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ABSTRACT 

A numerical study of the nonlinear energy transfer spectrum for a gravity wave spectrum is 

carried out with the aim of presenting an alternative to the resonant configuration number so as to 

approximate the nonlinear transfer of a given wave spectrum with sufficient accuracy and 

efficiency.  

The long-term evolution of a gravity wave spectrum caused by nonlinear energy transfer is 

investigated using three different types of the third-generation wave model, i.e., the wave action 

model (WAM), where each type is implemented with the discrete-interaction approximation 

(DIA) method (Hasselmann et. al., 1985), Research Institute for Applied Mathematics (RIAM) 

method (Komatsu et. al., 1993), and simplified RIAM (SRIAM) method (Komatsu et. al., 1996) 

under duration-limited conditions. The numerical results of these methods for various directional 

spectra, including multimodal spectra, are compared. The comparisons show that the SRIAM 

method is superior to the other methods for practical applications of the wave model.  

The WAM model implemented with the finite-depth RIAM (FD-RIAM) method (Hashimoto 

et.al, 1998) is applied under duration-limited conditions for nonlinear energy transfer 

computation in finite water depths. The evolution of directional spectra in finite water depths 

caused by nonlinear energy transfer is confirmed to be much faster than that in deep water. 

Two new methods for nonlinear energy transfer computation with free parameters similar to 

those in the RIAM method are presented. The first method, i.e., the reduced SRIAM (R-SRIAM) 

method using only a number of configurations of nine, is able to show almost the same degree of 

accuracy as the original SRIAM method. This result was applied to the second method, i.e., the 

alternative multiple DIA method, where the resonance configurations are selected only from the 

quasi-singular quadruplets. These approximations have the advantage of better accuracy than that 

of the existing model using the DIA method.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Currently, there is a rapidly growing need for wave forecasts and wave climatology in maritime 

countries. To meet this demand for wave information, wave conditions must be estimated over 

large tracts of ocean in regular intervals, often many times a day. The amount of data and 

calculations makes computers indispensable. Numerical wave models have been developed for 

the required estimates of wave conditions. For several decades, ocean wave modeling has been 

an interesting subject. Wave modeling is not only used for practical purposes such as wave 

forecasting, but also involves many fundamental sciences.  

Following Hasselman (1960), ocean wave modeling is generally based on the action or energy 

balance equation of the following form: 

 
tot in nl ds

DF
S S S S

Dt
    ,  

where F is the variance of an energy spectrum and Stot represents the source terms of the spectral 

energy, including the wind input (Sin), nonlinear energy transfer (Snl), and dissipation (Sds) source 

terms. To predict the evolution of wave spectra with high accuracy, each of the source functions 

must be estimated accurately. 

Among the three source terms, the nonlinear energy transfer term is known to play an important 

role in wind wave evolution. Cavaleri et al. (2007) suggested that nonlinear energy transfer is 

probably the most solid piece of information in wave modeling. Inspires by fundamental physics, 

and brought to light more than 40 years ago, the nonlinear energy transfer term is well defined. 

However, a proper evaluation of required computational time in practical applications is not yet 

available.  

The physical meaning of nonlinear energy transfer is a redistribution of energy caused by four-

wave resonance in spectral space, in which wave energy is transferred from the spectral peak to 

low and high frequencies. Nonlinear energy transfer is also suggested to provide the lowest order 

(1.1) 
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mechanism to transfer wave energy to waves of longer wave lengths, and a stabilization 

mechanism for the shape of the spectrum (Tolman, 2003).  

Nonlinear energy transfer can be computed using the Boltzmann integral, originally proposed by 

Hasselmann (1962). The computation of the Boltzmann integral consists of a six-dimensional 

integral, a complicated coupling coefficient, and two delta functions corresponding to the 

resonance conditions. Therefore, this computation is very complicated, making the numerical 

integration difficult, unstable, and very time consuming (Hashimoto and Kawaguchi, 2001).  

Various approximations have been developed to compute nonlinear energy transfer. Masuda 

(1980), Tracy and Resio (1982), Resio and Perrie (1991), Komatsu and Masuda (1996), and Van 

Vledder (2000) have improved the exact computation using various approaches. Even with this 

improvement, the exact nonlinear energy transfer is computationally expensive because of 

multiple integrations and complexity of the interaction coefficient G, thus making it 

computationally formidable in practical models (Tolman, 2003).  

Hasselmann et al. (1985) developed the discrete-interaction approximation (DIA) to overcome 

the shortcomings of the exact methods. The DIA takes into account the interaction of each wave 

component only from two quadruplets in the spectrum. For each of these two quadruplets, the 

self-interaction of the wave components and their interaction with the other two wave 

components (making it formally four components in total) are computed (Holthuijsen, 2007). 

Hasselmann et al. showed that the DIA preserves a few but important characteristics of the full 

solution, such as slow downshifting of the peak frequency and shape stabilization during wave 

growth (Cavaleri et al., 2007). 

Most types of the third-generation wave model such as the wave action model (WAM) (WAMDI 

Group, 1988), WAVEWATCH (Tolman, 1991, 2002c), TOMAWAC (Benoit et al., 1997), the 

simulating waves nearshore (SWAN) model (Booij et al., 1999), and the recently developed 

coupled routing and excess storage (CREST) model (Ardhuin et al., 2001) have adopted the DIA 

method for the computation of nonlinear energy transfer. However, the DIA has a drawback in 

that it has a poor accuracy for approximating nonlinear energy transfer in the case of sharp-

shaped spectra such as the Joint North Sea Wave Project (JONSWAP) spectrum, although it 

exhibits good performance for wide-shaped spectra such as the Pierson–Moskowitz spectrum 

(Hashimoto and Kawaguchi, 2001).  



 

3 

 

Numerous researches have been performed to derive better accuracy and computationally 

feasible nonlinear energy transfer algorithms. Komatsu and Masuda (1996) attempted to speed up 

the calculation and claimed to retain most of the interaction accuracy in computing nonlinear 

energy transfer at about 20 times the cost of the DIA used in the Simplified Research Institute for 

Applied Mathematics (SRIAM) method. Ueno and Ishizaka (1997) and Hashimoto and 

Kawaguchi (2001) developed an approximation for the calculation of nonlinear energy transfer 

that has more accuracy, more complex quadruplets, or more quadruplet combinations. Tolman 

(2003) modified the DIA to the variable DIA (VDIA), where the free parameters in the DIA are 

allowed to be functions of the parameters defining spectral space. However, this approach is less 

accurate, but more computationally economical than the DIA. Tolman (2013) derived the 

generalized multiple DIA (GMD) by adding more complexity to the DIA. The GMD method 

extends the DIA method by allowing for multiple representative quadruplets and by formulating 

the expressions for arbitrary water depths. The GMD method is capable of removing most of the 

DIA’s errors, but may not be computationally feasible in operational models because of its 

complexity. The latest version of WAVEWATCH III adopted the GMD method for the 

computation of nonlinear energy transfer.  

Although numerous efforts have been made in the improvement of nonlinear energy transfer 

computation, despite its deficiency in accuracy the DIA method is still commonly used for 

evaluating nonlinear energy transfer in practical wave models because of the low computational 

cost. Up until now, there is no proper definition as to how to justify which method is the best. An 

intercomparison of those methods is needed for the improvement of nonlinear energy transfer 

computation. 

Theoretically, a precise evaluation of nonlinear energy transfer requires a large number of 

resonance configurations. Such calculations need huge computational costs that are not suitable 

for operations in wave models. Therefore, it is very important to identify how many resonance 

configurations are needed to approximate nonlinear energy transfer with sufficient accuracy and 

efficiency and to be practically implemented in operational wave models.  

The efficient number of resonance configurations for nonlinear energy transfer computation is 

presented in this study so as to reduce computational costs. The first method is the reduced 

SRIAM (R-SRIAM) method, which modified the SRIAM method by reducing the number of 

resonant configurations. Furthermore, the alternative multiple DIA (AM-DIA) method is 

proposed by selecting the resonance configurations only from the quasi-singular quadruplets. The 
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reduced number of resonant configurations is expected to make the computational method of 

nonlinear energy transfer more accurate and computationally feasible, and hence the resulting 

method can be incorporated in wave models.  

 

1.2 Statement of the Problem 

Computations of nonlinear energy transfer need an infinite number of four-wave configurations 

to satisfy resonance conditions. The DIA method adopted by most of the third-generation wave 

models uses a single configuration of four-wave resonances selected from an infinite number of 

configurations. Although the DIA has low computational cost, it is yet a rough way to compute 

nonlinear energy transfer. The DIA method also limited to complex wave fields. Tamura (2008) 

suggested the SRIAM method (Komatsu and Masuda, 1996) to be incorporated into operational 

wave models. The SRIAM method was developed to accurately reproduce Snl using 20 resonance 

configurations. It has low computational cost than more rigorous algorithms. However, its 

computational cost is still larger than that of existing operational wave models using the DIA (by 

20 times). Hence, it is necessary to know how many resonance configurations are required to 

estimate nonlinear transfer reasonably accurately.  

 

1.3 Purpose of the Study 

The purposes of this study are as follows. 

 To clarify fundamental processes of wave generation and development by 

investigating the characteristics of directional spectra evolution in long-time 

integrations caused by nonlinear energy transfer in deep and infinite water depths.  

 To evaluate performance of the DIA, RIAM, and SRIAM method for computing 

nonlinear energy transfer in order to direct a suggestion to the improvements of 

nonlinear energy transfer computation.  

 To present the efficient number of configurations for nonlinear energy transfer 

computation with better accuracy and less computational time than existing methods 

that can be incorporated in operational wave models.  

1.4 Importance of the Study 

The R-SRIAM and AM-DIA methods are expected to provide economical solutions for 

computing nonlinear energy transfer without losing accuracy. Furthermore, this study is 
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conducted to improve the performance of wave modeling for high-accuracy wave generation 

prediction, not only for practical purposes, such as wave forecasting and hazard mitigation, but 

also for an understanding of the beauty of nature. 

 

1.5 Outline 

This dissertation consists of six chapters. Chapter 1 is an introduction to the background of this 

study. It also presents the purposes and importance of this study. This chapter is closed with an 

outline of the dissertation. 

 

Chapter 2 describes some previous methods that provide high-accuracy nonlinear energy transfer 

computation. For evaluating the Boltzmann integral in nonlinear energy transfer computation, 

descriptions of the DIA (Hasselmann et al., 1985), RIAM (Komatsu et al., 1993), SRIAM 

(Komatsu et al., 1996), extended DIA (EDIA), and Multiple DIA (MDIA) (Hashimoto et al, 

2001) methods in deep water and the finite-depth RIAM (FD-RIAM) method (Hashimoto et al, 

1998) in finite water depths are presented.  

 

To understand the fundamental process of wave generation and wave development in deep water 

depth, as a preliminary of this study, the long-term evolution of a gravity wave spectrum caused 

by nonlinear energy transfer is investigated in Chapter 3 using the third-generation wave model, 

i.e., the WAM, implemented with the DIA, RIAM, and SRIAM methods. The numerical 

simulations were performed under duration-limited conditions for various initial conditions of the 

directional spectra. Intercomparisons of those methods were conducted, leading to a suggestion 

of the best method. The numerical results show that the SRIAM method seems to be superior to 

the other methods. In addition, the characteristics of frequency downshift are investigated in the 

WAM model implemented in the SRIAM method. The relation between frequency downshift, 

wave steepness, peak frequency, and energy concentration parameters are presented. As a result, 

interesting characteristics of frequency downshift for the gravity wave spectrum caused by 

nonlinear energy transfer are clarified in both frequency and directional domains, with a special 

focus on the relation between frequency downshift and energy concentration parameters of the 

directional spectra. This chapter also discusses the characteristics of bimodal directional spectra 

in the frequency and directional domains.  
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Chapter 4 focuses on nonlinear energy transfer computation in finite water depths using a 

modified WAM implemented with the FD-RIAM method under duration-limited conditions. The 

evolution of directional spectra in finite water depths caused by nonlinear energy transfer was 

confirmed to be much faster than that in deep water. The enhancement factor used in the third-

generation wave models and the downshift factor for various directional spectra in various water 

depths are also evaluated. 

 

The proposed efficient number of configurations for nonlinear energy transfer computation is 

presented in Chapter 5. First, we modify the SRIAM method, developed by Komatsu and 

Masuda (1996), by reducing the number of configurations. This method is called the R-SRIAM 

method. The second method is the AM-DIA method, which has efficient configurations selected 

only from the quasi-singular quadruplets. The numerical computation results of the R-SRIAM 

and AM-DIA method are compared with those of the RIAM and original SRIAM methods, 

which have been proven to have the same degree of accuracy with the exact method developed 

by Masuda (1980) and by Komatsu and Masuda (1996). As a result, the R-SRIAM method is less 

time consuming than the original SRIAM method, but still more time consuming than the DIA 

method. Meanwhile, the AM-DIA method with two configurations is more accurate than the DIA 

method, and more economical to be incorporated into operational wave models than the RIAM, 

SRIAM, and R-SRIAM methods.  

 

The last chapter summarizes the results and suggests a next step of this study. The major 

conclusion is that both the R-SRIAM and AM-DIA methods can be considered promising 

alternative methods for nonlinear energy transfer computation of a gravity wave spectrum in 

deep water. 
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CHAPTER 2 

COMPUTATION OF NONLINEAR ENERGY TRANSFER 

 

2.1 Introduction 

The important role played by the nonlinear energy transfer term in the evolution of the energy 

spectrum of gravity waves has been well understood because of the JONSWAP project 

(Hasselmann et al., 1973). It is also described and discussed in, e.g., Phillips (1981a), Resio and 

Perrie (1991), Young and van Vledder (1993), Banner and Young (1994), and Resio et al. (2001). 

Moreover, nonlinear energy transfer is an important mechanism that always exists during the 

propagation of ocean surface waves. However, it is difficult to observe the phenomena of 

nonlinear energy transfer because they are usually compounded with other physical processes 

such as the evolution and attenuation of waves (Hashimoto et al., 1998). It is also difficult to 

discuss this mechanism based on experiments and/or observation data. Therefore, the theoretical 

approach is necessary to examine the characteristics of nonlinear energy transfer in waves. 

 

The theory for nonlinear energy transfer was developed by Hasselman (1962, 1963a, 1963b). 

Hasselman found that resonances between a set of four waves, called the quadruplet, can transfer 

energy. The resonance of four spectral components follows the following conditions: 

 

1 2 3 4  k k k k , 

1 2 3 4      , 

where ωj and kj are respectively the angular frequency and wave vector (j = 1, …, 4). The 

frequency and wave number are related by the dispersion relationship 
2

tanhg hi ii
  k k , which 

reduces to 
2

g ii
  k  in deep water conditions, where g is the gravitational acceleration and h is 

the water depth.  

 

The nonlinear energy transfer can be computed using the following Boltzmann integral, as 

originally proposed by Hasselmann (1962), 

 

(2.1) 

(2.2) 
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     
        


     

 k k k k k k k k

k k k

, 

 

where ni = n(ki) is the action density for component i, G = G(k1, k2, k3, k4) is a complex coupling 

coefficient (Webb,1978; Herterich and Hasselmann, 1980), and δk and δω are delta functions 

corresponding to the resonance conditions in Eqs. (2.1) and (2.2). 

