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Abstract. Elliptic curve cryptosystems (ECC) are emerging cryptographic standards which can
be used instead of RSA cryptosystems, and are practically used. In ECC, scalar multiplication (or
point multiplication) is the dominant operation, namely computing an integer multiple for a given
integer and a point on an elliptic curve. However, for practical use, it is a very important matter
to improve the efficiency of scalar multiplication. The τ -adic non-adjacent form (τ -NAF) proposed
by Solinas, is one of the most efficient algorithms to compute scalar multiplications on Koblitz
curves. Avanzi, Heuberger, and Prodinger have proven the minimality of the Hamming weight
of the τ -NAF on Koblitz curves. However, the lower bound for the length of minimal Hamming
weight τ -adic expansions is not known yet. In this paper, we shall derive an explicit lower bound
for the length of minimal Hamming weight τ -adic expansions. We shall also give a new proof of the
minimality of the Hamming weight of the τ -NAF on Koblitz curves. Further, by using the proof of
the lower bound and the new proof of the minimality, we classify a minimal length τ -adic expansion
with minimal Hamming weight except for two special cases. The classification shows that the τ -NAF
has almost minimal length among all τ -adic expansions of minimal Hamming weight and we can
easily convert the τ -NAF into a minimal length τ -adic expansion without changing the Hamming
weight. This fact follows immediately from the proof of the lower bound and our new proof.

Keywords. Koblitz Curves (Anomalous Binary Curves), Scalar Multiplication, τ -adic Non-Adjacent
Form (τ -NAF), Minimal Length

1. Introduction

Many public key cryptosystems are based on the computa-
tional complexity of number-theoretic problems (i.e. inte-
ger factoring problem, discrete logarithm problem in finite
fields or elliptic curves). In such cryptosystems, number-
theoretic computations are the dominant operations. The
de facto standards for public-key cryptosystems are RSA
cryptosystems [24], which are based on the difficulty of inte-
ger factorization. However, due to advances in algorithms
to solve integer factoring problem and improvements of
computing power, at least 2048 bit RSA is recommended
after 2010 [21]. On the other hand, elliptic curve cryptosys-
tems (ECC) [13], [15] which depend on the elliptic curve
discrete logarithm problem, provide shorter key length and
faster computation speed than those of RSA cryptosys-
tems. For example, 224 bit ECC provides the same se-
curity level as 2048 bit RSA [21]. In ECC, scalar multipli-
cation (or point multiplication) is the dominant operation,
namely computing dP from a point P on an elliptic curve
and d is an integer, defined as the point resulting of adding
P + P + · · · + P , d times. However, for practical use, it is
a very important matter to improve the efficiency of scalar
multiplication.

A common way for computing scalar multiplication is

known as the double-and-add method:

dP = 2
(
· · · 2(dℓ−12P + dℓ−2P ) + · · · + d1P

)
+ d0P,

where
∑ℓ−1

i=0 di2i = (dℓ−1, dℓ−2, . . . , d1, d0)2 is the binary
representation of d. In order to improve the performance
of scalar multiplication, recoding methods of scalars play
an important role. Especially, number systems which have
low Hamming weight and short length, are attractive to ac-
celerate scalar multiplication, and many efficient methods
have been proposed (cf. [9], [23], [27], [28]).

On the other hand, instead of integer bases, efficiently
computable endomorphisms on elliptic curves (as complex
numbers) bases number systems are also attractive because
it can be expected that the endomorphism-and-add method
is more efficient than the double-and-add method (cf. [10],
[14], [20], [22], [26]). Koblitz [14] introduced a family of el-
liptic curves which admit especially fast scalar multiplica-
tion. These curves are called Koblitz curves *1 (also known
as anomalous binary curves). Koblitz curves are defined
by

(1) Ea : y2 + xy = x3 + ax2 + 1, a ∈ F2

*1The reason that Koblitz curves are so named is because Koblitz
[14] firstly suggested that the curves are suitable for efficient imple-
mentation of ECC.
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over a finite field F2. We identify {0, 1}(⊂ Z) with F2

via the natural map f : {0, 1} → F2, a 7→ a mod 2. For
some cryptographic usage, we focus on the group of F2m -
rational points Ea(F2m) for some m ≥ 2. In practical use,
the extension degree m is usually chosen to be a prime at
least 163 (cf. [8]). Let τ be the Frobenius map on Ea,

(2) τ : Ea(F2m) → Ea(F2m), (x, y) 7→ (x2, y2).

We can regard τ as a complex number which satisfies the
following characteristic equation

(3) τ2 − µτ + 2 = 0, where µ = (−1)1−a.

The roots of Equation (3) are τ = (µ±
√
−7)/2, that is, the

Koblitz curve has complex multiplication by τ *2. Since the
cost of the Frobenius map τ is cheaper than that of point
doubling, and a scalar can be written as a τ -adic expansion,
the Frobenius map allows for scalar multiplication without
the need for point doubling [14].

Solinas [27] proposed a low Hamming weight τ -adic ex-
pansion on Koblitz curves, namely the width-w τ -adic non-
adjacent form (w-τ -NAF for short). w-τ -NAF of d ∈ Z[τ ]
with digit set Dw, is a τ -adic expansion d =

∑ℓ−1
i=0 eiτ

i such
that

(4) ei ̸= 0 implies ei+w−1 = · · · = ei+1 = 0

and ei ∈ Dw for all i, where Dw is a finite subset of the ra-
tional integer ring Z. In this paper, we focus on the digit set
of zero and the odd integers with absolute value less than
2w−1, that is, Dw = {0,±1,±3, . . . , ±(2w−1 − 1)} *3. Soli-
nas proved some desired properties *4 of the τ -NAF with
respect to the Hamming weight, namely, the τ -NAF has the
existence and uniqueness, and the non-zero density of the
τ -NAF is asymptotically 1/3 [27]. Subsequently, Avanzi,
Heuberger, and Prodinger [1] have proven the minimality
of the Hamming weight of the 2-τ -NAF (or τ -NAF *5 ).

