マルチスロットアンテナを用いたECRプラズマCVD

築山, 和好 九州大学大学院総合理工学研究科高エネルギー物質科学専攻:新日本製鉄株式会社

甲斐, 義崇

九州大学大学院総合理工学研究科高エネルギー物質科学専攻

篠原,有仁 九州大学大学院総合理工学研究科高エネルギー物質科学専攻

桑野,範之 九州大学大学院総合理工学研究科材料開発工学専攻

他

https://doi.org/10.15017/17269

出版情報:九州大学大学院総合理工学報告. 14 (2), pp.189-195, 1992-09-01. Interdisciplinary Graduate School of Engineering Sciences, Kyushu University バージョン: 権利関係:

マルチスロットアンテナを用いた ECR プラズマ CVD

築 Ш 和 好・甲 斐 義 崇⁺・篠 原 有 1-++ 楘 野 範 之*・沖 憲 典**・田 中 雅 康** 小 森 彰 夫**・河 合 信** 良 (平成4年5月29日 受理)

ECR Plasma CVD with Multi-Slot Antenna

Kazuyoshi TSUKIYAMA[†], Yoshitaka KAI^{††}, Naoto SHINOHARA^{††} Noriyuki KUWANO^{*}, Kensuke OKI^{*}, Masayoshi TANAKA^{**} Akio KOMORI^{**} and Yoshinobu KAWAI^{**}

An electron cyclotron resonance (ECR) plasma is produced with a mulutislot antenna, and the optimum conditions for preparation of Mo_nC thin films are experimentally examined. Depositon of WO₂ films is also attempted by sputtering of tungsten filaments, asisted with the ECR plasma.

1. 序 論

近年の半導体素子の高集積化をささえる技術として エッチング, CVD, スパッタリング, リソグラフ ィー等があるが, その中でも電子サイクロトロン共鳴 を利用して生成される ECR プラズマを用いたエッチ ング, CVD, スパッタリングが最近特に注目されて いる.

CVD を行うには、一般に硬質の膜を作製するには 非常に高い基板温度が必要であり、融点の低い材料へ の堆積は困難と考えられてきた.比較的低い基板温度 での成膜は熱的非平衡なプラズマを用いることによっ て可能となり、直流(DC)プラズマや高周波(RF)プ ラズマが利用されている.DCプラズマや RF プラズ マは安定した放電を維持するための圧力が比較的高い ので、高異方性が求められるエッチングには適してい ない.そこで低い圧力で安定してプラズマが得られる ECR の利用が考えられている.さらに、ECR プラズ

+高エネルギー物質科学専攻修士課程 (現在 新日本製鉄株式会社) ++高エネルギー物質科学専攻修士課程 *材料開発工学専攻 **高エネルギー物質科学専攻 マと高周波バイアスを併用することによって線幅0.75 μmの加工が可能であることも報告されている¹⁾.

通常, ECR プラズマの生成には導波管や空洞共振 器が用いられている.これらの方式は無電極であるた めにプラズマ中への不純物の混入は抑えられるがマイ クロ波の基本モードを用いてプラズマを生成する場合 入射するマイクロ波の周波数でプラズマの直径が決定 されるという欠点がある、即ち、プラズマの大口径化 に対応できない、本研究では、マルチスロットアンテ ナ(リジターノコイル)を用いて ECR プラズマの生 成を行っているが、この方式においては、プラズマの 直径がマイクロ波の周波数に依存しないという特長が ある.米須ら²はこの方式により直径40cmの一様な プラズマの生成に成功している. 今後はこのマルチス ロットアンテナを用いて実際に成膜を行い, CVD や エッチングに適していることを示す必要がある. 我々 はこれまでに予備的な実験を行い3,マルチスロット アンテナが ECR プラズマ CVD に適していることを 示してきた.

本論文ではマルチスロットアンテナで生成される ECR プラズマを用いて炭化モリブデン及びタングス テン酸化膜を作製し、最適な作製条件を検討した.

第2章では実験装置について説明し, 第3章と第4

章で ECR プラズマを用いた炭化モリブデン及びタン グステン酸化膜の作製について述べる.

