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Abstract

We propose a new online learning algorithm which
provably approximates maximum margin classifiers
with bias, where the margin is defined in terms of
p-norm distance. Although learning of linear clas-
sifiers with bias can be reduced to learning of those
without bias, the known reduction might lose the
margin and slow down the convergence of online
learning algorithms. Our algorithm, unlike pre-
vious online learning algorithms, implicitly uses
a new reduction which preserves the margin and
avoids such possible deficiencies. Our preliminary
experiments show that our algorithm runs much
faster than previous algorithms especially when the
underlying linear classifier has large bias.

1 Introduction

Large margin classification methods are quite popular among
Machine Learning and related research areas. Various gen-
eralization bounds (e.g., [32, 34, 10]) guarantee that linear
classifiers with large margin over training data have small
generalization error with high probability. The Support Vec-
tor Machine (SVM) [5] is one of the most powerful among
such methods. The central idea of SVM is to find the maxi-
mum 2-norm margin hyperplane over linearly separable data.
Further, by using kernels and soft margin formulations, it can
learn large margin hyperplane over linearly inseparable data
as well. The problem of finding the maximum 2-norm mar-
gin hyperplane over data is formulated as a quadratic pro-
gramming problem. So the task of SVM can be solved in
polynomial time by using standard optimization methods.

On the other hand, solving quadratic programming prob-
lems is time-consuming, especially for huge data which is
now common in many applications. This motivates many
researches for making SVM more scalable. One of major
approaches is to decompose the original quadratic program-
ming problem into smaller problems which are to solve [28,
29, 16, 8, 17]. Another popular approach is to apply on-
line learning algorithms. Online learning algorithms such
as Perceptron [31, 27, 26] and its variants [1, 11, 22, 13]
work in iterations, where at each iteration, they process only
one instance and update their hypotheses successively. On-
line learning algorithms use less memory, and are easy to

implement. Many online learning algorithms that find large
margin classifiers have been proposed, including, e.g., Ker-
nel Adatron [12], Voted Perceptron [11], Max Margin Per-
ceptron [21], ROMMA [22], ALMA [13], NORMA [19],
LASVM [4], MICRA [35], and Pegasos [33].

However, most of these online learning algorithms do not
fully exploit the linear separability of data. More precisely,
they are designed to learn homogeneous hyperplanes, i.e.,
hyperplanes that lie on the origin, and they cannot learn lin-
ear classifiers with bias directly. So, in order to learn lin-
ear classifiers with bias, typical online learning algorithms
map instances from the original space R

n to an augmented
space R

n+1 with an extra dimension by using the mapping
φ : x 7→ x̃ = (x,−R), where R is the maximum 2-norm
of instances [10]. Then, a hyperplane with bias (w, b) in
the original space corresponds to the hyperplane without bias
w̃ = (w,−b/R) in the augmented space since w · x + b =
w̃ · x̃. So, by using this mapping, learning linear classifiers
with bias can be reduced to learning those without bias. But,
this mapping weakens the guarantee of margin. Suppose that
for a sequence of labeled examples (x1, y1), . . . , (xT , yT )
(xt ∈ R

n and yt ∈ {−1, +1} for t = 1, . . . , T ), there is a
hyperplane with bias (u, b) that has margin

γ = min
t=1,...,T

yt(u · xt + b)

‖u‖2R
,

where instances are normalized by R so as to limit the max-
imum 2-norm of instances to be one. Then, the correspond-
ing hyperplane ũ = (u,−b/R) over the augmented space,
in which the maximum norm of instances is bounded by R̃,
has margin

γ̃ =
y(ũ · x̃)

‖ũ‖2R̃
≥ y(u · x + b)

2‖u‖2R
=

1

2
γ,

since ‖ũ‖2
2 = ‖u‖2 + b2/R2 ≤ 2‖u‖2, and ‖x̃‖2

2 ≤ 2R.
Even though the loss of margin is at most by a constant fac-
tor, it might cause significant difference in prediction perfor-
mance over practical applications.

In this paper, we propose a new online learning algo-
rithm that approximately maximizes the margin. Our algo-
rithm, PUMMA (P-norm Utilizing Maximum Margin Algo-
rithm), is an extension of ROMMA [22] in two ways. First,
PUMMA can optimize the bias directly by using an implicit
reduction from learning of linear classifiers with bias to learn-
ing those without bias, instead of using the mapping φ.



Second, PUMMA can provably approximate the max-
imum p-norm margin classifier for p ≥ 2. A benefit of
maximizing p-norm margin is that we can find sparse lin-
ear classifiers quickly. Technically speaking, PUMMA is a
variant of p-norm algorithm [15, 14]. It is known that, if
we set p = ∞ or p = O(ln n), the p-norm algorithm be-
haves like online multiplicative update algorithms such as
Winnow [23], which can converge exponentially faster than
Perceptron, when the underlying linear classifier is sparse.
For example, if the target concept is a k-disjunction over n
boolean variables, Winnow can find a consistent hypothesis
in O(k ln n) mistakes, while Perceptron needs Ω(kn) mis-
takes [20].

We show that PUMMA, given a parameter δ (0 < δ ≤ 1)
and p ≥ 2, finds a linear classifier which has p-norm mar-

gin at least (1 − δ)γ in O( (p−1)R2

δ2γ2 ) updates, when there ex-
ists a hyperplane with p-norm margin γ that separates the
given sequence of data. The worst-case iteration bound of
PUMMA is as the same as those of typical Perceptron-like
algorithms when p=2 and that of ALMA [13] for p > 2,
PUMMA is potentially faster than these previous algorithms
especially when the underlying linear classifier has large bias.

For linearly inseparable data, PUMMA can use kernels
and the 2-norm soft margin formulation [9] for p = 2, as
well as previous Perceptron-like online learning algorithms.
Further, we extend PUMMA to deal with 2-norm soft mar-
gin formulation for p > 2. Note that in standard implemen-
tations of the SVM [16, 8, 17], the 1-norm soft margin for-
mulation (see, e.g., [10]) is preferred since it often requires
less computation time. However, in general, both soft mar-
gin formulations are incomparable in terms of generalization
ability, which depends on data and choices of kernels. For
online-based implementations of the SVM with 1-norm soft
margin see LASVM [4] and Pegasos [33].