The computational cost of scalar multiplication dP us-
ing the τ -and-add method with τ -NAF, is approximately
(ℓ/3)A+ ℓF , where ℓ is the length of the τ -NAF of d, and
A,F stand for the computational cost of the point addi-
tion, the Frobenius map, respectively.

In order to take advantage of the efficiency of the τ -NAF,
it is necessary that the τ -NAF has appropriate length.
The length of the τ -NAF of d using [27, Algorithm 1] is
log2(NZ[τ ]/Z(d)) = 2 log2 d, which is twice the length of the

*2For detail, refer to [25].
*3A digit set which has the property (4), is called a width-w non-

adjacent digit set (w-NADS). Otherwise it is called a non-w-NADS.
w-NADS have already been investigated in the case of w-NAF (cf.
[18], [5]). Solinas also proposed the digit set of minimal norm repre-
sentatives [27]. Subsequently, Avanzi, Heuberger, and Prodinger [2],
[4] proposed another two digit sets.

*4For the width-w non-adjacent form (w-NAF), the desired prop-
erties are shown in [5], [17], [18], [19], [27].

*5For w = 3, the minimality with digit set has also been shown by
Avanzi, Heuberger, and Prodinger [2]. Unlike in the case of w = 2, 3,
this is not true for w ∈ {4, 5, 6} [11]. Similar results for the τ -NAF
and its desired properties are proved in [6] and in [12] on another
special types of elliptic curves, respectively.

NAF of d. In order to circumvent the problem, Solinas [27]
has developed modular reduction in Z[τ ]. This technique
is called the reduced τ -NAF. By using modular reduction
in Z[τ ], we can reduce the length ℓ to a maximum of m+a,
where a is the coefficient in Equation (1), and m is the ex-
tension degree. However, a lower bound for the length of
minimal Hamming weight τ -adic expansions with digit set
{0,±1}, is not known yet. If the lower bound is quite small
compared to the length of the τ -NAF, further speed up can
be achieved in the case of polynomial basis representation.

In this paper, we shall derive an explicit lower bound for
the length of minimal Hamming weight τ -adic expansions.
Firstly, we give a lemma which will be needed in the proof
of the lower bound and a new proof of the minimality of
the Hamming weight of the τ -NAF. Secondly, we derive an
explicit lower bound for the length of minimal Hamming
weight τ -adic expansions based on the lemma. We also give
a new proof of the minimality of the Hamming weight of
the τ -NAF on Koblitz curves using the lemma. Further,
by using the proof of lower bound and the new proof of
the minimality of the Hamming weight of the τ -NAF, we
classify a minimal length τ -adic expansion with minimal
Hamming weight except for two special cases. The clas-
sification shows the following two facts. One is that the
τ -NAF has almost minimal length among all τ -adic expan-
sions of minimal Hamming weight with digit set {0,±1}.
The other is that we can easily convert the τ -NAF into
a minimal length τ -adic expansion without changing the
Hamming weight. These facts follow immediately from the
proof of the lower bound and our new proof.

This paper is organized as follows. Section 2 prepares
some notation. Section 3 shows a key lemma which will be
needed in the proof of the lower bound and our new proof
of the minimality of the Hamming weight of the τ -NAF.
Section 4 derives an explicit lower bound for the length
of minimal Hamming weight τ -adic expansions. Section 5
gives the new proof of minimality of the Hamming weight of
the τ -NAF on Koblitz curves. Section 6 classifies a minimal
length τ -adic expansion except for two special cases.

2. Notation

Throughout this paper, we use the symbols N, Z, C, Fq to
represent the natural numbers, the integers, complex num-
bers, and a finite field with q elements respectively. De-
note by Z>0 the set of positive integers. For any non-zero
complex number ψ ∈ C \ {0}, we denote ψ-adic expan-
sion

∑ℓ−1
i=0 ciψ

i with ci ∈ Z by (cℓ−1, . . . , c0)ψ. The sym-
bol ‘∗’ means a non-zero digit of τ -adic expansions. We
denote by Ea the Koblitz curve defined by Equation (1)
and by τ the Frobenius map on Ea defined by (2). Let
D := D2 = {0,±1}. Note that for a fixed coefficient a ∈ F2

in Equation (1), it satisfies that D = {0,±µ}.
For any element α in Z[τ ], we denote by α =

∑ℓ−1
i=0 biτ

i

(bi ∈ D) the τ -NAF of α, and by α =
∑ℓ′−1

i=0 ciτ
i (ci ∈ D)

be any τ -adic expansion of α, respectively. The length
of τ -NAF of α is denoted by ℓτ-NAF(α). We denote by
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ℓmin(α) the length of τ -adic expansion of minimal length
among all τ -adic expansions of minimal Hamming weight
with digit set D. Additionally, we use the following no-
tation in Section 3 and Section 5. If ℓ > ℓ′ then put
cℓ′ = cℓ′+1 = · · · = cℓ−1 = 0. Otherwise, put bℓ = bℓ+1 =
· · · = bℓ′−1 = 0. Furthermore, replace max{ℓ, ℓ′} by ℓ if
necessary. We put Sα := {i ∈ {0, 1, . . . , ℓ− 1}|bi ̸= 0}, and
Tα := {i ∈ {0, 1, . . . , ℓ − 1}|ci ̸= 0}.

3. Key Lemma

In this section, we show a key lemma (Lemma 2) which
will be needed in the proof of the lower bound and the new
proof. We begin with recursive formulas to convert any
τ -adic expansion into the τ -NAF. The following lemma is
useful to obtain such recursive formulas.

Lemma 1. Let ℓ ∈ N be a natural number. If
∑ℓ−1

i=0 aiτ
i =

0 (ai ∈ D), then ai = 0 for all i (0 ≤ i ≤ ℓ − 1).

