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                    (Received May 29, 1992)

   An experimental study has been carried out to investigate into the similarity rule which might exist
between the heat transfer and the pfessure drop characteristics of the fluid flow through porous

materials. The steady heating method is applied to measure the heat transfer coefficient of the foamed
metals and the wire lattices, and the transient heating method for the packed beds of glass beads, etc.

   From the pressure drop data a proper characteristic length is derived with which the Reynolds num-
ber (Re) and the Nusselt number (Nu) are defined. It is shown that a universal Iaw or a similarity rule

Nu = f(Re) exist applicable to various porous materials.

1. Introduction

    Porous materials are used in many engineering components such as the fixed bed for
chemical reactors, regenerator of the Stirling engine, the pebble bed of the high temperature

gas cooled nuclear reactor etc.

    In general, heat transfer and pressure drop characteristics of the porous materials are

not easily specified but of the fixed beds of uniform, simply-shaped particles: spheres, cylin-

drical beads. For the beds of these simple particles, the characteristic length is usually
defined by the diameter d or 6V/S to characterize the heat transfer and/or pressure drop

properties. However, it is difficult to define it for the porous materials of complex mat-

rices such as foamed metal, fixed beds of nonumiform, irregularly shaped particles. Thus,
in the cases of porous materials without enough knowledge on its fine structures, it is inevit-

able to carry out experiments to get informations on heat transfer and/or pressure drop

characteristics. The aim of this paper is to predict the heat transfer characteristics from

the pressure drop data because the heat transfer experiments are much more difficult.
    There have been many works carried out on heat transfer (Dhingrai), Dixon2), Kudra3))

or pressure drop characteristics of porous materials (Comite`) , Burke5) , Ergun6)) .

However, works which concern both heat transfer and pressure drop characteristics simul-
taneously are rather scarce. Hamaguchi') adopted mean bore diameter as the characteristic

length of the porous metal for pressure drop and mean fiber diameter for heat tarnsfer to
yield fairly good correlations. If this choice of characteristic lengths is the best and no

other alternative exists, no similarity rule is expected since the bore diameter and the fiber
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diameter are independent. Unfortunately, the range of the experiments is not wide enough
so that it is hardly examine the possibility of the existence of similarity rule from his data.

Chiou8) tried to define the characteristic length from the pressure drop data to correlate the

heat transfer data with using it. This is'very similar to our approach, however the results

seem not to be good due to the mis-choice of the characteristic length as is discussed later.

    In this paper, it is shown that a proper characteristic length is defined with which the

Reynolds number Re and the Nusselt number Nu are defined. Then a universal law or a
similarity rule Nu = f(Re) applicable to various porous materials is derived.

2. Experimenta1apparatusandmethod

    Experiments have been carried out with various porous materials. To measure the
heat transfer coefficient suitable to each of them, two experimental apparatus were provided:

one for steady state experiment and one for transient experiment. Details of the materials
investigated are listed in Table 1.

Table 1. Characteristic dimensions of tested porous pieces

Foamedmetal Wiregauge

#2 #4 A B

e(-) O.952 O.965 O.868 O.946

a(mm-2) 15.0 76.3 10.9 3.34

b(mm-i) O.250 O.715 O.745 O.308

11(mm) O.258 O.115 O.303 O.547

12(mm) 4.00 1.40 1.34 3.24

c(-) O.0645 O.0818 O.226 O.169

Specification No.ofcell(l/mm)(") Diameterofwire(mm)(22)

O.43-O.67 1.0--1.4 O.58 O.45

(*) Cermet, Sumitomo denko. Co

Glasssphere Glasscylinder Stylenesphere
Particle

Åë4.2(mm) Åë2.5(mm) Åë3Å~5(mm) Åë1.4(mm)

e(-) O.36 O.42 O.38 O.41 O.33 O.40

a(mm-2) 92.4 55.6 190 l57 135 652

b(mm-i) 5.49 3.36 5.78 4.92 7.11 12.5

1i(mm) O.104 O.134 O.0724 O.0796 O.0852 O.0392

12(mm) O.182 O.298 O.173 O.203 O.141 O.0800

c(-) O.571 O.451 O.419 O.393 O.612. O.490
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  2.1 Steadystateexperiment