 

 

Figure 2.1. Longuet–Higgins interaction chart. The contours of γ are defined in Masuda (1980) for deep-water 

waves. Adapted from “Nonlinear energy transfer between wind waves”, by Masuda, 1980, Journal of Physical  

Oceanography, Vol.10, 2082-2092. Copyright (1980), American Meteorogical Society.  

 

The Boltzmann integral in Eq. (2.3) consists of a six-fold integral in wave vector space, a 

complicated coupling coefficient, and two delta functions corresponding to the resonance 

conditions. The coupling coefficient G(k1, k2, k3, k4) is defined by  

2 2

2

1 2 3 4

9

4

g D
G


   

 , 

where ρ is the density of water and D is the interaction coefficient in deep water, defined by 

(Hasselmann, 1962, 1963a) 

(2.3) 
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The configurations of interacting quadruplets are illustrated in Fig. 2.1 for deep water. A 

projection of the resonant loops in three dimensions onto the wavenumber plane as shown in Fig. 

2.1 is utilized. This figure determines the sets of wave numbers for surface waves capable of 

undergoing resonant interactions. If k3 and k4 are fixed, the resonant conditions determine k1 and 

k2, leaving one degree of freedom in the resonant conditions. It is clearly understood from Fig. 

2.1 that for given k3 and k4, k1 (or k2) must lie on the curve where γ = constant. Masuda (1980) 

derived the approximate solution around the singular point (γ = 0) of the Boltzmann integral to 

develop an accurate computational scheme for nonlinear energy transfer of deep water gravity 

waves.  

 

The most significant advance in the wave spectral model for nonlinear energy transfer was the 

development of the discrete-interaction approximation (DIA) by Hasselmann et al. (1985). 

Hasselmann et al., (1985) introduced several simplifications to the computation of nonlinear 

energy transfer that improve computational time. They showed that the DIA preserves a few but 

important characteristics of the full solution, such as slow downshifting of the peak frequency 



 

10 

 

and shape stabilization during wave growth (Cavaleri et al., 2007). Currently, the DIA has been 

adopted by almost all of the third-generation wave prediction models.  

 

Although the development of the DIA partly accomplishes the deficiency of the exact method, 

the DIA has some drawbacks. The DIA does not have sufficient accuracy for sharp-pointed shape 

spectra, such as the Joint North Sea Wave Project (JONSWAP)-type spectrum, although it gives 

good performance for broad shape spectra, such as the Pierson–Moskowitz (PM) spectrum 

(Hashimoto and Kawaguchi, 2001).  

 

Various efforts have been made to develop nonlinear energy transfer computation. Extensions of 

the DIA method have been proposed by adding the number of wave configurations. Proposals for 

the multiple DIA were made by Van Vledder et al. (2000), Hashimoto and Kawaguchi (2001), 

and more recently by Tolman (2004). Hashimoto and Kawaguchi (2001) developed the extended 

DIA (EDIA) and multiple DIA (MDIA). Recently, Tolman (2004) has developed a generalized 

multiple DIA (GMD) to be adopted in WAVEWATCH III. 

 

Another alternative to nonlinear energy transfer computation have been developed by Komatsu 

(1993) and Komatsu and Masuda (1996), who developed the RIAM and SRIAM method based 

on Masuda’s method. Komatsu et al. (1993) developed the RIAM method and showed that it 

preserves the same degree of accuracy and smoothness as the exact method by modifying 

Masuda’s method with the use of symmetry characteristics of four-wave resonances. The 

computation using the RIAM method is 300 times faster than that using Masuda’s method, 

although it is restricted to deep water wave applications. Komatsu and Masuda (1996) simplified 

the RIAM method to the SRIAM method, which makes the computation 100 times faster than the 

RIAM method. The SRIAM method, however, requires a computation time 20 times longer than 

the DIA method. Although the SRIAM method is one of the important progresses in optimizing 

the interactions, it is more computationally expensive than the DIA method and hence 

economically unacceptable for practical models at the moment (Tolman, 2003).  

 

In the past, several attempts also were made to nonlinear energy transfer computations in finite-

depth conditions. The nonlinear energy transfer for finite-water depths in the wave action model 

(WAM) and simulating waves nearshore (SWAN) model is approximated by multiplying the 

deep-water transfer rate (computed in the DIA) by a depth dependent scaling factor R. Although 

this approximation is convenient, the first-order representation of the change in nonlinear energy 
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transfer does not capture the frequency shift and spectral shape changes that decrease as the 

water depth increases. Hashimoto et al. (1998) proposed a computational method for calculating 

nonlinear energy transfer in finite-water depth wave spectra by extending the exact method of 

Masuda (1980) and Komatsu and Masuda (1996) for deep water waves. The method is called the 

finite-depth RIAM (FD-RIAM). It is also applicable to deep water as the latter is a special case of 

finite-depth water. 

 

This chapter explains previous approximations of nonlinear energy transfer computation 

methods, such as the DIA, MDIA, EDIA, RIAM, SRIAM, and FD-RIAM methods, which are 

considered the most promising methods to be used in practical wave models.  

 

2.2 Discrete-Interaction Approximation Method 

Since the Boltzmann integral in Eq. (2.3) consists of multidimensional integration, a complicated 

coupling coefficient, and two delta functions corresponding to resonance conditions, its solution 

is computationally expensive for applications in wave models. Hasselmann et al. (1985) 

developed the DIA method and successful in increasing the speed of computation for practical 

applications. 

 

The full solution to the Boltzmann integral in Eq. (2.3) uses a very large set of wave quadruplets 

with many different configurations, whereas the DIA uses a small number of quadruplets with 

the same configuration. The resonant conditions are expressed as 
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where λ is a constant determining the combination of the component waves. Hasselmann et al 

(1985) set λ = 0.25 based on numerical experiments. The rates of change in the energy densities 

(δnl, δnl
+
, δnl

−
) with a focus only on the configuration and the simplified Boltzmann integral are 

given by 

(2.4) 
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where ),( FF  , ),(   FF , and ),(   FF  are the energy densities for the values of 

the interacting wave numbers, g is the gravitational acceleration, and C is a constant equal to 3 × 

10
7
. The six dimensional integral in Eq. (2.3) is replaced by a single loop over the discrete 

spectral space, and the complicated coefficient G is replaced by a constant C. These replacements 

lead to acceleration of the computation.  

 

However, the DIA has a drawback of deficiency for applications in operational wave models. 

Furthermore, it has been known that an improvement of the DIA necessitates the development of 

the third-generation wave model.  

 

Figure 2.2. Comparison of the exact one-dimensional distribution Snl with that in the DIA for a JOSWAP-type 

spectrum. Adapted from ”Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave 

Spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral” by 

Hasselmann, S. and K. Hasselmann, 1985, Journal of Physical Oceanography, Vol. 15, 1378-1391. Copyright 

(1985), American Meteorogical Society. 

 

A comparison of the DIA method and the exact method for the JONSWAP spectrum is shown in 

Fig. 2.2. It can be seen that the DIA result in a numerical wave model gives a significant 

overestimation of the wave energy spectral at high frequencies. However, Hasselman et al. 

(2.5) 
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(1985) asserted this value is less important for a satisfactory reproduction of wave growth than 

the correctly simulated form of the positive lobe. The latter controls the rate at which the spectral 

peak shift towards low frequencies. The strength of the DIA is not in its accuracy, but in its 

preservation of conservation of energy, action, and momentum, together with the resonance 

conditions (Tolman, 2003).  

 

2.3 Research Institute for Applied Mechanics Method 

The RIAM method was developed based on the seminal work of Masuda (1980). Hereafter, 

Masuda does not explicitly write the conditions 1 2k k , 1 2  for simplicity. The integration 

over k2 can be written as 

      4
3 1 1 2 3 4 1 2 3 4 3 4 1 22

n
d d G n n n n n n n n

t
    

       
  k k ,  

where 
2 3 4 1  k k k k  and 

1
2

2 3 4 1   k k k . Using the relation 32d d d  k , the above 

equation can be written in terms of the frequency ω and propagation direction θ as 
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 
, 

where the energy density T(ω, θ) = 2ω4
n(k) is introduced. Then, substituting the energy density 

into Eq. (2.7) yields 

     
    

4 3 3

4 4 4 3 3 1 1 1 3 1 2 3 4

1 2 3 4 3 4 1 2

, 2 8T d d d d G

n n n n n n n n

                 

   

 
. 

As is well known, the delta function in Eq. (2.3) indicates that nonlinear energy transfer occurs 

when resonant conditions are satisfied. Figure (2.1) shows that for given k3 and k4, k1 (or k2) 

must lie on the curve γ = constant. Masuda adopted 1 a   as the parameter representing the 

remaining degree of freedom, where a  is the direction of ak . Then, the frequency ω1 is obtained 

by solving the following algebraic equation of third order: 

   3 2 2 3 2 2

1 1 1 14 2 cos 6 4 0a a a a a a a                 k k . 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Form the condition 1 2k k  or 1 2  , we note that for γ < 0, 
1 a   is restricted to the range 

1 a      . The integration in Eq. (2.8) over ω1 yields  
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where the transformation variables are given by 
a  11

~
, 433

~   , 422 /~   , 

2

4/a a k k , and 12

4/G G  .  

It can be seen that G , S , ω1, etc., depend on the configuration of wave resonances. If 3
~ln

~   

is introduced, the energy density T(ω, θ) becomes  

 
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23 3 4 1
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where 

3 1
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    

has been replaced by 

3 1
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     

Equation (2.11) is the final formula used by Masuda (1980) to calculate nonlinear energy 

transfer, where the denominator S arises from )( 4321    and is given by 

 )}cos()||()){((1 1

2

2

2

2121 aaS   k . 

This final formula makes it sufficient to calculate complicated functions such as G, S, etc., only 

once, thus reducing the computation time. Figure 2.3. shows schematically the domain of 

integration in the  1 3, ,   space. It is an infinitely long rectangular prism, excluding the lower 

region because of the condition 1 2  . This excluded volume is bounded by three planes 3  , 

0 , and 1 0  , and the curved surface  1 3 ,    . The singular points caused by the 

denominator S
−1

 are located along the curve 
1 2 1 1 22 0a a     k  in the plane 1 0  . 

 

As Masuda noted, numerical instability in the integral in Eq. (2.11) is caused mainly by an 

inappropriate treatment of the singular points. Masuda, hence, solved this instability problem by 

analytically deriving an approximate solution of Eq. (2.11) around the singular points.  

(2.10) 

(2.12) 

(2.11) 
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Figure 2.3. A schematic graph of the region over which the integral in Eq. (2.11) is performed. Adapted from 

“Nonlinear energy transfer between wind waves”, by Masuda, 1980, Journal of Physical  Oceanography, Vol.10, 

2082-2092. Copyright (1980), American Meteorogical Society. 

 

Although Masuda’s method improves the computational time of nonlinear energy transfer 

computation, it is still time consuming and impractical to be incorporated into wave models. 

Therefore, Komatsu and Masuda (1996) developed a new scheme called the RIAM method. The 

RIAM method deals with about 2000 configurations out of an infinite number using the 

symmetry of the resonant interaction pointed out by Hasselmann and Hasselmann (1981) and 

truncates the less substantial resonance configurations in Masuda’s method.  

In the RIAM method, two kinds of symmetries are discriminated from each other (Komatsu and 

Masuda, 1996). The first kind is that  ( )  i in d t k k  ( i  = 1, 2, 3, 4) have the following 

relationship (Hasselmann and Hasselmann, 1981): 

31 2 4
1 2 3 4

 ( ) ( )  ( )  ( )

    

nn n n
d d d d

t t t t

  
   

    
kk k k

k k k k , 

where tn  )(  k  indicates the action transfer caused by this particular resonance combination. As 

shown in Eq. (2.13), tdn ii  )(  kk  ( i  = 1, 2, 3, 4) are of equal magnitude but differ in sign. 

Accordingly, if we calculate tn  )(  k  for one component of the resonant four waves, then we 

immediately know tn  )(  k  for the other three components. The above action transfers for the 

four waves are converted to the corresponding nonlinear energy transfers because of the specific 

combination of resonances δTLO
, δTLI

, δTHI
, and δTHO

, where the suffixes LO, LI, HI, and HO 

denote the components for the lower frequency of the outer pair (LO component), the lower 

(2.13) 
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frequency of the inner pair (LI component), the higher frequency of the inner pair (HI 

component), and the higher frequency of the outer pair (HO component), respectively. 

 

The second kind of symmetry is associated with geometrical similarity of the resonance 

configurations, which include:  

(1) The mirror image of the resonance combination gives another combination with the same 

interaction coefficient. 

(2) A rotation of the resonance combination gives another combination with the same 

interaction. 

(3) A scale transformation of the wave number preserves the resonance condition. 

Nevertheless, this is valid only for deep water waves.  

To make use of the symmetries mentioned above, the (ω, θ) space is divided into bins of 

nonuniform finite areas: 

1k kR    , 

 where  1 logR   . The central direction θm of the bin is distributed as  

1m m     , 

with the directional increment Δθ kept constant. Based on this bin distribution, if a combination 

of four bins satisfies the resonance condition, so do any combination obtained by the mirror 

transformation, rotational transformation, and scale transformation. All the resonance 

combinations with the same geometry as in the above transformations are said to have the same 

configuration of resonance. 

Finally, the procedure of the RIAM method is written schematically as 

 LO LI HI HO

cnf scl rot

T T T T T       , 

where the parameters cnf, scl, and rot symbolically denote the configuration, scale, and rotation 

(plus mirror image), respectively. The summation over the LO, LI, HI, and HO components 

represents the symmetry of the first kind, while the summation over cnf, scl, and rot corresponds to 

the second kind of symmetry. In order to limit the number of resonance combinations, Komatsu 

(2.14) 

(2.15) 

(2.16) 
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and Masuda discarded the resonance configurations for which the ratio of the higher and lower 

frequencies of the outer pair, ωHO/ωLO
. 

 

In the RIAM method, energy transfer is calculated for each bin. When we fix cnf, scl, rot, and a bin 

corresponding to the HO component (HO bin), the locations of the other three resonant bins 

relative to the HO bin in the frequency-direction space are determined by the cnf parameter. The 

rate of energy the HO bin receives from the resonance in the four bins of assigned areas is 

calculated as 

1 2( ). ( )( ( ) ( ))HO LI HI LO HO LO HO LI HIdT G cnf G scl n n n n n n n n    , 

 

where n
LI

 is the action density for the LI bin, etc. G1 and G2 describe the strength of the resonant 

interaction between the four bins. The kernel G1 is determined using the Masuda method, 

whereas G2 is a simple power of the frequency of the HO bin (Masuda, 1980). Note that the 

resonance configurations and the two factors G1 and G2 are independent of the spectrum.  

 

Once δTHO
 is obtained, the energy of the other resonant bins can be easily calculated using the 

symmetry of the first kind. Then, the total nonlinear energy transfer as expressed in Eq. (2.16) 

can be obtained. To eliminate overlap computations, we assume the following sequence of 

frequencies: 

3 1 2 4      . 

Figure 2.4 shows a comparison of the one-dimensional nonlinear energy transfer functions T1 

obtained using the RIAM method, WAM method in the DIA, and the previous rigorous 

algorithms of Masuda (1980), Hasselmann and Hasselmann (1981), and Resio and Perrie (1991), 

where the wave spectrum examined is the standard JONSWAP spectrum with a cos
2θ directional 

spreading (Komatsu and Masuda, 1996). The RIAM method well reproduces the T obtained in 

Masuda method, whereas the result of the WAM method completely differs from those of the 

other. These results show that the RIAM method preserves the same degree of accuracy and 

smoothness as the Masuda method.  