There are other related works. For p = 2, previous al-
gorithms such as Kernel Adatron [12], NPA [18], SMO al-
gorithm [29], Max Margin Perceptron [21], and LASVM [4]
can find bias directly as well. However, the first three algo-
rithms are not suitable for the online setting since they need
to store past examples to compute the bias. Max Margin
Perceptron finds the same solution of our algorithm, but its
upperbound of updates is ln(R/γ) times worse than that of
PUMMA . For LASVM, there is no theoretical analysis of
its convergence rate. For p = ∞, ROME algorithm [24] is
also similar to our present work. It is an online learning algo-
rithm that finds an accurate linear classifier quickly when the
margin of the underlying classifier is defined as ∞-norm dis-
tance. On the other hand, ROME requires prior knowledge
of the margin and bias. For a more general convex optimiza-
tion technique which includes ROMMA as a special case,
see [3].

In our preliminary experiments, PUMMA converges faster
than previous online algorithms over artificial dataset, espe-
cially when the underlying linear classifier has large bias. In
particular, for p = O(ln n), PUMMA is from 2 to 10 times
faster than ALMA. Over real datasets, PUMMA often out-
performs previous online algorithms.

2 Preliminaries

2.1 Norm

For any vector x ∈ R
n and p > 0, p-norm ‖x‖p of x is given

as (
∑n

i=1 |xi|p)
1
p . In particular, ‖x‖∞ is given as ‖x‖∞ =

maxi |xi|. It can be shown that, for any fixed x ∈ R
n, the

p-norm ‖x‖p is decreasing with respect to p, i.e., ‖x‖p′ ≤
‖x‖p for any 0 < p ≤ p′. For p > 1, q-norm is dual to
p-norm if 1/q = 1 − 1/p. For p ≥ 1 and q such that 1/p +
1/q = 1, it is known that

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ n1/p‖x‖∞.

2.2 Online learning

We consider the standard setting of online learning of linear
classifiers, in which learning proceeds in trials. At each trial
t, the learner receives an instance xt ∈ R

n, and it predicts
a label ŷt ∈ {−1, +1}. Then the learner receives the true
label yt ∈ {−1, +1} and then it possibly updates its current
hypothesis depending on the received label. In this paper,
we assume that labels are determined by a linear classifier
f(x) = sign(w · x + b) for some weight vector w ∈ R

n

and bias b ∈ R, where sign(a) = +1 if a ≥ 0, otherwise
sign(a) = −1. In particular, if yt 6= ŷt, we say that the
learner makes a mistake. A typical goal of online learning
is to minimize the number of mistakes as small as possible.
Most of known online algorithms are mistake-driven, that is,
they update their hypotheses when they make a mistake.

The p-norm distance between a hyperplane and a point is
computed as follows:

Lemma 1 ([25]) Let V = {v ∈ R
n | w · v + b = 0}. Then,

for any x ∈ R
n,

min
v∈V

‖x − v‖p =
|w · x + b|

‖w‖q
,

where q = 1/(1 − 1/p) 1.

Based on Lemma 1, the p-norm (geometric) margin of a hy-
perplane (w, b) over an example (x, y) is defined as

y(w · x + b)

‖w‖q
.

For any sequence of examples S = ((x1, y1), . . . , (xT , yT ))
(T ≥ 1), the margin of a hyperplane (w, b) over S is defined
as the minimum margin of examples in S. The algorithms
we consider update their hypotheses if not only they make a
mistake, but also their hypotheses have insufficient margin.
In this paper, the learner’s goal is to minimize the number
of updates in order to obtain a linear classifier with approxi-
mately maximum p-norm margin over the given sequence of
examples.

2.3 Convex duality

We review the basic results on convex analysis. Let F :
R

n → R be a strictly convex differentiable function. The
Legendre dual of F , denoted as F ∗, is defined by

F ∗(θ) = sup
w∈Rn

(θ · w − F (w)) .

1More generally, this lemma holds for an arbitrary norm and its
dual norm.



It can be verified that F ∗ is also strictly convex and differen-
tiable. Then the following lemma holds:

Lemma 2 ([30, 7]) 1. F ∗∗ = F .

2. F (w) + F ∗(θ) = θ · w if and only if θ = ∇F (w).

3. ∇F ∗ = (∇F )−1.

In particular, we use F (w) = 1
2‖w‖2

q throughout this
paper. Let f = ∇F , that is,

f (w)i =
sign(wi)|wi|q−1

‖w‖q−2
q

By Lemma 2 and some calculations, we obtain the following
property.

Lemma 3 ([14]) 1. The inverse f
−1 of f is given as

f−1(w)i =
sign(wi)|wi|p−1

‖w‖p−2
p

,

where 1/p + 1/q = 1.

2. ‖f(w)‖p = ‖w‖q.

3. w · f (w) = ‖f(w)‖2
p = ‖w‖2

q .

Finally, we will use the following bound later.

Proposition 1 ([15, 14]) Let G(θ) = 1
2‖θ‖2

p with p ≥ 2
and let g = ∇G. Then it holds for any x and a that

G(θ + a) ≤ G(θ) + g(θ) · a +
(p − 1)

2
‖a‖2

p.

3 PUMMA

We consider the learning of maximum p-norm margin classi-
fiers in the online learning setting. By Lemma 1, the problem
of finding the maximum p-norm margin hyperplane over a
sequence of labeled examples S = ((x1, y1),. . . ,(xm, yT ))
is formulated as follows:

min
w,b

1

2
‖w‖2

q , (1)

subject to :

yt(w · xt + b) ≥ 1 (1 ≤ t ≤ T ),

where q is such that 1/p + 1/q = 1. Since the problem
(1) is a convex optimization problem with linear inequality
constraints, it can be solved by optimization methods such as
interior-point methods [6]. However, in the context of online
learning, it is time-consuming to solve the problem (1) at
each trial. Further, it is necessary to store all the past given
examples.

For p = 2, Li and Long proposed an elegant solution of
the problem (1) in the online learning setting [22]. Their al-
gorithm, ROMMA, is an online learning algorithm that finds
approximate 2-norm maximum margin hyperplanes without
bias. At each trial t, given an instance xt, ROMMA predicts
ŷt = sign(wt · xt) such that

wt = argmin
w

1

2
‖w‖2

2, (2)

subject to

yt−1w · xt−1 ≥ 1 and w · wt−1 ≥ ‖wt−1‖2
2.

It can be shown that the constraints of the problem (2) is
relaxed, that is, the constraints of the problem (2) is weaker
than those of the problem (1) when p = 2 and bt is fixed with
0. In fact, the second constraint in (2) corresponds to the
hyperspace that contains the polyhedron which representing
the constraints yj(w · xj) ≥ 1 (j = 1, . . . , t − 2).

