九州大学学術情報リポジトリ Kyushu University Institutional Repository

フラウンホーファ回折法によるプラズマ波動の (K^{^^}→, ω) スペクトルと空間分布測定のための計 測光学条件に関する研究

園田, 義人

九州大学大学院総合理工学研究科エネルギー変換工学専攻

越智, 伸司

九州大学大学院総合理工学研究科エネルギー変換工学専攻

村岡, 克紀 九州大学大学院総合理工学研究科エネルギー変換工学専攻

赤崎, 正則

九州大学大学院総合理工学研究科エネルギー変換工学専攻

https://doi.org/10.15017/17592

出版情報:九州大学大学院総合理工学報告.6(1), pp.21-29, 1984-06-01.九州大学大学院総合理工学 研究科 バージョン: た知問係:

権利関係:

フラウンホーファ回折法によるプラズマ波動の

 (\vec{k}, ω) スペクトルと空間分布測定のための

計測光学条件に関する研究

 園 田 義 人・越 智 伸 司*
 村 岡 克 紀・赤 崎 正 則 (昭和59年3月31日 受理)

Optical Conditions for Measurements of (k, ω) Spectra and Spatial Distributions of Plasma-Waves by the Fraunhofer-Diffraction Method

Yoshito SONODA, Shinji OCHI*, Katsunori MURAOKA and Masanori AKAZAKI

The optical conditions for measurements of (k, ω) spectra and spatial distributions of plasma-waves by the Fraunhofer-diffraction method are analyzed using the general theory for the method, which takes such parameters as the spatial position, wave-width and propagating angle of a plasma-wave into account. The results have made it possible to design optical systems for measurements of plasma-waves in low to high temperature plasmas using radiations from microwave to far-infrared and infrared regions. In addition, a new technique is proposed for measurements of various parameters of plasmawaves at a single shot using a multi-beam method.

Further, applications of the method for measurements of drift waves in large tokamak plasmas are discussed, taking the two-waves effect into account, which occurs by a drift wave crossing an incident beam at two places. Finally, possibilities for new developments of the method and problems to be solved are briefly described.

1. まえがき

フラウンホーファ回折法は、(1)極小角散乱波(透 過ビーム中に存在する散乱波)が測定でき、長波長領 域の波動計測に優れる、(2)光学系が簡単で任意プラ ズマ装置への設置が容易である、等の利点を有し、従 来の協同散乱法の欠点を改善する新しいプラズマ波動 計測法として期待され、特に次世代の大型トカマク装 置での波動計測法として有望である^{1)~5)}.

著者等は、これまでに同法を初めてプラズマ波動計 測へ適用し計測技術の確立を行うとともに²⁰, プラズ マ波動の空間的位置, 傾き及び有限幅等の諸条件を内 包した一般計測理論を提示し、その実験的検証をマイ クロ波領域で行った⁵⁾. 同理論は、一般条件下でのプ ラズマ波動の(k,ω)スペクトルの測定を可能としたの みならず、 さらに、 同法を用いてプラズマ波動の位 置,幅、傾き等の空間分布特性の情報も得られる可能 性があることを示した. 従来の散乱法では、空間分布 の情報は、散乱領域を変えて多数回の測定を繰り返す ことによってしか得られないこと、さらに、長波長領域 の波動を計測する場合、小角散乱となって空間分解能 が失われることを考慮すると、上記フラウンホーファ 回折法の拡張はプラズマ波動計測法として極めて大き な進展ということができる。このような、空間分布の 測定に関して若干の考察が、これまでにも著者等によ り行われてきているが⁵⁾、そこではあくまでも(k,ω)

エネルギー変換工学専攻

^{*} 同上修士課程

スペクトルの測定に関する考察が中心であり,特に空間分布の測定条件,精度等は十分には明らかにされていない.

一方、トカマク中の異常輸送の原因として注目され ているドリフト波計測へ本計測法を適用する場合、小 半径方向に分布するプラズマ波動が入射ビームと2回 交鎖する効果(以下、2波動効果と呼ぶ)を考慮する 必要があることが指摘されている⁶⁾. ところが、この ような条件下での(k, ω) スペクトル及び空間分布の 計測方法については、未だ十分な検討が行われていな い.

