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論 文 内 容 の 要 旨 

 

It is the job of the compiler to translate human-readable code into machine code that makes 

efficient use of hardware resources. The code translation and optimization process is a 

complex one, because the compiler has to accommodate the program to the available hardware 

resources while at the same time preserving the original functionality. Compilers have been 

the subject of research for several decades, and there are already well established optimization 

strategies that can result in high speedups.  Still, modern compilers fall short in selecting 

appropriate optimizations that yield the highest speedups due to the size of the optimization 

space, and because of the particularities of the source code, the target hardware and even the 

compiler itself. 

 

This work explores the application of machine learning (ML) for compiler tuning, to improve 

the compiler's capacity at selecting beneficial optimization strategies for a given input program.  

Our highest success was at predicting when to apply vectorization, a very powerful compiler 

optimization that targets data parallelization and efficient memory use but which can also be 

detrimental if used incorrectly.  We were able to train a ML predictor with 93% of accuracy at 

guessing from a high level description of our benchmark programs whether vectorization would 

be successful, resulting in a median 70% program speedup over Intel's ICC compiler.  Another 

unique study was conducted at re-targeting our vectorization predictor from reducing execution 

time to reducing energy consumption.  Our experiments yielded an average 64% decrease in 

energy consumption and only 5% decrease in energy in the case of mispredicitons.  

 

In predicting multiple optimizations, we were able to identify the four main challenges in 

making a ML approach practical, and proposed techniques to ameliorate this situation.  First, 

we designed an optimization space pruning technique that makes regression-based predictors 

feasible by bounding the prediction time on the size of the training set. We also proposed a 

multi-predictor modeling technique that increased prediction performance by 40% for our 

benchmarks.  In addition, we tested using code generators as an alternative to hand coded 

benchmarks for training and testing predictors.  Other contributions included 

multi-dimensional data visualization techniques to aid in characterizing programs, and a more 

rigorous predictor evaluation scheme.  Finally, in order to help move this research filed 

forward, we opened the TeaBowl project to share our results with the compiler researcher 

community. 