Proof. From
∑ℓ−1

i=0 aiτ
i = a0 +

(∑ℓ−1
i=1 aiτ

i
)

and τ |0, we
have 2|a0. By a0 ∈ D, we have a0 = 0. We put α′ :=
{
(∑ℓ−1

i=0 aiτ
i
)
− a0}/τ . By the same argument as above, it

satisfies a1 = 0. Similar to the case of a0 and a1, we also
have a2 = 0, . . . , aℓ−1 = 0. Therefore ai = 0 for all i.

The τ -adic expansion
∑ℓ−1

i=0(bi − ci)τ i is not necessarily
τ -adic expansion with D, because (bi − ci) ∈ {0,±1,±2}.
However, by using the following carry rules from right to
left (i.e. from the least significant digit to the most signifi-
cant digit), we can convert

∑ℓ−1
i=0(bi − ci)τ i into τ -adic ex-

pansion
∑ℓ−1

i=0 aiτ
i (ai ∈ D). For each i (i = 0, 1, 2, ..., ℓ−1),

ai’s are obtained by the following recursive formulas:

(5) ai = (bi − ci) − µD∗
i−1 + D∗

i−2 + Di,

where D∗
−1 = D∗

−2 = 0, and for all i,
(6)

Di :=


−

⌊
(bi−ci)−µD∗

i−1+D∗
i−2

2

⌋
× 2

(if (bi − ci) − µD∗
i−1 + D∗

i−2 ≥ 0),⌊
−
(
(bi−ci)−µD∗

i−1+D∗
i−2

)
2

⌋
×2 (otherwise),

and

(7) D∗
i = Di/2 (i ≥ 0).

From (5) and (6), it follows that by applying Lemma 1 for∑ℓ−1
i=0 aiτ

i, each ai is an element in {0,±1}. From Lemma
1, we have ai = 0 for all i. In other words, for any α ∈ Z[τ ]
and any τ -adic expansion α =

∑ℓ′−1
i=0 ciτ

i with digit set D,
we can compute the τ -NAF of α (α =

∑ℓ−1
i=0 biτ

i) using the
recursive formulas (5), (6), and (7).

The lower bound and our new proof of the minimality
of the Hamming weight of the τ -NAF are based on the
following lemma.

Lemma 2. [Key Lemma for Lower Bound and Our
New Proof]

Let S := {0,±1}×{0,±1}×{0,±1}×{0,±1}×{0,±2}
be the direct product of four copies of {0,±1}(⊂ Z) and
{0,±2}(⊂ Z). Let Hi := (bi, ci, D

∗
i−1, D

∗
i−2, Di) ∈ S for

i (0 ≤ i ≤ ℓ−1). Let A1 := {(µ, 0, 1, 0, 0), (−µ, 0,−1, 0, 0)},
A2 := {(µ, 0, 0,−µ, 0), (−µ, 0, 0, µ, 0)},
A3 := {(µ, 0,−1, 0,−2µ), (−µ, 0, 1, 0, 2µ)},
A4 := {(µ, 0, 0, µ,−2µ), (−µ, 0, 0,−µ, 2µ)} be the subset of
S, respectively.
(1) Di = 0,±2 (D∗

i = 0,±1) for all i.
(2) If ci+1 = 0, bi+1 ̸= 0 for some i ≥ 0, then Hi+1 ∈
A1 ∪ A2 ∪ A3 ∪ A4.
(3) If Hi+1 ∈ A1 ∪ A3, then bi = 0, ci ̸= 0. If Hi+1 ∈ A4,
then it hold bi+2 = 0 and ci+2 ̸= 0. In particular, if Hi ∈
A4, then Hi+2 ̸∈ A1 ∪ A3.
(4) For i0 ∈ {0, 1, . . . , ℓ − 1}, the following conditions are
equivalent:

(a)
∑i0

i=0 biτ
i =

∑i0
i=0 ciτ

i;
(b) Di0−1 = 0 and Di0 = 0.

(5) Suppose that Hi+1 ∈ A2. If (Dj+1, Dj) ̸= (0, 0) for all
j (−1 ≤ j ≤ i − 1), then i ≥ 2 and(

b2 b1 b0

c2 c1 c0

)
satisfies one of the following two cases:

(8)
(

b2 b1 b0

c2 c1 c0

)
∈ Γ1,

or

(9)
(

b2 b1 b0

c2 c1 c0

)
∈ Γ2,

where

Γ1 =

{(
0 0 1
0 −µ −1

)
,

(
0 0 −1
0 µ 1

)}
,

Γ2 =

{(
∗ 0 1
∗ −µ −1

)
,

(
∗ 0 −1
∗ µ 1

)
,

(
−1 0 1
0 µ −1

)
,

(
1 0 −1
0 −µ 1

)}
.

In particular, if(
b2 b1 b0

c2 c1 c0

)
∈

{(
−1 0 1
0 µ −1

)
,

(
1 0 −1
0 −µ 1

)}
⊂ Γ2

holds, then i ≥ 3, H2 ∈ A4, and

(10)
(

b3 b2 b1 b0

c3 c2 c1 c0

)
∈ Γ3,

where

(11) Γ3 =

{(
0 −1 0 1
µ 0 µ −1

)
,

(
0 1 0 −1
−µ 0 −µ 1

)
,

(
0 −1 0 1
−µ 0 µ −1

)
,

(
0 1 0 −1
µ 0 −µ 1

)}
.
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Proof. (1) Let us assume the contrary and seek a contra-
diction. Suppose that there exists i ∈ {0, 1, 2, . . . , ℓ − 1}
such that i does not satisfy Di = 0,±2, and i0 be the
minimal such i ∈ {0, 1, 2, . . . , ℓ − 1}. We evaluate the
range of Di0 . For i which satisfies i ≤ i0 − 1, we have
Di = 0,±2 (D∗

i = 0,±1). Then

|bi0 − ci0 − µD∗
i0−1 + D∗

i0−2|
≤ |bi0 | + |ci0 | + |µD∗

i0−1| + |D∗
i0−2|

≤ 1 + 1 + 1 + 1 = 4.