2. 実験装置

Fig.1に実験装置の概略図を示す.真空容器は内径 165mm,全長1070mmのステンレス製で,外側には冷 却用の水冷パイプが巻かれている.真空容器の外側に は、2.45GHzのマイクロ波と電子がサイクロトロン 共鳴を起こすのに必要な磁場を発生させるための磁場 コイルが8個ある.磁場配位は一般的に発散磁場が好 んで用いられているが,本研究ではプラズマ密度及び 堆積速度が大きくなるミラー磁場を使用している. Fig.2に磁場配位を示す.共鳴点(875Gauss)は、マ

Fig. 2 Magnetic field configuration.: (a) Diverging field and (b) Magnetic mirror field.

ルチスロットアンテナと基板の間に位置している. 真 空容器は油拡散ボンプにより2×10⁻⁶ Torr 以下まで 排気し,ガスは水素,メタン,二酸化炭素を用いる. ガスの流量はマスフローコントローラで独立に制御す る. 真空容器内の圧力は拡散ボンプの前方に接続した スロットバルプにより一定に保つ.マルチスロットア ンテナはアルミニウム製で,直径は14cm,スロット 長は61mm,スリット幅2mm である.マグネトロン から発振されたマイクロ波は,同軸導波管変換器によ り同軸モードに変換された後,真空容器内に設置した マルチスロットアンテナに供給される.プラズマとマ イクロ波回路系のマッチングは,EH チューナーとス タブチューナーを用いて行う.

3. 炭化モリブデンの作製

炭化モリブデンはモリブデン基板にダイヤモンドが 成長する際に同時に成長することが知られている.こ の炭化モリブデンを中間層として形成することによっ てダイヤモンドと基板との密着性が向上することが期 待される.一般に炭化モリブデンは,非常に高い温度 で生成されやすいことが知られているが,ECR プラ ズマ CVD 法においても基板温度が高い程生成されや すいことが今回の実験で確かめられた.Fig.3 に基板 温度600℃と800℃で成長させた試料のX線回折パター ンを示す.基板温度800℃の場合,600℃で作製した試

Fig. 3 X-ray diffraction patterns of films deposited under different substrate temperatures.

料に比べて全ての MozC ピーク値は高くなっているこ とがわかる.

次に,温度以外の条件で,炭化モリブデンの生成を 促進する条件について調べた結果を示す.

3.1 炭化モリブデンの生成に適切な原料ガス濃度 炭化モリブデンの生成に適した条件を調べるために, 原料ガスの濃度を変化させて Mo2C, MoC を成長させ た. Fig. 4 に結果を示す. 図中のパーセンテージは CH4 及び CO2 の濃度を示しており,残りは水素であ る. 図からわかるように,原料ガス濃度は低い程良く, CH4 2.5%, CO2 2.5%の場合が炭化モリブデンの生成 に適していることがわかった.原料ガス濃度20%以上の 場合も生成量は少なくなる.原料ガス濃度20%以上の 場合炭化モリブデンは生成されなかった.CH4 濃度が 高い場合はアモルファスカーボンの成長が優勢となり, 瞬時にアモルファスカーボン層が堆積して,それ以後 モリブデン中への炭素の拡散が阻止されるのではない かと考えられる.

3.2 基板への直流バイアス印加の効果

基板に直流バイアスを印加することによって、基板 に入射する荷電粒子のエネルギーをある程度制御でき る.この実験ではまず、基板に直流バイアスを印加し た場合、基板前方でプラズマパラメータがどの様に変 化するかを調べた、測定は基板の前方2cmにあるラ ングミュアプロープを用いて行った、測定条件は、水

Fig. 4 X-ray diffraction patterns of films deposited under different gas mixture ratios.

Fig. 5 X-ray diffraction patterns of films deposited at different DC bias potentials.

素100%, 圧力1mTorr, 流量8CCM, μ波パワー500W である.

正バイアスの場合、電子温度、スペースポテンシャ ル、フローティングポテンシャルは増加傾向にあるが 電子密度は+15V でピークを示し、それ以上バイア スを上げても減少する。負バイアスの場合、各パラ メータは殆ど変化しない、基板バイアスが炭化モリブ デンの生成量に及ぼす影響を調べるために、プラズマ パラメータが比較的大きく変化する±14V、+30V で MozC を成長させた.成長条件は、水素95%、メタン 5%、圧力1mTorr、水素の流量7.6CCM、メタンの流 量0.4CCM、 μ 波パワー500W、基板温度600℃である.

Fig. 5 に示すように, Mo₂C の成長には負バイアスのほうが適していることがわかる.

