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論 文 内 容 の 要 旨 
 

Persistent homology is a tool in topological data analysis for studying the robust topological 
features of data. The persistence diagram provides a compact way to summarize the presence, 
scale, and persistence of these features. Originally, persistent homology was defined for 
filtrations, and its algebraic structure explained as a graded module over a graded polynomial 
ring. The persistence diagram is provided by an indecomposable decomposition of the persistent 
homology module into the so-called interval modules. Each interval summand then tracks the 
lifespan of a homology generator through the filtration. 

An insight of Carlsson and de Silva in their paper on zigzag persistence is that the algebraic 
foundations of the persistent homology of filtrations can be rephrased in terms of 
representations of quivers, in particular of An-type quivers, through which they developed the 
theory of zigzag persistence. In this thesis, we extend the algebraic analysis of persistent 
homology by using bound quivers and their representations, and by applying Auslander-Reiten 
theory. 

A quiver is a directed graph, which we assume to be finite, acyclic, and connected. We give a 
definition of a quiver complex as a diagram of (simplicial) complexes and inclusions indexed by 
a quiver. This generalizes filtrations and zigzag complexes – settings where persistence 
analysis is already well developed. We then define the persistent homology of a quiver complex, 
which we show to be a representation of its quiver bound by commutativity relations. Motivated 
by applications, for example to studying the structure of amorphous glass, we focus on the 
so-called commutative ladder quivers CLn(τ). In particular, we show that CL3(τ) with 
orientation τ = fb can be used to study simultaneously robust and common features.   

In this direction, we show that the commutative ladder quivers CLn(τ) with length n ≤ 4 are 
representation-finite by computing their Auslander-Reiten (AR) quivers. Their AR quivers are 
given in the Appendix. We show that there is a close relationship between classical persistence 
diagrams and the AR quivers of the An-type quivers. By this relationship, we provide a 
generalization of the definition of persistence diagrams. 

In the representation-finite commutative ladder case, we show how to visualize our 
generalized persistence diagrams. By definition, the AR quiver has set of vertices all the 



isomorphism classes of the indecomposable representations. In our setting of CLn(τ) with n ≤ 4, 
this is a finite set, so that the domains of the persistence diagrams are finite. Thus we can 
easily visualize the persistence diagrams in these cases. Moreover, some methods and examples 
for the interpretation of the persistence diagrams in these cases are provided.  

In a related but slightly different direction, we have the following. A paper by Mischaikow 
and Nanda uses discrete Morse theory for computing the persistent homology of filtrations 
efficiently. We extend these ideas to our setting of quiver complexes. In particular, given a 
quiver complex X and an acyclic matching for X, we show that there is an associated Morse 
quiver complex A with the property that X and A have isomorphic persistent homology. The 
Morse quiver complex A tends to be smaller in size, so that computing the persistent homology 
from A instead of X tends to be less costly. An algorithm to compute an acyclic matching for a 
quiver complex X and the associated Morse quiver complex A is given, by modification of an 
existing algorithm. 

The computation of a persistence diagram follows from the computation of an 
indecomposable decomposition of a representation. While there exist general methods for this 
computation, we give an algorithm that uses only elementary linear algebra via changes of 
bases in the case of CLn(τ) with n = 3. In the final chapter, we explore a reformulation of 
representations of CLn(τ) via so-called matrix problems. By this link, we suggest an algorithm 
for computing their indecomposable decompositions via certain permissible operations on 
matrix problems. This will be expanded upon in a future work. 
 