By Equation (6), Di is an even number, and |Di0 | > 2, we
have Di0 = ±4. There are two cases to consider, Di0 = −4
and Di0 = 4. We only consider the former because the
latter may be treated similar to the former case. From
|bi0 |, |ci0 | ≤ 1, |D∗

i0−1|, |D∗
i0−2| ≤ 1, we must have bi0 = 1,

ci0 = −1, D∗
i0−1 = −µ, D∗

i0−2 = 1 in order to satisfy
0 = ai0 = bi0 − ci0 − µD∗

i0−1 + D∗
i0−2 + Di0 . So Di0−1 =

2D∗
i0−1 = −2µ. On the other hand, (bℓ−1, . . . , b1, b0)τ is

the τ -NAF, so bi0 = 1 implies bi0−1 = 0. Hence

0 = ai0−1 = bi0−1 − ci0−1 − µD∗
i0−2 + D∗

i0−3 + Di0−1

= −ci0−1 − µ ∗ 1 + D∗
i0−3 − 2µ

= −ci0−1 + D∗
i0−3 − 3µ,

we obtain ci0−1 = D∗
i0−3−3µ. However, D∗

i0−3 ∈ {0,±1} =
{0,±µ}, we have |ci0−1| = |D∗

i0−3−3µ| ≥ |
∣∣D∗

i0−3

∣∣−|3µ| | ≥
|
∣∣D∗

i0−3

∣∣ − 3| ≥ 2. This is a contradiction.

(2) We assume that ci+1 = 0, bi+1 = ±µ. Then we have
0 = ai+1 = bi+1 − µD∗

i + D∗
i−1 + Di+1. It is necessary to

treat the cases Di+1 = 0 and Di+1 ̸= 0 separately.

(Case 1) Di+1 = 0.
It is easy to see that Hi+1 ∈ A1 ∪ A2.

(Case 2) Di+1 ̸= 0.
If the sign of bi+1 is same as that of Di+1, we must have

|bi+1 + Di+1| = 3. So it does not occur that bi+1 − µD∗
i +

D∗
i−1 + Di+1 = 0. Hence from bi+1 and Di+1 have the

opposite signs, we have Hi+1 ∈ A3 ∪ A4.
Therefore, if ci+1 = 0, bi+1 ̸= 0 then Hi+1 ∈ A1 ∪ A2 ∪

A3 ∪ A4.

(3) First, we assume that Hi+1 ∈ A1. Since (bℓ−1, . . . , b1, b0)τ

is the τ -NAF and bi+1 ̸= 0, we have bi = 0. We substitute
bi = 0 into ai = (bi − ci) − µD∗

i−1 + D∗
i−2 + Di = 0, we

have ci = −µD∗
i−1 + D∗

i−2 + Di. Since Hi+1 ∈ A1 and
ci = −µ ∗ 0 + D∗

i−2 ± 2 = D∗
i−2 ± 2 ̸= 0, we have ci ̸= 0.

Next, suppose that Hi+1 ∈ A3. Similar to the above
case, since ci = −µ ∗ 0 + D∗

i−2 ∓ 2 = D∗
i−2 ∓ 2 ̸= 0, we also

have bi = 0, ci ̸= 0.
We assume that Hi+1 ∈ A4. Since (bℓ−1, . . . , b1, b0)τ

is the τ -NAF and bi+1 ̸= 0, we have bi+2 = 0. From
ai+2 = bi+2 − ci+2 − µD∗

i+1 + D∗
i + Di+2 = 0 and ci+2 =

±1 + Di+2 ̸= 0, we have ci+2 ̸= 0. Moreover, if Hi ∈ A4,
from Di = ∓2µ, we have D∗

i = ∓µ. Therefore it does not
occur that Hi+2 ∈ A1 ∪ A3.

(4)
i0∑

i=0

biτ
i =

i0∑
i=0

ciτ
i

⇐⇒
i0∑

i=0

(bi − ci)τ i = 0

⇐⇒
i0∑

i=0

(bi − ci)τ i +
i0∑

i=0

(τ2 − µτ + 2)D∗
i τ i = 0

⇐⇒
i0∑

i=0

{(bi − ci) − µD∗
i−1 + D∗

i−2 + Di}τ i

+(D∗
i0τ − µD∗

i0 + D∗
i0−1)τ

i0+1 = 0

⇐⇒
i0∑

i=0

aiτ
i + (D∗

i0τ − µD∗
i0 + D∗

i0−1)τ
i0+1 = 0

⇐⇒ (D∗
i0τ − µD∗

i0 + D∗
i0−1)τ

i0+1 = 0
⇐⇒ D∗

i0τ + (−µD∗
i0 + D∗

i0−1) = 0
⇐⇒ Di0−1 = 0, Di0 = 0

(5) Since (D0, D−1) ̸= (0, 0) and D−1 = 0, we must have
D0 ̸= 0. There are two cases to consider, D0 = −2 and
D0 = 2. We only consider the former because the latter
may be treated similar to the former case. From D0 = −2,
we must have b0 = 1 and c0 = −1. Since (bℓ−1, . . . , b1, b0)τ

is the τ -NAF and b0 ̸= 0, we have b1 = 0. Hence from
b1 − c1 − µD∗

0 + D∗
−1 + D1 = −c1 + µ + D1 = 0, we have

(c1, D1) = (−µ,−2µ) or (µ, 0).

(Case 1) (c1, D1) = (−µ,−2µ).
By b2 − c2 − µD∗

1 + D∗
0 + D2 = b2 − c2 + D2 = 0, we

have (b2, c2, D2) = (0, 0, 0), (±1,±1, 0), or (±µ,∓µ,∓2µ),
where double signs are taken in the same order. Thus(

b2 b1 b0

c2 c1 c0

)
=

(
0 0 1
0 −µ −1

)
,
(

1 0 1
1 −µ −1

)
,(

−1 0 1
−1 −µ −1

)
,
(

µ 0 1
−µ −µ −1

)
, or

(
−µ 0 1
µ −µ −1

)
.

