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Abstract

Persistent homology is a tool in topological data analysis for studying the robust
topological features of data. The persistence diagram provides a compact way to
summarize the presence, scale, and persistence of these features. In this thesis,
we extend the applicability of persistent homology to a wider variety of settings
by using bound quivers and their representations.

We give a definition of quiver complexes. This generalizes filtrations and
zigzag complexes — settings where persistence analysis is already well developed.
We then define the persistent homology H,(X) of a quiver complex X, which we
show to be a representation of a quiver bound by commutativity. Motivated by
applications, we focus specifically on the so-called commutative ladder quivers
CLy(7).

In this direction, we show that the commutative ladder quivers CL,,(7) with
length n < 4 are representation-finite by computing their Auslander-Reiten quiv-
ers. Moreover, using the Auslander-Reiten quivers, we provide a generalization
of the definition of persistence diagrams. In the representation-finite commuta-
tive ladder case, we show how to visualize our generalized persistence diagrams.
Moreover, some methods and examples for the interpretation of the persistence
diagrams in these cases are provided.

We extend the use of discrete Morse theory to our setting of quiver complexes.
In particular, given a quiver complex X and an acyclic matching for X, we show
that there is an associated Morse quiver complex A with the property that X
and A have isomorphic persistent homology. The Morse quiver complex A tends
to be smaller in size, so that computing the persistent homology from A instead
of X tends to be less costly.

An algorithm to compute an acyclic matching for a quiver complex X and the
associated Morse quiver complex A is given. The computation of a persistence
diagram follows from the computation of an indecomposable decomposition of a
representation. We give an algorithm for this in the case of CL,,(7) with n = 3.
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Chapter 1

Introduction

The major theme of this work is the use of representation theory in the devel-
opment of tools for data analysis. We shall see that some known techniques
in representation theory have much to contribute to topological data analysis
(TDA) via persistent homology.

Topological data analysis is a fast-growing field that applies various algebraic
and topological methods to data analysis. The survey paper [6] discusses several
distinguishing characteristics of the TDA point of view. For example, TDA tools
are independent of coordinates and particular metrics, and focus on qualitative
features such as shape, in the sense of topology. For a detailed explanation of
why these characteristics of TDA would be appropriate for certain types of data,
we refer the reader to [6].

In particular, we focus on the ideas of persistent homology. First, let us
roughly sketch the basic framework. Dealing with topological spaces directly
may be difficult. An insight from algebraic topology is that a functor, say from
topological spaces to abelian groups, can be used to convert a topological problem
into an algebraic one. Of course, some information (such as coordinates and
metrics) may be lost, but depending on application this can be desirable. For
example, the homology groups of a topological space contain information about
certain topological features — connected components, holes, voids, and so on.

As a further refinement of this basic idea, suppose that instead of just one
topological space, we have a diagram of topological spaces, and would like to
study what topological features are shared (persistent) across different spaces.
Applying the homology functor with field coefficients K, we obtain a diagram
of homology K-vector spaces and K-linear maps between them. This brings us
into the realm of the representation theory of quivers.

This leap to representations of quivers hides and abstracts a lot of detail, so
let us retrace its development starting from the persistent homology of filtrations.

Also, before going into specifics, let us note the following. At the level of rep-
resentation theory, we can ignore the fact that the diagrams of vector spaces and
maps are obtained from diagrams of topological spaces, and treat them purely as
algebraic objects. This allows the use of powerful known representation-theoretic
techniques.

In the following discussion, we shall make some choices about geometric
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constructions and shapes of diagrams, in order to concretely motivate our study
of persistent homology. It should be clear, however, that the framework sketched
above applies to a wide variety of constructions. By the observation above, once
we go into the representation theory, we have a unified language for treating all
the specific examples fitting into this framework.

The first choice that we make is that we approximate a topological space by
a simplicial complex — a collection of vertices, edges, triangles, and so on. The
homology groups (homology vector spaces) of simplicial complexes can be given
similar interpretations as those of topological spaces. In fact, this approximation
can be made precise. In the case that the topological space is triangulable, it has
a triangulation. A triangulation is a simplicial complex with homology groups
isomorphic to the homology groups of the topological space.

