九州大学学術情報リポジトリ Kyushu University Institutional Repository

レーザー共鳴散乱法による高温プラズマ中水素原子 密度の測定

内野, 喜一郎 九州大学大学院総合理工学研究科エネルギー変換工学専攻

古賀, 和幸 九州大学大学院総合理工学研究科エネルギー変換工学専攻

梶原,寿了 九州大学大学院総合理工学研究科エネルギー変換工学専攻

前田, 三男 九州大学工学部電気工学科

他

https://doi.org/10.15017/17540

出版情報:九州大学大学院総合理工学報告.3(2), pp.139-147, 1981-12-30.九州大学大学院総合理工 学研究科 バージョン:

権利関係:

レーザー共鳴散乱法による高温プラズマ中 水素原子密度の測定

内野喜一郎* ・古 賀 和 幸** ・梶 原 寿 了** 前 田 三 男***・村 岡 克 紀****・赤 崎 正 則**** (原稿受理 昭和 56 年 10 月 31 日)

Laser Resonance Scattering Measurements of Hydrogen Atom Densities in High Temperature Plasmas

Kiichiro UCHINO, Kazuyuki KOGA, Toshinori KAJIWARA, Mitsuo MAEDA, Katsunori MURAOKA and Masanori AKAZAKI

The necessary Lyman alpha laser power needed to obtain a given SNR is calculated for the laser resonance scattering measurements of hydrogen atom densities in high temperature plasmas. The results show that a laser power of more than kW is needed for the measurements in the center of the plasma with good SNR, whereas 200 W is sufficient at the periphery. For the latter measurement, an excimer laser pumped dye laser (wavelength tuned at 365 nm) and a third harmonic generator by a tripling-gascell is being constructed, and preliminary measurements present promising results.

In order to establish the laser resonance scattering technique in the hydrogen Balmer transition, the measurements were done against a plasma in a low density DC discharge in hydrogen. The results were satisfactory, confirming the validity of the technique.

1. まえがき

制御熱核融合の臨界条件がトカマクにより実現に向 いつつある現在,燃料である水素(の同位元素)のリ サイクリングを制御し,その密度を放電時間(10~20 秒)内で一定に保つ問題が重要になっている.このた めに壁面での気体,固体間相互作用,外部からの水素 注入法等に関して詳しい研究が行なわれ始めている が,それらの効果の定量的評価を行なうためには,ま ずプラズマ内の水素原子密度およびその分布,あるい は注入された水素原子とイオンの荷電交換により生ず る高速原子の壁への流束,逆に真空容器に吸着された 水素原子のプラズマ中への流束等を空間,時間分解能 良く,かつ微量な原子密度まで十分な精度で測定する

必要がある".

レーザー共鳴散乱法によれば,共鳴散乱の断面積が 自由電子によるトムソン散乱断面積に比べて可視光で 10桁以上も大きいこと,このような大きな断面積は入 射レーザー光子のエネルギーが被測定原子の遷移可能 なエネルギー準位の差(放射スペクトル系列)に一致 したときのみ得られることから特定の粒子の選別測定 が可能であること,レーザー発振時間の調整によりナ ノ秒程度以下の時間分解も可能であること,レーザー ビーム径および測定系を適当に設定することにより1 mm 程度までの空間分解が可能であること等により 上記の要件は原理的にはすべて満される.一方,近年 の単色性の良い可変波長レーザーの急速な発展がこの 計測法の実現を可能とし,そのための関連技術開発も また急速に進められている.