   Experimental apparatus is shown in Fig. 1. The test section is a rectangular test
porous plate (5 cm Å~ 5 cm Å~ 1 cm thick) heated by a current, which is mounted at the

mouth of a 5 cm Å~ 5 cm rectangular channel. Specification's of the tested porous pieces of
foamed metal and of wire gauge are given by Kondoh9).

wrapped with insulation layers and among
them compensation heater is wound to mini-
                                               Dmize the heat loss, These are installed in

a 14 cm dia., 4 mm thick copper tube.
Sixteen alumel-chromel O.1 mm dia. ther-
mocouples are spot-welded on the surface
of the elements of porous plate. Air in-
taken with a suction blower flows through Fig.1 D

               Temperature distributionthe test section,

of air in the channel is measured with a sheathed
radially. The heat transfer coefficient is evaluated from

mean temperature difference between the test plate and

air is measured with a rotameter

The outside of the channel is

.

A --.

G

B

pressure

  transducer

                                              Apparatus for the steady state experiment

                                               thermocouple which is traversable
                                                 the heating power input and the
                                               the flowing gas. The flow rate of
                            and the pressure is with Shimazu micro-differential press-
ure meter at six axially distributed pressure taps; the pressure drop through the test section

is estimated by linearly extrapolating these readings across the test section.

   Though the heat loss is minimized with the compensation heater, the conductive heat
from test section through the bus bar is inevitable. This heat loss is estimated as follows.

Relation between the heating power and the flow rate is experimentally obtained keeping the

mean temperature of the test section constant. Then the curve is extrapolated to zero flow
rate to give a value at an intersection, which is regarded as the heat loss Qios, (T,).

   Experiments were carried out by increasing the air flow rate step by step with the heat-

ing power kept constant. Then, after the steady state is reached, temperatures and press-
ure drops are measured to obtain the volumetric heat transfer coefficient a, defined by;

    crv=e/ (Ts-Tg)• (1)
    9=(Qin"Qioss) /AH• (2)
  2.2 Transientexperiment
   2.2.1 Experimentalapparatusandmethod
   Experimental apparatus is shown in Fig. 2. The test section is a 96 mrn-diameter, 2
mm-thick acrylic cylinder in which a 60 mm--thick bed of glass beads to rectify the gas flow,

a heater and a 100 mm-thick bed of test beads are set. The heater is two layers of
Nichrome wires which are parallel-stretched, 10 mm apart with each other, and are heated

electrically. Four k-inds of test beads are used and each is filled up to two different
porosities. Air is flown through this bed; its inlet temperature is heated stepwise and the
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  Fig. 2 Apparatus for the transient experiment Fig. 3 Position of the temperature measurement

temperature response at each point in the bed is recorded. The whole of the test section is

inserted in an outer acrylic cylinder. In the annulus gap between the inner and the euter

cylinders a small of air, warmed slightly, is flown for thermal insulation.

    For temperature measurement in the bed, some beads, with a O.1 mm-dia. chromel-a-
lumel thermocouple buried, are placed at bed heights 20, 50 and 80 mm at four radial posi-
tions (Fig. 3). Air temperature is measured at the inlet and at bed heights of IOO and 120

mm. These data are logged and processed with use of the temperature data logger
YODAC'8 and the personal computer FM-7.
    Pressure drop in the bed is measured with the Shimazu micro pressure differential
meter at pressure taps located at the inlet, and at 20, 40, 60, 80, 100 and 120 mm from the
inlet.

    At a fixed flow rate, pressure drops are measured. Then the heating power is raised
stepwise and the transient temperature variations are recorded at intervals of 10-60 sec.

Experiments are carried out in the range of the initial gas temperature 16- 28 deg C, final
temperature 16-28 deg C and the gas flow rate O.07'O.75 m/s.

