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Abstract. We consider online prediction problems of combinatorial con-
cepts. Examples of such concepts include s-t paths, permutations, truth
assignments, set covers, and so on. The goal of the online prediction al-
gorithm is to compete with the best fixed combinatorial concept in hind-
sight. A generic approach to this problem is to design an online prediction
algorithm using the corresponding offline (approximation) algorithm as
an oracle. The current state-of-the art method, however, is not efficient
enough. In this paper we propose a more efficient online prediction algo-
rithm when the offline approximation algorithm has a guarantee of the
integrality gap.

1 Introduction

Online prediction problems of combinatorial concepts arise in many situations
such as routing, ranking and scheduling. Examples of such combinatorial con-
cepts include, s-t paths, set covers, permutations and so on. In a combinatorial
online prediction problem, we assume a finite set C ⊆ Rn of combinatorial con-
cepts, where each combinatorial concept is represented as a vector in Rn. Then
we consider the following protocol between the player and the adversary: For
each trial t = 1, ..., T , (i) the player predicts ct ∈ C, (ii) the adversary returns a
loss vector ℓt ∈ L ⊆ [0, 1]n, and (iii) the player incurs loss ct · ℓt. Typical goal of
the player is to minimize the regret

∑T
t=1 ct · ℓt −minc∈C

∑T
t=1 c · ℓt.

A straightforward approach for combinatorial online prediction problems is to
apply Hedge [8]. Given a set of experts (i.e., prediction strategies or algorithms),
Hedge is guaranteed to predict almost as well as the best expert in hindsight. So,
with each combinatorial concept c ∈ C as an expert, Hedge can achieve a good
regret bound 1. This approach, however, is inefficient in general since there are
exponentially many concepts in the class C and thus Hedge takes exponential
time at each trial.

There are many results on efficient combinatorial online prediction algorithms
for individual concepts such as k-sets [21], permutations [11, 23, 24], spanning
trees [6] and so on. There are some work on classes of combinatorial concepts
[6, 15,19].

1 Note that Hedge is suboptimal in some cases (see [3] for the details ).
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A generic alternative approach for combinatorial online prediction is to con-
vert offline approximation algorithms for combinatorial optimization to online
prediction algorithms. More precisely, we assume an offline α-approximation
algorithm A for the linear optimization problem over C. The algorithm is sup-
posed to take a loss vector ℓ ∈ [0, 1]n as input and outputs c ∈ C such that
c · ℓ ≤ αminc′∈C c

′ · ℓ. We assume that the player can use the offline algorithm
A as an oracle, and each call of the oracle can be done in a unit time.

The goal of the player is to minimize the α-regret:

T∑
t=1

ct · ℓt − αmin
c∈C

T∑
t=1

c · ℓt.

The α-regret measures the difference between cumulative loss of the player and
that of an α-approximate fixed concept in hindsight, which can be computed by
the approximation algorithm A.

There are two main previous researches on the player’s strategy for combina-
torial online prediction problems where approximation algorithms are available.
First, Kalai and Vempala proposed Follow the perturbed leader (FPL [14] ). FPL
uses an exact offline optimization algorithm (i.e., α = 1). The 1-regret bound
of FPL is O(

√
T ) and its running time per trial is O(n). FPL also works with

α-approximation algorithms, however, its α-regret bound becomes O(αT
√
T ) in

general.
Kakade et al. proposed a different strategy using α-approximation algorithms,

which achieves O(α
√
T ) α-regret bound [13]. The running time of the algorithm

is O(poly(n)T ). Unfortunately, the time complexity at each trial depends on T ,
which is not desirable in practice.

In this paper, we consider a slightly stronger assumption on the offline ap-
proximation algorithms. We assume that the player has access to the following
approximation algorithm A:

Assumption 1 Given ℓ ∈ [0, 1]n as input, A outputs c ∈ C such that c · ℓ ≤
αminx∈P x · ℓ for some α > 1, where P is a convex set such that P ⊃ C, and
linear optimization over P can be done in polynomial time in n.

This assumption is motivated by the fact that many combinatorial optimization
problems have LP relaxation schemes. Then, our main result is stated as follows:

Theorem 1 Under Assumption 1, there exists a strategy of the player whose
α-regret bound is O((α+ε)

√
T ) and its running time is polynomial in n and 1/ε

for any ε > 0.