水素原子の放射スペクトル系列 は 基底状態 への 遷 移,第一励起準位への遷移,等々に対応してそれぞれ ライマン系列,バルマー系列,等々と名付けられてい

^{*} エネルギー変換工学専攻博士課程

^{**} エネルギー変換工学専攻修士課程

^{***} 工学部電気工学科

^{****} エネルギー変換工学専攻

る. プラズマ中の水素原子は大部分が基底状態にある ため、ライマン系列を用いた共鳴散乱によれば水素原 子密度が精度良く求まる. しかしその波長は最も長波 長のライマン α 線(L_{α})でも 121.6 nm で真空紫外 域にあり、この領域での可変波長大出力レーザーは開 発の途上にある. 一方、バルマー系列は可視および近 紫外域にあり、特にバルマー α 線(H_{α} ,656.3 nm)に 同調可能なレーザーについてはすでに十分な出力パワ ーが得られており、光源の点では問題ない. しかし、 主量子数2と3の励起準位間の遷移を利用するため、 H_{α} 線共鳴散乱計測から水素原子密度を得るには各レ ベル間の粒子分布について適当なプラズマモデルに基 づいて計算する必要があり、モデルの立て方しだいで 精度が変わり、信頼性の高い測定法とするにはまだ多 くの研究を要する.

著者等は以上の現状から、 L_{α} 線レーザーによる高 温プラズマ中の水素原子の密度、流束測定技術の確立 を目指して、 L_{α} 線レーザーの開発、および H_{α} 線に よる共鳴散乱計測技術の確立の二方向から研究を進め ている.本報では L_{α} 線による共鳴散乱測定を高温プ ラズマに適用するに当って要求される必要レーザーパ ワーおよびSN比について、特に国内において本法の 最初の対象となると考えられるJIPPT-IIトカマク (名古屋大学プラズマ研究所)のプラズマパラメータ を用いて議論する.その評価に基づき著者等のグルー プで進めている L_{α} 線レーザーの開発の現状を示す. また、バルマー系列での技術確立を目指して行なった 水素直流放電管中の水素励起原子密度の H_{α} 線共鳴散 乱による測定結果について報告する.

2. 高温プラズマの L_α 共鳴散乱

2.1 共鳴散乱法の原理

Fig. 1 に示す 水素原子準位図において, 主量子数 1,2準位間の遷移 (L_{α} 線;中心周波数を ν_0 とする.) が $g(\nu_0)$ というスペクトルを持つ時,エネルギー束 $I(\nu_0)$ の単色光が入射した場合を考えると,励起準位 のレート方程式は,

$$\frac{dn_2}{dt} = \frac{I(\nu_0)}{c} g(\nu_0) (B_{12}n_1 - B_{21}n_2) - A_{21}n_2 \quad (1)$$

となる. ここで、 c は光速、 n_1 、 n_2 はそれぞれ 主量 子数 1、2 準位の密度、 B_{12} 、 B_{21} 、 A_{21} はそれぞれ、吸 収、誘導放出、自然放射のアインシュタイン係数であ る. 主量子数 1、2 準位の縮退度をそれぞれ g_1 、 g_2 と

Fig. 1 Hydrogen atomic energy levels relevant to L_{α} and H_{α} laser resonance scattering

すると,

$$g_1 B_{12} = g_2 B_{21} = \frac{g_2 A_{21} c^3}{8 \pi h \nu^3}$$
(2)

が成立する. 原子数密度n (= n_1+n_2) は一定で, t=0 では原子はすべて基底準位にあるとして (1) 式を解く と,

$$n_2 = \frac{g_2 n}{g_1 + g_2} \cdot \frac{S}{1 + S} \{1 - \exp[-(S + 1)A_{21}t]\}$$
(3)

となる.(3) 式において $A_{21}=4.69\times10^8 s^{-1}$ である から、レーザーパルス幅が 2 ns より十分長いとき系 は定常状態にあるとみなせる. このとき (3) 式は、

$$n_2 = \frac{g_2 n}{g_1 + g_2} \frac{S}{1 + S}$$
(4)

となる. ここで S は飽和パラメータで,

$$S = I(\nu_0) \frac{g_1 + g_2}{g_1} \frac{c^2}{8\pi h \nu^3} g(\nu_0)$$
 (5)

である. S=1 より大きな入力に対しては準位間の飽 和が顕著になる. S=1 のときの $I(v_0)$ を I_s で表わ し,その波長表現を用いると,

$$I_s(\lambda_0) = \frac{g_1}{g_1 + g_2} \frac{8\pi hc^2}{\lambda_0^5} \frac{1}{g(\lambda_0)} = \phi_s(\lambda_0) \Delta \lambda \quad (6)$$

となる. ここで 4λ は水素原子のスペクトル広がり 幅, $\phi_s(\lambda_0) (= \{g_1/(g_1+g_2)\} \cdot (8\pi hc^2/\lambda_0^3))$ は単位波長 当りの 飽和 エネルギー 束 であり、 L_α 線については ($\lambda_0 = 121.6$ nm, $g_1 = 2$, $g_2 = 8$), $\phi_s(\lambda_0) = 1.13 \times 10^{10}$ W/m² · nm である.