Our algorithm, PUMMA, generalizes ROMMA in two
folds: (i) PUMMA can maximize any p-norm margin with
p ≥ 2. (ii) PUMMA can directly learns non-homogeneous
hyperplanes. PUMMA takes δ (0 ≤ δ < 1) and p (p ≥ 2) as
parameters. For initialization, it requires initial weight vec-
tor w0 = 0 ∈ R

n and positive and negative instances x
pos
1

and x
neg
1 , respectively. These two examples are easily ob-

tained by keep predicting −1 until the first positive example
appears and predicting +1 until the first negative example
comes. If either a positive or negative example cannot be
obtained, then the number of updates is at most 1.

Then, given a sequence S =((x1, y1), . . . , (xt−1, yt−1))
of examples and an instance xt, PUMMA predicts ŷt =
sign(wt · xt + bt), where wt and bt is given as follows:

(wt, bt) = arg min
w,b

1

2
‖w‖2

q , (3)

subject to :

w · xpos
t + b ≥ 1, w · xneg

t + b ≤ −1

w · f(wt−1) ≥ ‖wt−1‖2
q ,

where q = 1/(1 − 1/p), x
pos
t and x

neg
t are the last positive

and negative examples which incur updates, respectively. If
yt(wt ·xt +bt) < 1−δ, PUMMAp(δ) updates (xpos

t+1, x
neg
t+1)

= (xt, x
neg
t ), if yt = +1, and (xpos

t+1, x
neg
t+1) = (xpos

t , xt),
otherwise.

3.1 Solution of the optimization problem (3)

Now we show the solution of the optimization problem (3).
In this subsection, for simplicity, we denote v = wt−1, θ =
f(wt−1), xpos = x

pos
t and xneg = x

neg
t . Let L be the

Lagrangian, that is,

L(w, b, α, β) =
1

2
‖w‖2

q

+
∑

`∈{pos,neg}
α`{1− y`(w · x` + b)}

+ β(‖v‖2
q − θ · w), (4)

where ypos = +1 and yneg = −1. Then the partial deriva-
tive of L w.r.t. wi and b is given respectively as

∂L

∂wi
= f(w)i −

∑

`∈{pos,neg}
y`α`x`

i − βθi, and (5)

∂L

∂b
= αpos − αneg . (6)

Since the solution (w∗, b∗) must enforce the partial deriva-
tives (5) and (6) to be zero, the vector w∗ is specified as

w∗ = f−1(αz + βθ),

where α = αpos = αneg , z = xpos − xneg and

f−1(θ)i =
sign(θi)|θi|p−1

‖θ‖p−2
p

.



PUMMA p(δ)
begin

1. (Initialization) Get examples (xpos
1 , +1)

and (xneg
1 ,−1). Let w0 = (0, . . . , 0) ∈

R
n.

2. For t = 1 to T ,
(a) Receive an instance xt.
(b) Let

(wt, bt) = arg min
w,b

1

2
‖w‖2

q ,

subject to :

(w · xpos
t + b) ≥ 1

(w · xneg
t + b) ≤ −1

w · f(wt−1) ≥ ‖wt−1‖2
q .

(c) Predict ŷt = sign(wt · xt + bt).
(d) Receive the label yt. If yt(wt · xt +

bt) < 1 − δ, update

(xpos
t+1, x

neg
t+1) =

{

(xt, x
neg
t ) , (yt = +1)

(xpos
t , xt) , (yt = −1).

Otherwise, let

(xpos
t+1, x

neg
t+1) = (xpos

t , xneg
t ).

end.

Figure 1: The description of PUMMA .

Further, by KKT conditions, the parameters α and β satisfy
that

α(1 − w∗ · xpos − b∗) = 0, (7)

α(1 + w∗ · xneg + b∗) = 0, (8)

1 − w∗ · xpos − b∗ ≤ 0, (9)

1 + w∗ · xneg + b∗ ≤ 0, (10)

α ≥ 0, (11)

β(‖v‖2
q − w∗ · θ) = 0, (12)

‖v‖2
q − w∗ · θ ≤ 0, (13)

and β ≥ 0. (14)

We show that α > 0 by contradiction. Assuming that α = 0,
we have w∗ = f(βθ) = βv. Then the conditions (12), (13)
and (14) implies β = 1 and thus w∗ = v. However, the
conditions (9) or (10) cannot be satisfied for w∗ = v, which
is a contradiction.

Now we consider two cases. (i) Suppose that β = 0.
Then, since α > 0 and the conditions (7) and (8) hold, the
vector w∗ is given as

w∗ = αf−1(z), (15)

where α = 2/‖z‖2
p. (ii) Otherwise, i.e., if β > 0, by the

conditions (7), (8), and (12),

w∗ = f
−1(αz + βv), (16)

where α and β where α and β satisfies the following equa-
tions

{

f−1(αz + βθ) · z = 2,

f−1(αz + βθ) · θ = ‖v‖2
q.

(17)

That is, the optimal solution w∗ satisfies the constraints of
the problem(3) with equality. In this case, the solution can
be obtained by maximizing its Lagrange dual L∗ which is
defined as

L∗(α, β) = min
w,b

L(w, b, α, β).

Further, with some calculations, L∗ is computed as

L∗(α, β) = −1

2
‖αz + βθ‖2

p + 2α + β‖θ‖2
p. (18)

Then, Note that the partial derivatives of L∗ are

∂L∗

∂α
= −f−1(αz + βθ) · z + 2

∂L∗

∂β
= −f−1(αz + βθ) · θ + ‖θ‖2

p.

Since L∗ is concave, the equations (17) is satisfied if and
only if L∗ is maximized. So, given an initial assignment
(α0, β0), we can approximate (α, β) by repeating the New-
ton update

(

αk+1

βk+1

)

=

(

αk

βk

)

−∇2L∗(α, β)−1∇L∗(αk , βk)

for sufficiently many steps, where

∂2L∗

∂2α
=
∑

i

f−1′

(αz + βθ)iz
2
i ,

∂2L∗

∂β∂α
=
∑

i

f−1′

(αz + βθ)iziθi,

∂2L∗

∂α∂β
=
∑

i

f−1′

(αz + βθ)iziθi,

∂2L∗

∂2β
=
∑

i

f−1′

(αz + βθ)iθ
2
i ,

and

f−1′

(θ)i =
∂f−1(θ)

∂θi

= −(p − 2)
|θi|2(p−1)

‖θ‖2p−2
p

+ (p − 1)
|θi|p−2

‖θ‖p−2
p

.