    2.2.2 Evaluation of volumetric heat transfer coefficient
    Let air flow though a fixed bed at an initial temperature T. If the temperature of the
gas at the inlet is changed stepwise, behaviors of temperature in its downstream as well as

in the bed responding to it are described by a set of energy conservation equations.
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Neglecting the heat transfer in radial direction, they are written for the bed;

    (1 - e) Pp Cpa Tp/at =a. (T, - Tp) + (1 - e)A,ffa2T,/a x2, (3)

and for the gas;

    eP, C,a T, /at=- a. (T,- Tp)-P, C,u.a T, /a x. (4)

The boundary conditions are given by;

    Tp=T,=: To att=O . (5)                                                                    '

    T,=Ti. OTp/ax=O atx=O (6)
    aTp/ax=o atx=H (7)
    Though the heater input is raised stepwise, air temperature at the inlet of the bed is not

of a step function due to the thermal capacity of the heater as well as to the time needed for

the boundary layer around the heater to develop. It was found that the inlet temperature
Tin was approximated by FukudaiO);

    (Tin- To) / (Tmax- To) =0+(1 m0)t/t... (1 "e-`ltO), (8)
                                                       '
where to is a time constant of the heater and 0 is defined from the experiment.
    Once a. is assumed Eqs. (3) "v (8) are •solved by the Laplace transformation method
(Appendix) . Comparing the analytical temperature transients with the experimental data,

a. was obtained as follows. Analytical and experimental data of nondimensional tempera-
ture were compared both in their values and slopes. (Fig. 4) Though the average velocity

u. is a known parameter measured in the experiment, u. had to be dealt as an unknown one.
This is presumably due to the existence of
the radial distribution of the flow velocity,

though the uniform onedimensional flow
was assumed in the analysis. At it was
found that the value of the nondimensional

temperature was sensitive to a. while the
slope was to u., simultaneous evaluation of

both a. and u. were possible. The
obtained u. to fit the data best was around

O.84-O.88 of the measured value in the
case of 4.2 mmmdia. glass beads and O.92
m1.0 in the case of 2.5 mm--dia. glass
beads. Results for a. were examined in
the later sections.
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3. Derivation of the similarity rule between heat transfer and pressure drop
   characteristics

  3.1 Pressure drop characteristics
    It is well known (Reynoldsii)) that the pressure drop in the porous bed is correlated by

a quadratic equation; '

    AP/H=aptgt{n+b PgUm2 (9)
where the first term originates from the frictional resistance in the Poiseuille type viscous

flow while the second from the kinetic energy losses in completely turbulent flow. In the
limit of zero velocity, the first term in Eq. (9) dominates corresponding to the Darcy's law.

For the packed bed of sphere beads Ergun's equation (Erguni2)) is applicable, which is writ-

ten asl

    a= 150 (1 - E)2/ e 3/dp2,

                                                                       (10)
    b == 1.75 (1 -- e) /E 3/d,.

    According to the form of Eq. (9), it is obviously seen that there are two parameters

with dimension of length which characterize the pressure drop of the porous beds, i. e.;

    1i=1/V'-'lli-, l2=1/b. (11)
    By drawing a curve AP/Hptgtt. vs Pgu./ ptg we get `a' from the intercept at zero velocity

and `b' from the slope. The way of combination of these two characteristic Iength to de-
rive governing parameters (two at the most) is arbitrary and a typical set of parameters is

either 1i or 12 and the ratio of these two;

    As far as the sphere beads, we found that the Ergun's equation was valid (Fig. 5)

while it was not for other meterials tested. Figure 6 shows.the pressure drop data of the

foam metal where it is clearly shown that the Ergun's equation is not applicable to correlate

the data no matter how dp is chosen. Therefore, in the general case of porous meterial
with complicated structures, the characteristic length other than dp should be properly
chosen, Thus we are going to look for a similarity rule using the parameters: li (i == 1 or

2) as the characteristic length and a dimensionless parameter `c'.
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  3.2 Heat transfer characteristics
    Experimental data together with other available data are plotted
chosen as the characteristic length for Re and Nu defined in Eqs. (13)

in Fig. 7,

and (14).
where li is

Nu = a,1i2/Ag,

Re = u.11/Vg.

(13)

(14)

    This choice is arbitrary and it .used to

be the diameter of the sphere or the equiva-

lent diameter defined by d=6V/S for
packed beds of uniform beads in other
works. The plot with 12 as the character-
istic length gave a similar trend, however it

had a wider scattering than Fig. 7.

    To examine the validity of choosing 1i
as the characteristic length, experimental
results for spherical beads by other resear-

chers are compared in Fig. 8, where Eqs.
(10) and (11) are used to evaluate 1i for

sphere beads. Since the heat transfer
data for spheres are numerous (Ishimotoi3))
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  Thus it is concluded that the heat transfer and the pressure drop are primarily correlated

with 1i as the characteristic length. However, slight diffences between the materials in
Fig. 7 should be explained with other parameters: e , c, etc.