本報では、以上の事情に鑑み、まずプラズマ波動の (\vec{k} , ω) スペクトル及び空間分布を十分な精度で測定可 能とするための計測光学条件を明らかにする。また、 2 波動効果を考慮した理論式を導き、トカマクプラズ マでの計測可能性並びに方法に関する考察を行う.

プラズマ波動の諸パラメータを測定するための 光学条件に関する考察

フラウンホーファ回折法では、プラズマ波動の情報 はフラウンホーファ領域における電磁波の空間的強度 分布 I(以下,空間プロファイルと略称する)の形よ り得られる.Iの理論式を次に示す⁵⁾.

$$I = |B'|^{2} \cdot \frac{\widetilde{n}_{e}}{q^{2}} \cdot e^{-(1+(u+2\theta_{i}/\theta_{0})^{2}/q^{2})u^{2}}$$

$$\times [e^{-(u-\theta)^{2}/(1-\theta_{i}^{2})}$$

$$\sin\{\rho(u^{2}-(u-\theta)^{2}/(1-\theta_{i}^{2})+\omega t\}$$

$$+e^{-(u+\theta)^{2}/(1-\theta_{i}^{2})}$$

$$\sin\{\rho(u^{2}-(u+\theta)^{2}/(1-\theta_{i}^{2})-\omega t\}]$$
(1)

ここで、 $|B'|^2 = (2\pi^{3/2}r_e w_b^2/fw_f) \cdot Z_k^2 \cdot E_s^2, u \equiv x_f/w_f$: 規格化空間座標, $\theta \equiv kw_0/2$: 規格化波数, $\rho \equiv z_0/Z_R$: 規格化波動位置, $q^{-1} \equiv r_{pw}/2Z_R$: 規格化波動幅, $Z_R \equiv \frac{1}{2}k_i w_0^2$: レーリーゾーン, $\theta_0 \equiv 2/k_i w_0$: 入射ビ ームの拡がり角, w_0 : スポットサイズ, k_i : 入射ビ ム波数, z_0 : 波動とビームウェスト間の距離, \tilde{n}_e : プ ラズマ 波動振幅, θ_i : 入射角, r_e : 電子古典半径, f: 受光レンズの焦点距離, w_f : 前方焦点面でのビー ム幅, E_0 : 入射電磁波振幅, である。プラズマ波動の 各規格化パラメータの値は, 測定プロファイルと理論 プロファイルとのカーブフィッティングによるか, も しくはより簡単に, **Fig. 1** に定義される各判定パラ

波動パラメー タ(規格化)	判定パラメータ	
波数 (8)	ビーク点座標 (u _m)	
幅 (q)	1 /e 強度息座標 (u _{1/e})	
位置 (p)	中心点とピーク点の強度比 (R = I0 /1)	
傾き (8 ₁)	非対称二山の周ピーク点独康比 $0H = (I_L - i_R) / (I_L + I_R)$	
(二波動)	(三山分布、中心点のずれ)	^u l/e ^u m

Fig. 1 Deciding factors for determinations of plasma-wave parameters.

メータの値を測定プロフィァイルから読みとることに より得られる.ところが、判定パラメータより波動パ ラメータを決定する場合、各波動パラメータのとる値 により測定精度が変化し、条件次第では測定精度の大 幅な低下もしくは測定不可能の状態が生じる.

本章では、マイクロ波領域を含め、さらに高温プラ ズマでの計測に適した赤外・遠赤外に亘る広領域で、 本計測法を任意条件下のプラズマ波動計測へ適用する 際の光学条件、測定精度及び方法を明らかにし、光学 系の基本設計指針としてまとめる.以下,波動パラメ ータのうち最も重要な波数 k のスペクトル測定条件 を考慮し、その後空間分布の諸パラメータの測定条件 を示す.

