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Long Waves Generated by Topography in Two-Layer
              Fluid with Infinite Depth--Forced

                     Benjamin-Ono Equation

          Hidekazu TSUJI", Manabu INADA"" and Masayuki OIKAWA"

                             (Received August 31, 1997)

   Weakly nonlinear long waves generated by topography in a uniform flow of two-layer fluid in which one
layer has infinite depth are considered. They are described by a forced Benjamin-Ono (fBO) equation
when the linear wave speed is close to the uniform flow speed. Generation and propagation of waves are in-
vestigated by solving the fBO equation numerically for various flow speed and topography. Approximate
analysis is possible for the topography with very small (or large) steepness. Its results are compared with

the numerical results.

                                 1. Introduction

    There are many works on wave generation through interaction between flow and topography
in a stratified fluid. Some of them deal with a two-layer fluid model because of its simplicity.

    Linear analysis shows that if the linear wave speed is close to the flow speed, resonance

occurs and nonlinear analysis is inevitablei). In weakly nonlinear analysis, the fundamental

equations and boundary conditions can be reduced to'a simple model equation. This has diffe-

rent form depending on the horizontal and vertical scales of the system. If the characteristic

horizontal length is much longer than the depth of the fluid, the motion is described by the forced
Korteweg-de Vries (fKdV) equation i) or by the forced extended Korteweg-de Vries equation 2).

On the other hand, if the fluid includes a layer which has the vertical scale much longer than the
characteristic horizontal length, a forced Benjamin-Ono (fBO) equation 5' is derived. This is the

BO equation 3'`) with an forcing term due to topography. Recently, Matsuno 5) investigated analy-

tically interaction of a solitary wave with topography using this equation.

    In this paper we solve the fBO equation numerically to investigate resonant generation of
waves by the topography in the uniform incident flow. It is noted that Grimshaw 6) also investi-

gated the fBO equation, which was derived from shallow water equations of a rotating fluid.

The equation can be simplified and approximate analysis is possible, on condition that steepness of

the topography is very small or large. Its results are compared with the numerical results.

    In Section 2 the setting of the problem and the fBO equation are briefly explained. Section

3 is devoted to the numerical results, approximate analysis and discussion. Finally conclusion is

given in Section 4.

                 2. Setting of the problem and the fBO equation

    Consider an inviscid incompressible two-layer fluid system (Fig. 1). Suppose that the flow

at x' . oo has uniform velocity (U, O);so in each of two layers flow is irrotational everywhere

and velocity potential can be defined. In the vertical direction, the upper layer extends to infin-
ity, while the lower layer has local bottom topography z' =: -h+B'(x) (B'.O aslx'l.oo).
The interface between two layers is described by 2'= C'(x', f) and at initial instant (f= O)

equals to zero everywhere. The density of the upper fluid is pi and that of lower fluid is p2.
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           Fig. 1 Two-layer fluid.

    The Froude number is
linear long wave, g is the

investigate the resonant case

    Expanding the fundamental

equatlon:

  zc, +iig.c -gc g.c -gl,A7t [g.2s] - ,e, zB. •

where x == x'/l, B= B'/Bm and ag is the leading order of C'/a, and t= (EV/l)t, which means the

equation describes long-time behavior of wave motion. The notation 7-( denotes the Hilbert
transform :

                          '  H [f (x)] = ipf-oo. ,f !Å}Y).dy •

where P stands for Cauchy's principal value.

  For simplicity, using the transformations C == (8/3)n, r= (6/2E)Ae, t= (6/2E)AT and B=
(16E2/3B)H, the equation is reduced to

  O,", +rZ"e -4nO,Z - 7t[O,2ge]- IHg• (i)
This form of fBO equation is hereafter used.

  It is noted that without forcing H= O, the equation has the IV-soliton solutions. For Ar= 1,

the form is

              A  ny=A2 [6+ (A-T) T]2+1' , (2)
where A is a parameter.

  In the following discussion, the topography is given by

       (bg)2+1

where Hm is constant and the parameter b gives a measure of steepness of the topography. In

what follows, we take Hm : 1 without losS of generality. Since the maximum of B is 1, this
means that we should take E = s/liliB7/4.

    The numerical scheme for solving the equation is an implicit spectral method 7). Note that

the Fourier coefficients of the Hilbert transform are approximated as isgn(k)ck where k is wave

number and ck is the Fourier coefficients of rp. These are based on the Fourier transform of the

Hilbert transform. Our initial condition is that there is no wave in the fluid at T Sg O and at T=

                       The fundamental equations are Laplace's
                     equations together with the boundary condi-
                     tions at the interface, the bottom and 2'-oo.

 z' == c(x',t') Here we introduce a characteristic wave ampli-
        ...................x' tude a, a characteristic horizontal length l and

                     the maximum of the topography Bm. Sup-
z'  == -h+B'(x') pose the following relations

  /1                           ah                       Eii!i -ii << 1, 6!7-- E,BE BhM -E2.