1秒当りに観測される散乱光子の数 ψ は,

$$\psi = \eta \frac{\Delta Q}{4\pi} V n_2 A_{21}$$
$$= \eta \frac{\Delta Q}{4\pi} \frac{g_2}{g_1 + g_2} \frac{S}{1 + S} \equiv K \cdot n \tag{7}$$

となる. ここで η は測光系全体の検知効率, 42 は受 光立体角, V は散乱体積である. (7) 式より散乱光 子数 ψ は原子数密度 n に比例するから, 係数 K を なんらかの方法で較正すれば観測値 ψ から原子密度 が得られる.

2. 2 高温プラズマ中心部での共鳴散乱計測におけ る SN 比と必要レーザーパワー

国内の高温プラズマ源としてプラズマ研究所 JIPP-T-II 装置をとりあげ、同装置のパラメータを用いて プラズマ中心部での L_{α} 共鳴散乱計測を行なう際に、 十分なSN比 (\geq 10)を得るのに必要なレーザーパワ ーの値を計算する. JIPPT-II のプラズマのパラメー タは実測値(トーラス小半径中心軸上の電子温度 T_e (0) \approx 0.8~1.3 keV,小半径断面内の平均電子密度 $\overline{n_e} \approx 2 \times 10^{19} \text{ m}^{-3}$)を考慮し、またトーラス小半径方向 に放物線分布の仮定をし、計算には次式の表現を用い た.

$$\begin{cases} n_e(r) \\ T_e(r) \end{cases} = \begin{cases} n_e(0) \\ T_e(0) \end{cases} \left[1 - 0.99 \left(\frac{r}{r_p} \right)^2 \right]$$
(8)

ここで、 $n_e(0)=4\times10^{19}$ m⁻³, $T_e(0)=0.9$ keV, プラ ズマ半径 $r_p=0.17$ m である. 水素原子密度 の 分布 $n_H(r)$ は実測例がわずかしかなく不確定であるが、プ ラズマ周辺での原子密度は $n_H(r_p)=1\times10^{16}$ m⁻³ 程度 であるから、これを手がかりにし、中心での原子密 度については i) $n_H(0)=3\times10^{13}$ m⁻³, および ii) $n_H(0)=2\times10^{14}$ m⁻³ の場合について計算を行なう. トーラス小半径方向の水素原子密度分布は Koopman ら²⁰ に従い、また Razdobarin ら³⁰ の実測値も考慮 して次式を仮定する.

$$n_{H}(r) = n_{H}(0) \left[1 + \left(\frac{n_{H}(r_{p})}{n_{H}(0)} - 1 \right) \exp(-0.4(r_{p} - r)) \right]$$
(9)

計算に当っては Koopman ら²⁰ のモデルを用いた ので,以下でそれを略述する. 今日のトカマクプラズ マでは L_{α} 線について光学的に薄いと仮定でき(光学 的厚さが問題となるのは $n_{II} \gtrsim 10^{17}$ m⁻³), また水素原 子各準位の占有数についての詳しい解析の結果は良い 近似でトカマクプラズマにコロナモデルが適用できる ことを示している²⁰. すなわち,主量子数2の準位の 定常的占有密度を n_{20} (添字0は後で外部からのレー ザー放射を行なう場合と区別するためにつけた.),主 量子数1準位から2準位への電子衝突による励起割合 を X_{12} (X_{12} は電子温度の関数)とすると,主量子数 2準位の原子密度は。

$$\frac{n_{20}(r)}{n_{\pi}(r)} = \frac{n_{e}(r) \cdot X_{12}[T_{e}(r)]}{A_{21}} \ll 1$$
(10)