The key notion of our result is metarounding, a robust version of rounding for
relaxation-based approximation schema. Originally, metarounding was proposed
by Carr and Vempala for approximately solving the multicast congestion prob-
lem [4]. We will show that metarounding is quite suitable for online prediction
of combinatorial concepts as well.

One of our technical contribution is a new construction of metarounding using
a boosting algorithms. Boosting [16] is a technique to construct highly accurate
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hypothesis by combining moderately accurate base hypotheses, which apparently
seems nothing to do with metarounding. But, in fact, robustifying rounding
and boosting hypotheses share a common structure and they are formulated as
similar optimization problems.

Our algorithm is adaptive in the sense that it does not require the explicit
knowledge on the approximation ratio α, which is advantageous in practice.
Our preliminary experiments show that our algorithm indeed obtains better
approximation ratios than theoretically guaranteed and its running time is much
faster than a method based on previous work of Carr and Vempala.

2 Preliminaries

Let Φ : Γ → R be a strictly convex function defined on a closed convex set
Γ ⊆ Rn. The Bregman divergence ∆Φ with respect to Φ is defined as ∆Φ(p, q) =
Φ(p)− Φ(q)−∇Φ(q) · (p− q).

The unnormalized relative entropy ∆(p, q) from q ∈ Rn
+ to p ∈ Rn

+ is defined
as

∆(p, q) =

n∑
i=1

pi ln
pi
qi

+

n∑
i=1

qi −
n∑

i=1

pi.

It is known that ∆(p, q) ≥ 0 and ∆(p, q) = 0 if and only if p = q. Unnormalized
relative entropy is not symmetric in general, i.e., ∆(p, q) ̸= ∆(q,p) for some
p, q ∈ Rn

+. In fact, unnormalized relative entropy is a special case of Bregman
divergence [5].

3 Main Structure

In this section, we describe the main structure of our algorithms for combina-
torial online prediction. Let P ⊂ Rn

+ such that (i) P is convex, (ii) P contains
C, and (iii) linear optimization over P can be done in polynomial time in n. For
example, P might be represented a set of poly(n) linear constraints. Then lin-
ear programming over P can be solved in polynomial time, say, by using interior
point methods. Also, P might be described as linear constraints and semidefinite
constraints. Then linear optimization over P belongs to semidefinite programs,
which are solvable efficiently.

Our algorithms consist of two components, an online prediction algorithm
and a metarounding algorithm. At each trial t, our online prediction algorithm
predict xt not in C, but in a “relaxed”space P. Then the metarounding algorithm
chooses ct ∈ C by “rounding” xt, where, roughly speaking, ct is close to xt. Then,
the regret of the algorithm would be close to that of online prediction algorithms
over P. We give a formal definition of metarounding algorithms as follows.

Definition 1 An algorithm A is a metarounding algorithm if A is given x ∈ P
as input and outputs c ∈ C such that for any ℓ ∈ L ⊆ [0, 1]n, E[c · ℓ] ≤ αx · ℓ,
where the expectation is taken w.r.t. the internal randomness of the algorithm
A.
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The notion of metarounding was first proposed by Carr and Vempala [4]. Given
an α-approximation algorithm with relaxation, which requires ℓ ∈ L = [0, 1]n

and outputs c · ℓ ≤ αminx∈P x · ℓ, they show how to construct a metarounding
algorithm by using the approximation algorithm as an oracle. We will propose
more efficient methods to construct a metarounding algorithm from the approx-
imation algorithm.

A related notion is proposed by Kalai and Vempala [14]. An algorithm has
α-pointwise approximation property if, given any ℓ ∈ L, the algorithm outputs
c ∈ C such that ci ≤ αc∗i for i = 1, . . . , n, where c∗ = argminc′∈C c

′ ·ℓ. Kalai and
Vempala showed that FPL with approximation algorithm with this property can
achieve good α-regret bounds [14]. In particular, when L = [0, 1]n, the notion
of metarounding turns out to be equivalent with α-pointwise approximation
property in some sense (shown in Proposition 4). But, in general cases where
L ⊂ [0, 1]n, both notions seem to be incomparable with each other. Further, as
we will show, the notion of metarounding is applicable more widely than the
point-wise approximation property.