2-1. 波数 k を 測定する ための 条件

(i) 測定可能な (k, n_e) の範囲

計測光学系(ハードウェア)の制約条件として代表 的な値を仮定し、標準的な CO2 レーザ及び HCN レ ーザ装置を光源として 用いた場合 の 波動 パラメータ (k, n_e) の測定可能領域を Fig. 2 に示す. 本計測法 では、 入射電磁波が ガウス 基本 モードであることを 前提とするが、さらに、プラズマ波動の各パラメータ は全て ガウスビーム の スポットサイズ wo 及び波数 ki により規格化されている. すなわち, 計測光学系 の設計に当っては、入射波波長の選択及びスポットサ イズの設定が最も重要である. Fig. 2 により任意プ ラズマ波動 (k, n_e) の測定に適した入射ビームの選定 が可能であるが, その 際に 用いるべき スポットサイ ズ及び受光レンズの 焦点距離は Fig. 3 (HCN レー ザの場合)により得られる. 同図で、領域 $A_i B_i C_i$ D_i (i = 1, 2, 3, 4) $k \in h \in h \in h = 1000, 2000,$ 3000, 4000 mm のレンズを用いて, $\tilde{n}_e = 1 \times 10^{14}$ m⁻³の波動が測定できる領域を示す. 上限ライン A_i D_i は SN 比により決まるので、 n_e が大きい場合には 上方へ上る、例えば、 $\tilde{n}_e = 1 \times 10^{14} \text{m}^{-3}$ のときの上限 ライン $A_1 D_1$ が $n_e = 1 \times 10^{15} \text{m}^{-3}$ では $A'_1 D'_1$ にな る. 同様に、CO2 レーザに対する測定領域を Fig. 4

Fig. 2 Domains of applicability of the Fraunhofer-diffraction method for low frequency density-fluctuations observed in large-takamak plasmas, by using cw CO₂ and cw HCN lasers.

ments of (k, \tilde{n}_e) (HCN laser)

に示す.

以上,信号検出を可能にするための入射波波長とス ポットサイズの選択方法を示したが,次に十分な測定 精度を得るための計測光学条件を明らかにする.

(ii) 波数 k を測定するための光学条件と測定精度の検討

本計測法を実際に適用する場合を考慮し、また考察

Fig. 4 Optical conditions for measurements of (k, \tilde{n}_e) (CO₂ laser)

Fig. 5 (a) $u_m - \theta$ curve. (b) $u_{1/e} - \theta$ curve.

を簡単にするため、次の(a)~(c)の三段階に分けて考察 を進める。

(a)入射角(θ_i),位置(ρ)の影響が入らない場合(すなわち,θ_i~0,ρ~0と設定して計測が行える場合)

このときの未知波動パラメータは、波数 θ と幅 q の 二つである、判定パラメータ u_m , $u_{1/e}$ と波動パラメー タ θ , q の関係を求めると **Fig. 5** (a), (b) となる、 $u_m - \theta$ 曲線 (ピーク点特性曲線) は q によって変化す るが、 q が既知量であれば、 u_m を測定することにより θ が求まる、 q が未知量のときは、 u_m , $u_{1/e}$ を測定し、 **Fig. 5** (a), (b) を利用して θ , q を決定することがで きる、ただし、このとき波数分解能を良くするために は、条件 $\theta \ge 0.5$ が必要である、 また、 $q \ge 5$ のとき は q による $u_m - \theta$ 曲線の変化は無視でき、 u_m の値の みから θ を求めることができる、 波数分解能 $\Delta \theta$ は受 光面での検出器空間分解能 Δu_r によって左右 される が、 $4u_f(\equiv 4x_f/w_f) = \pm 0.05$ としたときの波数分解 能を Fig. 6 に示す.なお、Fig. 3, 4, にこのよう にして求めた 波数分解能を 点線で 記入している. 一 方、q の分解能を良くするには、条件 $q \leq 2$ が必要で、 このとき $\pm 4q/q \leq 0.5$ となる (Fig. 7). なお、光 学系の設計に当っては、信号強度は $\theta = 0.8$ 程度で最 大値をとり、それから θ が離れるに従って指数関数的 に減少することに留意する必要がある.

(b) 位置パラメータ ρ が波数測定に及ぼす影響の
 検討(または、入射角 θ_i ≃0 と設定して計測できる場
 合)

このときの未知波動パラメータは θ , q, ρ の三つであ る. (a) で考察した $u_m - \theta$ 曲線及び $u_{1/e} - \theta$ 曲線は ρ によって変わる (Fig. 8) ので, θ , q の測定精度が ρ によって影響を受ける. しかし, 条件 $\rho \leq 0.6$ が満 足されていれば, $u_m - \theta$ 曲線に対する ρ の影響は殆ど 無視できる程度となり, 波数測定精度の低下を $4\theta_{\rho}/\theta$ $\theta (= 4k_{\rho}/k) \leq 0.1$ にすることができる (Fig. 9). — 方, 位置 ρ の決定に対して, 検出器ノイズを考察する と, 判定パラメータ R の測定誤差は $4R/R = (1-R)/(R \cdot SNR)(SNR : SN 比)$ で与えられる. SNR = 10としたときの ρ の測定精度を Fig. 10 に示す. 条件 $q \geq 3$ では $R - \rho$ 曲線に対する q の影響は小さく, 位

Fig. 6 Accuracies of wave-number measurements.