と表わされる.次にパルス時間幅 τ_L ,スペクトル幅 $d\nu_L$ (共に矩形波形を考える.)で、単位面積の入射パ ワーF[kW/m²]の L_{α} 線レーザーがプラズマ中心に 照射された時の主量子数2準位の原子密度を求める. この時の L_{α} 線吸収による主量子数1準位から2準位 への励起割合を $R_{12}(=I(\nu_0)g(\nu_0)B_{12}/c)$ とすると、 R_{12} は、

$$R_{12} = \frac{10^{-1} \cdot F}{h_{\nu_0} \, \Delta_{\nu_L}} \frac{\pi e^2}{mc} f_{12} \qquad [s^{-1}] \tag{11}$$

と表わされる. ここで $h\nu_0$ [J] は 遷移 エネルギー, ($\pi e^2/mc$)· f_{12} [cm²Hz] はスペクトルプロフィルで積 分した遷移の断面積である.原子の温度を T_H (°K), 質量を M とすると,原子のスペクトルはドップラー 幅 $d\nu_D = (\nu_0/c)(2kT_H/M)$ [Hz] (k はボルツマン定 数) で広がるため、レーザーのスペクトル幅 $d\nu_L = 1.5$ $d\nu_D$ と決め、すべての原子が光源による 遷移 に 関与 するようにする.電子による衝突励起の項 ($n_1n_eX_{12}$) を (1) 式の右辺に加え、初期条件 $n_2 = n_{20}(=n_H n_e X_{12}/A_{21})$,および L_{α} 線照射が他の準位 に影響を与えな い ($n_2 + n_1 = n_{20} + n_{10} = n_H$) との仮定の下に (1) 式を 解くと、 L_{α} 線照射後数ナノ秒で達成される定常状態 での主量子数 2 準位 の原子密度は (n_eX_{12} は A_{21} に 比べて無視する近似の下に) 次のようになる.

$$n_{2F} = n_{H} \frac{n_{e}(r) X_{12} [T_{e}(r)] + R_{12}}{(1 + g_{1}/g_{2}) R_{12} + A_{21}}$$
(12)

Fig. 2 に示す計測配置において JIPPT-II プラズ マ中心部の共鳴散乱計測を行なうものとする、観測は L_{α} レーザービーム (半径 r_{b})の進行方向に対して

Fig. 2 Optical arrangement for the detection of H atoms at the center of the tokamak plasma by a resonance scattering

90°方向から行なう.散乱光は散乱体積から r_a の位置に置かれた レンズ(半径 r_w)で集光され、スリット M上に結像される.断面 πr_b^a ,長さlの散乱体積からの共鳴散乱光のみがスリットを通過し、検出器D(応答時間 τ_a ,量子効率 ε , L_{α} 線にのみ感応するとする.)で検出される.

検出器電流の中のシグナル電流 I。は,

$$I_{s} = e\varepsilon \frac{4\mathscr{Q}}{4\pi} A_{21} V[n_{2F}(0) - n_{20}(0)] \frac{\tau_{L}}{(\tau_{L}^{2} + \tau_{d}^{2})^{1/2}} [A]$$
(13)

である. ここで, e は素電荷, 散乱体積 $V = \pi r_b^2 l$, 受光立体角 $4\varrho = \pi r_w^2/r_a^2$. $\tau_L/(\tau_L^2 + \tau_a^2)^{1/2}$ は検出器の 応答遅れに対する補正である.

検出器の受光面が集光レンズに対して張る立体角内 にあるプラズマからの放射光が検出器に入射し,検出 器電流の背景光成分 I_b となる. I_b に寄与するプラズ マ体積を受光の軸に垂直な平面で切り,厚さ dr の体 積素片に分けると,半径 r の位置の体積素片からの I_b への寄与は $n_{20}(r)$ に比例し, $dI_b(r) = e\varepsilon(4.9/4\pi)$ $2r_b I A_{21} n_{20}(r) dr となる. これをプラズマ体積で積分$ $すると <math>I_b$ が求まる.

$$I_{b} = e \varepsilon \frac{d\mathcal{Q}}{4\pi} 2r_{b} l A_{21} \int_{-r_{b}}^{r_{b}} n_{20}(r) dr \quad [A] \quad (14)$$