We show that any online prediction algorithm A whose prediction space is P
can be combined with a metarounding algorithm. At each trial t, the combined
algorithm gets the prediction pt of the precition algorithm A, gives the prediction
pt to the metarounding algorithm as an input, and get the combinatrial concept
ct, which is used as the prediction of the combined algorithm.

Proposition 2 Suppose that there exists an online prediction algorithm A whose
prediction pt at each trial t belongs to P and its 1-regret w.r.t. P is bounded by
RegA. Then, the α-regret of A combined with a metarounding algorithm w.r.t.
the concept class C is at most αRegA.

Proof. Assume that the algorithm A with a metarounding algorithm predicts ct
at each trial t. Then,

T∑
t=1

ct · ℓt ≤ α

T∑
t=1

pt · ℓt (by definition of metarounding)

≤ αmin
p∈P

T∑
t=1

p · ℓt + αRegA (by definition of algorithm A)

≤ αmin
c∈C

T∑
t=1

c · ℓt + αRegA (since C ⊆ P).

⊓⊔

As corollaries, combined with a metarounding algorithm, Follow the Regu-
larized Leader(FTRL, e.g., [10]) and FPL achieve good α-regret bounds. In par-
ticular, FTRL generalizes popular algorithms such as Hedge [8] and OGD [25],
respectively. The details of the algorithms are shown in Algorithm 2 and 1,
respectively.
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Corollary 3 Let λ = maxt,x∈P ℓTt [∇2Φ(x)]−1ℓt and D = maxx∈P Φ(x) −
Φ(x1). Then, with an appropriate choice of η, the α-regret of FTRL(η) with
Metarounding is O(α

√
λDT ).

Corollary 4 Let D ≥ |c − c′|1 for all c, c′ ∈ C. Then, with an appropriate
choice of η, the α-regret of FPL(η) with Metarounding is O(αD

√
nT ).

Algorithm 1 FTRL(η) with Metarounding

1. Let x1 ∈ P be any initial point.
2. For t = 1, . . . , T

(a) Run the metarounding with xt and get ct ∈ C.
(b) Predict ct and incur loss c · ℓt.
(c) Update xt+1/2 = argminx∈P ηx ·

∑t
j=1 ℓj + Φ(x).

(d) (Projection) Let xt+1 = argminx∈P ∆Φ(x,xt+1/2).

Algorithm 2 FPL(η) with Metarounding

1. Let ℓ0 = 0.
2. For t = 1, . . . , T

(a) Solve the linear program over P: xt = argminx∈P x ·
(∑t−1

j=0 ℓj + pt

)
, where

pt is a uniform random vector in [0, 1/η]n.
(b) Run the metarounding algorithm with xt and get ct ∈ C.
(c) Predict ct ∈ C and incur the loss ct · ℓt.

4 Examples and Applications of Metarounding

We show some examples and applications of metarounding.

4.1 Online Set Cover

Let S be a finite set and U ⊆ 2S be a fixed set of the subsets of S. A cover
is a subset U ′ of U that satisfies

∪
u∈U ′ u = S. The online set cover problem

is stated as follows: For each trial t, (i) the player predicts a cover Ut ⊆ U ,
(ii) the adversary returns weights ℓt ∈ [0, 1]U , and (iii) the player incurs loss∑

u∈Ut
ℓt(u). The problem is a combinatorial online prediction problem with

the concept class C = {c ∈ {0, 1}U | {u ∈ U | c(u) = 1} is a cover} and the loss
vector space L = [0, 1]U .
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The corresponding offline optimization problem is the weighted minimum set
cover problem. The problem has an O(log |S|) approximation algorithm using
an LP-relaxation and a randomized metarounding [18]. The relaxed space P ⊆
[0, 1]U is described as the set of feasible solutions x ∈ [0, 1]U that satisfies the
following linear constraints:

∑
u∈U :s∈u x(u) ≥ 1 (∀s ∈ S). The metarounding is

simple: Given a feasible solution x ∈ P as input, set c(u) = 1 with probability
x(u) and c(u) = 0 with probability 1− x(u). It is shown that the metarounding
has approximation factor O(log |S|). That is, for any loss vector ℓ ∈ [0, 1]U , it
holds that E[c · ℓ] = O(log |S|)x · ℓ.