(Case 2) (c1, D1) = (µ, 0).
By b2 − c2 − µD∗

1 + D∗
0 + D2 = b2 − c2 + D2 − 1 = 0, we

have (b2, c2, D2) = (0, 1, 2), (0,−1, 0), (−1, 0, 2), or (1, 0, 0).
Thus, in the cases of (b2, c2, D2) = (0, 1, 2) or (0,−1, 0), we
have(

b2 b1 b0

c2 c1 c0

)
=

(
0 0 1
1 µ −1

)
or

(
0 0 1
−1 µ −1

)
.

In the case of (b2, c2, D2) = (−1, 0, 2), from b3−c3−µD∗
2 +

D∗
1 + D3 = −c2 − µ + D3 = 0, we have (c2, D3) = (µ, 2µ)

or (−µ, 0). Thus(
b3 b2 b1 b0

c3 c2 c1 c0

)
=

(
0 −1 0 1
µ 0 µ −1

)
or

(
0 −1 0 1
−µ 0 µ −1

)
.

Moreover, if (c2, D3) = (µ, 2µ), then H2 = (−1, 0, 0,−1, 2) ∈
A4, and if (c2, D3) = (−µ, 0), then H2 = (−µ, 0, 0,−µ, 2µ) ∈
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A4. In the case of (b2, c2, D2) = (1, 0, 0), we have (D1, D2)
= (0, 0). This is a contradiction.

Hence we obtain(
b2 b1 b0

c2 c1 c0

)
∈ Γ1 ∪ Γ2,

or (
b3 b2 b1 b0

c3 c2 c1 c0

)
∈ Γ3.

In particular,(
b2 b1 b0

c2 c1 c0

)
=

(
0 0 ∗
0 ∗ ∗

)
,

(
∗ 0 ∗
∗ ∗ ∗

)
,

(
0 0 ∗
∗ ∗ ∗

)
or (

b3 b2 b1 b0

c3 c2 c1 c0

)
=

(
0 ∗ 0 ∗
∗ 0 ∗ ∗

)
.

It is easy to see that i ≥ 2 when(
b2 b1 b0

c2 c1 c0

)
∈ Γ1 ∪ Γ2,

and i ≥ 3 when (
b3 b2 b1 b0

c3 c2 c1 c0

)
∈ Γ3.

4. Lower Bound for the Length

This section derives an explicit lower bound for the length
of minimal Hamming weight τ -adic expansions. From the
definition of ℓmin, the following upper bound for ℓmin is
trivially true for all α ∈ Z[τ ]:

ℓmin(α) ≤ ℓτ-NAF(α).

An lower bound ℓmin can also be derived in terms of the
length of the τ -NAF. The following lower bound for ℓmin is
based on Lemma 2.
Theorem 1. [Lower Bound for ℓmin(α)]

Suppose that ℓ′ < ℓ. Then for any α ∈ Z[τ ],

(12) ℓτ-NAF(α) − 3 (= ℓ − 3) ≤ ℓ′.

In particular,

(13) ℓτ-NAF(α) − 3 ≤ ℓmin(α).

Proof. The latter part follows immediately from the for-
mer part. We show the former part. We assume that
cℓ′ = 0, cℓ′+1 = 0, . . . , cℓ−1 = 0. Note that bℓ−1 ̸= 0 and
cℓ−1 = 0. From Lemma 2 (2), it satisfies that Hℓ−1 ∈
A1 ∪ A2 ∪ A3 ∪ A4. Since

∑ℓ−1
i=0 biτ

i =
∑ℓ−1

i=0 ciτ
i, we

have Di = 0 for all i ≥ ℓ − 2. It follows that Hℓ−1 ̸∈
A1 ∪ A3 ∪ A4. We only deal with the case of Hℓ−1 ∈ A2.
There are two cases to consider, Hℓ−1 = (µ, 0, 0,−µ, 0) and
Hℓ−1 = (−µ, 0, 0, µ, 0). Without loss of generality, we may
assume that Hℓ−1 = (µ, 0, 0,−µ, 0) because the latter may

be treated in exactly the same way. By bℓ−1 ̸= 0, it satisfies
bℓ−2 = 0. From

aℓ−2 = (bℓ−2 − cℓ−2) − µD∗
ℓ−3 + D∗

ℓ−4 + Dℓ−2

= −cℓ−2 + 1 + D∗
ℓ−4

= 0,

we have cℓ−2 = D∗
ℓ−4 + 1. Hence we obtain (cℓ−2, D

∗
ℓ−4) =

(1, 0) or (0,−1).

(Case 1) (cℓ−2, D
∗
ℓ−4) = (1, 0).

It is easily to see that ℓ′ = ℓ − 1.

(Case 2) (cℓ−2, D
∗
ℓ−4) = (0,−1).

It holds that

aℓ−3 = (bℓ−3 − cℓ−3) − µD∗
ℓ−4 + D∗

ℓ−5 + Dℓ−3

= (bℓ−3 − cℓ−3) + µ + D∗
ℓ−5 − 2µ

= (bℓ−3 − cℓ−3) + D∗
ℓ−5 − µ

= 0.

So

(bℓ−3, cℓ−3, D
∗
ℓ−5) = (0, 0, µ), (0,−µ, 0), (µ, 0, 0),

(µ, µ, µ), (µ,−µ,−µ), or (−µ,−µ, µ).

However, if (bℓ−3, cℓ−3, D
∗
ℓ−5) = (µ, µ, µ) or (−µ,−µ, µ),

then bℓ−3 ̸= 0 and bℓ−4 ̸= 0. This contradicts the fact that
α =

∑ℓ−1
i=0 biτ

i is the τ -NAF of α. Therefore it does not
occur that (bℓ−3, cℓ−3, D

∗
ℓ−5) = (µ, µ, µ) and (−µ,−µ, µ).