    Now we examine an equation to correlate the heat transfer data in a general form;

                                                         '
2vu == K(1-e)Me"cr (1-c) 'f (Re) (15)
The exponents in Eq. (13) were obtained by the least square method to yield;

    Nu == O.430 (1 - e)O'929 e 2•91cO•795Rew,

                                                                       (16)
    W == 1.84 - 1.11ReO'639/ (1 + ReO'639) .

    It is interesting that each exponent is very close to integer. Since the effect of `c' is
negligible the important parameter among those we adopted first in Eqs. (11) and (12) is

only 1i, and an alternative approximate equation without the term including `c' is given by;

    Nu = Nu' (1 - s)O•929 e 2.91

                                                                       (17)
    Nu' == O.9Rei'95 (1 ' exp (- O.8Re-i'27)).

    In Fig. 9 are plotted on Re vs. Nu' plane our data together with those of Morii`),
Hamaguchi7) and Chiou8) for wire nets and of Cybulski'5) , Kuniii6) for fixed beads beds.

The data given by Cybulski and Kunii are only for heat transfer and the characteristic
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length 1i are estimated from the Ergum's equation. It is shown that all of the data corre-
lated by Eq. (17) within +400/o.

                                  Conclusion

   From the steady state and transient experiments, pressure drop as well as heat transfer

data are taken for a variety of porous materials. Then the characteristic length is defined

from the pressure drop data to correlate the heat transfer data. It is found that 1i, which

characterizes the pressure drop of Poiseuille type viscous flow in the porous bed, does char-

acterize the heat transfer data as well. Thus the similarity rule is confirmed to exist,
which is presented with using 1i as the characteristic length.
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Nomenclature

a constant defined in Eq. (9)

A frontal area
b constant defined in Eq. (9)
c dimensionless parameter defined by Eq. (12)

C specific heat capacity

d equivalentdiameter
H thickness of the bed

K constant
li (i = 1, 2) characteristic length defined by Eq.

Nu Nusselt number defined by Eq. (14)

AP pressure drop
e heat generation per volume
Qin heat input

Qoss heat loss
Re Reynolds number defined by Eq. (15)

S total heat transfer surface

t tlme
T temperature
u. superficial velocity

V volume of, the bed
x axial corrdinate

(11)



-222- Heat transfer and pressure drop of porous materials

Greek symbols

a v
e

g

0
A
icje

;,,

p

volumetric heat transfer coefficient

fractional void volume

x/H
constant
thermal conductivity

VISOSItY

kinetic visosity

density

Subscripts

eff effective

g gas
max maxlmum
P particle.
s surface
O initial.
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                                   Appendix

    Equations (3) - (8) are rewritten in dimensionless forms with using the following vari-

ables;

  0= T.IiimTOT,'g=-iiii-' T= ppcpti2/A,ff' (Al)

Combining Eqs. (3) and (4) and Laplace transforming we have

  -iil- 13ge' + (i+ "BS) dd22 -g(i+-ill) ddgO' -((i+rc)s+ "i2)o,=o, (A2)

where s is the parameter of the Laplace transformation, A,denotes the Laplace transform of

A and B, g, K are defined by;

  B= o-agll2A,ff,g= (iPiC,g")Mll(,ff,"== p,c,Pg(CiiS,) (A3)

    If the routes of the characteristic equation of (A2) are given by Zi (i == 1, 2, 3), ep is

solved in a form:

       2

  o, ==Zc,• es•g, (A4)       1
where, Ci (i=1, 2, 3) are solved from boundary conditions. In the same manner 0g is
determined. Now, 0- in the time domain is obtained by using the Crump's inverse Laplace

transform method as follows;

  o- (.) = e;T {t o( .) + :i; {R, {o (,.) cos M '7' T - Im l0 (s.)l sin M Z/T ll (A s)

         oo
  E=eaT2 exp l--a(2n 7i+T)le(2n7+T), (A6)
          i
where s. = a + (m rr i)/7 and E is the measure of the error of this method defined by 0-

0. To obtain the converged solution a and 7 should be appropriately taken which are
chosen to be a == 10'150, 7=: 1-1.5 from the trial and error.