As a second choice, we further assume that the input data comes as a point
cloud — a finite set of points P < RY. There are methods, as discussed in
Section for constructing simplicial complexes that attempt to give a “shape”
to the point cloud data. These methods involve a choice of parameter values.
This presents a challenge, as we may not have a priori information about the
correct parameter value(s), if one even exists. Moreover, for fixed parameter
value, a slight change in the points of P, say from noise, may radically change
the structure of the resulting simplicial complex. The information provided by
the homology groups alone may not reflect only the relevant features.

Persistent homology [16] allows one to study robust topological features in a
filtration — a nested sequence of spaces X1,..., Xy:

X1 S X2 B > .. S Xn (11)

Applied to the choices above, this is a natural setting for when varying the
parameter in the geometric construction results in a nested sequence of spaces.
Then, we are freed from the need to choose the parameter value. Of course,
persistent homology can be applied to a wide variety of inputs where a filtration
can be obtained.

From the above diagram, we compute the diagram of K-vector spaces and
maps induced by homology
Hy(tn—

1
S
5

Hy(xy) 2l Hy(X,) (1.2)
called the persistent homology of the filtration. Here, ¢; are the inclusion maps
and Hg(¢;) the induced linear maps of homology vector spaces.

A standard structure theorem shows that we can decompose the above per-
sistent homology module into the so-called interval modules. Each interval then
tracks the life of a homology generator through the filtration, together with its
birth and death indices. This allows us to distinguish between topological fea-
tures likely to have been created by noise, and those that are robust — those with
long lifespans. These information can be presented in a compact format called
the persistence diagram (PD).

Let us illustrate this with a toy example. In Fig. we show a filtration
obtained by progressively enlarging the radii in the union of balls model of a set



Chapter 1. Introduction 3

of points. At r = 0.1, the tiny hole on the right is born, and it disappears at

r= % ~ 0.1414. Then, at radius value r ~ 0.2588, the big central hole is born,

and lasts until » ~ 0.9526.

. . P Y 0®%o
. . [ ] [ ) . .
. iiCe $gc-o 8-
. . ) ) (] ()
. LA ...
ra0 r=0.1 r= Y2 r = 0.2588

10

Figure 1.1: A filtration

()
(0.2588, 0.0526)

b

Figure 1.2: Dimension 1 persistence diagrams of the filtration in Fig. The
persistence diagram separates features into “noisy” features and robust features
according to their distances from the diagonal.

The filtration has dimension 1 persistence diagram given in Fig. [1.2] Note
that it consists of the persistence intervals [0.1,0.1414) and [0.2588,0.9526),
corresponding to a short-lived and a persistent feature, respectively. In this
easy case, the PD analysis is not really necessary as a visual check suffices for
distinguishing between persistent and small-scale features. However, for very
complicated or high-dimensional data sets, the computation of the PDs, which
can be done by a computer, allows one to automate the detection of persistent
features.

Under certain conditions, it can be shown that what we get is a descriptor
that is stable [11], [13] under small perturbations of the input data — an essential
feature for a data analysis tool. Applied to data, the power of the persistent
homology analysis comes from being able to measure the presence, scale, and
robustness of certain topological features. For example, persistent homology has
been applied to protein structural analysis [22] and amorphous glass [33], 34].

However, there may be other settings where a persistence analysis may pro-
vide insights into the input data. For example, suppose instead that we have
spaces X1, ..., X7 with no natural filtration structure. An example of this is time
series data describing the dynamics of some system. To extract the topological
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features that persist through time, form the diagram of spaces

Xl‘—>X1UX2 ’Xg‘ e S XTfluXT%’XT

which we call a zigzag complex. Here, the arrows between the spaces represent
inclusion maps. We then study the resulting diagram of homology vector spaces
and linear maps induced from inclusions

Hq(Xl) — Hq(Xl ) XQ) — ... — Hq<XT_1 U XT) — Hq(XT),

which is called the (zigzag) persistent homology of the zigzag complex. The
theory of zigzag persistence can be found in [7].