この背景光電流により二種類の雑音が生ずる.一つは 検出器において発生するショットノイズ *δI*_b で,これ は $\delta I_b = (eI_b/\tau_d)^{1/2}$ で表わされる. 他方はプラズマ の揺動による背景光自体の変動 $4I_b$ で、これは I_b に 比例すると仮定し、比例定数を κ とする $(4I_b = \kappa I_b)$. これら二つの 雑音のそれぞれに 対して 以下 のように SN 比を定義する.

$$S/N = I_s/\delta I_b$$

$$S/F = I_s/\Delta I_b$$
(15)

(15) 式を計算するに必要な諸量を以下にまとめて記 す.

プラズマ半径	: $r_p = 0.17 \text{ m}$	
レーザービーム半径	: $r_b = 5 \text{ mm}$	
散乱体積の長さ	: $l = 50 \text{ mm}$	
集光レンズ半径	: $r_w = 25 \text{ mm}$	
レンズと散乱体積の距	難: $r_d = 0.4 \text{ m}$	
検出器の量子効率	: ε =0.1	
検出器応答時間	: $\tau_d = 10 \text{ ns}$	
レーザー光照射時間	: $\tau_L = 10 \text{ ns}$	
背景光のゆらぎの割合	$: \kappa (= \Delta I_b / I_b) = 0.0$)1
プラズマ中心での原子	温度: $T_{H}(0) = 100 \text{ eV}$	

また, (10), (12) 式中の電子衝突による励起割合 X₁₂ は, Johnson⁵⁾ の式を用いて計算した.

以上の手続きにより求めた SN 比をレーザーパワー $P(=F \cdot \pi r_b^2)$ を横軸に示したものが Fig. 3 である. Fig. 3 によれば JIPPT-II プラズマ中心部の水素原

Fig. 3 Necessary L_{α} source power P(kW)for the L_{α} resonance scattering measurements of H atoms at the center of the JIPPT-II tokamak plasma needed to obtain the SNR in the ordinate. Definitions of S/Nand S/F are shown in Eq. (15) 子を十分な SN 比で検知するには数 kW 以上の レー ザーパワーが必要である. L_{α} 線付近で同調可能なレ ーザーのパワーは現在最大 300 W 程度であり,上記 実験のためには一桁以上の出力向上が必要である.

2.3 高温プラズマ周辺での共鳴散乱計測における SN 比と必要レーザーパワー

高温プラズマ中心部での共鳴散乱計測では2.2節で 議論したようにSN 比は背景光で決まっていたから, 高温プラズマからの放射光が直接測光系に入らない配 置での共鳴散乱計測が行なえれば,より小さなレーザ ーパワーで十分なSN 比が得られる.そのような計測 は Fig. 4 に示す配置での高温プラズマ周辺部の共鳴 散乱計測において可能である.この高温プラズマ周辺 での計測では、プラズマ中心部に比べて水素原子密度 が二桁程度大きい ($n_{\rm H}$ \simeq 1×10¹⁶ m⁻³) ことからも必要 レーザーパワーの低減が期待される.壁方向およびプ ラズマ中心方向への流束の測定からエネルギー損失お よび水素原子リサイクリングに関する情報が得られ, 高温プラズマ周辺での共鳴散乱測定は核融合炉実現の 研究上で極めて大きな意義をもつ.

Fig. 4 Optical arrangement for the detection of H atoms at the periphery of the tokamak plasma by a resonance scattering

再び JIPPT-II の寸法を考え, Fig. 4 の配置でプ ラズマ周辺の水素原子密度の共鳴散乱測定を行なうと きの レーザーパワー と SN 比の関係を Fig. 5 に示 す. ここの計算では背景光による雑音は考えず, 信号 自体のショットノイズにより SN 比が決まるとして,

Fig. 5 Necessary L_{α} source power P(W)for the L_{α} resonance scattering measurements of H atoms at the periphery of the JIPPT-II tokamak plasma needed to obtain the SNR in the ordinates. The results are shown for $T_e=1 eV$ (a) and 0.03 eV (b), and the parameters of the curves are the laser beam cross sections