4.2 Online MAX-SAT

Let {C1, C2, . . . , Cm} be a fixed set of disjunctive clauses over a set of k Boolean
variables. Each clause Ci is a disjunction of some literals, where a literal is
either a Boolean variable or its negation. The online MAX-SAT problem is the
following: For each trial t, (i) the player predicts an assignment at ∈ {0, 1}k
to the variables, (ii) the adversary returns weights ℓt ∈ [0, 1]m for the clauses,
and (iii) the player gets reward defined by the sum of weights ℓt,i over the
clauses Ci satisfied by at. The problem is the reward version of a combinatorial
online prediction problem with the concept class C and reward vector space L
as described below. The class C consists of vectors in {0, 1}n for n = k+m such
that the first k bit vector a represents the truth assignment and the last m bit
vector b represents the truth values of the clauses for the assignment a. That
is, for each 1 ≤ i ≤ m, bi = 1 if and only if Ci is satisfied by a. Note that the
last m bits b are determined by the first k bits a. The reward space L consists
of vectors 0kℓ where the first k bits are 0 and ℓ ∈ [0, 1]m represents the weights.
So, the dot product of a concept c = ab and a reward 0kℓ becomes b · ℓ, which
is the reward of the truth assignment a for the weights ℓ, as required.

The corresponding offline optimization problem is the weighted MAX-SAT
problem. The problem has an 3/4 approximation algorithm using an LP-relaxation
and a randomized metarounding [9]. The relaxed space P ⊆ [0, 1]n is described
as the set of feasible solutions x = yz ∈ [0, 1]n that satisfies the following linear
constraints:

∑
j∈S+

i
yj +

∑
j∈S−

i
(1 − yj) ≥ zi (1 ≤ ∀i ≤ m), where S+

i (S−
i ,

resp.) denotes the set of Boolean variables occurring nonnegated (negated, resp.)
in Ci. The metarounding only computes the first k bit vector a from a relaxed
solution y ∈ [0, 1]k in the following way: Let d be the flip of a fair coin. If d = 0,
then choose a from {0, 1}n uniformly at random, and if d = 1, then for each
1 ≤ j ≤ k, set aj = 1 with probability yj and set aj = 0 with probability 1− yj .
Note again that the last m bit vector b is determined by a. It is shown that
the metarounding has approximation factor 3/4. That is, for any weight vector
ℓ ∈ [0, 1]m, it holds that E[b · ℓ] ≥ (3/4)y · ℓ.

4.3 Other Examples and Applications

Other applications include the rank aggregation problem for which metarounding
algorithms exist [1,2]. An online version of the problem was investigated in [24].
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Interestingly enough, in this case, L ≠ [0, 1]n, for which the pointwise property
does not hold.

As far as we know, all rounding methods used in relaxation-based approxi-
mation algorithms are metarounding as well. In general, however, there might
be concept classes C for which metarounding algorithms are not known and only
α-approximation algorithms are available. Also, one might prefer approxima-
tion algorithms with better approximation ratios to metarounding algorithms.
In fact, in our experiments, we show a modification of a set covering algorithm,
which is not known to metarounding but has better approximation ratio. In the
next section, we show a construction of metarounding using α-approximation
algorithms.

5 Construction of Metarounding Algorithms

In this section, we describe our metarounding algorithms for L = [0.1]n using
an α-approximation algorithm with the relaxation scheme in Assumption 1 as
an oracle. Recall that the approximation algorithm, given ℓ ∈ L, is supposed to
output c ∈ C such that c · ℓ ≤ αminx∈P x · ℓ. The following characterization of
metarounding for L = [0, 1]n is useful.

Proposition 5 Suppose that L = [0, 1]n. A is a metarounding algorithm if and
only if given input x ∈ P, A outputs c ∈ C such E[ci] ≤ αxi for each i = 1, . . . , n.