Fig. 7 Accuracies of wave-width measurements.

置の分解能の低下を 4p/p≲0.1 に押えることができ る.

(c) 傾きパラメータ θ: が波数測定に及ぼす影響
 の検討(または、位置 ρ~0 と設定して計測できる場合)

このときの未知波動パラメータは、 θ, q, θ_i .の三つ である. $u_m - \theta$ 曲線は θ_i/θ_o により変化する(**Fig. 11**) ので、(a) 頃で示した θ, q の決定法の精度が θ_i/θ_o によって変わる. $q \ge 3 \sim 5$ であれば、 $u_m - \theta$ 曲線の qによる変化は無視できるが、 θ_i/θ_o による影響を失 くして精度の良い測定を行うには、(1) 式から解るよ うに (θ_i/θ_o) \ll (q-1)/2 の条件が必要となる. θ_i/θ_o による測定誤差の増大を除くには、その値に応じたqの値が得られなければならない.

次に、信号強度の θ_i/θ_o による変化を見ると、q が

Fig. 8 Effects of ρ for $u_m - \theta$ curves.

Fig. 9 Changes of accuracies of wavenumber measurements by p-values.

Fig. 10 Changes of accuracies of waveposition measurements by q-values.

小さいときほど θ_i/θ_0 の小さい値から急激に低下する (Fig. 12)。すなわち, q が大きいときは強度は小さく なるが, プラズマ波動が入射ビームに対しかなり傾い ていても強度は変わらない. 一方, q が小さいときは 強度は大きいが,少しの傾きにより強度は急激に低下 する. 例えば, $\theta=1.5$ として, 傾き零のときの強度 の1/10 強度点を求めると, q=5 の場合 $\theta_i \approx 20 \theta_0$ に 対し, q=1 の場合 $\theta_i \approx 5 \theta_0$ となる.

次に、 傾き θ_i の測定に利用する $H - \theta_i / \theta_0$ 曲線の 一例を Fig. 13 に示す. 傾きの情報を得ようとする場 合には、非対称性が強く現われるように、 $q \leq 1 \sim 2$ 及 び $(\theta_i / \theta_0) / q \approx 1$ の条件下で測定するのが望ましい.

(d) 結論

以上をまとめると,波数 k を測定するためには次の 諸条件が必要となる.

条件① SN 比が十分大きいこと.

条件② θ≥0.5 (k の分解能を上げる).

条件③ ρ≤0.6 (ρ による測定精度の低下を防ぐ)。

Fig. 11 Effects of (θ_i/θ_0) for $u_m - \theta$ curves.

Fig. 12 Relations between maximum signal-intensity and propagating angles.

Fig. 13 H- (θ_i/θ_0) curves.

条件④ $q \ge 3 \sim 5$ (q による測定精度の低下を防ぐ). 条件⑤ $\theta_i / \theta_0 \ll \frac{1}{2} (q-1)$ (θ_i / θ_0 による測定精度の 低下を防ぐ).

2-2. 空間分布を測定するための条件

(i) 位置 ρ を測定するための条件

2-1. の考察から, 位置 *ρ* を精度良く測定するため には, 次の光学条件が必要である.

(a) 波数パラメータ θ が既知量のとき

条件① SN 比が十分大きい.

条件② 0.2≤ρ≤1 (ρ の測定精度を上げる).

条件③ *q*≥5(*q* による測定精度低下を防ぐ).

条件④ $q_i/\theta_0 \ll \frac{1}{2}(q-1)(\theta_i/\theta_0)$ による測定精度低下を防ぐ).

(b) 波数パラメータ θ が未知量のとき

上記(a)の①~④の条件に加え, 2-1. で述べた k の測定条件が必要となる.