In our implementation, we set initial values as α0 = 0 and
β0 = 1.

In particular, for p = 2, it holds that f(x) = f−1 = x.
So, we have the following analytical solution for equations
(17):

α =
‖v‖2(2 − v · z)

‖v‖2‖z‖2 − (v · z)2
and

β =
‖v‖2‖z‖2 − 2(v · z)

‖v‖2‖z‖2 − (v · z)2
. (19)



Figure 2: Illustration of the implicit reduction which pre-
serves the margin. Each pair of positive and negative ex-
amples in the original space (left) corresponds to a positive
example in the new space (right).

As a summary, in order to obtain the solution w∗, we first
assume the case (i) and check whether the condition w∗ ·θ >
‖v‖2

q holds or not. If it does, the solution is given as (15).
Otherwise, the case (ii) holds and the solution is (19) for
p = 2, or we apply Newton method for p > 2.

In either case (i) or (ii), the bias b∗ is given as

b∗ = −w∗ · xpos + w∗ · xneg

2
. (20)

3.2 Implicit reduction to learning classifiers without
bias

We show an interpretation of PUMMA from the viewpoint of
reduction. Let us fix p = 2. Then, it is easily verified that the
update of PUMMA is identical to that of ROMMA for the
instance z = (xpos

t − x
neg
t )/2 whose label is positive. This

observation implies a reduction from learning linear classi-
fiers with bias to learning of those without bias. Let X =
X pos ∪ Xneg be a subset of R

n, where X pos and Xneg are
positive and negative set of instances and X pos ∩Xneg = ∅.
Assume that there exists (u, b) such that u · xpos + b ≥ 1
for each xpos ∈ X pos, and u · xneg + b ≤ −1 for each
xneg ∈ Xneg . Then we consider the set

Z =

{

xpos − xneg

2

∣

∣ xpos ∈ X pos, xneg ∈ Xneg

}

.

That is, from a set of positive and negative instances, we de-
fine the set of positive instances. Then, the following prop-
erty holds for Z .

Theorem 2 Fix any p satisfying 2 ≤ p < ∞. Let (u, b)
be the maximum p-norm hyperplane over X . Then, u is
the maximum p-norm hyperplane over Z as well. Also, the
opposite holds for some b.

Proof: Let u′ be the maximum p-norm hyperplane over Z .
Note that u · z ≥ 1 for each z ∈ Z (See Figure 2). So,
we have ‖u‖2

q ≥ ‖u′‖2
q for q s.t. 1/p + 1/q = 1. Now let

b′ = u′ · (x̃pos + x̃neg)/2, where x̃pos and x̃neg satisfies
u′ · (x̃pos − x̃neg) = 2, for any xpos ∈ X pos. Note that such
a pair (x̃pos, x̃neg) always exists since u′ is the maximum

p-norm margin hyperplane. Then, we have

u′ · xpos + b′ = u′ · x̃pos + b′ + u′ · (xpos − x̃pos)

=
u′ · (x̃pos − x̃neg)

2
+ u′ · (xpos − x̃pos)

= 1 + u′ · (xpos − x̃neg − x̃pos + x̃neg)

≥ 1 + 2 − 2 = 1.

Similarly, it holds for any xneg ∈ Xneg that u′ ·xneg + b′ ≤
−1. So, we get ‖u′‖2

q ≥ ‖u‖2
q . Finally, since the function

‖ · ‖2
q (1 < q ≤ 2) is strictly convex, the minimum is unique.

Therefore we obtain u = u′.

This theorem ensures that finding the maximum margin
hyperplane with bias can be reduced to finding those without
bias over pairs of positive and negative instances. Observe
that this reduction does not reduce the margin.

PUMMA can be viewed as a “wrapper” algorithm of
ROMMA equipped with this reduction. Given positive and
negative instances xpos and xneg , PUMMA constructs a pos-
itive instance z = (xpos −xneg)/2 and train ROMMA with
z for a trial. Then PUMMA receives a weight vector w and
set bias b as b = −(w ·(xpos +xneg))/2. If PUMMA makes
a mistake (or does not have enough margin) over a new in-
stance, it updates z and train ROMMA again.

It is possible to use any online learning algorithm that
finds maximum margin linear classifier without bias as sub-
routines if it satisfies the following requirement: such an al-
gorithm must output a weight vector whose support vector is
z. However, most of known online algorithms maximizing
the margin does not satisfy this requirement and ROMMA
seems to be the only one satisfying the requirement so far.

3.3 Convergence proof

We prove an upperbound of updates made by PUMMA. First
of all, by the KKT conditions for equations (7) and (8), the
following property holds:

Lemma 4 For t ≥ 1, it holds that

wt · xpos
t + bt = 1 and wt · xneg

t + bt = −1.

Then we prove that the optimal solution of the offline op-
timization problem (1) is a feasible solution of the PUMMA’s
optimization problem (3).

Lemma 5 Let (u, b) ∈ R
n × R be a hyperplane such that

yj(u · xj + b) ≥ 1 for j = 1, . . . , t. Then, it holds that
u · f (wt) ≥ ‖wt‖2

q and ‖u‖q ≥ ‖wt‖q.

Proof: For convenience of the proof, we denote θt = f(wt).
Without loss of generality, we can assume that an update is
made at each trial t ≥ 1. The proof for the first inequality is
done by induction on t. For t = 1, the vector is written as
w1 = f−1(θ1), where θ1 = α(xpos

1 − x
neg
1 ) for some α ≥

0. By the definition of u and b, it holds that u ·xpos
1 + b ≥ 1

and u · xneg
1 + b ≤ −1, respectively. So, we obtain

u · θ1 = α(u · xpos
1 − u · xneg

1 )

≥ α(1 − b + 1 + b) = 2α.



On the other hand, by Lemma 4, we have

‖w1‖2
q = w1 · θ1 = αw1 · (xpos

1 − x
neg
1 ) = 2α,

which shows u · θ1 ≥ ‖w1‖2
q.