If (bℓ−3, cℓ−3, D
∗
ℓ−5) = (0,−µ, 0) or (µ,−µ,−µ), then ℓ′ =

ℓ − 2.
It remains to consider the case that (bℓ−3, cℓ−3, D

∗
ℓ−5)

= (0, 0, µ) and (µ, 0, 0). If (bℓ−3, cℓ−3, D
∗
ℓ−5) = (0, 0, µ),

then from

aℓ−4 = (bℓ−4 − cℓ−4) − µD∗
ℓ−5 + D∗

ℓ−6 + Dℓ−4

= (bℓ−4 − cℓ−4) + D∗
ℓ−6 − 3

= 0,

we have (bℓ−4, cℓ−4, D
∗
ℓ−6) = (1,−1, 1). This indicates that

ℓ′ = ℓ − 3. If (bℓ−3, cℓ−3, D
∗
ℓ−5) = (µ, 0, 0), we must have

bℓ−4 = 0. Then

aℓ−4 = (bℓ−4 − cℓ−4) − µD∗
ℓ−5 + D∗

ℓ−6 + Dℓ−4

= −cℓ−4 + D∗
ℓ−6 − 2

= 0.

Hence we obtain (cℓ−4, D
∗
ℓ−6) = (−1, 1). Thus ℓ′ = ℓ − 3.

Combining (Case 1) and (Case 2), we obtain Inequality
(12).

As already mentioned, τ -NAF has the smallest Hamming
weight with digit set {0,±1}. Further, Theorem 1 tells us
that τ -NAF also has almost minimal length with digit set
{0,±1}.

5. Our New Proof

In this section, we give a new proof of minimality of the
Hamming weight of the τ -NAF on Koblitz curves.
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5.1. The Main Idea of Our New Proof

The minimality of the Hamming weight of the τ -NAF on
Koblitz curves was first proved by Avanzi, Heuberger, and
Prodinger [1], [3]. They have presented two proofs for the
minimality. One is referred as the Direct proof, which is
induction on the Hamming weight. The other is referred as
the Automatic proof, which is based on a weighted digraph
induced by the transducer to compute the τ -NAF from any
τ -adic expansion from right to left (see [1], [3] for proofs).

The strategy of our new proof of the minimality is as fol-
lows. For any α ∈ Z[τ ], we directly construct an injection
map from Sα into Tα. Notice that if it is possible to con-
struct an injection map from Sα to Tα for any α and any
τ -adic expansion of α, then the Hamming weight of the τ -
NAF of α is always smaller than that of the τ -adic expan-
sion, that is, the τ -NAF minimizes the Hamming weight
with digit set {0,±1}.

A similar strategy is already used for the proof of min-
imality of the Hamming weight of the generalized non-
adjacent form (GNAF) [9]. We briefly review the strat-
egy to prove the minimality of the Hamming weight of
the GNAF. Let r ≥ 2 be a positive integer, β be any el-
ement of Z>0. We denote by β =

∑ℓ−1
i=0 gir

i (gi ∈ DG)
the GNAF of β, where DG = {0,±1, . . . ,±(r − 1)}. Let
β =

∑ℓ′−1
i=0 hir

i (hi ∈ DG) be any r-adic expansion of
β. If ℓ > ℓ′, then put hℓ′ = hℓ′+1 = · · · = hℓ−1 =
0. Otherwise, put gℓ = gℓ+1 = · · · = gℓ′−1 = 0. Fur-
thermore, replace max{ℓ, ℓ′} by ℓ if necessary. We put
Sβ := {i ∈ {0, 1, . . . , ℓ − 1}|gi ̸= 0}, and Tβ := {i ∈
{0, 1, . . . , ℓ − 1}|hi ̸= 0}.

Then the following claim holds.

Claim 1. [The Key Point of the Minimality [9]] If
hi+1 = 0 for some i ≥ 0, then either gi+1 = 0 or hi ̸= 0
and gi = 0.

Thus from Claim 1, we can construct the following simple
injection map.

φβ : Sβ → Tβ

∈ ∈

i 7→ i (gi ̸= 0, hi ̸= 0),
i 7→ i − 1 (gi ̸= 0, hi = 0).

We can see that Lemma 2 is analogous result for τ -adic
expansion.

5.2. Our New Proof

We are now in a position to give our new proof of the min-
imality of the Hamming weight of the τ -NAF on Koblitz
curves.

Our New Proof of the Minimality.

With notation as above, we directly construct an injec-
tion map φα : Sα → Tα for each case.

(Case 1) Hi ̸∈ A2 for all i (0 ≤ i ≤ ℓ − 1).

We define a map φα : Sα → Tα as follows.

φα : Sα → Tα

∈ ∈

i 7→ i (bi ̸= 0, ci ̸= 0),
i 7→ i − 1 (Hi ∈ A1 ∪ A3),
i 7→ i + 1 (Hi ∈ A4).

From the recursive formula (5) and D∗
−1 = D∗

−2 = 0, it
does not occur that b0 ̸= 0 and c0 = 0. This implies that
if 0 ∈ Sα, then φα(0) ∈ Tα. From Lemma 2 (3), the map
φα does not satisfy φα(i) = i + 1 and φα(i + 2) = i + 1 for
any i. Thus, the map φα : Sα → Tα is injective.

(Case 2) Hi ∈ A2 for some i (0 ≤ i ≤ ℓ − 1).
Let {i1, i2, . . . , ik} be the set so that Hij ∈ A2 for 1 ≤

j ≤ k and k < k′ implies ik < ik′ . We denote i0 := −1 for
convenient. Since Hij ∈ A2 and (D−1, D−2) = (0, 0), we
have (Dij , Dij−1) = (0, 0) for 0 ≤ j ≤ k. From Lemma 2
(4), we have

∑ij+1
i=ij+1 biτ

i =
∑ij+1

i=ij+1 ciτ
i for 0 ≤ j ≤ k−1.