 

Although the RIAM method is 300 times faster than the Masuda method, it is still requires 2000 

times longer computational time than the DIA. This is because the RIAM method uses thousands 

of configurations whereas the DIA method deals only with one mirror-image pair of the 

interaction configurations. Compared with the RIAM method, the DIA method gives quite 

(2.17) 

(2.18) 
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unrealistic nonlinear energy transfer functions both in magnitude and in pattern, when the 

spectrum is either directionally concentrated, frequency-concentrated, or double peaked. The 

DIA method is unreliable even for the standard JONSWAP spectrum.  

 

Figure 2.4. Comparison of the one-dimensional nonlinear energy transfer functions T1 obtained using the RIAM, 

WAM, and by Masuda (1980), Hasselmann and Hasselmann (1981), and Resio and Perrie (1991). Adapted from “A 

new scheme of nonlinear energy transfer among wind waves: RIAM method – algorithm and performance” by 

Komatsu and Masuda, 1996,  Journal of Oceanography, 52, 509-537. Copyright (1996), Springer Japan. 

 

Komatsu and Masuda, therefore, concluded that the RIAM method is not fast enough for an 

operational model. The advantage of the RIAM method is to give almost the same degree of 

accuracy as the other exact algorithms, such as the Masuda method, even for rather atypical wave 

spectra. However, in any case, the RIAM method cannot be used as an algorithm for operational 

wave prediction. Other efficient methods with a slightly lower level accuracy need to be 

developed for operational wave prediction. 

 

2.4 Simplified Research Institute for Applied Mechanics Method 

As mentioned above, the most widely used method for evaluating nonlinear energy transfer is the 

DIA method (Hasselmann et al., 1985), because of its low computational cost. However, 

Komatsu and Masuda (1996) showed that the RIAM method provides better numerical stability 

and smoothness than the DIA method. However, the RIAM method is not economically 

acceptable to be implemented in operational wave models. Therefore, Komatsu (1996) decreased 

the number of resonance configurations to achieve less computational time without the loss of 
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accuracy. The resulting method is called the simplified RIAM method (SRIAM), which deals 

with only 20 resonance configurations. 

 

The SRIAM method can be expressed by the following equation:  

 
i

i

ii nnnnnnnnKC
t

T )()()
~

,
~

,
~

(
~

)2(
 

),( 21434321
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23
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4

44  

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
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 , 