Suppose that for t < t′, the statement is true. Then,
there are two cases: (i) wt′ · θt′−1 = ‖wt′−1‖2

q , and wt′ =

f−1(θt′), where θt′ = α(xpos
t′ −x

neg
t′ )+βθt′−1 for some α

and β, or (ii)wt′ · θt′−1 > ‖wt′−1‖2
q , and wt′ = f−1(θt′),

where θt′ = α(xpos
t − x

neg
t ). For the case (ii), the proof

follows the same argument for t = 1, so we only consider
the case (i). By the inductive assumption, we have

u · θt′ = α(u · xpos
t′ − u · xneg

t′ ) + βu · θt′−1

≥ 2α + β‖wt′−1‖2
q

By Lemma 4,

‖wt′‖2
q = wt′ · θt′

= wt′ · α(xpos
t′ − x

neg
t′ ) + βwt′θt′−1

= 2α + β‖wt′−1‖2
q .

So, we get u · θt′ ≥ ‖wt′‖2
q and thus we prove the first

inequality. The second inequality holds immediately since
both (u, b) and (wt, bt) satisfy the same constraints in (3)
and (wt, bt) minimizes the norm by definition.

Next, prove the following lemma:

Lemma 6 For each trial t ≥ 1 in which an update is in-
curred,

‖wt+1‖2
q − ‖wt‖2

q ≥ δ2

2(p − 1)R2
,

where R = maxj=1,...,t ‖xj‖p.

Proof: By the weak duality theorem (see, e.g.,[6]), the opti-
mum of the problem (3) is bounded below by the Lagrangian
dual L∗(α, β) in (18) for any α ≥ 0 and β ≥ 0. Therefore,
using the notations in the derivation of update,

1

2
‖w∗‖2

q −
1

2
‖v‖2

q ≥ L∗(α, β) − 1

2
‖v‖2

q .

So, by using Proposition 1 and letting β = 1, we have

L∗(α, 1) − 1

2
‖v‖2

q

= − G(θ + αz) + G(θ) + 2α

≥− g(θ) · αz − (p − 1)

2
α2‖z‖2

p + 2α

= − αv · z − (p − 1)

2
α2‖z‖2

p + 2α.

The right hand side of the inequality above is maximized if

α =
2 − v · z

(p − 1)‖z‖2
p

. (21)

Note that α is positive since v · z ≤ 2 − δ. Subsisting (21),

L∗(α, 1) − 1

2
‖v‖2

q ≥ (2 − v · z)2

2(p − 1)‖z‖2
p

≥ δ2

2(p − 1)R2
.

Now we are ready to prove our main result.

Theorem 3 Suppose that for a sequence S = ((x1, y1), . . . ,
(wT , yT )), there exists a hyperplane (u, b) ∈ R

n × R such
that yt(u · xt + b) ≥ 1 for t = 1, . . . , T and the hyper-
plane (u, b) has p-norm margin γ over S. Further, let R =
maxt=1,...,T ‖xt‖p. (i) Then the number of updates made by
PUMMAp(δ) is at most

O

(

(p − 1)R2‖u‖2
q

δ2

)

.

(ii) PUMMAp(δ) outputs a hypothesis with p-norm margin
at least (1 − δ)γ after at most the updates above.

Proof: As in Lemma 5, without loss of generality, we as-
sume that PUMMA updates for t = 1, . . . , M(M ≤ T ). By
Lemma 5, we have ‖wt‖q ≤ ‖u‖q for t ≥ 1. Further, by
Lemma 6, it holds that after M updates

‖u‖2
q ≥ ‖wT ‖2

q ≥ δ2M

2(p − 1)R2
,

which implies M ≤ 2‖u‖2
qR2

δ2 . Further, after at most
2‖u‖2

qR2

δ2

updates, we have yt(wt + bt) ≥ 1 − δ for t ≥ T . Then the
achieved margin is at least

1 − δ

‖w‖q
≥ 1 − δ

‖u‖q
= (1 − δ)γ.

Since it holds that ‖x‖p ≤ ‖x‖1 for p ≥ 1 and ‖x‖∞ ≤
‖x‖p ≤ n1/p‖x‖∞, we obtain the following corollary (A
similar result was shown in [13]).

Corollary 4 Assume that for a sequence S = ((x1, y1), . . . ,
(wT , yT )), there exists a hyperplane (u, b) ∈ R

n × R such
that yt(u · xt + b) ≥ 1 for t = 1, . . . , T and the hyper-
plane (u, b) has ∞-norm margin γ over S. Further, let R =
maxt=1,...,T ‖xt‖∞. Then, by setting p = c ln n (c > 0), (i)
the number of updates made by PUMMAp(δ) is at most

O

(

R2‖u‖2
1 ln n

δ2

)

.

(ii) PUMMAp(δ) outputs a hypothesis with ∞-norm margin
at least 1−δ

e1/c γ after at most the updates above.

Proof: First, we use the fact that ‖w‖q ≥ e−
1
c ‖w‖1: To see

this, observe that

‖w‖q =

(

∑

i

|wi|q
)

1
q

= n
1
q

(

1

n

∑

i

|wi|q
)

1
q

≥ n
1
q

∑

i

1

n
|wi|

= n− 1
p ‖w‖1

= e−
1
c ‖w‖1



where the inequality above follows from the concavity of the
function g(x) = x

1
q for q > 1. Let (w∗, b) be the maximum

∞-norm classifier and γ∗ be its ∞-norm margin. Then, by
using the fact above, we have

y(w · x + b)

‖w‖1
≥ y(w · x + b)

e
1
c ‖w‖q

≥ (1 − δ)
y(w∗ · x + b∗

e
1
c ‖w∗‖q

≥ (1 − δ)
y(w∗ · x + b∗

e
1
c ‖w∗‖1

≥ (1 − δ)

e
1
c

γ∗.

4 Kernel and Soft Margin Extensions

4.1 Kernel Extension

As well as SVM, ROMMA and other Perceptron-like online
algorithms, PUMMA can use kernel functions for p = 2.
Note that, at trial t, the weight vector wt is written as

wt =

t−1
∑

j=1





t−1
∏

n=j+1

αn



βjzj ,

thus an inner product wt · xt is given as a weighted sum
of inner products xj · xj′ between instances since zj =
x

pos
j − x

neg
j . Therefore, we can apply kernel methods by

replacing each inner product xj · xj′ with K(xj , xj′) for
some kernel K. More practically, we can compute the in-
ner products between wt and a mapped instance using the
recurrence wt = αt(x

pos
t − x

neg
t ) + βtwt−1.