Another example is a multifiltration which is a set of spaces nested in two or
more “dimensions” or “axes”. We illustrate a multifiltration of dimension 2:

il

X3 = . == L — ...

r ]

Xl,g ‘—>X2,2 — ... ...

) ) ]

X171 —> X271 —> X371 — ...

with corresponding persistent homology of the multifiltration

T 1

where the linear maps are induced from the inclusions.

The persistent homology of multifiltrations was treated in the theory of mul-
tidimensional persistence [8]. There are algebraic difficulties in this direction,
so the classical persistence analysis cannot be generalized to this case without
modifications. One observation in [§] is that there is no complete discrete invari-
ant that can parametrize all the indecomposable multidimensional persistence
modules.

An insight of Carlsson and de Silva in the paper [7] is that the algebraic
foundations of the persistent homology of filtrations can be rephrased in terms of
representations of quivers. In this work, a quiver is a finite acyclic and connected
directed graph, and a representation of a quiver is a finite-dimensional K-vector
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space for each vertex and a K-linear map between corresponding spaces for every
arrow in the quiver. Immediately, it can be seen that the persistent homology
of a filtration (Diagram (1.2])) is a representation of the quiver:

—

— 1 2 3
An* O O (0]

o3

Once the link to the representation theory of quivers was established, it is easy to
consider more general indexing quivers for diagrams of homology vector spaces.
For example, the persistent homology of zigzag complexes and multifiltrations
can be viewed as representations over the appropriate underlying quivers.

Historically, the link to the representation theory of quivers was not used in
the original formulation of the algebraic basis of persistent homology. Rather,
the persistent homology of a filtration was first recognized as a graded module
over a graded polynomial ring. However, this point of view may be difficult to
generalize. For example, it is not immediately clear how to handle arrows that
point in different directions.

As another consequence of this change of perspective, the term persistence
module can now be understood more generally. Persistence modules were orig-
inally defined [37] to mean what we now recognize to be nothing but represen-
tations of some quiver. While we prefer the use of the term representation, we
follow this convention.

The consideration of a general theory for persistent homology is not just out
of a desire for beautiful abstractions. Our use of the representation theory of
quivers is also motivated by a practical example.

In the study [33], data consisting of the 3D locations of the atoms, and their
radii, of an atomic configuration of amorphous glass was obtained by molecular
dynamics simulation. To an atomic configuration is associated its shape by the
union of balls model. To study its persistent features, we construct the union of
balls filtration obtained by progressively increasing the radii of the balls.

However, the union of balls model is challenging to treat computationally.
Instead, we construct the weighted alpha complex filtration [I5] of the atomic
configuration and compute its persistent homology. The weighted alpha complex
has underlying topological space homotopy equivalent to the union of balls space
[15]. Thus, by studying the persistent homology of the weighted alpha complex
filtration, we can extract information about the persistent topological features
in the union of balls filtration.

The PDs of the dimension 1 persistent homology of the weighted alpha com-
plex filtrations contain certain regions which clarifies some of the geometric struc-
ture of glass. We display a rough sketch of one such PD in Fig. Here, we
cluster the persistence intervals — usually drawn as points on the plane — into re-
gions and curves. In particular, the presence of the vertical region Cp in the PDs
represents an important medium-range order in the atomic structure of glass.

Then, a simulation of isotropic pressurization on the amorphous glass was
performed. The resulting atomic configuration has a PD that looks very similar
to that of the point cloud before pressurization. For comparison, we display the
before-and-after PDs in Fig.[1.3
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Let X be the weighted alpha complex filtration of the atomic configuration
before pressurization, and Y, after pressurization. In the PDs in Fig. the
persistence intervals in Cp are characterized by having birth b < r and death
d > s, for some fixed numbers 7, s. Equivalently, Cp contains features that are
persistent in the two-step persistence modules

Hq(e)

Hy(X,) % 1, (X)) and H,(Y;) 2% Hy(v,) |

e 7

Cp

S S
. b m b
(a) PD of Hi(X). X is the weighted (b) PD of Hi(Y). Y is the weighted al-
alpha complex filtration before pressur- pha complex filtration after pressuriza-
ization. tion. Shifts in curves after pressuriza-

tion are exaggerated.