3.3 CO2 添加の効果

炭化モリブデンは H2, CH4 系の原料ガスを用いて生 成されることを示してきたが,この系に CO2 を添加 すると生成が促進されることがわかった. Fig. 6 に CH4 濃度 5 % で CO2 を 5 % 添加した場合としない場 合で作製した試料のX線回折パターンを示す.基板バ イアス+14V では炭化モリブデンは殆ど成長しなか ったが,図からわかるように CO2 の添加により Mo2C の成長が観測された.

CH4 濃度が高い場合にはアモルファスカーボン及び

グラファイトの成長が優勢となり炭化モリブデンの成 長が止まる.しかし、CO2 を添加するとアモルファス カーボン及びグラファイトの成長が抑えられ、炭化モ リブデンが成長できるようになる.**Fig.7**に CO2 の 添加によってアモルファスカーボン及びグラファイト の成長が抑えられた試料のラマンスペクトルを示す.

Fig. 6 X-ray diffraction patterns of films deposited under the condition CO₂ 0% and 5%.

直径0.6mm のタングステンフィラメントに15A の 電流を流すとフィラメントの表面温度は1200℃以上に なっており、フィラメント付近での解離促進の効果が 期待される.この実験で用いた基板ホルダー部分の拡 大図を Fig.8 に示す.基板ホルダーには円周上に幅 1 mm のスリットが開けられており、中性粒子はその スリットから侵入できる.基板はフィラメントにより 加熱される.

従来の ECR プラズマ CVD 法は基板の裏側を加熱 し、表側に薄膜を堆積させているが、今回は加熱した 面に堆積させている、この方法で作製した試料のX線 回折パターンを Fig. 9 に示す. 従来の方法で作製し た試料よりも炭化モリブデンの生成量が多いことが分 かる. また原料ガスが CO2 のみの場合でも MO2C が 生成することがわかる (Fig. 10). 熱フィラメントの アシスト効果により炭化モリブデンの生成量は増加し たが、ECR プラズマの必要性を確かめるためにマイ クロ波及び磁場が無い状態で炭化モリブデンを成長さ せた. そのほかの条件は熱フィラメント法と呼ばれる 方法であるが、この場合X線回折でピークが現れるほ

Fig. 7 Raman spectra of films deposited under the condition $CO_2 0\%$ and 5%.

Fig. 8 Schematic diagram of the substrate holder.

どの結晶性の良い炭化モリブデンは生成されなかった. このことから ECR プラズマ中で生成される活性なラジ カルは Mo₂C の生成を促進するのではないかと考えら れる.

3.5 炭化モリブデンの生成過程

炭化モリブデン Mo₂C, MoC の生成過程を調べた. Mo₂C は比較的に初期に生成が確認されるが, MoC は

Fig. 9 X-ray diffraction patterns of films deposited with and without hot filaments where CH4 1%.

Fig. 10 X-ray diffraction patterns of films deposited with and without hot filaments where CO₂ 2%.

Fig. 11 Time dependance of X-ray diffraction patterns of films.

Mo₂C に遅れて生成されることがわかる. Fig. 11 に その様子を示す. CH₄ 濃度が比較的小さい場合にはこ のように Mo₂C→MoC→C (グラファイト, アモルフ ァスカーボン, ダイヤモンド) という順番で炭化物の 中間層が形成される. しかし, CH₄ 濃度が高い場合に は Mo₂C, MoC の中間層が十分に成長する前にグラフ ァイトやアモルファスカーボンが成長するために, 基 板との密着性が悪くなると考えられる.

4. タングステン酸化膜の作製

酸化タングステンは CO2 を固体炭素に変換するプ ロセスにおいて触媒として働くことが最近報告されて おり、CO2 の回収を考える際に重要な物質である.

アモルファス状のタングステン酸化膜は,電子ビームを照射すると,アルカリ溶液に溶解しなくなるので レジスト膜として利用される⁴⁾。また,MxWO3(Mは 水素,アルカリ金属,アルカリ土類金属等,x=0~ 1)は超伝導を示すことも知られており,非常に応用 分野の広い薄膜である.

本研究では、ECR プラズマを用いてタングステン 酸化膜の作製を試みた. この実験で使用した基板ホル ダーは Fig.8 と同じものである. タングステン酸化 膜は水素希釈の CO² プラズマを用いて,加熱したタ ングステンフィラメントをスパッタすることにより作 製した.