SN 比の定義は,

$$S/N = \frac{I_s}{\delta I_s} = \frac{I_s}{(eI_s/\tau_d)^{1/2}} = \left(\frac{I_s\tau_d}{e}\right)^{1/2}$$
(16)

とした(プラズマの放射光が器壁での反射を通じて測 光系に入射することが考えられるが、その影響は測光 系を適当に調整することにより(16)式で決まる SN 比以下にすることが可能である。). 水素原子密度は $n_{H}=1\times10^{16}$ m⁻³ とし、水素原子温度 は $T_{H}=1$ eV (Fig. 5(a))および 0.03 eV(Fig. 5(b))の二つの場 合についての計算結果を示した. 散乱体積の長さを l=20 mm としたこと、およびレーザービーム断面 積(π r⁶)をパラメータとしたことを除いて幾何学的 寸法は2.2節と同じに取った. Fig. 5 より、プラズマ 周辺での水素原子温度が 1 eV であるとしても、数W のレーザー光で十分な SN 比が得られる. 同図で一点 鎖線により L_{α} 線の飽和パワーを示したが、この飽和 パワー以上のレーザーパワーにより励起を行なえば散 乱信号はレーザーパワーに依存しなくなり、測定値の 信頼性が 高まる. 断面 1 mm² の レーザービーム で S=1 を得るには 200 W 程度 のパワー が必要である が、これは現在の L_{α} 線レーザー発生技術で十分達成 可能なパワーである.

高温プラズマ中水素原子検知のための L_α 線レ ーザーの開発

2節の議論からもわかるように真空紫外域ではレー ザーのパワーを高めることが直接測定範囲を拡大する ことにつながるため,可変波長の高出力真空紫外光源 の研究が重要である.現在のところ真空紫外域での高 出力の発振を得るにはガス媒体による高調波発生法を 使うのが最も有望である.最近マックスプランク研究 所の Langer らは Kr/Ar 混合ガス, あるいは Be 蒸気中で色素レーザー光の第三高調波を発生させるこ とにより、L_α線付近で同調可能な 300 W 程度の出 力光を得ている⁶. ところが 変換効率は最大 3×10⁻⁴ にしか達せず、大きな出力を得るには 365 nm(121.6 ×3 nm) での高出力の色素レーザーを開発 すること が重要となる.近年急速に発達しつつある希ガスハラ イド系エキシマーレーザー,特に KrF (249 nm) あ るいは XeCl (308 nm) エキシマーレーザーの発振光 で色素レーザーを励起すれば、高い効率で近紫外域の 発振を得ることができる.

Fig. 6 Arrangement of excimer-laser-pumped dye laser and gas cell for the generation of tunable coherent radiation around L_{α} line

2.2 節で示したように高い信頼性で, 200 W 程度の L_{α} 線出力を得ることが当面の目標となるため、著者 等は実用性の高い、エキシマーレーザー励起色素レー ザーの開発を行なった. そのブロック図を Fig. 6 に 示す. XeCl/KrF エキシマーレーザーは三段のマル クス回路を有するUV予備電離放電励起形である. 全 圧 3 atm で HCl: Xe: Ne (混合比 5:30:2245) 混合ガスを用い、入力 107 J のとき、波長 308 nm で 最大 0.633 J (パルス幅 35 ns FWHM, 18.1 MW)の 出力が得られた. 色素レーザーは 二段の 増幅器を有 し、同調はブレーズ入射形の回折格子(1200本/mm, 2~4次)で行なう. ローダミン6G色素の場合, スペ クトル幅 2 pm, パワー変換効率 7.8%を得た. 365 nm 域での発振特性を Table 1 にまとめた. Butyl PBD を色素として用い、エネルギー変換効率 6.9%, パワー変換効率16%で,1MW 以上の出力を得た. 現在は 200 W 程度の L_{α} 線出力を目標として, Kr/ Ar 混合ガス中での第三高調波発生の実験を行なって いる.