Figure 1.3: Rough sketches of persistence diagrams of amorphous glass, showing
characteristic curves and the band region. The primary curve C), is important.

So far, we have only used the persistent homology of filtrations. However,
from only the presence of the region Cp in the PDs before and after the simu-
lation of pressurization, we cannot conclude that the topological features giving
rise to C'p are preserved. It is possible that the features are broken by the pres-
surization, and coincidentally new and unrelated persistent features described
by a similar vertical region are created. To check this, we need to consider the
simultaneously robust and common features.

The tool that we propose for studying simultaneously robust and common
features is the diagram of spaces

X, —— X, uY, «——Y,

X: T ] T (1.3)

X, — X, uY, +——Y,
from which we compute the diagram

Hy(Xs) —— Hy(Xs 0 Ys) —— Hy(Y5)
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of homology K-vector spaces and linear maps induced from the inclusions. The
left and right sides of H,(X) in Diagram give features persistent in X and
Y, respectively. Horizontally, we get features that are common between X and
Y. Clearly, H,(X) is a representation of the quiver

H%

L3(fb) : (1.5)

O —— 0
O ——> O
o ——>0

H%

The questions now are, can we decompose the persistent homology H,(X)
in manner a similar to the persistent homology of filtrations, and what are the
analogues for the “interval modules” — the building blocks for persistent homol-
ogy?

Using the language of representation theory, the decomposition is given by a
Krull-Schmidt theorem, and the analogues to interval modules are the indecom-
posable representations. In the above example, the indecomposable summands
of Hy(X) isomorphic to

K1 Kl K

J 1 1 (1.6)
K- K« K
give the simultaneously robust and common features.

More than studying just the indecomposable summands isomorphic to Eq.
, we give an extension of the definition of persistence diagrams. For this, it
is convenient if there were only a finite number of isomorphism classes of inde-
composables. A quiver is said to be representation-finite if the number of isomor-
phism classes of its indecomposable representations is finite. It is representation-
infinite otherwise. In the representation-finite case, the persistence diagram is a
complete finite discrete invariant which we can use to classify and analyze the
persistence modules.

For our purposes, however, it is not enough to consider only quivers and
their representations. It turns out that in many cases the whole representation
category is too complicated. One known result in this direction is the following.

Theorem 1.0.1 (Gabriel’s Theorem [21]). A connected quiver is representation-
finite if and only if its underlying graph is one of the ADE Dynkin diagrams:
An; Dn7 E6} E77 ES-

The quivers with underlying graph A, underlie the persistent homology of
filtrations and zigzag complexes. The exact forms of the diagrams D,,, Eg, F7,
FEg are not important here. What we need to know is that the underlying graph
of the quiver L3(fb) is not part of this list. At first glance it seems our study of
Diagram will be very complicated.

However, there is extra information in Diagram that so far we have not
used; it is in fact a commutative diagram. This leads us to consider the commu-
tative ladders, which are simply the ladder quivers bound by commutativity, and
more generally, quivers bound by relations. See Definition for the definition
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of the commutative ladders CL,,(7). In particular, L3(fb) in Diagram with
the commutativity relations is CL3(fb), and Diagram is a representation

Note that Theorem [1.0.I] does not say anything about quivers bound by
relations. We have the following theorem.

Theorem 1.0.2 (cf. [17, 26]). Let T be an arbitrary orientation of length n.
The commutative ladder quiver CL,(T) is representation-finite if n < 4 and
representation-infinite if n > 4.

We prove the representation-finite part of this theorem via computation of the
so-called Auslander-Reiten quivers. An advantage of this technique is that we get
lists of the indecomposable representations of CL,,(7) for n < 4 via the knitting
of the Auslander-Reiten quivers. Moreover, we show that the Auslander-Reiten
quiver of A, is related to the persistence diagrams of the persistent homology of
filtrations. By this relationship, we generalize the definition of persistence dia-
grams. In the representation-finite commutative ladder case, we propose meth-
ods for interpreting our generalized persistence diagrams.