where 13

14

3

3

131

~~~~~8)
~

,
~

,
~

(
~   SGK i  and iC  )20,1( i  are coefficients. Komatsu 

(1996) listed the optimum 20 combinations of the resonant configurations, where seven 

configurations are chosen from singular points and the other 13 configurations are chosen from 

regular points in the )
~

,
~

,
~

( 31    space. Table 2.2 shows the detailed parameters that determine each 

resonant configuration and the associated interaction coefficients, where irep is the number of 

resonant configurations, 3  and 1  are angles of the wave vector k3 and k1, 3  is the normalized 

angular frequency 
3  divided by 

4 , K  is the kernel function for a specific quadruplet, and Cirep 

is a parameter that modifies the interaction coefficient so that that optimized kernel function is 

evaluated as Cirep K .  

The optimum resonant configurations and the coefficients Cirep depend on the number of selected 

configurations and the number of directional and frequency bins constituting the directional 

spectrum in the model. For practical purposes, we need to select the values which are in general 

applicable to various types of directional spectra. Therefore, the optimum resonant configurations 

and the coefficients Cirep have to be redetermined for each computation condition. For these 

reasons, the SRIAM method determines the optimum configurations and the coefficients Cirep 

using eight different energy concentrations (Table 2.1) and optimizes the interaction coefficients 

by minimizing the following equation: 

 
      

2

2

1

max

i

SPj irep SPj

SPj k i
k SPj

E i T k C T k
T k

    , 

where  SPjT k  is the exact value of the nonlinear energy transfer, and  i

i SPjC T k  is the contribution 

of the ith configuration to the wave components. The optimum Cirep is then determined by the 

least-square method. The resonance configurations used in the SRIAM method are shown in Fig. 

2.5. The wave vectors k1, k2, k3, and k4 for one quadruplet are indicated by arrows. Other 

quadruplets are specified by the symbols O and +, which represent the endpoints of the wave 

(2.19) 

(2.20) 
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vectors k1 and k3, respectively. Mirror images of these configurations are also considered, but are 

not shown in the figure. All sets of quadruplets that satisfy the resonance conditions lie on the 

specific curve γconf = constant (Masuda, 1980).  

 

Table 2.1. Eight test spectra used for the optimization of the SRIAM method,  

where γ is the peakedness factor and s is the directional spreading  

 

Note: Adapted from “Development of a new generation wave forecasting model based on a new scheme of nonlinear 

energy transfer among wind waves ” by Komatsu, 1996  (in Japanese). Copyright (1996), University of Kyushu.  

 

Table 2.2. Parameters determining resonant configurations and the associated interaction coefficients for the SRIAM 

method: singular quadruplets (irep: 1–7) and regular quadruplets (irep: 8–20)  

 

Note: Adapted from “Development of a new generation wave forecasting model based on a new scheme of nonlinear 

energy transfer among wind waves ” by Komatsu, 1996  (in Japanese). Copyright (1996), University of Kyushu.  
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Figure 2.5. Interaction diagram in the wave number plane for the resonance configurations used in the SRIAM 

method and the contours of γconf defined by Masuda (1980). Wave vectors k1, k2, k3, and k4 for one quadruplet are 

indicated by arrows. Other quadruplets are specified with the symbols O and +, which represent the end points of the 

wave vectors k1 and k3, respectively. Adapted from “Current-Induced Modulation of the Ocean Wave Spectrum and 

the Role of Nonlinear Energy Transfer” by Tamura, 2008, Journal of Physical  Oceanography, Vol. 38, 2662-2984. 

Copyright (2008), American Meteorogical Society. 

 

 

Figure 2.6. Comparison of one-dimensional nonlinear energy transfer calculations in the SRIAM, RIAM, and DIA 

methods. The wave spectra examined are the (a) Pierson–Moskowitz spectrum, (b) standard JONSWAP spectrum, 

and double-peaked spectra in the frequency domain for (c) fp1 = 0.1 and fp2 = 0.13, and (d) fp1 = 0.1 and fp2 = 0.2 

Adapted from “Current-Induced Modulation of the Ocean Wave Spectrum and the Role of Nonlinear Energy 

Transfer” by Tamura, 2008, Journal of Physical  Oceanography, Vol. 38, 2662-2984. Copyright (2008), American 

Meteorogical Society. 
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It is clearly shown in Fig. 2.6 that the SRIAM method has practical applicability in complex 

situations, especially for the JONSWAP spectrum and the double-peaked spectra, while the DIA 

method does not. The SRIAM method has a slightly lower level of accuracy than the RIAM 

method; however, its computation time is 100 times faster than that of the RIAM method. Thus, 

as for accuracy and flexibility, the SRIAM method is almost perfect to be used in practical wave 

models. However, the SRIAM method has computational time 20 times longer than the DIA 

method. 

 

2.5 Modified and Extended Discrete-Interaction Approximation Methods 

Hashimoto and Kawaguchi (2001) examined the validity and effectiveness of the original DIA 

method and demonstrated that the accuracy of the method can be improved as the number of the 

configurations increases. Following Ueno (1997), Hashimoto and Kawaguchi (2001) found an 

improvement of the nonlinear energy transfer computation using only a few configurations. The 

EDIA method improves the DIA method by increasing the number of configurations. The EDIA 

can be expressed as 
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Hashimoto and Kawaguchi (2001) used the same independent parameter as those in the DIA 

method, i.e., the independent parameters for EDIA are λi and Ci. Each of the wave configurations 

added into the original DIA equation has different parameters λi and Ci. The MDIA was obtained 

by adding the parameters Ci,1 and Ci,2 to the EDIA. It is expressed as 
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Hashimoto and Kawaguchi (2001) have demonstrated that the parameter λ used in the original 

DIA is most accurate for the PM spectrum and Mitsuyatsu-type directional function with Smax = 

10, and that the error between the DIA and exact values increases as the energy concentration 

increases. Thus, the optimum values of the parameters λ and C used in the DIA method depend 

on the directional spectrum. The optimum values of λ and C for various configuration numbers in 

the EDIA and MDIA methods are shown in Tables 2.3 and 2.4, respectively.  

(2.20) 

(2.21) 
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Table 2.3. Optimum values of λ and C in the EDIA 

method. 

 

Table 2.4. Optimum values of λ and C in the MDIA 

method.  

 

Note : Table 2.3 and Table 2.4 are adapted from “Extension and Modification of Discrete Interaction Approximation 

(DIA) for Computing Nonlinear Energy Transfer of Gravity Wave Spectra” by Hashimoto, N and K. Kawaguchi, 

2001, Proc. 4th Int. Symp. Waves 2001, 530-539. Copyright (2002), American Society of Civil Engineers.  

 

 

Figure 2.7. Examples of the nonlinear energy transfer computations for the PM Spectrum (Smax = 10)  

 

 

Figure 2.8. Examples of the nonlinear energy transfer computations for the JONSWAP spectrum (Smax = 10)  
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Hashimoto and Kawaguchi (2001) confirmed that in the WAM, the EDIA has a higher 

adaptability to the JONSWAP spectrum than the traditional DIA, but its adaptability to the PM 

spectrum decreased slightly. The accuracy of the EDIA is better than that of the original DIA 

(Figs. 2.7 and 2.8). Whereas the MDIA is generally more accurate than the EDIA, the MDIA 

equation is needed to be resolved whether the characteristics of the Boltzmann integral, such as 

the conservation of total energy, total momentum, and total wave action, are satisfied or not. The 

MDIA can be generally accurate, but it requires dynamical adjustment of the parameter settings 

(Tolman, 2003). 

 

2.6 Finite-Depth Research Institute for Applied Mechanics Method 

Although the RIAM, SRIAM, and M DIA methods have much better accuracy than the DIA 

method, they can only be applied to deep water. Hashimoto et al. (1998) developed a 

computational method for finite-depth gravity waves by extending the methods of Masuda (1980) 

and Komatsu et al. (1993). This refined method has the advantage that it can be applied to deep 

and finite water depth waves.  

 

Hashimoto et al. (1998) reduced the Boltzmann integral by extending the Masuda formulation for 

deep water waves to a finite water depth based on Masuda’s derivation (1980). Using the 

relations 
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Using the parameter γ, Masuda derived an approximate solution of the Boltzmann integral around 

the singular point (γ = 0) and used the solution to develop an accurate computational scheme for 

(2.21) 

(2.22) 

(2.23) 
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determining nonlinear energy transfer in deep-water waves. Taking into consideration the effect 

of finite-water depth, Hashimoto et al. (1998) redefined the parameter γ as 

tanh 1 2
2

a
a ag h  

k
k . 

Note that the parameter γ is zero at the singular points and that when h approaches infinity, γ is 

identical to that in Masuda’s definition.  

 

Integrating Eq. (2.23) over ω1 yields 
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where the denominator S arises from  1 2 3 4        and is given by 
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where a  11

~
, a  22

~
, 433

~   , and 3
~ln

~  .  

 

Equation (2.25) can be transformed to the following formula to calculate nonlinear energy 

transfer: 
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Figure 2.4 schematically shows the integration domain in the  1 3, ,   space for the condition 

ω1 ≤ ω2. With this condition, S vanishes only when ω1 = ω2 and 0
~

1  , i.e., the singular points 

are located along the curve γ = 0 in the plane 0
~

1   (see Fig. 2.4). Therefore, special treatment is 

required to perform the integration in Eq. (2.27) around the singular point γ = 0.  

 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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Masuda also introduced a transformation of the frequency ω by dividing ω by the target 

frequency ω4, at which nonlinear energy transfer is to be calculated. Nevertheless, the benefit of 

Masuda’s transformation in significantly reducing the computational time for deep water waves 

is not valid for finite water waves.  

 

 

Figure 2.9. Schematic of the cross section ( 3

~  constant) of the rectangular prism in Fig. 2.4. Adapted from 

“Nonlinear energy transfer between wind waves”, by Masuda, 1980, Journal of Physical  Oceanography, Vol.10, 

2082-2092. Copyright (1980), American Meteorogical Society. 

 

The integration in Eq. (2.27) is carried out successively on the order of  1 3, ,  . Therefore, 

Hashimoto et al. (1998) integrated Eq. (2.27) first in the plane 3

~  constant. The singular point 

is denoted by P in Fig. 2.9. We can rewrite the integration as 

1 1

1
P

A A
P

R
d d R d d

S S
     , 

where the numerator R is given by  

        1 3 3
1 2 3 4 3 4 1 2

1 3g g

G
R n n n n n n n n

C C


   

k k

k k
, 

RP is the value of R at the singular point P, and SP is given by  

 
 

 
  

 2

1 2

2 / 2 4 2 / 2

/ 2 / 2

a g a a g a

P p

g a g a

D D
S

C C


    

k k k

k k
, 

where     /g a gD k C k k    and  

 
 

3 3 4 3
3

3 30

/ 2 cos
1

2

g a

P g aa

C

C


   
 

                    

k k k

k k
. 

(2.32) 

(2.33) 

(2.30) 

(2.31) 
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Referring to Fig. 2.11, the integration in Eq. (2.30) can be performed by separating the area A as 

0 0

1 1 1
_ 0 0

1 1 1

A
P P P

d d d d d d
S S S

 


  

 
         . 

Because around 0   the lower limit Θ of the integral in the first term on the right-hand side of 

Eq. (2.34) can be approximated in terms of 1

~  by 

   2 2

/ 2

a
p

a g aC

    
k k

, 

the integration in Eq. (2.34) can be evaluated as  
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2
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where 
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. 

 

The above argument ceases to be valid near the zero of  /
P

    , which is found at the 

origin 3 1 0   . This kind of singularity can be treated only by calculating the triple integral 

that Masuda derived for deep water waves. However, it is not necessary to take into 

consideration this singularity because contribution from this singularity is canceled out at the 

point where the resonant four waves have the same wave vectors.  

 

As described above, the derivation for finite-depth gravity waves by extending the computational 

method of Masuda (1980) uses the identical equations and variables as in Masuda’s derivation 

when the water depth h approaches infinity. 

 

For numerical computations, Hashimoto et al. (1998) used the same resonant interaction 

symmetries as those used by Komatsu (1993) and by Komatsu and Masuda (1996), i.e., 

(2.34) 

(2.35) 

(2.36) 

(2.37) 
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3 1 2 4      . Compared with the other methods for finite water depths, such as the EXACT-

NL method (Hasselmann and Hasselmann, 1981), the Hashimoto method seems to be more 

accurate than the EXACT-NL method because the results for the latter are unstable even for deep 

water waves. However, Hashimoto’s results still include instability for finite water depths. 

Komatsu and Masuda (2000) showed that the instabilities for finite water depths originate in the 

nature of the four wave resonance interactions in finite water depths. The shape of the resonance 

interaction contour lines becomes flat in finite water depths. A small change in 1  causes a large 

difference in the magnitude of ω1. Therefore, in order to eliminate instability in the computations, 

Komatsu and Masuda (2000) changed the sequence of frequencies to 
1 3 4 2      . By 

applying this modification, the special treatment around the singular points is no longer 

necessary.  

 

2.7 Conclusion 

The present chapter presents a brief overview of previous studies of the computation of nonlinear 

energy transfer in wave models. The third-generation wave models, which explicitly account for 

the nonlinear energy transfer for practical wave modeling, became a possibility with the 

development of the DIA method (Hasselmann et al., 1985). However, drawbacks of the DIA 

were already identified in the original paper.  

 

Numerous methods have been developed for finding a more accurate and computationally 

feasible alternative to the DIA method. Komatsu and Masuda (1996) developed the RIAM 

method, which represents a reduced version of the exact interactions based on the Masuda 

method (1980). This method gives better accuracy for test spectra and has longer computational 

time than the DIA method because it processes a thousand of configurations. Komatsu and 

Masuda (1996) showed that the RIAM method cannot be used as an algorithm for operational 

wave prediction. Therefore, they developed the SRIAM method, which has a smaller number of 

resonance configurations of 20.  

 

By using the same independent parameters as in the DIA method, Hashimoto and Kawaguchi 

(2001) developed alternative DIA methods called the EDIA and MDIA methods. In the EDIA 

and MDIA methods, it can be shown that by extending the number and definition of 

representative quadruplets, the performance of the DIA method can be improved. Although 
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nonlinear energy transfer is accurately computed in the RIAM, SRIAM, and MDIA methods 

compared with the DIA method, they only apply to deep-water waves. For infinite water depth, 

the FD-RIAM method developed by Hashimoto et al. (1998) is an accurate method for 

computing nonlinear energy transfer in infinite-water depth.  

 

The optimum resonant configurations depend on the number of selected configurations and the 

number of directional and frequency bins constituting the directional spectrum in the model. For 

practical purposes, therefore, we need to select the values that are applicable to various types of 

directional spectra. 
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CHAPTER 3 

NUMERICAL STUDY OF EVOLUTION OF A GRAVITY WAVE 

SPECTRUM IN DEEP WATER  

 

3.1 Introduction 

Studies of two-dimensional spectra of ocean waves are very important, not only for practical 

purposes, such as wave forecasting, but also for clarifying the fundamental processes of wave 

generation and development. As it is well known, the spectral shape of a fully developed wind–

sea spectrum, including the development and frequency downshift, is controlled by nonlinear 

energy transfer. Numerous studies have been devoted to investigating the importance of 

nonlinear energy transfer in the frequency domain. In this chapter, the spatial and temporal 

characteristics of directional spectra are investigated by taking into account only nonlinear 

energy transfer in deep water under various conditions.  

Long-term evolution of a gravity wave spectrum caused by nonlinear energy transfer is 

investigated by performing three different types of the third-generation wave model, i.e., the 

WAM, where each type is implemented with the DIA (Hasselmann et al., 1985), RIAM 

(Komatsu et al., 1993), and SRIAM (Komatsu et al., 1996) methods. We compared the numerical 

results of these methods for various directional spectra, including the multimodal spectra, to 

study the characteristics of the directional wave spectrum in space and time caused by nonlinear 

energy transfer.  

 

3.2 Initial Conditions of Directional Spectrum 

In this chapter, the original WAM implemented with the DIA method for computing nonlinear 

energy transfer and a modified WAM (implemented with the RIAM and SRIAM methods) are 

performed in deep water under duration-limited conditions for 120 h. The directional wave 

spectrum represents the spatial distribution of wave energy, not only in the frequency domain but 

also in the direction domain. 

In this chapter, the wave spectrum is defined by the Mitsuyatsu-type for JONSWAP spectrum 

with the frequency spectrum S(f) given by 



 

31 

 

 

     ,S f S f G f  , 

 

where S(f, θ) is the directional wave spectrum and  G f is the directional spreading function 
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, 

 

with fp being the spectral peak frequency and Smax being the spreading parameter. The 

JONSWAP spectrum is characterized by the peak enhancement factor γ. This factor controls the 

sharpness of the spectral peak with values ranging from 1 to 10. In this study, we assume γ = 1.0 

for the PM spectrum case and γ = 3.3 for the JONSWAP spectrum case. Equation (3.2) is the 

formulation of the JONSWAP spectrum, including the wind speed as a parameter for wave 

forecasting based on the results of the joint wave observation program in the North Sea by 

Hasselmann et al. (1973). Equation (3.2) reduces to the formulation for the fully developed wind 

wave spectrum when γ = 1.0.  

 

The observations of Mitsuyasu et al. have shown that the peak value Smax increases as the 

parameter representing the state of wind wave grows. According to Goda (2010), Wilson’s 

formula leads to the following values of Smax for engineering applications 

 

(i) Wind waves Smax = 10, 

(ii) Swell with short decay distance Smax = 25, 