(ii) 幅 q を測定するための条件

(a) $\theta_i/\theta_0 \approx 0$ と設定できる場合または(b) θ が 既知量の場合に、q の決定が可能となる、いずれの場 合も、次の条件が必要となる、

条件① q≤1~2 (q の分解能を上げる).

条件② ρ≤0.1 (ρ による測定精度低下を防ぐ).

(\ddot{u}) 傾き θ_i/θ_0 を測定するための条件

上記の(ii)の(b)と同じ条件が必要である.

2-3. 計測光学条件と2ビーム測定法

以上, 各波動パラメータを測定するための光学条件 を求めたが、実際の測定に当って上記の各条件を満足 するよう入射電磁波の選択及びスポットサイズの設定 を行う必要がある.ところが、複数個の波動パラメー タを一回の測定で求めようとする場合、必要な全ての 条件を一つのビームによって実現することは困難なこ とが多い. このような場合には、複数ビームによる測 定が有効となる.以下,2ビームを使用する測定方法 (以下, これを2ビーム測定法と呼ぶ)を具体的に考 察する. 例えば, 被測定波動の幅が 10≤r_{bw}≤50 mm で、ビームウェストの 位置が波動の位置から Z₀≤10 mm 以内で設定可能とした場合, θ 及び q の測定が可 能な光学条件(woの条件)を Fig. 14 に示す. スポ ットサイズを 100 μ m $\leq w_0 \leq 450 \mu$ m に設定すれば qの測定が可能となる。測定可能な波動幅は 18≲ r_{pw} \leq 50 mm となる. 10 \leq r_{pw} \leq 18 mm では, z_0 \leq 10 mm が実現できれば測定可能となる Zo の条件付側定 可能領域となる. 一方, θ は w₀ ≤ 800 μm が測定

ì

可能領域で、 $350 \leq w_0 \leq 800 \ \mu m$ は幅 q の条件付測定 可能領域となる.ただし、上記の測定条件の吟味には SN 比は考慮されていないので、SN 比の検討と併せ て行う必要がある.Fig.14 で θ, q のそれぞれの測定 可能領域が重ならないビーム(w_0)を使って θ, q の同 時測定を行うには2ビーム測定法が必要となる.

3. トカマクプラズマでの波動計測に関する検討

本章では、トカマクプラズマ中のドリフト波計測へ の適用を考察するため、まず2波動効果を考慮した理 論式を導出して、2波動効果が測定プロファイルに及 ぼす影響を調べる.また、このような条件下での測定 方法を考察するとともに問題点を明らかにする.

3-1. 2 波動効果の検討

(A) 2 波動理論式と2 波動条件下での測定法

Fig. 14 An example of the two-beam method for measurements of wavenumber and width at a single shot.

Fig. 15 Changes of the theoretical profile by a phase difference ϕ_i between two waves.

Fig. 16 Relations between **R** and $|\rho_1 - \rho_2|$

本計測法の理論は、プラズマ波動による位相変調が 十分小さい条件の下で導かれているので、2波動が入 射ビームと交鎖する場合の理論式は、1波動の理論式 (1)の重ね合せにより求めることができる.(1)式を 基に2波動の理論式を求めると次のようになる.

$$\begin{split} V_{2} &= \sum_{j=1,2} |B'|^{2} \widetilde{n}_{ej} \left(\frac{1}{q_{j}^{2}} \right) e^{-[1+(u/q_{j}+2\theta_{ij}/q_{j}\theta_{0j})^{2}]u^{2}} \\ &\times [[e^{-(u-\theta)^{2}/(1-\theta_{ij}^{2})} \\ &\sin\{\rho_{j}(u^{2}-(u-\theta)^{2}/(1-\theta_{ij}^{2}))\} \\ &+ e^{-(u+\theta)^{2}/(1-\theta_{ij}^{2})} \\ &\sin\{\rho_{j}(u^{2}-(u+\theta)^{2}/(1-\theta_{ij}^{2}))\}]\cos(\omega t - \phi_{j}) \\ &+ [e^{-(u-\theta)^{2}/(1-\theta_{ij}^{2})} \\ &\cos\{\rho_{j}(u^{2}-(u-\theta)^{2}/(1-\theta_{ij}^{2}))\} \\ &- e^{-(u+\theta)^{2}/(1-\theta_{ij}^{2})} \\ &\cos\{\rho_{j}(u^{2}-(u+\theta)^{2}/(1-\theta_{ij}^{2}))\}] \\ &\sin(\omega t - \phi_{j})] \end{split}$$

ここで, 添字 *j* (=1,2) は, それぞれ波動 1,2 (**Fig.** 17 参照) を示す. また, φ₁=0, φ₂=φ₁ とする.

