finite populations. The sim-
ulated samples of sampling fractions 10% and 30% are chosen 1000 times repeatedly,
then we compare the empirical distributions of studentized quantiles to the cumulative
distribution of the standard normal distribution.

In implementing the Monte Carlo simulations, we estimate 1/fk(θk) by

1̂

fk(θk)
=

F−1
nk

(p+ hnk
)− F−1

nk
(p− hnk

)

2hnk

Such estimators were originally suggested by Siddiqui (1960) and are consistent for
1/fk(θk) under some regularity conditions (e.g. Shao (1994)). In this study, we adopt

hnk
= n

−1/2
k which is identical with that of Shao (1994).

The simulation results are presented in Figure 1(1st quantiles), Figure 2(2nd quan-
tiles), and Figure 3(3rd quantiles). The left columns of the each figure are for the samples
of fraction 10% and the right columns are for the samples of fraction 30%. The 1st rows
of the each figure are for the samples from the population of size 1000, the 2nd rows are
for the samples from the population of size 5000, and the last rows are for the samples
from the population of size 10000. So, as we see the each figure down, we can evaluate
effects of the large sample size.

From these figures, we can see the following features: (i) The case when the sam-
pling fraction is 10% is slightly better than the case of a sampling fraction 30% in
small sample situations. (ii) As the sample size nk increases, the normal approximations
provide the better approximations to the distributions of the sample quantiles.
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Figure 1: 1st quantiles.



Note on a Bahadur Representation of sample quantiles from a finite population 43

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−6 −4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2: 2nd quantiles.
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Figure 3: 3rd quantiles.
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We can conclude that the normal approximations for the distributions of the sample
quantiles are appropriate for large size samples, so they are very useful for application
to large scale sample surveys.
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