(iii) Swell with long decay distance Smax = 75. 

   

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.1) 
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In this study, various values (Smax = 10–75) are applied to the directional spectra.  

 

For initial conditions, the significant wave height and period are assumed based on the following 

formula (Goda, 2010), which can be deduced from Wilson’s formula for wind wave conditions 

by neglecting the differences caused by the wind speed: 

 

 0.63

1 3 1 33.3T H . 

 

Figure 3.1 gives the approximate range of the significant height and period of wind waves and 

swell in Eq. (3.6). The diagram consists of two regions marked as “zone of no waves” and “swell 

zone,” which are divided by a red thick line marked as “wind waves.” The line of wind waves 

shows the relationship between H1/3 and T1/3 in Eq. (3.6) (Goda, 2010).  

 

 

Figure 3.1. Relationship between the significant wave height and period of wind waves and swell (Adapted from 

Goda, Y. , 2010.  Random Seas and Design of Maritime Structures, 3rd Edition, Advanced Series on Ocean 

Engineering, Vol.33, World Scientific Publishing, 708p ). 

 

3.3 Frequency Downshift in Gravity Wave Spectra caused by Nonlinear Energy Transfer 

3.3.1 Long-term Evolution of Frequency Spectra  

The values of γ = 3.3 and fp = 0.1 Hz are assumed for the JONSWAP-type spectrum and 

Mitsuyatsu’s directional function, and the directional spreading parameter Smax = 15 is an initial 

condition. Figure 3.2 shows the long-term evolution of the frequency spectra on the left side and 

(3.6) 
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its nonlinear energy transfer spectra on the right side, which was computed by taking into 

account only the nonlinear energy transfer term (Snl), without the wind input (Sin = 0) and 

dissipation (Sdis = 0). The frequency spectra and the nonlinear energy transfer frequency spectrum 

are computed in duration-limited conditions for 120 h using the original WAM model 

implemented with the DIA method, and the modified WAM implemented with the RIAM and 

SRIAM methods. 

 

The blue line shows the initial spectrum, whereas the red line shows the spectrum after 120 h of 

simulation. The gray thin lines illustrate the evolution of the spectra at 15, 30, and 45 min, and 1, 

2, 6, 12, 24, 48, 72, 96, and 120 h. The horizontal axis represents the frequency f, and the vertical 

axis shows the normalized energy density E divided by the maximum value of the initial 

spectrum. 

 

As can be seen in the left column of Fig. 3.2, the peak frequency moves toward the low-

frequency side in all cases. The modified WAM model implemented with the RIAM and SRIAM 

methods show smooth and continuous frequency downshift, whereas the original WAM 

implemented with the DIA method shows relatively discontinuous frequency downshift in the 

frequency spectra. The evolution of the spectra in the RIAM method shows narrower shapes than 

that in the SRIAM and DIA methods. The long-term evolution of each frequency spectra differs 

in each method. This seems to be caused by nonlinear energy transfer (right column of Fig. 3.2).  

 

The right column of Fig. 3.2 shows the time evolution of the nonlinear energy transfer Snl as a 

function of the frequency f, where Snl (f, �) is integrated with respect to the direction angle �. The 

blue line shows the initial frequency distribution of the nonlinear energy transfer spectrum 

corresponding to the initial directional spectrum, whereas the red line shows the frequency 

distribution of the nonlinear energy transfer spectrum after 120 h of simulation. The thin lines 

illustrate the evolution of the nonlinear energy transfer spectrum corresponding to the spectra in 

the left column. The intensity of the nonlinear energy transfer spectrum gradually decreases with 

the downshift of the spectral peak. The RIAM and SRIAM methods show almost a similar 

frequency distribution for the nonlinear energy transfer spectrum. There are two negative 

extreme values. Whereas the negative extreme values of the nonlinear energy transfer spectrum 

in the RIAM method are slightly different from those in the SRIAM method, they are very 

different from those in the DIA method. 
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The left column of Fig. 3.3 shows the long-term evolution of the frequency spectra computed by 

taking into account the wind input Sin and energy dissipation Sdis under the same conditions as 

those in Fig. 3.2. The RIAM and SRIAM methods show continuous and smooth downshift of the 

spectral peak, whereas the DIA method shows significantly different results. The spectra 

computed in the DIA method show an unreasonable result, where the peaks become smaller 

initially and then increase thereafter. The right column of Fig. 3.3 shows the evolution of the 

nonlinear energy transfer spectrum corresponding to the spectra in the left column. The intensity 

of the nonlinear energy transfer spectrum in the RIAM and SRIAM methods gradually decreases 

with the downshift of the spectral peak and the decrease of wave steepness, while that of the DIA 

results shows two negative extreme values. Although the distributions of the nonlinear energy 

transfer spectrum in the RIAM and SRIAM methods seem similar, they are very different from 

those in the DIA method.  

  

  

  

Figure 3.2. Long-term evolution of the frequency spectra (left column) and nonlinear energy transfer spectrum 

related to the frequency spectra (right column) in the original DIA, RIAM, and RIAM methods. 
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Figure 3.3. Long-term evolution of the frequency spectra (left column) and nonlinear energy transfer spectrum 

related to the frequency spectra (right column) in the original DIA, RIAM, and RIAM methods (Sin and Sdis are 

applied). 

 

Based on these results, the RIAM and SRIAM methods have inherently similar characteristics. 

Therefore, in the following sections of this chapter, the characteristics of the frequency downshift 

are discussed on the basis of the numerical results computed using the SRIAM method, a 

practical computation method for deep water waves.  

 

3.3.2 Relation Between Frequency Downshift and Wave Steepness 

Figure 3.4 shows examples for the time evolutions of the frequency spectra, where the 

JONSWAP spectra and Mitsuyasu-type of directional functions are used for the initial conditions 

of the directional spectra computed in the SRIAM method. The peak frequencies are assumed to 
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be the same (fp = 0.1 Hz) for these three methods, while the significant wave heights are different 

in each method. In Fig. 3.4(a) the maximum wave height is assumed according to Goda’s 

formula (Eq. (3.6)) as the possible maximum significant wave height, i.e., the maximum wave 

steepness under the condition of fp = 0.1 Hz. The values for wave steepness in Figs. 3.4(a), 

3.4(b), and 3.4(c) are 0.031, 0.023, and 0.015, respectively. As can be seen in Fig. 3.4, the 

intensity of the frequency downshift decreases with the decreasing wave steepness, so does the 

corresponding nonlinear energy transfer spectrum as shown in Fig. 3.5. 

 

 

Figure 3.4. Relation between the frequency downshift and wave steepness H/L (fp = constant) for the time evolution 

of the frequency spectra (Snl is computed in the SRIAM method). 

 

 

Figure 3.5. The relation between the distribution of nonlinear energy transfer spectrum and wave steepness H/L (fp = 

constant) for time evolution of the frequency spectra (Snl is computed in the SRIAM method). 

 

3.3.3 Relation Between Frequency Downshift and Peak Frequency 

 

Figure 3.6. Relation between the frequency downshift and peak frequency fp for the time evolution of the frequency 

spectra (Snl is computed in the SRIAM method). 

 

c 

a b c 

a b c 
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Figure 3.6 shows examples for the time evolution of the frequency spectra, where the energy 

concentration parameters are assumed to be γ = 3.3 and Smax = 15, the same in all cases, while the 

peak frequencies are assumed to be fp = 0.047 Hz in Fig. 3.6(a), 0.075 Hz in Fig. 3.6(b), and 

0.1333 Hz in Fig. 3.6(c). In each case, the significant wave periods are determined by Eq. (3.2) as 

T1/3 = 20.03 s in Fig. 3.6(a), 12.44 s in Fig. 3.6(b), and 7.02 s in Fig. 3.6(c). Then, the significant 

wave heights H1/3 are determined by Eq. (3.6) as the possible maximum values of wind waves, 

i.e., the steepest waves in the statistical sense under each wave condition. 

 

As can be seen in Fig. 3.6, the frequency downshift caused by nonlinear energy transfer is most 

intense in the case when the peak frequencies are at high frequencies, and then decreases with the 

decrease in fp (with the increase in T1/3) even under the condition of the maximum H1/3. This may 

indicate that there seems to be a maximum limit in the significant wave period. Our numerical 

experiments indicate that the possible frequency downshift caused by nonlinear energy transfer is 

up to T1/3 ≈ 30 s approximately at the maximum. Waves with periods longer than T1/3 ≈ 30 s 

cannot be generated by nonlinear energy transfer under reasonable initial wind wave conditions 

for H1/3 and T1/3. 

 

3.3.4 Relation Between Frequency Downshift and Energy Concentration Parameters 

 

Figure 3.7. Relation between the frequency downshift and energy concentration parameters (Smax and γ) for the time 

evolution of the frequency spectra (Snl is computed in the SRIAM method).  

 

Figure 3.7 shows examples for the evolution of the frequency spectra computed under the same 

condition of the peak frequency, i.e., fp = 0.075 Hz. The combination of the energy concentration 

parameters γ and Smax are assumed to be different in each case: γ = 3.3 and Smax = 75 in Fig. 

3.7(a), γ = 7.0 and Smax = 15 in Fig. 3.7(b), and γ = 7.0 and Smax = 75 in Fig. 3.7(c). The values for 

the significant wave height H1/3 and period T1/3 are H1/3 = 8.26 m and T1/3 = 12.44 s in Fig. 3.7(a), 

H1/3 = 8.56 m and T1/3 = 12.73 s in Fig. 3.7(b), and H1/3 = 8.56 m and T1/3 = 12.73 s in Fig. 3.7(c). 

In addition, Fig. 3.6(b) and Fig. 3.7(a) are computed with almost the same conditions except for 

a b c 
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Smax, i.e., Smax = 15 in Fig. 3.6(b), while Smax = 75 in Fig. 3.7(a). Comparisons were conducted for 

Figs. 3.6(b) and 3.7(a), and for Figs. 3.7(b) and 3.7(c). The intensity of frequency downshift 

seems to increase with the increase in the energy concentration parameters γ and Smax.  

 

3.3.5 Characteristics of Frequency Downshift in Bimodal Spectra 

The characteristics of nonlinear energy transfer in various bimodal frequency spectra are 

investigated in this section. Figure 3.8 shows the evolution of the bimodal frequency spectra 

computed in the SRIAM method, where fp = 0.1 Hz, γ = 3.3, and Smax = 15 are assumed in Figs. 

3.8(a), 3.8(b), and 3.8(c), while the spectra on the low-frequency side are assumed at fp = 0.08 Hz 

with γ = 7.0 and Smax = 75 in Fig. 3.8(a), fp = 0.075 Hz with γ = 7.0 and Smax = 75 in Fig. 3.8(b), 

and fp = 0.07 Hz with γ = 7.0 and Smax = 75 in Fig. 3.8(c). The crossing angle Δθ between the 

principal wave propagation directions of the two wave groups is assumed to be Δθ = 0° in Figs. 

3.8(a), 3.8(b), and 3.8(c), i.e., the ratios between the two peak frequencies are 0.8 in Fig. 3.8(a), 

0.75 in Fig. 3.8(b), and 0.7 in Fig. 3.8(c). The computations are performed under duration-limited 

conditions for 12 h using the WAM implemented in the SRIAM method by taking into account 

only the nonlinear energy transfer Snl, and without the wind input (Sin = 0) and dissipation (Sdis = 

0).  

 

Figure 3.8. Characteristics of the frequency downshift in the bimodal spectra for different values of fp1/ fp2  

(Snl is computed in the SRIAM method). 

 

 

Figure 3.9. Characteristics of the frequency downshift in the bimodal spectra for different values of Δθ 

(Snl is computed in the SRIAM method). 
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As can be seen in Fig. 3.8, the energy distributions of the bimodal spectra gradually change to 

unimodal ones where the peaks at higher frequency gradually disappear because of the influence 

of the nonlinear energy transfer Snl. In Fig. 3.8(a), where the ratio between the two peak 

frequencies is relatively large (fp1/fp2 = 0.80), the frequency downshift can be seen clearly. 

Meanwhile, no frequency downshift is observed in Fig. 3.8(c), where fp1/fp2 = 0.70. The intensity 

of the frequency downshift in Fig. 3.8(b) is between those of Figs. 3.8(a) and 3.8(c), i.e., the 

intensity of the frequency downshift decreases with the decrease in the frequency ratio fp1/fp2. 

Similar phenomena have been reported in previous studies (e.g., Masuda, 1980 and Komatsu et 

al., 1996).  

 

Figure 3.9 shows examples for the evolution of the frequency spectra computed under the same 

condition as that in Fig. 3.8(a) except for the assumption for the crossing angle Δθ. The results in 

Figs. 3.9(a), 3.9(b), and 3.9(c) are computed with Δθ = 30°, 60°, and 90°, respectively. The most 

intense frequency downshift can be seen in Fig. 3.9(a), where Δθ = 0°. As can be seen in Figs. 

3.8(a) and 3.9, the intensity of the frequency downshift decreases with increasing Δθ. Masson 

(1993) investigated nonlinear energy transfer for a swell of finite bandwidth and indicated a 

maximum coupling when the swell direction is about 40° relative to the mean direction of the 

short waves. The results in Figs. 3.8 and 3.9 seem to differ from that of Masson. 

 

3.4 Directional Characteristics of Nonlinear Energy Transfer 

3.4.1 Long-term Evolution of Directional Spectra  

The evolution of the directional energy distribution is examined in the WAM by taking into 

account only the nonlinear term Snl and without wind input and dissipation. For the initial 

spectrum, we use the same assumption as in Figs. 3.2 and 3.3. Figure 3.10 shows the long-term 

evolution of the directional energy (left column) and the corresponding nonlinear energy transfer 

distribution (right column) using the WAM implemented with the DIA, RIAM, and SRIAM 

methods. The blue line shows the initial spectrum, while the red line shows the spectrum after 12 

h of simulation. The figure below shows the time evolution of the directional energy distribution 

and directional nonlinear energy transfer distribution as a function of the direction θ, where E(f, 

θ) and Snl (f, �) are integrated with respect to the frequency f. 

 

As can be seen in the Fig. 3.10, after 12 h of simulation, the directional peak energy decreases 

and the directional energy distribution spreads. Although the changes in �ሺ�ሻ seem similar in 
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three methods, the distribution of the directional energy spectrum in the DIA method shows a 

broader shape than those in the RIAM and SRIAM methods, and the SRIAM spectrum is a little 

broader than the RIAM spectrum. The evolution of the directional distribution of nonlinear 

energy transfer is shown in the right column of Fig. 3.10. The natural shape of the directional 

distribution is always shown as two positives lobes and one negative lobe. The RIAM and 

SRIAM methods show the natural shape continuously, while the DIA method shows it 

differently. 

  

  

  

Figure 3.10. Long-term evolution of the directional spectra (left column) and distribution of nonlinear energy 

transfer spectrum corresponding to the directional spectra (right column) in the DIA, RIAM, and RIAM methods. 
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Figure 3.11. Long-term evolution of the directional spectra (left column) and distribution of nonlinear energy 

transfer spectrum corresponding to the directional spectra (right methods) in the DIA, RIAM, and RIAM methods 

(Sin and Sdis are applied). 

 

Figure 3.11 shows the long-term evolution of the directional energy distribution (left column) 

and the corresponding directional nonlinear energy transfer distributions (right column) by taking 

into account wind input and dissipation term. After 12 h of simulation, the peak energy in each 

method decreases. However, the spreading distribution of �ሺ�ሻ in each method is different. The 

shape of the directional energy distribution in the RIAM and SRIAM methods is narrower than 

the broad shape in the DIA method. Although the shape of the directional spectrum in the DIA 
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method different from that in the RIAM and SRIAM methods, the corresponding nonlinear 

energy transfer distribution continuously shows the natural shape of nonlinear distributions.  

 

3.4.2 Directional Distributions for Various Energy Concentration Parameters 

 
 

 
 

 
 

 

Figure. 3.12. Directional energy distribution and directional nonlinear energy transfer spectrum for various values of 

the energy concentration parameters γ and Smax computed using the WAM implemented in the DIA, RIAM, and 

SRIAM methods. 
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In order to clarify the changes in the characteristics of the directional distribution caused by 

nonlinear energy transfer, numerical simulations are performed for various energy concentration 

parameters Smax and γ. The left column of Fig. 3.12 shows examples for the directional energy 

distributions computed with various values of the energy concentration parameters Smax and γ 

listed in Table 2.1. The dash lines show the initial value of the directional energy distribution �ሺ�ሻ, while the solid lines show the result after 12 h of simulation. As can be seen in the left 

column of Fig. 3.12, after 12 h, the directional peak energy decreases and the directional energy 

distribution spreads in three methods. Although the changes in �ሺ�ሻ are similar in three methods, 

the DIA result is more diffusive than those of the other methods. The SRIAM result is less 

diffusive than the RIAM result. 

 

The right column of Fig. 3.12 shows the directional energy distribution of the nonlinear energy 

transfer spectrum computed for various energy concentration parameters. As can be seen in the 

right column of Fig. 3.12, the directional distributions of the nonlinear energy transfer always 

show a pattern of two positive lobes and one negative lobe. The magnitude of the peak absolute 

value for the directional distribution increases as the energy concentration Smax increases in three 

methods. A comparison of the three methods shows that the magnitude of nonlinear energy 

transfer is in the order of SRIAM >RIAM > DIA for large energy concentration parameter Smax. 

However, the magnitude of nonlinear energy transfer in the DIA is larger than those in the other 

methods for small energy concentration parameter Smax. These characteristics of the DIA, RIAM, 

and SRIAM methods seem to be slightly different as can be seen in Fig. 3.12. 

 

Furthermore, in the next subsection, the characteristics of the nonlinear energy transfer spectrum 

in the direction domain are investigated for various directional spectra based on numerical results 

computed in the SRIAM method, since the latter seems to be superior in efficiency and accuracy.  

 

3.4.3 Directional Energy Distributions for Various Wave Steepness Values 

Figure 3.13 shows examples for the time evolution of the directional energy distributions, where 

the JONSWAP spectra and Mitsuyasu-type of directional functions are used as the initial 

conditions of the directional spectra computed in the SRIAM method. In each panel of Fig. 3.13, 