' defined by Fi!ii U/V, where V=VR(ii'=-2i-511?g is the phase speed of

gravitational acceleration and A is density ratio pi/p2. In order to

  , assume that F= 1 + ET.

      equations and boundary conditions in series of E, we obtain the
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Fig. 3 Generation and propagation
      waves. T= O, b= 1.
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        g 50
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Othe topography suddenly appears• 3o
                                              T       3. Resultanddiscussion
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Froude number. The results for b=1 are
chosen as a typical example.

    Figure 2 shows the result for T =-2.
On the upstream side of the topography, a
hump is formed initially due to the obstruction

and grows in time. When •its amplitude
attains to a certain value, it starts to move up-

stream and is followed by smaller wave tail. Fig. 4
After the waves are emitted, the interface set-

tles to an almost constant state with a positive

value in the vicinity of the topography. On

tude is formed. It extends
train is formed eventually.

    Figure 3 shows the result for T == O,which is

side of the topography, a train of solitary waves can b

is emitted upstream and grows up to a solitary wave.

that for T : -2.

the larger amplitude is required for the solitary

of uniform flow. On the downstream side, the

phy. It is followed by a modulated solitary wave

downstream.
    The result for r=2 (large positive T) is

stream side of the topography.

-50 O
4

ny

2

o

-50 O   Generation and propagation
   waves. r== 2, b : 1.

4 so

        4 5o
of the interfacial

                     the downstream side, a wave train with larger ampli-

       from the vicinity of the topography, and there a steady solitary wave

                           exactly the resonant case. On the upstream
                             e seen. Near the topography a small wave
                               The amplitude of the wave is larger than
The speed of the soliton solution is proportfonal to its amplitude (see (2)), so

                        wave to propagate upstream against la'rger speed

                        uniform depression can be seen near the topogra-

                            train and extends as the solitary waves go

                        shown in Fig. 4. There is no wave on the up-
           Moreover, except that an initial transient disturbance propagates
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downstream, no wave is recognized also on the

downstream side of the topography. Only a

steady hump above the topography can be 3o

    Figure 5 shows an intermediate state be-
[,,se i"R,jh6,,tse,Åí,.g,,/j./t.j,.,s,"g%.e/1,gi",,6.,,,me,Åít,13sl

                                           OJger uniform flow, the solitary waves emitted                                               -so o gso
upstream must have larger amplitudes and the

frequency of emission is lower than that of the
                                               4
case of T=O. On the downstream side of rp
the topography, both formation of uniform de- 2
pression and that of a solitary wave train are
not obvious. A small disturbance is emitted O

to downstream associated with the formation of -50 O 450
solitary wave moving upstream. Fig.5 Generation and propagation of the interfacial
                                                  waves. T= 1.8, b = 1.  3.2 Comparison with analytical result
    Useful approximations for eq. (1) are

possible in two cases: b<<1 and b>>1. The analytical results are obtained in approaches similar

to those done by Grimshaw and Smyth i) for the fKdV equation.

  3.2.1. b << 1

  Using the transformation X= b8, T= bT and the topography (3), eq.(1) is reduced to

                                                  '  oO"T+F,O."-4n,O."-bH[,0.2",]-0,".•

If the wave steepness is not large, we can neglect the dispersive term to obtain

       '  ,O",+r,0."-4n,0."-0,".• ' (4)
This can be analyzed by the method of characteristics. The result depends on Z
    In the case that lrl < V-g-, two jumps are expected in the flow. One is formed for X<O

and propagates to X= moo, and the other forX>O and to X= oo. Eventually rp between'the
jumps is well approximated by

            r- 8(1-H(X))                             , X2O,
                    4
                                     • (5)  rp (X) -=
            T+ 8(1-H(X))                             , 'xso,
                    4

We denote the height of the jump in X>O(<O) as n+(rp-):

       " v-g-

which is obtained by taking H(X) = O. Noto that rp+<O and rp- > O.
    On the other hand, III > Jg-, there is no jump and the final steady state is

                 '
  rp-t(r-sgn(T)V[7ii lii7((ii6)), IA>V-g', (7)
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that is,ahump (depression) above the topography for I-'>O(< O) and vanishes at IXI-->oo. In

practice, as a result of mass conservation, there is additional disturbance moving downstream
(upstream) for I-' > O (< O) .

  3.2.2. b >> 1

    In this case H(x) can be approximated by means of the delta function (see (3)). Steady
state is assumed then eq.(1) is

  TZ"g-4n Z"e-H[g2g\]-il}({}6(e)), (s)
where the factor z/b is defined so that fH(8)de is conserved. Unlike the fKdV equation i',

this equation is more difficult to solve even the steady state is considered. So form of solution is

assumed in advance.

    Suppose that two cases exist depending on the magnitude of Z Note that it is justified later

in the derivation.

    One case is for small rand the solution of the form (a steady solitary wave + constant) is

assumed for each of g<O and 6>O. Then it is found that the wave profile consists of a con-

stant elevation n- with a solitary wave for e<O and a constant depression rp+ without solitary

wave for g> O. The values of rpÅ} are

and it is valid on condition that III < 2z/b.