Proof. Suppose that A is a metarounding algorithm. Then, for ℓ ∈ [0, 1]n such
that ℓi = 1 for some i and ℓj = 0 for j ̸= i, it must be that E[ci] ≤ αxi. On
the other hand, If E[ci] ≤ αxi, it trivially follows that A is a metarounding
algorithm. ⊓⊔

Due to Proposition 5, the problem of constructing a metarounding algorithm
is reduced to finding a convex combination λ over C such that

∑
c∈C λcci ≤

αxi (i = 1, . . . , n). That is, by choosing a combinatorial concept c ∈ C randomly
according to the convex combination λ, we get that E[c · ℓ] ≤ αx · ℓ for any
ℓ ∈ [0, 1]n. Note that the size of C is exponentially large w.r.t. n in general.
Therefore, a naive linear programming formulation over C to find the convex
combination λ would take exponential time.

As noted in the previous section, the first metarounding algorithm was pro-
posed by Carr and Vempala [4]. They formulate a linear program over C (so the
size of the problem could be exponential!). Yet, surprisingly, they showed the
problem is solvable by the ellipsoid method (see, e.g, [17]) in polynomial time.

Their theoretical result is quite beautiful, however, might not be practical in
the following reasons. First, the ellipsoid method is often much slower in practice,
compared to the simplex method or interior point methods. The number of
iterations of the ellipsoid method is O(n2 ln R

ε ), where R is the radius of the
initial ellipsoid which contains the feasible region and ε is a precision parameter
2. Its time complexity per iteration is O(n2), under the assumption that the
2 In addition, to achieve this bound, we need to allow the ellipsoid method to violate
feasible constraints by amount of ε.
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running time of the approximation algorithm is constant. The O(n4) dependence
of its time complexity makes the algorithm impractical.

Second, the ellipsoid method requires the knowledge about R which is some-
times not attainable in advance. Setting sufficiently large R would work, but
could result in unnecessary computation. A more detailed treatment of R and ε
for rational linear programs is found in, e.g., Schrijver’s book [17].

5.1 Our formulation

Our formulation is a modification of the original formulation by Carr and Vem-
pala with an additional advantage. The advantage is that our formulation does
not require the knowledge of the approximation ratio α of the rounding algo-
rithm. This property is beneficial since, as is often the case, theoretical bounds
of the approximation ratio are loose. In other words, our formulation can take
advantage of such situations. Our formulation is in problem (1). By linear pro-
gramming duality, the equivalent dual problem turns out to be problem (2).

min
λ,β

β (1)

s.t.
∑
c∈C

λcci ≤ βxi (i = 1, . . . , n),∑
c∈C

λc ≥ 1,

λc ≥ 0 (c ∈ C).

max
ℓ,γ

γ (2)

s.t. c · ℓ ≥ γ (c ∈ C),
ℓ · x ≤ 1,

ℓ ≥ 0, γ ≥ 0.

Lemma 1 Suppose that there exists a rounding algorithm which, given input
x ∈ P, outputs c ∈ C s.t. c · ℓ ≤ αx · ℓ for any ℓ ∈ [0, 1]n. Then, the optimum of
problem (1) is at most α.

Proof. We prove this lemma by contradiction. Let (λ∗, β∗) and (ℓ∗, γ∗) be op-
timal solutions of problems (1) and (2), respectively. Note that, by duality of
linear programs, β∗ = γ∗. Suppose that β∗ = γ∗ > α. Then, by using the
rounding algorithm with input ℓ∗, the algorithm outputs some c ∈ C such that
c · ℓ∗ ≤ αx · ℓ∗ ≤ α. On the other hand, this violates the constraint that
c · ℓ∗ ≥ γ∗ > α. So, it contradicts the assumption that (ℓ∗, γ∗) is an optimal
solution. ⊓⊔

5.2 Metarounding by Boosting

Now we are ready to describe our algorithm for constructing metarounding. The
dual problem (2), roughly speaking, can be viewed as the problem of finding
a “difficult” loss vector ℓ such that c · ℓ is large for each c ∈ C under some
constraints. Here we have access to an α-approximation algorithm with relax-
ation.Our key observation is that the problem has a similar structure as boosting
(e.g., [16]): The problem of boosting is to find a “difficult” distribution over data
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such for which any base hypotheses (weak hypotheses) have low weighted accu-
racy, where the booster has access to weak learner which produce a hypothesis
with reasonably small error w.r.t. a given distribution over data.