the peak frequencies are assumed at fp = 0.1 Hz, while the significant wave heights are different. 

The values of the wave steepness in Figs. 3.13(a), 3.13(b), and 3.13(c) are 0.031, 0.023, and 



 

44 

 

0.015, respectively. As can be seen in these figures, the peak energy increases as the wave 

steepness decreases whereas the spreading is more diffusive for higher wave steepness values.  

 

 

Figure 3.13. Relation between the directional energy distribution and wave steepness H/L (fp = constant) for the time 

evolution of the directional spectra (Snl is computed in the SRIAM method).  

 

3.4.4 Directional Energy Distributions for Various Peak Frequencies 

 

Figure 3.14. Relation between the directional energy distributions and peak frequency fp for the time evolution of the 

directional spectra (Snl is computed in the SRIAM method). 

Figure 3.14 shows examples for the time evolution of the directional energy distribution for 

various peak frequencies. We set the peak frequencies for Figs. 3.14(a), 3.14(b), and 3.14(c) to 

0.047, 0.075, and 0.133, respectively. As can be seen in Fig. 3.14, the peak energy for higher 

peak frequency decreases faster. The directional spreading is also more diffusive when the peak 

frequency is higher. 

 

3.4.5 Bimodal Directional Spectra for Various Crossing Angles 

Figure 3.15(a-1) shows the bimodal directional spectrum, where the peak frequencies are at fp = 

0.13 Hz and fp = 0.1 Hz and the crossing angle between the propagation directions is 0˚. This 

bimodal spectrum is used as the initial condition for the duration-limited condition. Figure 

3.15(a-2) shows the temporal change in the directional spectrum after 12 h. As can be seen in 

these figures, the energy distribution gradually changes to a unimodal spectrum. The high-

frequency peak disappears and the directional spectrum broadens as shown in Fig. 3.15(a-2). 

a b c 

a b c 
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Figure 3.15. Directional spectra of the bimodal spectrum for the crossing angle Δθ = 0˚ at t = 0 (a-1) and t =12 h (a-

2). 

 

Figure 3.16. Temporal change in the (a) frequency spectra corresponding to the directional spectra in Fig. 3.15 and 

(b) directional functions (blue line is the initial condition). 

 

Figures 3.16(a) and 3.16(b) show the frequency spectrum and the integrated directional function 

with respect to frequency f, respectively. The blue line shows the initial bimodal spectrum, where 

the energy concentration parameters are γ = 3.3 and Smax = 15 for the higher peak frequency 

spectrum, and γ = 7.0 and Smax = 75 for the lower peak frequency one. The red line shows the 

results after 12 hours of simulation. The shape of the spectrum changes into unimodal one with 

frequency downshift. While, the shape of the directional function changes to wider distribution. 

 

Figures 3.17 and 3.18 show the results for the same parameters used in Figs. 3.15 and 3.16, 

respectively, except for a crossing angle of 30˚ between the two wave groups; Figs. 3.19 and 3.20 

show the results for a crossing angle of 90˚ between the two wave groups. As can be seen in Figs. 

3.18(a) and 3.20, after 12 h of simulation, both frequency spectra change to unimodal ones. 

a b 
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Although the frequency spectrum in Fig. 3.18(a) shows comparably large frequency downshift 

compared with Fig. 3.16(a), Fig. 3.20(a) does not show clear frequency downshift. Moreover, the 

directional function in Fig. 3.20(b) still shows clear bimodal peaks in directional energy diffusion 

even after 12 h. The differences seem to arise from the difference in the nonlinear energy transfer 

intensity, which depends on the crossing angle between the two wave groups. 

 

 

Fig 3.17. Directional spectra of the bimodal spectrum for the crossing angle Δθ = 30˚ at t = 0 (a-1) and t = 12 h (a-2). 

 

 

 

 

Figure 3.18. Temporal change in the (a) frequency spectra corresponding to the directional spectra in Fig. 3.17 and 

(b) directional functions (blue line is the initial condition). 

a 
b 
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Figure 3.19. Directional spectra of the bimodal spectrum for the crossing angle Δθ = 90˚ at t = 0 (a-1) and t = 12 h 

(a-2). 

 

 

Figure 3.20. Temporal change in the (a) frequency spectra corresponding to the directional spectra in Fig. 3.19 and 

(b) directional functions (blue line is the initial condition). 

 

Figures 3.21(a), 3.21(b), and 3.21(c) show the directional distributions of the integrated nonlinear 

energy transfer with respect to the frequency f corresponding to Figs 3.15, 3.17, and 3.19, 

respectively. The blue lines show the results at t = 0, while the red lines show the ones at t =12 h. 

Figure 3.21(a) shows the symmetric distribution with two positive lobes and one negative lobe, 

which gradually reduces the nonlinear energy transfer intensity over time.  

 

Figures 3.21(b) and 3.21(c) show the asymmetric distribution. Compared with Figs. 3.21(a) and 

3.21(b), Figs. 3.21(c) seems to have different characteristics in that the directional distributions 

of the negative and positive lobes around the two peak frequencies in are rather independent (a 

weak interaction) of each other. This may lead to the temporal change in the directional spectra 

shown in Fig. 3.19. 

a b 
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Figure. 3.21. Directional distributions for the nonlinear energy transfer spectrum of the bimodal spectra at a crossing 

angle of (a) 0˚, (b) 30˚, and (c) 90˚. 

 

3.5 Conclusion 

The characteristics of the evolution of the gravity wave spectra caused by nonlinear energy 

transfer are evaluated in the frequency and direction domains. Numerical simulations are 

performed using the WAM implemented with the DIA, RIAM, and SRIAM methods in deep 

water under duration-limited conditions for various initial conditions of the directional spectra 

and various energy distributions in frequency and direction.  

As a result, interesting features of the relation between the frequency downshift and the energy 

concentration parameters of the directional spectra are clarified. Particularly, the intensity of the 

a 

b 

c 
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frequency downshift caused by nonlinear energy transfer increases with the increasing energy 

concentration in frequency and direction.  

 

The characteristics of the frequency downshift and of the directional distribution of the bimodal 

spectra are also discussed. An interesting characteristic influenced by the crossing angle Δθ 

between two wave groups in the bimodal spectrum is observed, i.e., a large coupling between the 

two wave groups can be seen when the two peak frequencies in the bimodal spectrum are 

relatively narrow in direction. 
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CHAPTER 4 

NUMERICAL STUDY ON FREQUENCY DOWNSHIFT 

GRAVITY WAVE SPECTRA IN FINITE-WATER DEPTHS 

 

 

 

4.1 Introduction 

The water depth significantly affects the processes of wave development and wave generation 

and increases the complexity of wave models (Young and Verhagen, 1996a, 1996b). The spectral 

shape and magnitude of nonlinear energy transfer also are changed in finite water depths, 

because nonlinear energy transfer is very sensitive to both the spectrum shape and the water 

depth.  

 

Computations of nonlinear energy transfer in finite water depths are more complex and more 

time consuming than computations in deep water. Although the RIAM and SRIAM methods 

compute nonlinear energy transfer much better than the DIA method in terms of accuracy, they 

can only be applied to deep water waves. In the RIAM method, the values of the resonant wave 

vectors for deep-water waves are simply replaced by those of the nearest wave number grid 

points (Komatsu and Masuda, 1996). However, this replacement does not apply to finite-depth 

water computations, where interpolated values of the surrounding four wave numbers are needed 

(Komatsu and Masuda, 2000). The nonlinear energy transfer computations in the WAM and the 

SWAN model could not capture the frequency downshifts and spectral changes that occur as the 

water depth decreases (Hashimoto et al., 2002). Currently, there is no computation method that 

can accurately and efficiently calculate nonlinear energy transfer in finite water depths.  

  

Hashimoto et al. (1998) developed a computational method called the FD-RIAM method for 

nonlinear energy transfer in finite-depth gravity waves by extending the theories of Masuda 

(1980) and Komatsu et al. (1993). The method was applied to common wave spectra in finite-

water depths. Some characteristics of nonlinear energy transfer in infinite water depths were 

clarified. In this chapter, we investigate in more detail the characteristics of nonlinear energy 

transfer in deep- and finite-water depths using the FD-RIAM methods for various directional 

wave spectra in different water depths. 
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4.2 Investigation of Frequency Downshift in Finite-Water Depths Using the FD-RIAM 

Method 

As mentioned in Chapter 2, the FD-RIAM method is expressed as 
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We assumed that the directional spectrum S(f, θ) is a product of the JONSWAP-type frequency 

spectrum and the Mitsuyatsu-type directional function. The nonlinear energy transfer spectrum is 

computed under the conditions of kph = 8.0, 1.0, 0.8, 0.65, and 0.6, where kp is the wave number 

corresponding to the peak frequency of the power spectrum. In the following section, the 

characteristics of nonlinear energy transfer are examined in one dimension in terms of the 

function T1(ω) defined by 

   ,

1
T d

t

 
 


  

. 

Figures 4.1–4.3 show the one-dimensional nonlinear energy transfer functions Snl(f) as a function 

of the frequency f, obtained by integrating Snl(f, �) with respect to the direction angle �. Figures 

4.1 and 4.2 are computed with γ = 1.0 for a PM-type spectrum. Figures 4.1(a) and 4.1(b) show 

the directional function as a function of frequency f for Smax = 2.0, and Fig. 4.2 shows the 

directional energy concentration for Smax = 10. Meanwhile, Figs. 4.3(a) and 4.3(b) are computed 

with γ = 3.3 for a JONSWAP-type spectrum with the directional energy concentration Smax = 10. 

The horizontal axis is the ration of the frequency divided and the peak frequency f/fp, and the 

vertical axis shows the nonlinear energy transfer spectrum normalized by its maximum value. 

 

Figures 4.1(a), 4.2(a), and 4.3(a) show the Snl(f) computed under the conditions of kph = 8.0, 1.0, 

and 0.8, respectively, and Figs. 4.1(b), 4.2(b), and 4.3(b) are the ones computed under the 

(4.1) 

(4.2) 

(4.3) 
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conditions of kph = 0.8, 0.65, and 0.6, respectively. It should be noted that the Snl(f) computed 

with kph = 0.8 is shown in Figs. 4.3(a) and 4.1(b) for convenience of presentation. The absolute 

values of Snl(f) increase with decreasing kph, and the value of Snl(f) for kph = 8.0 is very different 

from that for kph =0.6 in all cases. Therefore, it seems inconvenient to show all the results in a 

single plot. Instead, these results are separated into two plots, and the value for kph =8.0 is shown 

in both panels as a reference.  

 

The distributions of the nonlinear energy transfer spectrum Snl(f) are very different for the cases 

under consideration, as shown in the figures above, depending on the shape of the directional 

spectrum and the magnitude of the relative water depth kph. As can be seen in Figs. 4.1 and 4.2, 

for the case of the PM spectrum, the nonlinear energy transfer spectrum for kph = 8.0 shows the 

maximum value around the peak frequency fp and the minimum value around 1.5fp. When kph 

decreases, the maximum and minimum values of the nonlinear energy transfer spectrum move to 

the low frequency end and their absolute values are increased. For the case of the JONSWAP 

spectrum, as can be seen in Fig. 4.3, the results are different from those of the PM spectrum in 

that the nonlinear energy transfer spectrum for kph = 8.0 shows the maximum value around the 

peak frequency 0.95fp and the minimum value around 1.1fp. Their magnitudes are also increased 

as kph decreases. However, there seem to be common features in that the intensity of the 

nonlinear energy transfer spectrum Snl(f) increases with decreasing relative water depth kph and 

that the positive peak of Snl(f) moves toward the low frequency end as kph decreases. 

 

 

Figure 4.1. One-dimensional nonlinear energy transfer functions for the PM spectrum for Smax = 2.0, and (a) kph = 

8.0, 1.0, 0.8 and (b) kph = 0.8, 0.65, 0.6. 
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Figure 4.2. One-dimensional nonlinear energy transfer functions for the PM spectrum for Smax = 10, and (a) kph = 8.0, 

1.0, 0.8 and (b) kph = 0.8, 0.65, 0.6. 

 

 

Figure 4.3. One-dimensional nonlinear energy transfer functions for the JONSWAP spectrum for Smax = 10, and (a) 

kph = 8.0, 1.0, 0.8 and (b) kph = 0.8, 0.65, 0.6. 

 

4.3 Enhancement Factor  

In the third-generation wave models the enhancement factor R is introduced to convert the 

nonlinear energy transfer spectrum in deep water to represent that in finite water depths, and thus 

making the computations of the nonlinear energy transfer simpler. The enhancement factor R is 

defined by 

                                    )depth infinite()()depth finite( nlnl ShkRS  ,                                                    (4.4) 

 

where k  is the mean wave number and nlS (infinite depth) is the nonlinear energy transfer 

spectrum calculated at kh for a specified directional spectrum.   
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Hasselmann and Hasselmann (1981, 1985) obtained the enhancement factor R in the DIA method 

using numerical computations by assuming the Mitsuyasu–Hasselmann-type directional 

spreading function, which can be expressed as 
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The enhancement factor R is a very useful way to make the computations of nonlinear energy 

transfer in finite water depth faster. This enhancement factor is used in the SWAN model (Booij 

et al, 1999).  

 

In this study, the differences in the characteristics of nonlinear energy transfer and frequency 

downshifts in deep and finite water waves are investigated. We apply the same types of 

directional spectra used for deep water waves by assuming that the directional spectrum S(f,θ) is 

a product of the JONSWAP-type frequency spectrum S(f) and the Mitsuyatsu-type directional 

function  G f  even though the Texel–Marsen–Arsloe spectrum (Bouws, 1985) seems more 

suitable for shallow water waves (Tsagareli et al., 2005).  

 

We computed the enhancement factors R for various directional spectra in several water depths. 

The enhancement factor R in Fig. 4.4 is determined by the ratio of the maximum of nonlinear 

energy transfer for finite-depth waves and that for deep water waves computed in the FDRIAM 

method. The marks ■, ○, and △, in Fig. 4.4 show the enhancement factor R for directional spectra 

with γ = 1.0, 3.3, and 7.0, respectively. As a reference, the enhancement factor R adopted in the 

WAM is shown as the solid line in Fig. 4.4(a).  

 

The results shown in the Fig. 4.4(a)–4.4(c) are computed for the directional spectra with the 

directional energy concentration parameter S = 2, 10, and 25, respectively. As can be seen in Fig 

4.4, the directional distributions of the directional spectra in Fig. 4.4(b) are wider than those in 

Fig. 4.4(c). It is clearly shown that the characteristics of the enhancement factor R depend on the 

energy distribution of the directional spectra. The enhancement factor R, however, shows better 

agreement with those computed in the FD-RIAM method for smaller Smax and γ. Otherwise, R 

shows better agreement for broader directional spectra in frequency and direction, but not for 

narrow directional spectra. It should be noted that R is not a monotonic function for narrow 

directional spectra.  

 



 

55 

 

 

Figure 4.4. Enhancement factor for various directional spectra in several water depths. (x = (3/4)kh is the 

dimensionless depth) 

 

However, the downshift factor seems to be more important than the enhancement factor because 

the latter works only for enhancement of the energy distribution but not for the frequency 

downshift. The downshift factor is defined by the ratio of the frequency of maximum transfer for 

finite-depth waves and that for deep water waves computed in the FD-RIAM method. 

 

As can be seen in Fig. 4.5, the frequency downshift factors for broad spectra with γ = 1.0 

gradually decrease and return to around the initial values as the relative water depth x decreases, 

while those of narrow spectra with γ = 3.3 and 7.0 decrease sharply as the relative water depth x 

decreases. In other words, although the behavior of the frequency downshift factors for broad 

spectra shows characteristics similar to those for narrow spectra, the onset of their decrease is at 

water depths deeper than that for narrow spectra. In very shallow water depths, the downshift 

factors for broad spectra decrease sharply to very small values. This sudden change might be 

caused by an applicable limit of nonlinear energy transfer in the Boltzmann Integral.  
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Figure 4.5. Downshift factor for various directional spectra in several water depths. (x = (3/4)kh is the dimensionless 

depth). 

 

4.4 Characteristics of Duration-Limited Evolutions and Frequency Downshifts in Finite-

Water Depths in the FD-RIAM Method  

We evaluated the characteristics of wave spectrum evolution under duration-limited conditions in 

finite water depths. Figure 4.6 show the long-term frequency spectrum evolution (2 h) computed 

in the WAM implemented with the FD-RIAM method by taking into account of only the 

nonlinear energy transfer term Snl(kph) for kph = 1.0, 0.8, and 0.6. The numerical simulations are 

carried out for the PM spectrum (γ = 1.0). The energy concentration parameter is Smax = 10, and 

the same value is used for the JONSWAP spectrum (γ = 3.3). The numerical results of the 

JONSWAP spectrum are show in Fig. 4.7. The horizontal axis is the frequency f divided by the 

frequency peak fp, and the vertical axis is the energy density normalized by its peak value for the 

initial spectrum. 

 

As can be seen in Figs. 4.6 and 4.7, the evolution of the spectra in finite-water depths is much 

faster than that in deep water. The frequency spectra in Figs. 4.6 and 4.7 are slightly different, but 
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the frequency spectra for kph = 0.6 seems very different from the others spectra. Although the 

spectra evolve by moving the peak frequency toward the low frequency end for deep water 

waves, as can be seen in Figs. 4.6 and 4.7, the spectra for kph = 0.6 in Figs. 4.6(c) and 4.7(c) 

evolve by transferring the energy toward the low frequency end by approximately keeping the 

peak frequency while decreasing the magnitude. 

 

In addition, we applied the original WAM with the DIA method under the same conditions as 

those in Figs. 4.6 and 4.7. The results are shown in Fig. 4.8, where the evolution of the spectra is 

almost the same regardless of the water depth. This unusual condition may be caused by a 

“limiter” introduced in the WAM to suppress divergence of the computation.  

 

 

 