-193 -

4.1 多結晶 WO2 膜の成長条件

Fig. 12 に WO² [113] ピーク値の CO² 濃度依存性 を示す. WO² [113] のピーク値は CO² 濃度40%まで はほぼ濃度に比例する. しかし, 40%以上では MoO² と思われるピークが現れて WO² スペクトルの分離が 困難になるために生成量の推定ができなくなる. また

Fig. 12 Dependance of WO₂ $[11\overline{3}]$ peak height on concentration of CO₂.

Fig. 13 X-ray diffraction patterns of films deposited under different substrate temperatures.

この現象は基板温度を800℃以上にした場合にも確認 される. 基板温度800℃以下の場合は, 温度が高い程 WO2 の生成量は多くなる. Fig. 13 に基板温度500℃ と710℃で作製した試料のX線回折パターンを示す. また, 基板温度500℃以下の場合は WO2 膜の成長速 度は非常に遅くなる. 作製した WO2 膜は赤銅色の薄 膜であるが, CO2 濃度60%以上, また基板温度800℃ 以上で作製した試料は黒紫色をしており, 基板のモリ

Fig. 14 X-ray diffraction patterns of different color films deposited at same time.

Fig. 15 X-ray diffraction patterns of films, before exposed and after exposed to ECR plasma.

ブデンが酸化して生成した MoO2 であると考えられる. また,赤銅色の膜のほかに灰白色をした酸化されてい ないタングステン膜が生成されることがわかった. Fig. 14 はこの2種類の薄膜のX線回折パターンであ る.

4.2 タングステン酸化膜のレジスト膜としての評価

CO2 濃度40%で作製した WO2 薄膜を ECR 水素プ ラズマに 2 時間照射した.実験条件は,ガス圧 1 mTorr, 流量 8 CCM, μ波パワー500W, 基板温度 250℃である.

Fig. 15 に照射前と照射後の試料のX線回折パター ンを示す. WO₂ ピーク値は2時間の水素プラズマ照 射後でも80%程度であり,水素プラズマに対してレジ スト膜として使用できることがわかる.

5. まとめ

マルチスロットアンテナにより生成された ECR プ ラズマを用いて炭化モリブデン及びタングステン酸化 膜を作製した.まず、炭化モリブデンの生成に適した 条件を調べるために、原料ガスの濃度を変化させて Mo²C, MoC を成長させた.その結果、原料ガス濃度 は低い程良く、CH4 2.5%、CO² 2.5%の場合が炭化モ リブデンの生成に適していることがわかった.基板に 印加する直流バイアスの効果を調べるために基板バイ アス±14V,+30V で炭化モリブデンを成長させた. その結果、負バイアスのほうが生成量が多いことがわ かった. 原料ガスに CO2 を添加して, その効果を調 べた. CO2 を添加した場合アモルファスカーボン及び グラファイトの成長が抑制され, 炭化モリブデンの生 成量が増加することがわかった. 熱フィラメント表面 での解離の効果を期待して熱フィラメントのアシスト 効果を調べた. 従来の ECR プラズマ CVD 法に比べ て Mo2C の生成量が増加した.

次にタングステン酸化膜の作製を試みた. 基板温度 が高いために多結晶の WO₂ が生成された. 多結晶 WO₂ 膜は基板温度が高い程(~800℃),また CO₂ 濃 度が高い程(~60%)成長しやすいことが見い出され た.また,多結晶 WO₂ 膜は2時間の水素プラズマ照 射後も,その大部分はエッチングされずに残ることが わかった.この結果から多結晶 WO₂ 膜はレジスト膜 として使用できる可能性が示されたが,今後の研究課 題として,低い基板温度でアモルファス状の膜を作製 して,電子ビーム照射や熱処理により多結晶膜に変化 することを確かめる必要がある.

参考文献

- 掛極 豊,川崎義直,柴田央雄,仲里則男,川原博宣, 電子材料1989年6月号(1989)111.
- A. Yonesu, Y. Takeuchi, A. Komori and Y. Kawai, Jpn. J. Appl. Phys. 26 (1987) L1032.
- Y. Kawai, A. Komori, H. Ikeda, K. Kishimoto, M. Murata and S. Uchida, Jpn. J. Appl. Phys. 29 (1990) 2487.
- 4) Mamoru Baba and Toshio Ikeda, Jpn. J. Appl. Phys. 20 (1981) L149.