以下,(2)式をもとに各パラメータによる空間プロ ファイルの変化を考察し,このような条件下での計測 可能性を調べる.

(i) 計測可能性の吟味

問題を簡単化するため、まず $\theta_{i1} = \theta_{i2} = 0$, $t(\equiv n_{e2}/$ ne1)=1 と仮定した場合を考える. 1 波動時の測定に は含まれず,2波動測定に特有なパラメータは、2波 動間の位相差 ϕ_1 である.まず、 $|\rho_1| = |\rho_2|$ の場合は、 ø1はプロファイルの形には影響せず,信号強度のみを 変化させる.その強度は、 $\phi_i=0$ のとき零となり、 ϕ_i が π に近づく程大きくなる. 波数 θ と位置 ρ は, 1波 動の場合と 同様にして 求めることがで きる。一方, $|\rho_1| \neq |\rho_2|$ の場合は, Fig. 15 に示すように, $\phi_1 = 0$ のとき三山分布となり、 ϕ_i の増大とともに二山分布に なって谷部は中心点 (u=0) に近づく. 信号強度と ϕ_{i} との関係は $|\rho_1| = |\rho_2|$ の場合と類似の傾向を示す. 中心点からの谷部のずれ (4u₀) が 4u₀<0.1~0.2 で あれば、ピーク点座標 u_m から θ を求める際の測定誤 差は $4\theta/\theta(=4k/k) \leq 0.05 \sim 0.1$ となる. また, 1波 動の場合と同様に、求めた θ を パラメータとして、 **Fig. 16** の関係より2波動間の距離 |ρ₁-ρ₂| を求め ることができる.

(ii)問題点

(a) 傾き角 θ_{i1}, θ_{i2} の問題 小半径方向に分布す

る波動を計測する場合、 $\theta_{i1} \approx -\theta_{i2}$ がほぼ成り立つと 仮定すると、 $|\rho_1| \neq |\rho_2|$ のときは非対称プロファイル であるが、 $|\rho_1| = |\rho_2|$ のときは対称プロファイルとな り θ 、 $|\rho_1 - \rho_2|$ の決定が可能となる.しかし、1波動 のときと同様に θ_{ij} により u_m が変化するので、これ が測定精度に与える影響をさらに調べ、処理方法を考 える必要がある.

(b) 波動振幅強度比 t の問題 t の値により,非 対称プロファイル及び谷部のずれ duo が生じる.した がって t=1 の保証がないときには,t がプロファイ ルに与える影響についてさらに考察を行い,波数の測 定に誤りが生じないようにする必要がある.

(c)位相差 ø₁の問題 ポロイダル面での入射ビ ームの入射位置により,ø₁の効果で信号強度が弱く検 出できない点が存在する、したがって、位相差に留意 して計測を行わないと、波動が存在しないと誤認する 場合が生じる(これは、従来の散乱法で小角散乱の場 合も同様である。)。特に、短波長波動の計測時には注 意を要する.

(B) 検証実験

2波動効果の実験的検証はこれまで行われていない ので,最も特徴的なプロファイルの得られる条件を選 び、CO₂ レーザ(1W)と超音波波動 (f=40 kHz, k ~ 0.74 mm⁻¹) を用いて実験を行った. 実験装置の 概略を Fig. 17 に示す. 検出器には市販の HgTe-CdTe 光伝導検出器 (比検出感度 D*=2.4×10¹⁰cm Hz^{1/2}W⁻¹)を用いた. スリットは幅 100 µm, 高さ 2mm で,信号プロファイルの空間的拡がり幅約 1.3 mm に対し約1/13 であるので空間分解能は十分であ る. 相対位相差 ør を変えてプロファイルの変化を測 定した結果を Fig. 18 (a)~(c) に、同実験条件下で の理論プロファイルを同図(A)~(C)に示す. 測定プ ロファイルは、理論プロファイルと良い一致を示し, 凹部及び凸部の座標位置も理論値に対し±10%以内 の誤差で一致している. これより, 重ね合せの原理に 基づいて 得られた 2 波動理論式の 妥当性が 確認され た. また CO2 レーザによる計測技術の基礎が固めら れた.