Figure 4.6. Duration-limited evolution (for 2 h) of the frequency spectra in the FD-RIAM method for the PM spectra 

in several water depths (only Snl is applied). 
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Figure 4.7. Duration-limited evolution (for 2 h) of the frequency spectra in the FD-RIAM method for the JONSWAP 

spectra in several water depths (only Snl is applied). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Duration-limited evolution (for 2 h) of the frequency spectra in the DIA methods with the enhancement 

factor R for the PM spectra in several water depths. 
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4.5. Conclusion 

Characteristics of duration-limited evolutions and frequency downshift of the frequency spectra 

in finite water depths were investigated using a modified WAM implemented with the FD-RIAM 

method by Hashimoto et al. (1998, 2002). The evolution of the directional spectra in finite water 

depths caused by nonlinear energy transfer was confirmed in the FD-RIAM method to be much 

faster than that in deep water. The spectra evolve with their peak frequencies moved toward low 

frequencies for both the PM and JONSWAP spectra, thus maintaining the peak frequencies at 

almost the same frequency while decreasing the peak magnitude. 

 

In this chapter, we also evaluated the enhancement factor and downshift factor used in the WAM. 

The enhancement factor R adopted in the WAM shows good agreement with those computed in 

the FD-RIAM method for small Smax and γ. 
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CHAPTER 5 

EFFICIENT CONFIGURATIONS FOR COMPUTING 

NONLINEAR ENERGY TRANSFER  

 

 

5.1 Introduction 

Among the source terms in the third-generation wave models, the nonlinear energy transfer 

source term is known as the most important component in the evolution of wave spectra. To 

predict the evolution of wave spectra with high accuracy, the nonlinear energy transfer source 

functions must be estimated accurately. A precise evaluation of nonlinear energy transfer 

requires a large number of resonant configurations. Nevertheless, such calculations need huge 

computational costs and hence not suitable for operational wave models. Numerous efforts have 

been made to improve nonlinear energy transfer computations. However, the simplest method 

known as the DIA (Hasselmann et al., 1985) method is currently the most commonly used 

method for evaluating the nonlinear energy transfer spectrum Snl in practical wave models 

because of its low computational cost. The DIA method used only a single configuration of 

resonant four waves for an infinite number of configurations. Hence, the DIA method is 

considered to have a limitation in accuracy. 

 

Hashimoto and Kawaguchi (2001) developed the MDIA method by increasing the number of 

configurations in the DIA method so as to obtain more accurate nonlinear energy transfer 

computations. Each of the configurations uses different parameters λ and C, where λ is the 

parameter determining the combination of component waves. The optimum parameter C is 

estimated for each λ using the least-square method to exact the value computed in the RIAM 

method (Komatsu, et al., 1993). However, the applicability of the MDIA method has not been 

examined in wave models. In this chapter, as a preliminary study of the efficient number of 

resonance configurations, we examine the validity and effectiveness of the MDIA method under 

duration-limited conditions. 

Moreover, Tamura et al. (2008) suggested the SRIAM method developed by Komatsu (1996), 

which is able to reduce computational costs by utilizing 20 configurations, to be incorporated 
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into operational wave models. As a result, wave model performance is significantly improved. 

However, even though there is an improvement, the computational cost is still 20 times larger 

than that of existing operational wave models using the DIA method. It is hence necessary to 

develop a method that can provide sufficient accuracy and efficiency, and practically be 

incorporated into wave models. Therefore, we modified the SRIAM method by reducing the 

number of resonant configurations. The resulting method is called the R-SRIAM method. The 

configurations for the R-SRIAM method are expected to be efficient configurations for nonlinear 

energy transfer computations.  

 

In kernel function analysis, quasi-singular quadruplets contribute the most to nonlinear energy 

transfer, whereas regular quadruplets are expected to contribute far less (Masuda, 1980). This 

analysis is suitable for studying configurations of the R-SRIAM method. Consequently, the 

efficient resonant configuration numbers are proposed by selecting configurations only from the 

quasi-singular quadruplets. The resulting method is called the AM-DIA method. We compare 

numerical results of the R-SRIAM and AM-DIA methods with those of the RIAM and SRIAM 

method, which has been proved to have the same degree of accuracy as the exact methods 

developed by Komatsu et al. (1993) and Komatsu and Masuda (1996). 

 

5.2 Numerical Examinations of the Multiple Discrete-Interaction Approximation Method 

The validity and the effectiveness of the MDIA method are examined based on the previous 

numerical computation of Hashimoto and Kawaguchi (2001). This study is limited to deep water 

waves, and uses the JONSWAP-type frequency spectrum and Mitsuyatsu-type directional 

function (Eq. (3.2)). The PM spectrum (γ = 1.0) and the JONSWAP spectrum (γ = 3.3) with Smax 

= 10 are used for energy concentration parameter initial values of the directional spectrum. For 

initial conditions, the significant wave height and period are used based on Goda’s formula (Eq. 

(3.6)). The optimum parameters of the MDIA method proposed by Hashimoto and Kawaguchi 

(2001) are shown in Table 2.4 in Chapter 2. The optimum parameters of λ and C are listed for 

each configuration.  

 

Figure 5.1 shows the nonlinear energy transfer spectrum for a test wave spectrum as a function of 

frequency in the RIAM and MDIA methods for various configuration numbers. The upper panels 

of Fig. 5.1 show the nonlinear energy transfer spectrum for the PM spectrum, and the lower 

panels show the JONSWAP spectrum. The solid red line shows the nonlinear energy transfer in 
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the RIAM method, and the dotted black line is in the MDIA method. It can be seen that the 

accuracy of the MDIA method is improved as the number of configurations increases under the 

some spectrum conditions. However, a negative value of C is used in the computation although C 

should be positive in the original Boltzmann integral. This is because the parameter C is 

estimated using the simple least-square method. 

 

 

 

Figure 5.1. Nonlinear energy transfer spectra for a test wave with the PM (upper panels) and JONSWAP (lower 

panels) spectra. 

 

In order to confirm the behavior of the nonlinear energy transfer spectrum in the MDIA method, 

the optimum configurations are incorporated into the WAM. It was found that under duration-

limited condition the MDIA method is applicable only in a short time for the time integration. 

The negative value of C seems to make the computation unstable as time evolves. Although for 

the test wave spectrum the MDIA method has higher accuracy than the original DIA method, it is 

still impractical to be implemented in wave models. 

 

5.3 Reduced Simplified Research Institute for Applied Mathematics Method 

The SRIAM method is known as a superior method for computing nonlinear energy transfer 

compared with the DIA and RIAM methods (Hashimoto, 2012). It have been demonstrated that 

computations in the SRIAM method are 100 times faster than those in the RIAM method. The 

SRIAM method is almost perfect in accuracy and practicality for adoption in wave models. The 

performance of wave models was remarkably improved in the SRIAM method. However, the 

computational cost of the SRIAM method, which uses 20 configurations, is still larger than that 

of existing wave models using the DIA method. 
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Table 5.1. Optimum parameters for the R-SRIAM method: singular quadruplets (irep: 1–7) and regular quadruplets 

(irep: 8–9). 

 

 

In order to reduce the computational costs, in this study, we modified the SRIAM method by 

reducing the number resonant configurations. It was found that nine configurations yield a 

nonlinear energy transfer spectrum as accurate as that in the original SRIAM method. The 

modified method is called the R-SRIAM method.  

The optimum parameters in the R-SRIAM method are shown in Table 5.1, which consists of 

seven quasi-singular quadruplets and two regular quadruplets. It is verified that the quasi-singular 

quadruplets contribute to nonlinear energy transfer more than the regular quadruplets. The 

leftmost column in Table 5.1 is the number of resonant configurations, 1  and 3  are the angles 

of the wave vectors k1 and k3, respectively, 
3  is the normalized angular frequency 

4( 1)  , and 

K  is the kernel function for a specific quadruplet. 

 

 

Figure 5.2. Comparison of the nonlinear energy transfer spectrum for a test wave with the (a) PM and (b) JONSWAP 

spectra in the R-SRIAM, DIA, RIAM and the original SRIAM methods.  
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Figure 5.2 shows a comparison of the nonlinear energy transfer spectrum for a test wave with the 

(a) PM and (b) JONSWAP spectra in the R-SRIAM, DIA, RIAM and the original SRIAM 

methods. The horizontal axis is the frequency, and the vertical axis is the nonlinear energy 

transfer normalized by the maximum value in the RIAM method. It is clearly shown that the R-

SRIAM method has a result slightly different from that of the RIAM method, while the result has 

almost the same degree of accuracy as that of the original SRIAM method. However, it is very 

different from the result of the DIA method, especially for the JONSWAP spectrum. The 

nonlinear energy transfer spectrum in the DIA method for the JONSWAP spectrum shows an 

overshoot in the maximum negative lobe (Fig. 5.2(b)).  

 

Figures 5.3 and 5.4 show a comparison of the two-dimensional nonlinear energy transfer 

spectrum calculated using the DIA, RIAM, original SRIAM, and R-SRIAM methods with the 

same nonlinear energy transfer functions as those in Fig. 5.2 (a) and (b), respectively. As can be 

seen in Fig. 5.3, the R-SRIAM method obviously agrees well with those obtained in the original 

RIAM method as shown in Fig. 5.2(a). This result indicates that the reduced configuration 

number used in the SRIAM method yields the same accuracy as that in the original SRIAM 

method. Meanwhile, for the JONSWAP spectrum the result of the R-SRIAM method is slightly 

different from those of the RIAM and SRIAM method, but significantly different from that of the 

DIA method. 

 

Figure 5.3. Comparison of the two-dimensional nonlinear energy transfer spectrum obtained using the (a) DIA, (b) 

RIAM, (c) SRIAM, and (d) R-SRIAM methods for the PM spectrum. 
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Figure 5.4. Comparison of the two-dimensional nonlinear energy transfer spectrum obtained using the (a) DIA, (b) 

RIAM, (c) SRIAM, and (d) R-SRIAM methods for the JONSWAP spectrum. 

 

Furthermore, the R-SRIAM method is implemented in the WAM for 12 h simulations. The 

simulations were performed by taking into account only the nonlinear energy transfer (Snl), 

without the wind input (Sin = 0) and dissipation (Sdis = 0). The energy concentration parameters 

are γ = 3.3 and Smax = 15. The peak frequency fp is set at 0.12 Hz. The initial frequency spectrum 

and the frequency spectra after 6 h and 12 h of simulations in the R-SRIAM, DIA, RIAM, and 

the original SRIAM methods are shown in Figs. 5.5(a) and 5.5(b), respectively. It can be seen 

that the initial peak frequency at 0.12 Hz moves toward the low frequency end after 6 h and 12 h 

of simulation in all of the methods. Moreover, the energy transfer spectrum seems to be different 

in all of the methods. After 6 h and 12 h of simulation, the spectra peak value in the RIAM 

method tends to overshoot. However, it should be noted that the R-SRIAM method yields a 

smooth and continuous frequency downshift as the original SRIAM method does, whereas the 

original WAM in the DIA method shows relatively distorted frequency downshift for the 

frequency spectra. 

 

Figures 5.5 and 5.6 show the nonlinear energy transfer spectrum at t = 0, 6, and 12 h. The 

intensity of the nonlinear energy transfer spectrum decreases as time evolves. While the 

nonlinear energy transfer spectrum in each method seems to be different, the one in the R-



 

66 

 

SRIAM method is in agreement with that in the original SRIAM method. Meanwhile, at t = 0, the 

nonlinear energy transfer spectrum in the DIA method shows a different pattern and it tends to 

overshoot at the peak of the negative lobe. 

 

 

Figure 5.5. Initial frequency spectrum and the frequency spectra in the R-SRIAM, DIA, RIAM, and the original 

SRIAM methods at (a) t = 6 h and (b) t = 12 h (only Snl is applied). 

 

 

 

Fig 5.6. Nonlinear energy transfer spectrum corresponding to the frequency spectrum in Figs. 5.5(a) and 5.5(b) at (a) 

t = 0, (b) t = 6 h, and (c) t = 12 h. 

 

 

 

Figure 5.7. Initial frequency spectrum and the frequency spectra in the R-SRIAM, DIA, RIAM, and the original 

SRIAM methods at (a) t = 6 h and (b) t = 12 h (Sin and Sdis are applied). 
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Figure 5.8. Nonlinear energy transfer spectrum corresponding to the frequency spectrum in Figs. 5.7(a) and 5.7(b) at 

(a) t = 0, (b) t = 6 h, and (c) t = 12 h. 

 

The R-SRIAM method is also incorporated in WAM by taking into account the wind input Sin 

and dissipation Sdis under conditions similar to those in previous simulations. The frequency 

spectrum in the R-SRIAM method shows the same degree of accuracy as that in the original 

SRIAM method. The energy density decreases and the peak frequency downshifts after 6 h and 

12 h of simulation are shown in Fig. 5.7. The spectral peak magnitude and corresponding 

nonlinear energy transfer spectrum in the RIAM method seem slightly different from those in the 

SRIAM and R-SRIAM methods, but significantly different from those in the DIA method. The 

DIA method seems to yield the approximate frequency downshift as shown by the double peak of 

the frequency spectrum after 6 h and 12 h of simulation. The maximum negative value of the 

nonlinear energy transfer spectrum in the DIA method tends to overshoot at the initial time. This 

result shows that by reducing the number of configurations, the R-SRIAM method can be 

incorporated in wave models without sacrificing the accuracy of the original SRIAM method. 

Because only nine configurations are used, the R-SRIAM method is more economical than the 

original SRIAM method. However, compared with the DIA method, the R-SRIAM method 

yields better accuracy but has longer computational time. 

 

5.4 Alternative Multiple Discrete-Interaction Approximation Method 

It is preferred to process singular configurations because it improves the accuracy with less 

computation time. Therefore, the effective configurations for computing nonlinear energy 

transfer are proposed using only the quasi-singular quadruplets, known as the AM-DIA method. 

The independent variables of this method are the frequency and direction angles  1 3 3, ,   , same 

as those of the RIAM and SRIAM methods. 
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The optimized quadruplets are up to five configurations used to represent the infinite number of 

resonant configurations. The coefficients of those parameters were defined similarly to those in 

the SRIAM method, based on the RIAM method for eight test spectra with the JONSWAP-type 

spectrum. The optimum parameters of the AM-DIA method for various configuration numbers 

are listed in Table 5.2. The leftmost column is the number of quasi-singular quadruplets used in 

the calculation. The optimization of those coefficient parameters is carried out using the 

nonnegative least square method.  

 

Table 5.2. Optimum parameters in the AM-DIA method for various configuration numbers. 

 

 

Each configuration number listed in Table 5.2 is implemented in the WAM. The numerical 

simulations are performed under duration-limited conditions for 12 h for the PM and JONSWAP 

spectra, without taking into account the wind input and dissipation. Figures 5.9 and 5.11 show a 

comparison of the nonlinear energy transfer spectrum in the AM-DIA, DIA, RIAM, and SRIAM 

methods for the PM and JONSWAP spectra, respectively. The nonlinear energy transfer 

spectrum in the AM-DIA method for up to five configurations is denoted in the figures by solid 

red lines. Moreover, Figs 5.10 and 5.12 shows the two-dimensional nonlinear energy transfer 

spectrum in the AM-DIA method for up to five configurations. 

 

As shown in the Fig. 5.9, the accuracy of the nonlinear energy transfer spectrum for the PM 

spectrum in the AM-DIA method generally improves as the number of configurations increases. 

For the JONSWAP spectrum in Fig. 5.11, the AM-DIA method with more than 2 configurations 
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turns out to give an unrealistic pattern for nonlinear energy transfer spectrum. When only one 

configuration is used, the accuracy of the nonlinear energy transfer spectrum for the PM 

spectrum in the AM-DIA method is low compared with those in the RIAM and SRIAM methods, 

while the magnitude of the nonlinear energy transfer spectrum in the DIA method is larger than 

that in the RIAM and SRIAM methods. However, for the JONSWAP spectrum, the AM-DIA 

method with one configuration yields the nonlinear energy transfer spectrum similar to those in 

the RIAM and SRIAM methods, in contrast to the DIA method. 

 

Incidentally, the AM-DIA method is incorporated in the WAM and the integration is carried out 

under duration-limited conditions for 12 h of simulation to investigate stability of the 

computation during the integration procedure. The simulations are performed for up to five 

configurations for the PM and JONSWAP spectra. The simulation results are shown in Figs. 

5.14–5.20.  

 

 

 

 

Figure 5.9. Comparison of the nonlinear energy transfer spectrum for the PM spectrum in the AM-DIA, DIA, RIAM, 

and SRIAM methods at t = 0. 

 



 

70 

 

 

 

Figure 5.10. Two-dimensional nonlinear energy transfer spectrum in the (a) AM-DIA (1), (b) AM-DIA (2), (c) AM-

DIA (3), (d) AM-DIA (4), and (e) AM-DIA (5) methods with the same model parameters and wave spectrum as 

those in Fig. 5.9.  

 

 

 

 

Figure 5.11. Comparison of the nonlinear energy transfer spectrum for the JONSWAP spectrum in the AM-DIA, 

DIA, RIAM, and SRIAM methods at t = 0. 
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Figure 5.12. Two-dimensional nonlinear energy transfer spectrum in the (a) AM-DIA (1), (b) AM-DIA (2), (c) AM-

DIA (3), (d) AM-DIA (4), and (e) AM-DIA (5) methods with the same model parameters and wave spectrum as 

those in Fig. 5.9.  

 

 

 

 

Figure 5.13. Comparison of the frequency spectrum for the PM spectrum in the AM-DIA, DIA, RIAM, and SRIAM 

methods at t = 12 h. 
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Figure 5.14. Comparison of the nonlinear energy transfer spectrum for the PM spectrum in the AM-DIA, DIA, 

RIAM, and SRIAM methods at t = 12 h. 

 

 

 

 

Figure 5.15. Comparison of the frequency spectrum for the JONSWAP spectrum in the AM-DIA, DIA, RIAM, and 

