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Discretization of the Bruschi-Ragnisco lattice is investegated by singularity confinement test. The
equation is linearized by the Cole-Hopf like transformation.

1. Introduction

Some interesting completely integrable Hamiltonian systems, invariant under the Poincaré group, have
been discovered by Ruijsenaars?). The properties of these systems have been studied by various authors
and the discrete analogues were presented by Suris?.

Bruschi and Ragnisco introduced a new relativistic Hamiltonian system with nearest-neighbor inter-
action. The Bruschi-Ragnisco lattice is defined by the Hamiltonian

N
H=Y exp(p;)(aj+1 — a)- (1)

j=1

Therefore we have the following Hamiltonian equations for canonical variables (p, q),

OH '
gn = 5]3_n = exp(Pn)(gn+1 — qn), (2)
. OH
b= 5= exp(pn) — exp(Pr-1), (3)
I

and an eqﬁation of motion(Bruschi-Ragnisco lattice equation®)

in = dn+1dn ~ Gndn-1 . (4)
dn+1 —4qn  qdn — gn-1

Bruschi-Ragnisco(BR) lattice equation (4) is transformed into

bn = bnt1n — bnCa-1, (5a)
Cn = Cn(cn - cn—l)v (5b)
through .
bn =GQn — Qn-1, Cn =€xp(pn) = G (6)
dn+1 — dn

This system is interesting because it is one of the few completely integrable Hamiltonian systems with
nearest-neighbor nonlinear interaction. This system is also completely integrable in the Arnold-Liouville -
sense and linearizable by the change of variable®).

In this note, the discrete analogue of BR lattice equation presented by Suris is investigated by using
singularity confinement test which is a powerful tool in judging integrability for discrete systems and in
constructing solutions® 9.
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Fig.1 Singularity pattern 1 of BR lattice (f:finite)

2. Singularity confinement test

Suris presented discrete Bruschi-Ragnisco lattice equation®®,

t+1
t+1 qn _ qn+1 - qn qn - qnt (7)

qn - q’n qn+1 - Qn qn - qn—l

If we perform singularity confinement test for eq.(7), we don’t have divergence and eq.(7) passes singularity
confinement test. However we cannot obtain the dependent variable transformation because of lack of
information of singularity pattern.

Eq.(7) is transformed into

bEFH(1 + hebth) = b, + b, (8a)
41 _ ¢ L+hept!

WS T e (%)

through the transformation

t+1
4y~ —dn
: (9)

h(ghyr — ai)

Through the independent variable transformation n —t — n, discrete BR lattice equation is transformed
into

b = ¢ — g1, i = exp(pitt) =

BEFL (1 + helh) — bt

bt n—3
. Rt , (10a)
t+1
b gt 1+ he;, (10b)

Let us perform the singularity confinement test for this system. There are two sources of singularity. One
is the vanishing of the denominator of the first equation and the other that of the second equation.
First, let us consider the case of vanishing the denominator of the first equation. When we suppose
that ¢!, happens to be ¢, then b w41 become oco. Divergence of b does not disappear in the subsequent
steps. In this case the smgulanty is not confined.(See Fig.1.)
However, when we suppose that cf, happens to be — % +¢, the singularity is confined and the singularity
pattern is

{cfz—l?ct 17 n+1} - {—"700 0} (lla)
{ n+1} — {0}. (11b)

(See Fig.2.)
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Fig.2 Singularity pattern 2 of BR lattice

Let us assume that the singularity pattern is caused by the fact that a 7 function 7} becomes zero at
(n,t). We then obtain the dependent variable transformation

b; = aT:Ltll’ (123«)
1 Tt
t n+1l
Cn 5 B T
it
= 7;7‘2‘3?1’ (12b)
n
and we can get a linear equation
1
—ET,T'I + ,BT:H_I = 'yrfltll. (13)
Through n + t — n, the following equation is derived:
1
% 4 BrE =it (14)

Thus we know that discrete BR lattice equation is integrable, that is, linearizable.

The property of singularity confinement must be satisfied for all conceivable movable singularity.
However, in this case the discrete BR lattice is integrable while there is a pattern for which singularity
confinement property is not satisfied.

Let us see the discrete BR lattice equation again. This equation is a simultaneous equation for the
dependent variables b,c. We must remark that the second equation depends only on ¢. The dependent
variable ¢ is decided by only the second equation, thus the first equation is a linear difference equation
that does not have movable singularities. Finally, since the first singularity is non-movable singularity, we
do not have to consider this singularity in singularity confinement test. Thus we conclude that discrete
BR lattice equation has singularity confinement property.

In the continuous limit, we obtain the dependent transformation

Tn—1

bp = Tn—1,0n = o (15)

This transformation is Cole-Hopf like transformation. In terms of these new variables the system (5)
reduces to

Tn = Tn — Tn—1- (16)
This is transformed into
$n = Sn(Sn — Sp-1), (17)
through the variable transformation s,, = —-% log 7, + 1. From eq.(17), we get the semi-discrete Burgers
equation
Tn = exp(rn) — exp(rn-1), (18)

by the variable transformation r, = logs,. Therefore the (discrete) BR lattice equation has N-shock
wave solution. We remark that the semi-discrete Burgers equation (18) is related with pulses of the
FitzHugh-Nagumo equation'?). "

Suris pointed out that there is relation between the relativistic Toda lattice equation and BR lattice
equation. However we cannot find such relation in the level of 7 function (solution level). We note that
the BR lattice is looked upon as the relativistic analogue of discrete Burgers equation.
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3. Conclusion

‘We have shown that discrete BR lattice has singularity confinement property and the linear equation is
obtained by using singularity pattern. We notice that singularity confinement test works in linearization
of nonlinear equation. Although singularity confinement test has strange result in discrete BR. lattice, we
can except the strange pattern because of non movable singularity. This result indicates that we must
study only movable singularities in singularity confinement test.
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