3-2. 大型トカマクへの適用に関する検討

前節で述べたように,本計測法をトカマク中のドリ フト波計測へ適用するには,2波動効果の吟味と処理 法に未だ問題が残されている.したがって,ここでは 現時点で評価が可能な範囲で,大型トカマクへの適用 問題を考える.

(i)入射電磁波の選択 代表的大型トカマク中で 発生する低周波密度揺動の存在領域を前掲の Fig. 2 に示す.大型トカマク装置へ本計測法を適用する際の 入射電磁波としては、プラズマによる屈折効果が無視 できるサブミリレーザ及び CO₂ レーザが適切である. 特に、次世代の大型トカマク装置での計測には、発振 パワーの大きい CO₂ レーザが最適であると考えられ れる.

(ii)適用の具体的評価(JIPP T-II 装置の場合) 光学系として、ガウスビームのビーム伝送特性が実測 により確認されている HCN レーザ装置"を利用した 計測を考える.計測システムの概略を Fig. 19 に示 す.検出器はショットキーバリアダイオードである.

(a) SN 比の評価 Fig. 19 の光学系で計測可能
 な k の値を評価する.測定条件を,

入射パワー: $P_0=15\times10^{-3}$ W, 電子密度揺動の強 さ: $\tilde{n}_e=2.5\times10^{-16}$ m⁻³,幅: $r_{Pw}\simeq 5\times10^{-2}$ m,入射波 波長: $\lambda_i\simeq 337\times10^{-6}$ m,スポットサイズ $w_0=6.4$ mm 前方焦点面でのビーム幅: $w_f=15.9\times10^{-3}$ m,スリッ ト幅: $dx=2\times10^{-3}$ m, $dy=15\times10^{-3}$ m, 受光レンズ

Fig. 17 Experimental setup for verification of the two-waves effect.

Fig. 18 Measured profiles $(a \sim c)$ and theoretical profiles $(A \sim C)$ at various phase difference ϕ_i

焦点距離 f=950×10-3m

とする. 散乱信号パワー P_s は $P_s \simeq (r_e \tilde{n}_e r_{pw}^2 \pi)^2 P_0$ ・ *Ax Ay*/2*f*² ≈7.64×10⁻⁸W となる. ビーム通過路に存 在する透過率48%のサファイアウィンドウ及び透過率 約70%の TPXレンズ4枚による 減衰を 考慮すると ミキサから見た実効散乱パワーは P_{SM}~4.2×10⁻⁹W となる.一方、ショットキーバリアダイオードの雑音 等価 パワー (ビデオ検波) を NEP_v~5×10⁻¹⁰W/ √Hz と見積ると⁸⁾, ヘテロダイン検波時の雑音等価 パワーは NEP m~3.3×10-5W/√Hz となる. ここで 局発電力としてスリットを通過する電力 PLO~(2P0M $/\pi w_1^2$)· e^{-2u^2} · $dx dy \simeq 3.8 \times 10^{-5} W$ (ミキサ入力透過パ ワー $P_{0M} \simeq 0.83 \times 10^{-3} W, \theta \simeq 0.5$) を考慮した. さら に、受信バンド幅を *4B*~10×10³Hz とすると雑音パ ワーは $P_N \simeq 3.3 \times 10^{-11}$ W となる. SN 比は SNR= (P_{SM}/P_N)=21 dB となる. SN 比の安全係数を 10 dB にとると、測定可能な θ の上限は 1.74 となる. また 波数分解能の点から θ>0.5 とすると、結局測定可能 な波数の値は 0.5<θ<1.74 すなわち, 0.15 mm⁻¹< $k < 0.54 \text{ mm}^{-1} \text{ } \text{Ltas}.$

(b) 測定性能 本実験条件下では、 $q(=2 Z_R/r_{\rhow}) \ge 4, \rho(=z_0/Z_R) \le 0.4$ であるので、 q, ρ による波数分解能の低下は小さく、波数分解能は $4k \simeq \pm 0.1 \text{mm}^{-1}$ ($k=0.15 \text{ mm}^{-1}$) $\sim \pm 0.063 \text{ mm}^{-1}$ ($k=0.54 \text{ mm}^{-1}$) 程度である.また、検出器ノイズ等で $4R \simeq \pm 0.05$ ($R=0.2, \theta=0.5$ のとき) の誤差で計測された場合、空間分解能は $4\rho \simeq \pm 0.06$, 距離にして $4z_0$

≃±23 mm (z₀≃100 mm のとき) 程度となる.