4.2 2-norm Soft Margin Extension

In order to apply PUMMA to linearly inseparable data, as
in [21, 22], we employ the 2-norm soft margin minimiza-
tion [9, 10], which is formulated as follows: Given a se-
quence S = ((x1, y1), . . . , (xT , yT )) and letting S be the
set of examples in S,

min
w,b,ξ

1

2
‖w‖q +

C

2

∑

(x,y)∈S
ξ2
x, (22)

subject to

y(w · x + b) ≥ 1 − ξx ((x, y) ∈ S),

where the constant C > 0 is given as a parameter. Here, we
implicitly assume that labels are consistent, i.e., if xt = xt′

then yt = yt′ . So we drop y from the subscript of ξ.
For p = 2, it is well known that this formulation is equiv-

alent to the 2-norm minimization problem over linearly sep-
arable examples in an augmented space:

min
w̃,b,

1

2
‖w̃‖2,

subject to:

y(w̃ · x̃ + b) ≥ 1 (x ∈ S),

where w̃ = (w,
√

Cξ), x̃ = (x, y√
C

ex) for each (x, y) ∈
S, and each ex is a unit vector in R

|S| whose element corre-
sponding to x is 1 and other elements are set to 0. To use a
kernel function K with this soft margin formulation, we just
modify K as follows:

K̃(xj , xj) = K(xi, xj) +
∆ij

C
, (23)

where ∆ij = 1 if i = j, otherwise ∆ij = 0.
For p > 2, we modify PUMMA so that, given S =

((x1, y1), . . . , (xt−1, yt−1)) and an instance xt, it predicts
ŷt = sign(wt · xt + bt), where (wt, bt, ξt) is specified as
follows:

(wt, bt, ξt) =arg min
w,b,ξ

1

2
‖w‖2

q +
C

2

∑

(x,y)∈Mt

ξ2
x, (24)

subject to:

w · xpos
t + b ≥ 1 − ξpos

t , (25)

w · xneg
t + b ≤ −1 + ξneg

t ,

w · f(wt−1) + C
∑

(x,y)∈Mt−1

ξxξt−1,x ≥

‖wt−1‖2
q + C

∑

(x,y)∈Mt−1

ξ2
t−1,x,

where Mt denotes the set of examples in S which have in-
curred updates of PUMMA in t − 1 trials, ξpos

t = ξxpos
t

and
ξneg
t = ξxneg

t
. Then the modified PUMMA update x

pos
t+1 or

x
neg
t if yt+1(wt+1 · xt+1 + bt+1) < 1 − δ − ξxt+1

, where
ξxt+1

= ξx′

t
if xt+1 = xt′ such that (xt′ , yt′) ∈ Mt. Oth-

erwise, ξxt+1
= 0.

Solution The Lagrangian function is given as
L(w, b, ξ, α, β)

=
1

2
‖w‖2

q +
C

2

∑

(x,y)∈Mt

ξ2
x

+
∑

`∈{pos,neg}
α`(1 − ξ`

t − y`
tw · x`

t)

+ β

(

‖wt−1‖2
q − w · f(wt−1)

+ C
∑

x∈Mt−1

ξt−1,x
2 − C

∑

x∈Mt−1

ξxξt−1,x

)

.

To simplify descriptions, without loss of generality, we
assume that xt is a positive instance. Note that every solution
is as same as when xt is a negative one. As done in the
separable case, by using KKT conditions, we consider the
following two cases:

(i)Suppose that β = 0, α > 0. Then the optimal solution
(w∗, b∗, ξ∗) is given as

w∗ = αf−1(z),

α =
2

2
C + ‖z‖2

p

,

ξpos∗
t = ξneg∗

t =
α

C
,

ξ∗x = 0 (x ∈ Mt\{xpos
t , xneg

t }),



where z = x
pos
t − x

neg
t . (ii)Otherwise, β 6= 0, α > 0. Let

θ = f(wt−1). Then we have

w∗ = f−1(αz + βθ),

ξpos∗
t =

{

α
C , if (xt, yt) /∈ Mt,
α
C + βξneg

t−1, if (xt, yt) ∈ Mt,

ξneg∗
t =

α

C
+ βξneg

t−1,

ξx = βξt−1,x (x ∈ Mt\{xpos
t , xneg

t }),
where α and β are the maximizers of the Lagrange dual

L∗(α, β) = min w, b, ξL(w, b, ξ, α, β)

=
1

2
‖αz + βθ‖2

p

− 2α +
α2

C
+ αβξneg

t−1

− β‖θ‖2
p − C(β − β2

2
)
∑

x∈Mt−1

ξ2
x,j .

Again, we can approximate (α, β) by repeating the Newton
update

(

αk+1

βk+1

)

=

(

αk

βk

)

−∇2L∗(α, β)−1∇L∗(αk , βk)

for sufficiently many steps, where

∂2L∗

∂2α
=
∑

i

f
−1′

(αz + βθ)iz
2
i +

2

C

∂2L∗

∂β∂α
=

∂2L∗

∂α∂β

=
∑

i

f−1′

(αz + βθ)iziθi + ξneg
t−1

∂2L∗

∂2β
=
∑

i

f−1′

(αz + βθ)iθ
2
i + C

∑

x∈Mt−1

ξ2
x,j .

As in the case without soft margin, in order to acquire the
solution w∗ and ξ

∗, we first assume the case (i) and check
whether the third constraint of the problem (24) holds with
strict inequality or not. If it does, then the case (i) is true.
Otherwise, the case (ii) holds. Finally, the bias b∗ is given as

b∗ = −w∗ · xpos + w∗ · xneg + (ξpos
t − ξneg

t )

2
.

By the same argument as Section 3, we obtain the fol-
lowing:

Theorem 5 For a sequence S = ((x1, y1), . . . , (wT , yT )),
let (u, b, ξ) ∈ R

n × R × R
|S| be the optimal solution of the

problem (22). Further, let R = maxt=1,...,T ‖xt‖p. (i) Then
the number of updates made by PUMMAp(δ) is at most

O





{

(p − 1)R2 + 2
C

}

(

‖u‖2
q +

∑

(x,y)∈S ξ2
x

)

δ2



 .

(ii) PUMMAp(δ) outputs a hypothesis with p-norm margin
whose objective value for the problem (22) is at most 1

(1−δ)2

times the optimum after at most the updates above.
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Figure 3: Number of updates and margin over artificial data
set in the case p = 2 (upper) and p = 2 ln(n) (lower). We
set x-axes log scale since the numbers of updates of ALMA
are quite larger than PUMMA ’s. And we hide the result of
the case p = 2 and b = 9 since we make the figure easy to
view. The parenthetical digits denote the value of bias.