For each ij (1 ≤ j ≤ k), we denote
(14)

Mj := {n ∈ Z|ij−1 ≤ n ≤ ij − 1, (Dn, Dn−1) = (0, 0)}.

Note that for 1 ≤ j ≤ k, the set Mj is not empty, be-
cause ij−1 ∈ Mj . We put mj = max Mj . Then, we have
(Dn, Dn−1) ̸= (0, 0) for mj + 1 ≤ n ≤ ij − 1. By Lemma 2
(5), we have (bmj+2, cmj+2) = (0, ∗).
Moreover, from Lemma 2 (5), if(

bmj+4 bmj+3 bmj+2 bmj+1

cmj+4 cmj+3 cmj+2 cmj+1

)
∈ Γ3,

then Hmj+2 ∈ A4. Therefore we obtain

(15) i0 ≤ m1 ≤ i1 ≤ · · · ≤ mj ≤ ij ≤ · · · ≤ mk ≤ ik.

Furthermore, by Lemma 2 (5), if(
bmj+3 bmj+2 bmj+1

cmj+3 cmj+2 cmj+1

)
∈ Γ1 ∪ Γ2,

then ij ≥ mj + 3, and if(
bmj+4 bmj+3 bmj+2 bmj+1

cmj+4 cmj+3 cmj+2 cmj+1

)
∈ Γ3,

then ij ≥ mj + 4. We define a map φα : Sα → Tα as
follows.

φα : Sα → Tα

∈ ∈

i 7→ i (bi ̸= 0, ci ̸= 0),
i 7→ i − 1 (Hi ∈ A1 ∪ A3),
i 7→ i + 1 (Hi ∈ A4),
ij 7→ mj + 2 (Hij ∈ A2).

By the same argument as (Case 1), if 0 ∈ Sα, then
φα(0) ∈ Tα. By Lemma 2 (5), for all i which satisfy
i ̸∈ {i1, i2, . . . , ik}, it does not occur φα(i) = mj + 2.
Thus, the map φα : Sα → Tα is injective. This completes
the proof.
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6. τ-adic Minimal Length Form

This section classifies a minimal length τ -adic expansion
with minimal Hamming weight except for two special cases.
In the case of the ordinary NAF, minimal length binary
representation with minimal Hamming weight is shown in
[7, Corollary 3]. From Theorem 1 and our new proof, we
now obtain analogous result for τ -adic expansion. Corol-
lary 1 shows that we can convert τ -NAF into a minimal
length τ -adic expansion without changing the Hamming
weight. This fact follows immediately from the proof of
the lower bound and our new proof of the minimality of
the Hamming weight of the τ -NAF.
Corollary 1. [τ-adic Minimal Length Expansion]

Let d be an element of Z[τ ], and
∑ℓ−1

i=0 eiτ
i (ei ∈ D,

eℓ−1 ̸= 0) be the τ -NAF of d. We convert the τ -NAF
d =

∑ℓ−1
i=0 eiτ

i into d =
∑ℓ′−1

i=0 e′iτ
i (e′i ∈ D, e′ℓ′−1 ̸= 0) as

follows.

(Case 1) ℓ < 6.
If (eℓ−1, . . . , e0)τ is equal to one of the τ -NAF in Ta-

ble 1 (double signs are taken in the same order), then we
convert (eℓ−1, . . . , e0)τ into (e′ℓ′−1, . . . , e

′
0)τ using Table 1.

Otherwise, ℓ = ℓ′ and ei = e′i for all i.

Table 1: Conversion of the τ -NAF into the τ -MLF (ℓ < 6)

(eℓ−1, . . . , e0)τ (e′ℓ′−1, . . . , e
′
0)τ ℓ ℓ′

(±µ, 0, 0,±1)τ (∓µ,∓1)τ 4 2
(±µ, 0, 0,±1, 0)τ (∓µ,∓1, 0)τ 5 3

(±µ, 0,±µ)τ (±1,∓µ)τ 3 2
(±µ, 0,±µ, 0)τ (±1,∓µ, 0)τ 4 3

(±µ, 0,±µ, 0, 0)τ (±1,∓µ, 0, 0)τ 5 4
(±µ, 0,±µ)τ (±1,∓µ)τ 3 2

(±µ, 0,±µ, 0)τ (±1,∓µ, 0)τ 4 3
(±µ, 0,±µ, 0,±µ)τ (∓µ,∓1,±µ)τ 5 3
(±µ, 0,±µ, 0,∓µ)τ (±1,∓µ, 0,∓µ)τ 5 4

(Case 2) ℓ = 6.
We convert (eℓ−1, . . . , eℓ−6)τ into (e′ℓ′−1, . . . , e

′
ℓ−6)τ us-

ing Table 2 (double signs are taken in the same order).

(Case 3) ℓ ≥ 7.

(i) (eℓ−1, . . . , eℓ−7)τ = (±µ, 0,±µ, 0, 0, 0,∓µ)τ .
ei = e′i for all i ≤ ℓ − 8, ℓ′ = ℓ − 3, and we convert
(eℓ−1, . . . , eℓ−7)τ = (±µ, 0,±µ, 0, 0, 0,∓µ)τ into
(e′ℓ′−1, . . . , e

′
ℓ−7)τ = (∓1, 0,±1,±µ).

(ii) (eℓ−1, . . . , eℓ−7)τ = (±µ, 0,±µ, 0,∓µ, 0,∓µ)τ .
ei = e′i for all i ≤ ℓ − 8, ℓ′ = ℓ − 3, and we convert
(eℓ−1, . . . , eℓ−7)τ = (±µ, 0,±µ, 0,∓µ, 0,∓µ)τ into
(e′ℓ′−1, . . . , e

′
ℓ−7)τ = (∓1,∓µ,±1,±µ).