Table 1. Characteristics of the excimer-
laser-pumped dye laser at the
wavelength of around 365 nm

Input	Wavelength 308 nm Energy 301 mJ (35 ns FWHM, 8.6 MW)
Dye	Butyl PBD (Solvent; Ethanol/Dioxane)
Tunable range	310~430 nm
Output	Energy 20.8 mJ (15 ns FWHM, 1.4 MW)
Conversion efficiency	Energy 6.9%, Power 16%
Beam divergence	2 mrad. (without collimater)
Amplification efficiency	AMP I 39.8 AMP II 8.8
Spectrum width	5pm (estimated)

4. 水素直流放電の H_α 線共鳴散乱による計測

H_α線共鳴散乱法による水素直流放電中の励起原子 密度測定を,(i)同法を用いての水素原子検知技術 の確立,および(ii)直流放電に現われるポテンシャ ルステップ現象の原子過程の測定を通じての解明,の 二つの目的のために行なった.(ii)の目的の結果に ついては文献7)で詳論するので,ここでは上記核融 合プラズマ中の水素原子検知に関連して,主として (i)の目的の結果について議論する.

4.1 実験装置

Fig. 7 に実験装置の構成を示す. *H*_α 線光源は3 節で述べた XeCl エキシマーレーザー 励起色素レー ザーを用い, 色素に Cresyl Violet を用いることに より H_{α} 線 での 発振 を 得た. 発振時間幅は 20 ns (FWHM) である. スペクトル幅は 0.1 nm とし,水 素原子のスペクトル広がりより十分大きく取った.水 素直流放電管は,放電長 600 mm,内径 100 mm で, 陰極は熱陰極である. 水素ガス圧 10 mTorr, 放電 電流 500 mA の放電条件下でプラズマを 生成 した. 共鳴散乱計測のため放電管中央部に4本のポートを設 け、散乱光の観測はレーザービームに対して 90°方向 から行なった. レーザー光の器壁等からの乱反射等に よる迷光の減少のため、 バッフル、 ビューイングダン プ,およびビームダンプを設けた. 散乱体積の断面は 10×2 mm², 長さは 5.3 mm, 受光立体角は 4Q= 1.7×10⁻² sr にとった. 散乱光は H_a 線 フィルター (透過中心 656.3 nm, 透過スペクトル幅 3.2 nm)を 透過し、集光レンズで集光されて受光スリットを通過 した後に光電子増倍管で検出される.光学系の絶対較 正は放電管中に窒素ガスを 600 Torr まで充てんし,

レーリー散乱測定により行なった. 散乱系の迷光レベ ルは ~100 Torr N₂ で, これは主量子数 2 の準位の 原子密度に換算すると, $(n_{20})_{ea} \approx 4 \times 10^{11} \text{ m}^{-3}$ である.

Fig. 7 Optical arrangement of H_{α} resonance scattering system in a hydrogen DC discharge

4.2 実験結果

完全な飽和の得られるレーザーパワーを確認するた め実験的に飽和特性を求めた.その結果を Fig.8 に 示す.同図より 1.3×10⁹ W/m²•nm でほぼ飽和に達 していることが確認された.二準位系での共鳴散乱測 定ではレーザーの波長と散乱光の波長が同一であるた め,迷光の低減には低いレーザーパワーで測定を行な うことが望ましい.このため飽和に達している限りで 最低の上記のパワーで測定を行なった.

Fig. 8 Saturation characteristics of scattered signals

共鳴散乱シグナル S_{re} を、同じ光学系での窒素ガ ス等の参照ガスからのレーリー散乱シグナル S_{RL} で 較正することにより、主量子数2の準位の原子密度が 次式より得られる.

$$n_{20} = \frac{I_L}{h_{\nu_0}} \frac{n_N \sigma_N}{\alpha A_{32}} \frac{S_{re}}{S_{RL}}$$
(17)

ここで、 I_L は単位面積当りのレーザーパワー、 n_N は 窒素ガスの密度、 σ_N は波長 656.3 nm での窒素分子 のレーリー散乱断面積である. また、 α は本実験の 条件下 ($n_{20}/n_{30} \gtrsim 10$) では4%以下の誤差内で次式で 表わされる.