以上,信号検出能力の評価を行ったが,2波動計測 時の位相差 ø₁ 効果や強度比 t 効果をさらに吟味する 必要があり,これは今後の課題である.

4. ま と め

得られた結果をまとめると次のようになる.

(1) 低温プラズマから高温プラズマに亘る一般的 なプラズマを測定対象として、プラズマ波動の諸パラ メータを計測するための光学条件、精度及び方法を明 らかにした。

(2) トカマクプラズマ中のドリフト波測定で問題 となる2波動効果の理論式を導き、それが測定プロフ ァイルに及ぼす影響を明らかにするとともに、それら の条件下での波動計測方法を考察した。

(3) JIPP T-II トカマクプラズマを具体的測定対 象として,本計測法の大型トカマクへの適用に関する 考察を行った.

なお,本計測法の次期大型トカマクへの適用並びに より高度な計測技術へ発展させる観点から,次のよう な課題を早急に検討して行く必要があると考えられ る.

(i) 2 波動効果のより 一般的取扱い法の 開発 2 章で 2 波動効果について示し,適切な光学系を構成す れば 波数及び 位置の測定が 可能であることを 示した が,実際の適用に当っては,位相差 ϕ_i ,強度比 t,傾 き θ_{ij} 等の予測はかなり難しく,これらの取扱い法を さらに考慮する必要がある.

(ii)次期大型トカマクへの適用 現在の大型トカ マクへの適用と技術の改善を行いながら、次期大型ト カマクへの適用性,方法等の検討を行う必要がある.

(iii) 諸種の波動現象への適用 1 波動計測につい ては、十分な光学系が構成できる段階に達しているの で、種々のプラズマ波動現象の解明へ適用を広げて行 くことが必要である.

(iv)計測法としての発展 (a)本法では,信号 強度のプロファイルのみを検討したが,マルチチャン ネル検出器を用いて前方焦点面での信号の空間的位相 差を検出すれば,測定性能の拡大(波動伝搬方向の測定 等)が可能となる.これらの点に関する理論的検討及 び技術開発が必要である.(b)2ビーム測定法に加 え,情報量がより増えると思われる2ビーム相関測定 法等の開発も興味ある問題である.(c)本計測法は, 入射ビーム通過路の全ての波動を検出しうるので,多 くのビームを異なる位置に入射させプラズマ全体の情 報を得るプラズマ密度揺動モニター法としての発展可 能性を持つ.このような新規の利用法の開発も重要で ある.

参考文献

- M. von Hellermann, A. Murdoch and D. E. Evans: Conf. Dig. 5th Int. Conf. Infrared and Millimetre Waves (1980) 270.
- Y. Sonoda, A. Sakurai, K. Muraoka and M. Akazaki: Jpn. J. Appl. Phys. 21 (1982) L 372.
- 3) D. E. Evans, M. von Hellermann and E.

Holzhauer: Plasma Phys. 24 (1982) 819.

- D. E. Evans, E. J. Doyle, D. Frigione, M. von Hellermann and A. Murdoch: Plasma Phys. 25 (1983) 617.
- Y. Sonoda, Y. Suetsugu, K. Muraoka and M. Akazaki: Plasma Phys. 25 (1983) 1113.
- 6) D. E. Evans and E. J. Doyle: Kyushu Int. Sympo. Laser-Aided Plasma Diagnostics (1983) 71.
- T. Tetsuka, A. Nishizawa, T. Sakai, K. Kawahata, A. Mase, T. Tsukishima and J. Fujita: J. Phys. Soc. Jpn. 52 (1983) 1242.
- 8) 水野・勝又・鈴木・横尾・小野:遠赤外線による超高温プラズマ診断研究報告書(エネルギー特別研究(核融合)計画研究)(1983)24.