(iii) (eℓ−1, . . . , eℓ−7)τ ̸= (±µ, 0,±µ, 0, 0, 0,∓µ)τ

and (±µ, 0,±µ, 0,∓µ, 0,∓µ)τ .
ei = e′i for all i ≤ ℓ−7 and we convert (eℓ−1, . . . , eℓ−6)τ

into (e′ℓ′−1, . . . , e
′
ℓ−6)τ using Table 2.

Then, except for the cases that (eℓ−1, . . . , eℓ−6)τ = (µ, 0,
µ, 0, µ, 0)τ and (eℓ−1, . . . , eℓ−6)τ = (−µ, 0,−µ, 0,−µ, 0)τ ,

Table 2: Conversion of the τ -NAF into the τ -MLF (ℓ ≥ 6)

(eℓ−1, . . . , eℓ−6)τ (e′ℓ′−1, . . . , e
′
ℓ−6)τ ℓ′

(±µ, 0, 0, 0, 0, 0)τ (±µ, 0, 0, 0, 0, 0)τ ℓ
(±µ, 0, 0, 0, 0,±µ)τ (±µ, 0, 0, 0, 0,±µ)τ ℓ
(±µ, 0, 0, 0, 0,∓µ)τ (±µ, 0, 0, 0, 0,∓µ)τ ℓ
(±µ, 0, 0, 0,±µ, 0)τ (±µ, 0, 0, 0,±µ, 0)τ ℓ
(±µ, 0, 0, 0,∓µ, 0)τ (±µ, 0, 0, 0,∓µ, 0)τ ℓ
(±µ, 0, 0,±1, 0, 0)τ (∓µ,∓1, 0, 0)τ ℓ − 2

(±µ, 0, 0,±1, 0,±1)τ (∓µ,∓1, 0,±1)τ ℓ − 2
(±µ, 0, 0,±1, 0,∓1)τ (∓1,±µ,±1)τ ℓ − 3
(±µ, 0, 0,∓1, 0, 0)τ (±µ, 0, 0,∓1, 0, 0)τ ℓ

(±µ, 0, 0,∓1, 0,±1)τ (±µ, 0, 0,∓1, 0,±1)τ ℓ
(±µ, 0, 0,∓1, 0,∓1)τ (±µ, 0, 0,∓1, 0,∓1)τ ℓ
(±µ, 0,±µ, 0, 0, 0)τ (±1,∓µ, 0, 0, 0)τ ℓ − 1

(±µ, 0,±µ, 0, 0,±1)τ (±1,∓µ, 0, 0,±1)τ ℓ − 1
(±µ, 0,±µ, 0, 0,∓1)τ (∓1,∓µ,±1)τ ℓ − 3
(±µ, 0,±µ, 0,±µ, 0)τ (∓µ,∓1,±µ, 0)τ ℓ − 2
(±µ, 0,±µ, 0,∓µ, 0)τ (±1,∓µ, 0,∓µ, 0)τ ℓ − 1
(±µ, 0,∓µ, 0, 0, 0)τ (±µ, 0,∓µ, 0, 0, 0)τ ℓ

(±µ, 0,∓µ, 0, 0,±µ)τ (±µ, 0,∓µ, 0, 0,±µ)τ ℓ
(±µ, 0,∓µ, 0, 0,∓µ)τ (±µ, 0,∓µ, 0, 0,∓µ)τ ℓ
(±µ, 0,∓µ, 0,±µ, 0)τ (±µ, 0,∓µ, 0,±µ, 0)τ ℓ
(±µ, 0,∓µ, 0,∓µ, 0)τ (±µ, 0,∓µ, 0,∓µ, 0)τ ℓ

the τ -adic expansion d =
∑ℓ′−1

i=0 e′iτ
i is a minimal length

τ -adic expansion with minimal Hamming weight. We call
the τ -adic expansion

∑ℓ′−1
i=0 e′iτ

i (e′i ∈ D, e′ℓ′−1 ̸= 0) τ -adic
minimal length form (τ -MLF for short).

Remark 1. As described in Corollary 1, if (eℓ−1, . . . , eℓ−6)τ

= (±µ, 0,±µ, 0,±µ, 0)τ , then the τ -adic expansion d =∑ℓ′−1
i=0 e′iτ

i is not necessarily a minimal length τ -adic ex-
pansion with minimal Hamming weight.

For example, consider d = −11µ. The τ -NAF of d is
(µ, 0, µ, 0, µ, 0, µ, 0, µ)τ and ℓ = 9. From Corollary 1, ℓ′ =
ℓ−2 and the τ -MLF of d is (−µ,−1, µ, 0, µ, 0, µ)τ . However,
minimal length τ -adic expansion with minimal Hamming
weight of d is (−1, 0, 1, µ,−1,−µ)τ and ℓmin(d) = ℓ − 3.

Another example is d = 5µ − 5, where µ = −1. The
τ -NAF of d is (µ, 0, µ, 0,−µ, 0, 0,−1)τ and ℓ = 8. From
Corollary 1, ℓ′ = ℓ−2 and the τ -MLF of d is (−µ,−1, µ, 0, 0,
−1)τ . However, minimal length τ -adic expansion with min-
imal Hamming weight of d is (−1, 0, 1, µ,−1)τ and ℓmin(d) =
ℓ − 3. These issues remain to be discussed.

7. Conclusion

In this paper, we derived an explicit lower bound for the
length of minimal Hamming weight τ -adic expansions. We
also gave a new proof of the minimality of the Hamming
weight of the τ -NAF on Koblitz curves. Further, by us-
ing the proof of the lower bound and the new proof of
the minimality of the Hamming weight of the τ -NAF, we
classified a minimal length τ -adic expansion with minimal



82 Journal of Mathematics for Industry, Vol.2(2010A-7)

Hamming weight except for two special cases. The classi-
fication shows that the τ -NAF has almost minimal length
among all τ -adic expansions of minimal Hamming weight
and we can easily convert the τ -NAF into a minimal length
τ -adic expansion without changing the Hamming weight.
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