In fact, we will prove that a boosting-type algorithm works for constructing
a metarounding algorithm. Our algorithm, Metarounding by Boosting (MBB),
is based on the boosting algorithm SoftBoost [20]. Note that a straightforward
application of SoftBoost does not work for our metarounding problem. SoftBoost
is applicable for an entropy-maximizing problem of probability distributions with
constraints, while our problem deals with non-negative vectors with constraints.

For the time being, we assume that we know an upper bound L on Lε, defined
as Lε = max{∥ℓ∥1 | ℓ is an optimal solution of the dual problem (2) over C′ ⊆ C
whose solution is at most α + ε. }. Lε is the constant determined by P, C and
ε. Later, we will explain how to remove this assumption.

The description of MBB is given in Algorithm 3. MBB works in iterations.
At each iteration k, MBB solves a modified subproblem of the dual problem (2),
which is a convex optimization problem. The objective is unnormalized relative
entropy from the initial vector ℓ1. Note that, by definition of unnormalized
relative entropy, any feasible solution satisfies ℓ ≥ 0. So, we can remove the
positivity constraint.

Algorithm 3 Metarounding by Boosting (MBB)

Input: x ∈ P, L > 0.

1. Let ℓ1 = 1
n
1 and let C1 = ∅.

2. For k = 1, . . . ,
(a) Run the approximation algorithm A with input ℓk and get ck ∈ C. Let Ck+1 =

Ck ∪ {ck} and let γ̂k+1 = maxj=1,...,k ck · ℓk + ε.
(b) Update ℓk+1 as

ℓk+1 =argmin
ℓ

∆(ℓ, ℓ1) (3)

sub.to c · ℓ ≥ γ̂t+1 (c ∈ Ct+1), ℓ · x ≤ 1, ℓ · 1 ≤ L.

(c) If problem (3) is infeasible, let K = k + 1 and break;
3. Solve problem (2) for the reduced set CK and output its Lagrange multipliers λ.

Lemma 2 For each k = 1, . . . ,K − 1, ∆(ℓk+1, ℓ1)−∆(ℓk, ℓ1) ≥ ∆(ℓk+1, ℓk).

Proof. Let Dk be the feasible set in problem (3) at k-th iteration. Observe that
γ̂k is non-decreasing because of max function. So, we have Dk+1 ⊆ Dk. Now,
by Generalized Pythagorean Theorem for Bregman divergences (see, e.g., [5]),
∆(ℓk+1, ℓ1) ≥ ∆(ℓk, ℓ1) +∆(ℓk+1, ℓk). ⊓⊔

Let C = max{∥c∥∞ | c ∈ C}. Then the following lemma holds.
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Lemma 3 ∆(ℓt+1, ℓt) ≥ ε2

8LC2 .

Proof. Let c̄k,i = ck,i/C and Lk =
∑n

i=1 ℓk,i. Then

∆(ℓk+1, ℓk) =
∑
i

ℓk+1,i ln
ℓk+1,i

ℓk,i
− Lk+1 + Lk.

By decomposing ℓj,i = ℓj,ic̄i+ ℓj,i(1− c̄i) for j = k, k+1, and and then applying
Log-Sum inequality (e.g., [7]), the r. h. s. of the inequality above is lower bounded
by

p ln
p

q
+ (P − p) ln

P − p

Q− q
− P +Q,

where p = c̄ · ℓt+1 and q = c̄ · ℓt, P = Lt+1, and Q = Lt, respectively. Then,

p ln
p

q
+ (P − p) ln

P − p

Q− q
− P +Q = p ln

p/P

q/Q

P

Q
+ (P − p) ln

1− p/P

1− q/Q

P

Q

= P∆2(p/P, q/Q) + P ln
P

Q
,

where ∆2 is called binary relative entropy, i.e., ∆2(a, b) = a ln a
b +(1−a) ln 1−a

1−b .