$$\alpha = \frac{A_{21}}{(g_2/g_3)A_{21} + A_{31}} \tag{18}$$

(18) 式右辺の量はすべて既知なので,(17) 式右辺の 量はすべて既知,あるいは 測定 から得られる 量であ る.(17) 式を用いて求めた n_{20} の放電管軸(z)方向 分布を Fig. 9 に示す.同図で z=0 は放電に現われ る発光の不連続開始部にとっている". Fig. 9 の n_{20} 分布, ラングミュアプローブによる電子密度測定値", および L_{α} , ライマン β (L_{β}) 線について Holstein の逃走因子 (escape factor)⁸⁾ を用いた解析により n_{10} , n_{30} の軸方向分布を求めた.それらの結果をそれ

Fig. 9 Axial distribution of excited (level 2) H atom densities in a hydrogen DC discharge

Fig. 11 Axial distribution of excited (level 3) H atom densities. Solid circles were obtained from H_{α} back ground intensities and open circles from the H_{α} resonance scattering measurements

ぞれ Fig. 10, 11 に示す. Fig. 10 には L_{α} , L_{β} 線の 吸収長 (=1/ $k(\lambda_{0})$: $k(\lambda_{0})$ は 吸収線中心 での 吸収係 数) を同時に示したが, 放電管の半径 50 mm に対し て L_{α} 線の吸収長は 3~5 mm, L_{β} のそれは 20~60

mm であり、 L_{α} , L_{β} 線について再吸収が無視できな い領域にある. Fig. 11 には、 H_{α} 背景光強度から求 めた n_{30} の分布も同時に示したが、これは共鳴散乱測 定から求めた n_{30} と因子2程度の差違しかなく、後 者を求める過程で種々の仮定をおいたことを考慮すれ ば、十分良い一致が得られた. このことは以上の測 定、および解析の妥当性を示している.

5. む す び

(1) JIPPT-II 等のトカマクプラズマ中心部の L_{α} 線共鳴散乱測定を十分な SN 比 (\geq 10) で行なうに は数 kW 以上の L_{α} 線源が必要であるが,現在の真 空紫外域でのレーザー発振技術からは,これは長期的 目標である.

(2) プラズマ周辺において、プラズマ光が直接受 光系に入らない配置 での 測定では 200 W 程度の L_{α} 線パワーで原理的には十分な SN 比が得られ、これは 現在のレーザー技術でも達成可能なパワーであり、信 頼性の高い L_{α} 線源の開発が急務である.

(3) 以上の評価に基づいて、100 W 級の L_{α} レー ザー開発の前段階として、エキシマーレーザー励起色 素レーザーにより 365 nm の発振波長で 1 MW 以上 の出力を得た. これはガスセルによる三倍高調波発生 用光源として十分であり、今後の光源開発の足がかり を得た.

(4) H_{α} 線共鳴散乱法による水素直流放電中の励 起原子密度の測定から求めた主量子数3準位の密度と 背景光強度から求めたそれとが良く一致する結果が得 られた. このことより, H_{α} 線共鳴散乱測定におい て,水素原子スペクトルへの色素レーザーの同調に関 して技術が確立されたこと, L_{α} , L_{β} 線について光学 的に厚いプラズマ中の水素原子密度測定が同法で可能 であることを示している.

参考文献

- 村岡克紀・前田三男;日本物理学会誌.36 (1981) 679
- D. W. Koopman, T. J. McIlrath and V. P. Myerscough; J. Quant. Spectros. Radiant. Transfer 19 (1978) 555
- G. T. Razdobarin, et al.; Nucl. Fusion 19 (1979) 439
- 4) P. Bogen and Y. T. Lie; Appl. Phys. 16 (1978) 139

- 5) L. C. Johnson; Astrophys. J. 174 (1972) 227
- 6) H. Langer, H. Puell and H. Röhr; Opt. Communications 34 (1980) 137
- 7) K. Uchino, K. Koga, M. Maeda, Y. So-

noda, K. Muraoka and M. Akazaki; Jpn. J. Appl. Phys. (to be submitted)

8) H. Zwicker; *Plasma Diagnostics* (North-Holland, Amsterdam, 1968) p. 214