SRIAM methods at t = 12 h. 
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Figure 5.16. Comparison of the nonlinear energy transfer spectrum for the JONSWAP spectrum in the AM-DIA, 

DIA, RIAM, and SRIAM methods at t = 12 h. 

 

Figures 5.13 and 5.15 show a comparison of the frequency spectra for the PM and JONSWAP 

spectrum, respectively, between the AM-DIA, DIA, RIAM and SRIAM methods after 12 h of 

simulations. Up to five configurations are used in the AM-DIA method, and the number of 

configurations used is denoted by the number inside the parentheses, e.g., AM-DIA (3) means 

three configurations are used. Meanwhile, the corresponding nonlinear energy transfer spectra 

are shown in Figs. 5.14 and 5.16 for the PM and JONSWAP spectra, respectively. The AM-DIA 

results are denoted by red solid lines in all of these figures.  

 

The frequency downshift of the PM spectrum is clearly shown in Fig. 5.13, except for the 

frequency spectrum in the AM-DIA method with only one configuration (Fig. 5.13 (a)). After 12 

h of simulation, the spectra in the RIAM, SRIAM, and DIA methods show a narrow shape. For 

the JONSWAP spectrum, all of the frequency spectra show obvious frequency downshift and a 

shape similar to the initial spectrum (Fig. 5.15). However, for the PM spectrum the AM-DIA (1) 

result does not show frequency downshift at t =12 h, in contrast to the other AM-DIA results. 

The AM-DIA (1) frequency downshift for the PM spectrum seems slower than the other AM-

DIA results. The same feature is observed for the JONSWAP spectrum. The magnitude and 

location of the frequency peak slightly in the AM-DIA (1) method differs from those in the 

RIAM, SRIAM, and DIA methods.  
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The frequency spectrum in the AM-DIA (2) method agrees well with that in the SRIAM method 

for both the PM and JONSWAP spectra, so does the nonlinear energy transfer spectrum after 12 

h of simulation. As can be seen in Fig. 5.16, the unrealistic pattern of the nonlinear energy 

transfer spectrum in AM-DIA (2) method shows up only at the initial time but not at late times. 

The nonlinear energy transfer spectra in the AM-DIA (3) and (4) methods seem to have the same 

accuracy as those in the SRIAM method.  

 

 

 

Figure 5.17. Correlation of the nonlinear energy transfer spectrum for the PM spectrum between the RIAM method 

and the AM-DIA (1), (2), (3), (4), and (5) in (a), (b), (c), (d), and (e), respectively, at the initial time. 

a b 

c d 
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Figure 5.18. Correlation of the nonlinear energy transfer spectrum for JONSWAP spectrum by AM-DIA (1), (2), (3), 

(4), and (5) in (a), (b), (c), (d), and (e), respectively, at the initial time.  

 

To quantify the accuracy of the nonlinear energy transfer spectrum in the AM-DIA method and 

hence to find the most efficient configuration number, the correlation of the nonlinear energy 

transfer spectra in the AMDIA and RIAM methods are examined. The result is shown in Figs. 

5.17 and 5.18, for the PM and JONSWAP spectra, respectively. The horizontal and vertical axes 

are the nonlinear energy transfer spectra as a function of frequency in the RIAM and AM-DIA 

methods, respectively. The nonlinear energy transfer was integrated with respect to direction 

a b 

c d 

e 
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angles. The black solid line is the trend line of the AM-DIA data, while the red dash line is the 

trend line of the RIAM data.  

 

As can be seen in Figs. 5.17 and 5.18, the correlation between the AM-DIA and RIAM methods 

for the PM spectrum is stronger than that for the JONSWAP spectrum. The AMDIA (5) method 

has the strongest correlation with the RIAM method for the PM spectrum than the other AM-DIA 

methods. However, for the JONSWAP spectrum, the correlation of the nonlinear energy transfer 

spectrum in the AM-DIA (3), (4), and (5) methods is moderately strong. Only the AM-DIA (2) 

method has good correlation with the RIAM method for both the PM and JONSWAP spectra. 

 

Table 5.3 Residual mean and variance of the nonlinear energy transfer spectrum for the PM and JONSWAP spectra 

in the AM-DIA method normalized by the residual mean and variance in the DIA method. 

Number of 

configurations  

Residual Mean Residual Variance 

PM JONSWAP PM JONSWAP 

1 0.57 0.42 0.25 0.19 

2 0.37 0.37 0.09 0.10 

3 0.16 0.57 0.01 0.26 

4 0.25 0.56 0.05 0.30 

5 0.10 0.67 0.00 0.40 

 

 

Figure 5.19. Residual variance in the MDIA method normalized by that in the DIA method. 
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Furthermore, the residual mean and variance of the nonlinear energy transfer spectrum in the 

AM-DIA and RIAM methods for the PM and JONSWAP spectra are calculated and listed in 

Table 5.3. Figure 5.19 shows the AM-DIA residual mean and variance, which are normalized by 

those of the DIA method. As shown in Table 5.3 and Fig. 5.19, their accuracy for the PM and 

JONSWAP spectra is different. For the PM spectrum, the highest accuracy is obtained for the 

AM-DIA (5) method, whereas for the JONSWAP spectrum, the highest accuracy is obtained for 

the AM-DIA (2) method. For the JONSWAP spectrum, the residual variance in the AM-DIA 

method first decreases as the configuration number increases from one to two, and then it 

increases from two up to five configurations. Moreover, for the PM spectrum the residual 

variance decreases as the number of configurations increases, although there is a small increase 

for four configurations. The AM-DIA (2) seems “fairly” accurate for both spectra compared with 

the other AM-DIA methods.  

 

5.5 Practical Applicability of the Alternative Multiple Discrete-Interaction Approximation 

Method to Complex Situations 

Although the AM-DIA method seems has a shortcoming for the JONSWAP spectrum, the 

superiority of the AM-DIA method is examined for double-peak spectra. Two different wave 

groups are simulated with different sets of parameters H1/3, T1/3, γi, Si, and θi (i = 2) for double-

peak spectra. Particularly, the double-peak spectra examined has peak frequencies at fp1 = 0.13 

Hz and fp2 = 0.1 Hz, and fp1 = 0.2 Hz and fp2 = 0.1 Hz, and the energy concentration parameters 

are γ = 3.3 and Smax = 15 for the higher peak frequency spectrum, and γ = 7.0 and Smax = 75 for 

the lower peak frequency spectrum. 

 

Figure 5.20 shows the initial frequency spectrum and distributions of the nonlinear energy 

transfer spectrum for the lower peak frequency spectrum (fp1 = 0.13 Hz and fp2 = 0.1 Hz) in the 

AM-DIA method with up to five configurations in comparison with those in the DIA, RIAM, and 

SRIAM methods for the crossing angle Δθ = 0°. The numerical simulations were performed 

under duration-limited conditions for 12 h. As can be seen in Fig. 5.20, at the initial time the 

three-lobe pattern of the nonlinear energy transfer spectrum is clearly shown at the higher and 

lower peak frequencies, meaning that energy is transferred from intermediate frequencies to 

higher and lower frequencies. As the number of configurations increases, the AM-DIA results are 

similar to those estimated in the RIAM and SRIAM methods even though the DIA method can 

only show one three-lobe pattern of the nonlinear energy transfer spectrum at the high-frequency 
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peak. The AM-DIA method with more than one configuration is relatively more accurate than 

that with only one configuration. The unrealistic pattern of the nonlinear energy transfer 

spectrum in the AM-DIA (3)–(5) methods in the single-peak spectrum case, as shown in Fig. 

5.11, does not appear in double-peak spectrum case. 

 

Figure 5.21 shows a comparison of the frequency spectra in the AM-DIA method and in the DIA, 

RIAM, and SRIAM methods after 12 h of simulation. After t = 12 h, the energy spectra gradually 

change to a single-peak spectrum; the high-frequency peak disappears and the frequency 

downshifts. However, the frequency downshift at t = 12 h is only clearly visible in the AM-DIA 

(2) result, as shown in Fig. 5.21(b). The AM-DIA (1)–(5), except the AM-DIA (2) methods, need 

longer computational time to yield frequency downshift.  

 

A comparison of the nonlinear energy transfer spectrum in the AM-DIA method and in the DIA, 

RIAM, and SRIAM methods after 12 h of simulation are shown in Fig. 5.22. Although the 

magnitudes of positive extreme values of the nonlinear energy transfer spectrum in the RIAM 

method are slightly different from those in the SRIAM, AM-DIA, and DIA methods, the 

nonlinear energy transfer spectrum in the AM-DIA (2) method seems similar to those in the 

SRIAM methods. 

 

 

 

Figure 5.20. Comparison of the nonlinear energy transfer spectrum for double-peak spectrum with peak frequencies 

at fp1 = 0.13 Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 0. 
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Figure 5.21. Comparison of the frequency spectrum for the double-peak spectrum with peak frequencies at fp1 = 0.13 

Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 12 h. 

 

 

 

 

Figure 5.22. Comparison of the nonlinear energy transfer spectrum for the double-peak spectrum with peak 

frequencies at fp1 = 0.13 Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM at t = 12 h. 
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Figure 5.23. Comparison of the nonlinear energy transfer spectrum for double-peak spectrum with peak frequencies 

at fp1 = 0.2 Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 0. 

 

 

 

 

Figure 5.24. Comparison of the frequency spectrum for the double-peak spectrum with peak frequencies at fp1 = 0.2 

Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 12 h. 
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Figure 5.25. Comparison of the nonlinear energy transfer spectrum for the double-peak spectrum with peak 

frequencies at fp1 = 0.2 Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 12 h. 

 

 

 

 

Figure 5.26. Comparison of the frequency spectrum for the double-peak spectrum with peak frequencies at fp1 = 0.2 

Hz and fp2 = 0.1 Hz in the AM-DIA, DIA, RIAM, and SRIAM method at t = 120 h. 
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Figure 5.27. Comparison of the nonlinear energy transfer spectrum for the double-peak spectrum with peak 

frequencies at fp1 = 0.2 Hz and fp2 = 0.1 Hz in by the AM-DIA, DIA, RIAM, and SRIAM methods at t = 120 h. 

 

Figure 5.23 shows the double-peak spectra for the higher peak frequency spectrum (fp1 = 0.2 Hz 

and fp2 = 0.1 Hz) at t = 0. The nonlinear energy transfer spectrum in the AM-DIA method for this 

case is different from that for the lower peak frequency case. The three-lobe pattern of the 

nonlinear energy transfer spectrum is observed for both the higher and lower peak frequency 

case, however, the results in the AM-DIA (3)–(5) methods show the unrealistic pattern at high 

frequencies. There are two negative extreme values at high frequencies. The AM-DIA (2) 

method seems more superior to the other AM-DIA methods. The nonlinear energy transfer 

spectrum in the AM-DIA (2) method is very similar to those estimated in the RIAM and SRIAM 

methods, but very different with those in the DIA method. 

 

Figure 5.24 shows a comparison of the frequency spectrum after 12 h of simulation in the AM-

DIA method and in the DIA, RIAM, and SRIAM methods. The results in all of the AM-DIA 

methods agree well with the large coupling between the two wave systems. The energy flows 

from the peak frequencies of the short waves to frequencies on both sides of the peak frequencies 

(Masson, 1993). The role of nonlinear energy transfer in stabilizing the shape of the wave 

spectrum was confirmed, and it tends to remove any perturbations such as local sea spectra in the 

spectral distribution. Although the AM-DIA (2) method clearly shows frequency downshift after 

t = 12 h for the lower peak frequency spectrum, it is not the case for the higher peak frequency 
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spectrum. As can be seen in Fig. 5.24, at t = 12 h the double-peak frequency spectra changes to 

single-peak spectra; nevertheless only the frequency spectrum in the DIA method clearly shows 

frequency downshift. However, the nonlinear energy transfer spectrum in the AM-DIA, RIAM, 

and SRIAM methods are similar to each other, but slightly different from those in the DIA 

method (Fig. 5.25).  

 

Because frequency downshift did not appear after t = 12 h, the simulation of the higher peak 

frequency spectrum were performed for 120 h. Figure 5.26 shows a comparison of the frequency 

spectrum in the AM-DIA, DIA, RIAM, and SRIAM methods at t = 120 h. As can be seen in Fig. 

5.26, the shape of the frequency spectrum changes to single peak and the peak frequency moves 

toward low frequencies at t = 120 h. The frequency spectrum and nonlinear energy transfer 

spectrum in the AM-DIA method are similar to those in the DIA, RIAM, and SRIAM methods. 

This result shows that the AM-DIA method is applicable to long-time integrations and complex 

situations.  

 

5.6 Conclusion 

It can be concluded that reducing the number of configurations for nonlinear energy transfer is 

possible to achieve less computational costs without losing the accuracy. In the R-SRIAM 

method, nice configurations are able to show almost the same degree of accuracy as the original 

SRIAM method. As a result, the R-SRIAM method is less time consuming than the original 

SRIAM method, but still more time consuming than the DIA method. 

 

The configurations for the R-SRIAM method show that the quasi-singular quadruplets contribute 

the most to nonlinear energy transfer, whereas the regular quadruplets contribute less. Hence, the 

AM-DIA method is an efficient configuration in which only the quasi-singular quadruplets are 

selected. Various configuration number for the AM-DIA method shown different results in the 

cases considered. However, the AM-DIA method with two configurations is suggested to be 

more superior to the other methods. It is also able to show frequency downshift in single-peak 

spectra after 12 h of simulation for both the PM and JONSWAP spectra. For double-peak 

spectra, the AM-DIA method is more superior to the other methods. Although it is not as 

accurate as the RIAM, SRIAM, and R-SRIAM methods, the AM-DIA method is obviously 

better in accuracy than the DIA method, even for double-peak spectra. This result suggests that 

the reduction of resonant configuration number is efficient in practical applications, even in 
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complex situations. In terms of efficiency, the advantage of the AM-DIA method is more 

economically acceptable compared with the RIAM, SRIAM, and R-SRIAM methods. 
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

 

 

6.1 Summary 

In this study, a numerical study of nonlinear energy transfer computation for a gravity wave 

spectrum is carried out and discussed. The efficient configuration numbers for computing 

nonlinear energy transfer are presented to obtain methods with sufficient accuracy and efficiency 

that can be practically incorporated in wave models. The results and conclusions from the study 

are summarized as follows.  

 

An intercomparison of the DIA, RIAM, and SRIAM methods in the WAM shows interesting 

characters of the wave spectrum, especially the relation between the frequency downshift and the 

energy concentration parameters of the directional spectra. In other words, the intensity of 

frequency downshift caused by nonlinear energy transfer increases with increasing energy 

concentration in frequency and direction.  

 

Characteristics of the directional distribution of bimodal directional spectra are also discussed in 

Chapter 3. An interesting characteristic influenced by the crossing angle Δθ between two wave 

groups in the bimodal spectrum is observed, i.e., a large coupling between the wave groups can 

be seen when the two peak frequencies in the bimodal spectrum are relatively narrow in 

direction. 

 

The evolution of directional spectra in finite water depths caused by nonlinear energy transfer 

was confirmed to be much faster in the FD-RIAM method than in the other methods in deep 

water. Although the spectra evolve with its peak frequency moved to low frequencies in both the 

PM and JONSWAP spectra, the peak frequency is maintained at almost the same frequency by 

decreasing its magnitude. The enhancement factor R and downshift factor used in the WAM are 

also evaluated. The enhancement factor R adopted in the WAM shows a better agreement with 

those computed in the FD-RIAM method for small Smax and γ.  
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Moreover, in Chapter 5, the efficient configuration numbers for computing nonlinear energy 

transfer are proposed. First, the SRIAM method is modified by reducing the resonance number 

of configurations. The resulting method is called the R-SRIAM method, in which nine 

configurations are found to be able to show almost the same degree of accuracy as the original 

SRIAM method with 20 configurations. The R-SRIAM method is also shown to be applicable to 

long-time integrations.  

 

Furthermore, various efficient resonance configuration numbers are proposed by selecting 

configurations only from the quasi-singular quadruplets. The method is called the AM-DIA 

method. Five configuration numbers are identified and the corresponding coefficients are 

optimized using the nonnegative least-square method. Although the AM-DIA method has 

different result for different configuration numbers in many cases, the AM-DIA method with two 

configurations is suggested as the most efficient method for computing nonlinear energy transfer. 

Examples in Chapter 5 show that the AM-DIA method is more accurate than the DIA method. In 

terms of accuracy, the AM-DIA method seems to have a shortcoming for the JONSWAP 

spectrum; however, it evidently has better accuracy than the DIA method. The computational 

costs of the AM-DIA method is more economical compared with the RIAM, SRIAM, and R-

SRIAM methods. The AM-DIA method uses almost the same computational time as the original 

DIA, which is 20 times faster than the SRIAM method.  

 

In summary, both R-SRIAM and AM-DIA methods can be considered the promising methods for 

nonlinear energy transfer computations in deep water. 

 

6.2 Future Work 

In this study, to evaluate the practical capability of the R-RIAM and AMDIA methods in the 

third-generation wave model, the methods were incorporated into the WAM, which originally 

was implemented with the DIA method as the conventional method for nonlinear energy transfer 

computations. However, in conventional wave model codes, the formulations used for the wave 

action density balance equations were developed to conform to the DIA method, including the 

wind input and dissipation term. Thus, the numerical simulations in this study were conducted 

without taking the wind input and dissipation term into account. In the near future, recalibration 

or reconfirming of other source terms is required when replacing the DIA method with more 

accurate algorithms to develop a new operational wave model. Another interesting future work is 
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to examine how the different physics for wind input and dissipation will react to the change in 

methods for computing nonlinear energy transfer. 
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