5 Experiments

5.1 Experiments over artificial datasets

We examine PUMMA , ALMA and ROMMA over artificial
datasets generated by sparse linear classifiers. Each artificial
dataset consists of n-dimensional {−1, +1}-valued vectors
with n = 100. Each vector is labeled with a r-of-k threshold
function f , which is represented as f(x) = sign(xi1 + · · ·+
xik

+ k − 2r + 1) for some i1, . . . , ik s.t. 1 ≤ i1 ≤ i2 ≤
· · · ≤ ik ≤ n, and it outputs +1 if at least r of k relevant
features have value +1, and outputs −1, otherwise.

For k = 16 and r ∈ {1, 4, 8} (equivalently, the bias
b ∈ {15, 9, 1}, respectively), we generate random 1000 ex-
amples labeled by the r-of-k threshold function, so that pos-
itive and negative examples are equally likely. For ALMA
and ROMMA, we add an extra dimension with value −R
to each vector to learn linear classifiers with bias, where
R = max ||x||p. Note that one can choose different values
other than −R, say, 1. However, as remarked in [10], such
a choice for the value in the extra dimension increases the
number of iterations by O(R2) times when the underlying
hyperplane has large bias. So our choice seems to be fair.

We set parameters so that each algorithm is guaranteed
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Figure 4: Computation time over artificial data set in the case
p = 2 (upper) and p = 2 ln(n) (lower).

to achieve at least 0.9 times the maximum p-norm margin.
That is, we set α = 0.1 (note the parameter α is defined
differently in [13]) for ALMA and δ = 0.1 for ROMMA an
PUMMA . We examine p ∈ {2, 2 lnn}.

We train each algorithm until its hypothesis converges
by running it in epochs, where, in one epoch, we make each
algorithm go through the whole training data once. At end
of each epoch, for each algorithm, we record number of up-
dates, margin incurred during the training and real computa-
tion time. Note that we measure the margin of each hypoth-
esis over the original space. We execute these operations 10
times, changing the randomly generated data, and we aver-
age the results over 10 executions. The experiments are con-
ducted on a 3.8 GHz Intel Xeon processor with 8 GB RAM
running Linux. We use MATLAB for the experiments.

The results are represented in Figure 3 and 4. We ob-
serve that PUMMA converges faster. PUMMA ’s computa-
tion time is quite shorter than that of ALMA, although it uses
Newton method in each update, Note that we omit the result
of ALMA in the case p = 2 since the result is worse than the
others. For p = 2, we don’t use Newton method in the ex-
ecution of PUMMA because we have the analytical solution
of the optimal value of α and β by solving the optimization
problem directly.

5.2 Experiments over some UCI datasets

We compare PUMMA with some other learning algorithms
over the real datasets. The algorithms are SVMlight [16],
MICRA [35], and ROMMA [22]. We used the following
datasets of UCI Machine Learning Repository [2]. (i) The
ionosphere dataset consists of 351 instances which have 34
continuous attributes. (ii) The house-vote dataset consists of
435 instances which have 16 discrete attributes {y, n, ?}. We
change these attributes to {1,−1, 0}. (iii) The adult dataset
consists of 32561 instances which have 14 attributes. Among
the attributes, 6 of them are discrete and the others are con-
tinuous. We change this 14 attributes to 123 binary attributes
as Platt did in [29]. The name of dataset ’adult-mk’ in Ta-
ble 1 denotes a subset of the adult dataset which contains
1000 × m instances. Note that all the datasets have binary
class and we change the range of labels with {1,−1}.

To optimize the 2-norm soft margin for this linearly in-
separable dataset, we use the following modified inner prod-
uct

IP (xi, xj) = xi · xj +
∆ij

C
.

We added a dimension which denotes the bias as in Section
1 when we run MICRA and ROMMA which can’t deal with
bias directly.

We modify SVMlight so as not to optimize 1-norm soft
margin, and we change the inner product so that it optimizes
2-norm soft margin. We set δ = 0.01 for PUMMA and
ROMMA to achieve 99% of the maximum margin. The pa-
rameters of MICRA are changed for each dataset as in [35].
But, parameters might not be completely the same as them
because some datasets are different from those they used.
Finally we set 2-norm soft margin parameter C = 1 for all
algorithms. In order to converge faster, we use the following
heuristics for each online algorithm.

Active Set We try to improve the order of given examples
to feed for each online algorithm. First, we give all the exam-
ples to each online learning algorithm once. Then, we make
a new dataset called “active set” , containing the examples
which causes updates. After that, we give each example in
the active set to the algorithm. If the example doesn’t cause
any updates, we remove the example from the active set, and
we repeat this procedure until the active set becomes empty.
Finally, we give all the examples again and check if the al-
gorithm makes any updates. If some updates occur, we con-
struct an active set again and repeat the whole procedure.

We run each algorithm and we measure its real computa-
tion time as well as its obtained margin. The experiments on
real datasets are conducted on a 3.0 GHz Intel Xeon proces-
sor with 16 GB RAM running Linux. We implemented each
algorithm in C.

Table 1 shows the real computation time and obtained
margin. As can be seen, PUMMA converges quite faster than
ROMMA. On the other hand, PUMMA converges slower
than MICRA. However, the parameters of MICRA are quite
sensitive to datasets and nontrivial to tune appropriately. The
results on all the real data set show that SVMlight is the
fastest, whereas MICRA is reported to be faster than SVMlight

over some datasets and with tuned parameters [35]. Note that
this might be due to our selection of active sets which is dif-
ferent from theirs.



Table 1: Computation time (sec.) and obtained margin (denoted as γ ′) on some UCI datasets.

SVMlight PUMMA ROMMA MICRA
dataset sec. 102γ′ sec. 102γ′ sec. 102γ′ sec. 102γ′

ionosphere 0.06 10.55 0.54 10.49 3.12 10.50 0.48 10.04
house-votes 0.03 17.42 0.26 17.31 0.62 17.36 0.09 16.51

adult-1k 0.47 4.95 5.40 4.50 15.83 4.91 2.34 4.03
adult-2k 2.13 3.40 25.38 3.37 82.70 3.38 5.61 2.81
adult-4k 9.33 2.40 159.54 2.38 496.52 2.38 55.91 2.00
adult-8k 232.42 1.69 807.46 1.67 2167.40 1.67 189.13 1.46

adult-16k 1271.06 1.20 3365.47 1.18 12503.62 1.18 2050.84 1.13
adult-full 5893.20 0.83 44480.59 0.82 71296.34 0.82 12394.86 0.79

Table 2: Computation time (sec.) and obtained margin (denoted as γ ′) on MNIST datasets.