By Pinsker’s inequality, ∆2(a, b) ≥ (a− b)2/2 (see,e.g., [20]). Then, by Proposi-
tion 8 in Appendix, the first term of the lower bound is further bounded below
as

P ln
P

Q
− P +Q+

P

2

(
p

P
− q

Q

)2

≥ (P −Q)2

2max{P,Q}
+

P

2

(
p

P
− q

Q

)2

. (4)

Then we consider two cases. Suppose that (i) P
Qq ≥ q+ ε

2C . This assumption

is equivalent to the condition that P ≥ Q + εQ
2qC . So, the first term in (4) is

bounded below by

1

2max{P,Q}

(
εQ

2qC

)2

≥ ε2

8LC2
,

where in the last inequality holds since q ≤ Q and P,Q ≤ L.
Otherwise, it holds that (ii) P

Qq ≤ q + ε
2C . This condition implies that q

Q +
ε

2PC ≤ p
P . So, the second term is at least P

2

(
ε

2PC

)2
= ε2

8PC2 ≥ ε2

8LC2 . ⊓⊔

Proposition 6 For each k = 1, . . . ,K − 1, ∆(ℓk, ℓ1) ≤ O(L lnLn).

Proof.

∆(ℓ, ℓ1) =
n∑
i

ℓi ln
ℓi
L

L

1/n
− L+ 1 ≤

n∑
i

ℓi ln
ℓi
L

+ L lnLn+ 1 ≤ L lnLn+ 1.

where the inequalities hold since
∑

i ℓi ≤ L and ln ℓi
L ≤ 0. ⊓⊔
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Theorem 7 1. Given a point x ∈ P, MBB outputs a convex combination λ
over C such that ∑

c∈C

λcci ≤ (α+ ε)xi (i = 1, . . . , n).

2. MBB terminates after

K ≤ 8L2C2 lnLn

ε2
+ 2

iterations.

Proof. (i) The algorithm ensures that the problem (3) over CK is infeasible. So,
if we solve the dual problem (2) with the restricted set CK , its solution (ℓ∗K , γ∗

K)
must satisfy that γ∗

K ≤ γ̂K . Note that, by the property of the approximation
algorithm,

γ̂K = max
k=1,...,K

ck · ℓk + ε ≤ α min
x′∈P

x′ · ℓk∗ + ε ≤ αx · ℓk∗ + ε ≤ α+ ε,

where k∗ = argmaxk=1,...,K ck · ℓk. Finally, the corresponding primal problem
over CK has an optimal solution (λ∗

K , β∗
K) such that β∗

K = γ∗
K by duality, which

completes the proof of the first claim.
(ii)By Lemma 2 for k = 1, . . . ,K − 2 and summing them up, we have

∆(ℓK−1, ℓ1)−∆(ℓ2, ℓ1) ≥
K−2∑
k=1

(∆(ℓk+1, ℓk)) . (5)

By Lemma 3, the right hand side of (5) is bounded as

K−2∑
k=1

(∆(ℓk+1, ℓk)) ≥ (K − 2)
ε2

8LC2
. (6)

Combining Proposition 6 and inequalities (5) and (6), we have

(K − 2)
ε2

8LC2
≤ ∆(ℓK−1, ℓ1)−∆(ℓ2, ℓ1) ≤ ∆(ℓK−1, ℓ1),

where the last inequality holds since the unnormalized relative entropy is non-
negative. Rearranging this inequality, we complete the proof. ⊓⊔

How to remove the assumption on L So far, we are assuming that Lε ≤ L for
some L > 1 which is known. We can remove this assumption by a simple doubling
method. Let Lm = 2m−1. At each trial m = 1, . . . , we run MBB with L = Lm.
Then, we check if the 1-norm of the dual solution of problem (2) over CK is less
than Lm. If the 1-norm is strictly less than Lm, we are done. Otherwise, we let
L = Lm+1 and try this process again. It can be easily verified that the total
number of iteration is still O(L2

εC
2 ln(Lεn)/ε

2).
Time complexity of MBB per iteration is that of convex and linear programs

with n variables and O(lnn/ε2) linear constraints, which are solved in poly-
nomial time in n and 1/ε. Later, we show that MBB is much faster than the
metarounding based on the ellipsoid method in the next section.
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6 Experiments

We compare performances of two metarounding algorithms, that of the ellipsoid
method [4] and MBB on artificial data. Our experiment is performed on a server
with four cores of Intel Xeon CPU X5560 2.80GHz and a memory of 198G bytes.
We implement programs using Matlab with Optimization Toolbox. We solve the
convex program involved in MBB by sequential quadratic programming.