    The other is for large T and assume that there is a hump above the topography. Then its

form is derived:

            r  rp=T2 (6Å} g,)2+1' (10)
where & is the larger root of 6i2- (2b/n)gi+1/r2 = O. It is valid on condition that ITI >2n/b,

                                           so simplified analytical solutions are obtained
                                           for the wh61e range of Z
                                               It is noted here that, in reality, modulated

 77 , T=30 wave trains exist between the quiescent region
  2 away from the topography and the steady
          ;d - non-zero elevation or depression nÅ} near the
  o ---l t'- - topography. In the corresponding situations
                                           in the analysis of the fKdV equation, Grim-

    -50 O 50 4100                                           shaw and Smythi) used a modulated cnoidal
                    (a)
                                           wave solution of the KdV equation. The
                                           similar approach for the fBO equation appears

        ,i T=30 o.4 i' to be difficult because of its complicated dis-
                                           perslve term.
 0.2
                                             3.2.3 Comparison
  o                                               First the profiles are compared. Figure
                                           6(a) is the case of T=1. This is an example-O.2
        o 50 (b) iOO 4i50 of ,.all r:r<2V-2M. The solid line de-
Fig•6 Generation and propagation of the interfacial notes the numerical solution and the dashed
      waves. b== O.3 and T=30. (a) T= 1, (b)T== 3.      Solid line shows the result of numerical calculation, line the fOrmUla (5) . The locations of the

      dashed line the analytical one forb<<1. jumps are approximate ones which are given
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Table 1 The value of I7+ for va-
       ,'hiO,"ig,b'l.he,:ZM.,arkf?.,biide Thechange

       occurs at r= r+. investigated.
                          << 1(i.e.

                          can be seen.
                          numerical result.

                          tween the
                          for it is that as

                          due to the
emission of a solitary weve upstream (see Fig.

error is not so small.

    Finally we comment on a critical value of

change of the wave field from the type of Fig. 3

solitary wave propagating upstream. Table 1
decreases T+ approaches to the analytical value

                                  4.

    The fBO equation is numerically solved to

                          dispersion is not adequate.

                                         of
                                        The
                                  1/b >> 1)

                                        The

                                    analytical
                                         b
                                     disturbance
                                         5)
                    Improvement of the analytical approximation for b >> 1 is required

                                        T,
                                        to that of Fig. 4.
                                       shows the values of I7+ for some values of b.
                                        2V-2-

viation from the theoretical resultcan be seen for b>>1

                                      Conclusion

                                         investigate the generation and propagation

 as the products of the velocities of steady state

 jumps and the elapsed time. We can see
 both lines agree well with each other above the

 topography and for downstream depression.
 The reason is because the effect of dispersion

 is not significant there. On the upstream
 side of the topography, the solitary waves are

 emitted very close to the topography so the
 above analytical model is not adequate in this

 part. Figure 6 (b) is the case of r=3:
 large T. As stated above, the information of

 the disturbance to the downstream side is not

 obtained in the analytical study. Concerning

 with the hump above the topography, a little

 difference in height can be seen. The discre-

 pancy becomes larger as b increases. So it

 can be said that the dispersion affect the be-

 havior near the topography for large r.

     Next a part of the profile is examined in

 detail. Figure 7 shows the dependence of n+

 on small T for b=O.3. We can see good
 agreement between the numerical result and
 analytical (dashed line, see (6)) one for T>

 O. When Tis negative, the numerical results

 divert from the analytical line. As in this

 case the downstream solitary wave train con-
 tinues to stay very close to the topography, the

 uniform depression near the topography is not

 clear. So the analytical study without

 rp+ with steepness of the topography b is also

 result for r=O is shown in Fig. 8. For b
very good agreement with the analytical result

 analytical approximation explains roughly the

 However, for b>> 1, there is a discrepancy be-

  result and the numerical one, One reason
increases, the value of rp+ comes to be unclear

     emitted downstream associated with the
 . Even this effect is taken into account, the

T+. It is the value of Tcorresponding to the

               That is, for T> Ir+ there is no

                                     As b
   c: 2,828 for b << 1 (see (6) or (7) ). The de-

 ;2z/b cr 1.26 for b :5 (see (9) or (10)).

in the
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resonant flow. Not only the wave field itself but also the change of wave pattern depending on

the Froude number is clarified. The comparison with analytical approximation shows essentials

of the equation. In particular, it is found how the dispersive effect works by means of compari-

son with the dispersionless solution.

    There is a limitation of the fBO equation, that is, the topography is required to be very small

in order for the wave amplitude to be small (BNE2). Concerning with this problem, Choi and

Cammasa 8) recently derived the equations describing the non-small amplitude waves in two-layer

fluid without topography. The investigation of non-small amplitude wave motion is now in prog-

ress using this equation including the topographic effect. The result will be reported in near fu-

ture.
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