SVMlight SVMlight w/o bias PUMMA ROMMA
class sec. γ′ sec. γ′ sec. γ′ sec. γ′

0 256.51 1.339 164.83 1.155 373.48 1.330 218.97 1.150
1 152.10 0.712 119.62 0.712 291.54 0.706 231.82 0.708
2 413.43 0.810 309.77 0.765 1674.08 0.804 870.58 0.761
3 566.84 0.763 384.17 0.722 2654.19 0.757 2296.34 0.719
4 333.04 0.650 267.65 0.629 905.16 0.645 505.11 0.626
5 428.36 0.672 301.99 0.664 1480.44 0.667 1007.91 0.661
6 246.47 0.941 184.39 0.880 534.80 0.934 308.18 0.876
7 322.90 0.621 304.54 0.611 860.89 0.616 584.36 0.608
8 694.17 0.810 437.48 0.727 5648.12 0.804 5074.51 0.723
9 599.78 0.558 399.08 0.541 5290.33 0.554 6057.92 0.538

avg. 401.36 0.788 287.35 0.741 1971.30 0.782 1715.57 0.737

5.3 Experiments over MNIST dataset

Next, we compare these algorithms over MNIST dataset.
Since the dataset is not linearly separable, we use polyno-
mial kernel and 2-norm soft margin as follows.

K(xi, xj) =
(

1 +
xi · xj

s

)d

+
∆i,j

C
.

Since computing kernels is time-consuming, we use some
extra heuristics in addition to our active set selection.

Kernel Cache Since we have to compute kernel values of
the same examples repeatedly, we memorize them in a cache
matrix. In the cache matrix, each row memorizes the kernel
values of a support vector and all the examples, where a sup-
port vector is an instance which causes an update. The length
of each row equals to the number of training instances. The
number of rows depends on the memory size. When the new
kernel value of a support vector and an instance is required,
we search the cached value in the cache matrix. If we fails,
we calculate the value and store it in the cache matrix. To do
this, we search the row of the corresponding support vector.
We store the value if we succeed, or we make the new row
otherwise. If the matrix is full, we replace the least refer-
enced row by the new row.

Inner Product Cache In our experiments, we keep giv-
ing examples to each online leaning algorithms until they

make no update on all the examples. Assume that at trial
t = t1, t2(t1 < t2), the weight vector wt is updated by the
same example xt1 . The weight vector wt2 is written as

wt2 =

t2−1
∑

j=1





t2−1
∏

k=j+1

αk



βjzj

=

(

t2−1
∏

k=t1

αk

)

wt1 +

t2−1
∑

j=t1





t2−1
∏

n=j+1

αn



βjzj .

So, if we memorize the inner product wt1 · xt1 , we can cal-
culate wt2 · xt1 easier. This technique is efficient when we
use kernel.

Halving δ It is reported that by decreasing δ in a dynam-
ical way, ROMMA converges faster [22]. Similar to their
approach, we shrink the parameter δ by halving repeatedly.
More precisely, we set δ = 1 at first, and halve δ when the
algorithm makes no update for all the examples. We repeat
this procedure until δ is as small as we require. Note that if
δ is smaller than the required value δtarget, we set δ = δtarget.
When we use kernels, this halving heuristics can reduce sup-
port vectors in the early stage of learning, which contributes
faster convergence.

MNIST dataset contains 60, 000 matrix and labels. Each
(28 × 28) matrix represents the image of the hand written



digit. The value of each element is in {0, · · · , 255}, which
denotes the density. Each label takes the value {0, · · · , 9}.
MNIST dataset has 10 classes. Since each algorithm can
deal with only binary class, we change each label so that one
class is positive and the others are negative. Then we get 10
binary labeled datasets.

We run three learning algorithms, SVMlight, ROMMA
and PUMMA on these datasets until they converge. We omit
the evaluation of MICRA since it needs careful tuning of
parameters to converge fast. We record the real computa-
tion time and margin. Note that we use our heuristics for
ROMMA and PUMMA . And we set some kernel param-
eters, s = 11002, d = 5 and C = 1/30 as in [22]. We
set δtarget = 0.01 and use 1 GB kernel cache. We also run
SVMlight with the same size of cache memory, but its caching
strategy is different from ours. The experiments on MNIST
dataset are conducted on the same machine as the experi-
ments on UCI dataset.

The results are shown in Table 2. PUMMA gains higher
margin than ROMMA over almost all of the datasets. On
the other hand, PUMMA requires more computation time.
This seems to be due to the fact that ROMMA solves the
different optimization problem, i.e., maximization of mar-
gin without bias. We observe the same tendency between
SVMlight with and without bias. Further, computation times
of PUMMA are worse than SVMlight. But, PUMMA and
ROMMA might be improved if we employ a different strat-
egy for active set selection.

6 Conclusion and Future work

In this paper, we propose PUMMA which obtains the maxi-
mum p-norm margin classifier with bias approximately. Our
algorithm often runs faster than previous online learning al-
gorithms when the underlying linear classifier has large bias,
by taking advantage of finding bias directly.

Although the worst case upperbound on iterations of our
algorithm is the same as those of previous algorithms, our
experiments over artificial datasets suggest that our iteration
bound might be better. For example, when the target function
is a r-of-k threshold function, iteration bound of PUMMA is
O(k2 ln n) with p = O(ln n). However, in our experiments,
PUMMA seems to converge in O(rk ln n) iterations, which
is the best upperbound obtained by Winnow when k and r are
known a priori. Unfortunately, we have not yet succeeded in
proving better iteration bounds. It is still open if there ex-
ists an online learning algorithms that learns r-of-k thresh-
old functions in O(rk ln n) updates without knowing k and
r [23].

So far PUMMA or ALMA approximates ∞-norm mar-
gin indirectly by setting p = O(ln n). Developing an adap-
tive online algorithm that directly maximizes ∞-norm mar-
gin is also an open problem. One of the future work is to
extend our algorithm to handle 1-norm soft margin which is
commonly used in SVM. Further, we would like to apply
PUMMA to learning sparse classifiers in practical applica-
tions.
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