We generate an artificial data set of set cover instances in the following
way. The data set consists of m items and n sets of items. We first add random
perturbation to the instances by setting so that for each instance i and each set j,
the set j includes the instance i with probability p. Then we fix k “relevant” sets
which covers whole the instances. For each instance i, we randomly choose a set
among k relevant sets, so that the set covers the instance i. In our experiments,
we set m = 100, k = 0.2n, p = 0.2, n = 10, 50, 100, 200, 500, 1000, respectively.

We use the simple LP-relaxation based set covering algorithm using deter-
ministic rounding by Hochbaum [12, 22]. The algorithm has a f -approximation
guarantee for the LP solution, where f = maxi=1,...,m fi and fi is the number of
sets covering the instance i. The algorithm works as follows. First, the set cov-
ering problem is formulated as an integer program. Then, the algorithm solves
the LP-relaxation of the problem. Finally, the algorithm rounds the solution p
of LP and get the integer solution x by setting xi = 1 if and only if pi ≥ 1/f .
Note that , one can show that this rounding process is indeed a metarounding.
So, we also consider a modification of the algorithm which does not seem to be a
metarounding. Our modification is simple. After obtaining the integer solution
x, we sort each element xi in the descending order of its associated loss ℓi and
get x̃. Then, for each j = 1, . . . , n, we remove the set j from x̃ as long as the
modified vector still represents a set cover.

We generate an internal point x ∈ P in the following way. For a random cost
vector ℓ ∈ [0, 1]n, we solve the offline set cover problem by using the set covering
algorithm above and get a cover c ∈ C. We repeat this process for 20 iterations
and get the average vector of obtained covers.

Given an internal point x ∈ P, we run metarounding algorithms. For the
ellipsoid method, we set R = n2 and ε = 0.01. For MBB, we set ε = 0.01 as well.

Fig. 1 shows the computation times (left) and numbers of iterations (right) of
metarounding algorithms when we increase the number n of sets. As can be seen
in Fig. 1, MBB runs about 102 or 103 times faster than the ellipsoid method.
Further, since MBB runs in much fewer iterations, MBB tends to produce much
more sparse convex combination of concepts than the ellipsoid method.

Then, we compare the actual approximation ratio β obtained by metaround-
ing algorithms. For the same data sets, we plot the approximation ratios in
Fig. 2. In addition, we also plot the approximation ratio obtained by MBB with
our modified set covering algorithm. MBB achieves better approximation ratios
than the ellipsoid method. By using the modified algorithm, MBB further gains
better ratios than MBB with Hochbaum’s original algorithm. Therefore MBB
can take advantage of the situation where actual the approximation ratio of the
algorithm is better than theoretically guaranteed.
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Fig. 1. Computation times (left, CPU time in seconds) and numbers of iterations
(right) of metarounding algorithms.

7 Conclusion

In this paper, we propose algorithms for online combinatorial prediction using
metarounding algorithms. Also, we show an efficient construction method of
metarounding algorithms using a relaxation-based approximation algorithm as
an oracle. Our algorithm is adaptive in the sense that it does not require the
explicit knowledge on the approximation ratio of the approximation algorithm
. Also, computation time of our algorithms at each trial do not depend on T ,
unlike previous methods.
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Appendix

Proposition 8 For A,B ≥ 0,

A ln
A

B
−A+B ≥ 1

2max{A,B}
(A−B)2.

Proof. Let f(x) = x ln x
B − x + B. By using Taylor expansion at x = B, there

exists some B′ such that

f(x) = f(B) + f ′(B)(x−B) +
f ′′(B′)

2
(x−B)2 =

1

2B′ (x−B)2,

where B′ satisfies x < B′ < B or B < B′ < x. Since B′ ≤ max{x,B}, we have

f(x) ≥ 1

2max{x,B}
(x−B)2.

By letting x = A, we complete the proof.