While a different proof for Theorem [1.0.2] can be provided via the main
theorem of [26] about representation-finite triangular matrix algebras, we adopt
the proof strategy of computing the Auslander-Reiten quivers because of the
advantages above. Nevertheless, we provide a brief discussion of this link to
triangular matrix algebras.

Let us take a step back and take the general point of view from the start
of the process. Motivated by the quiver-theoretic point of view, we consider
diagrams of (simplicial) complexes indexed by a quiver, which we call quiver
complexes (Definition . For example, a filtration is simply a quiver complex
over A,, and the Diagram is a quiver complex over the quiver L3(fb). In
Definition we give a definition of the persistent homology H,(X) of a quiver
complex X which generalizes the persistent homology of a filtration.

The persistent homology H,(X) of a quiver complex is a representation of
a bound quiver, and thus has an indecomposable decomposition, unique up to
isomorphism:

Hy(X)~ P 1™, (1.7)
[T]eTo

where I'y is the set of isomorphism classes of indecomposable representations
of the underlying bound quiver (and in fact is equal to the set of vertices of
its Auslander-Reiten quiver). In the case that the underlying bound quiver is
ffn, Eq. gives the decomposition of persistent homology into the intervals.
Generally, in some representation-finite case, for example CL, (1) with n < 4,
Eq. gives a finite set of numbers m;) that characterizes H,(X) up to iso-
morphism.

For applications, it is essential to have algorithms. First, the computation
of Hy(X) can be done by combining known methods into our quiver-theoretic
perspective. The computation of homology groups is classical. Applied to each
vertex ¢, we can compute the homology K-vector space H,(X;) of the complex
X;. For each arrow a : 4 — j in @1, the computation of the map H,(¢) induced
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from inclusion is simply linear algebra. This involves writing the chosen basis of
H,(X;) in terms of the basis of Hy(X}).

To decrease the size of the computation above, we use discrete Morse theory
to replace the input quiver complex X by another quiver complex A with the
property that H,(A) = H,(X). The quiver complex A is called the Morse quiver
complex of X induced by an acyclic matching of X. In general, A will be smaller
in size compared to X, so that the computation of H,(A) will hopefully be less
costly. This process of using discrete Morse theory to replace X by a smaller
quiver complex with isomorphic persistent homology is called Morse reduction.

Discrete Morse theory [20] has been developed as a discrete analogue of Morse
theory, with discrete versions of Morse functions and vector fields. A link to the
formulation in terms of acyclic matchings is provided in the paper [10]. This
combinatorial point of view has been used effectively for efficient computations
of the persistent homology of filtrations [30] by Mischaikow and Nanda. We
extend these ideas to the quiver complex case.

There are also papers approaching Morse theory from an algebraic point
of view [25, 36], where the acyclic matchings are defined on the level of chain
complexes. However, we do not use this here.

For the second computational part, we focus on computing indecomposable
decompositions only for representations of the representation-finite commutative
ladder quivers. We shall see that by computing an indecomposable decomposi-
tion of a representation, we also get its persistence diagram.

Now, the computation of indecomposable decompositions of modules over al-
gebras is a well-researched field [12, 27]. Let A be a finite-dimensional K-algebra.
One fact that follows from a result in [12] is that, given a module M € mod A,
there is a polynomial time algorithm for computing an indecomposable decom-
position of M. While the general case is phrased in terms of modules, a link to
representations of bound quivers is provided by Theorem [2.3.1l To summarize
it here, there is an equivalence between the categories of representations of a
bound quiver and of modules over a certain K-algebra. Thus, a representation
can be viewed as a module and the preexisting algorithms can be applied.

We do not use these general methods. Instead, we give a rough sketch of the
algorithm in [I7] for computing an indecomposable decomposition of a repre-
sentation V' of CL3(fb). The algorithm involves only elementary linear algebra
via changes of bases, in order to get direct sum decompositions. The general
strategy of the algorithm can be applied to derive similar algorithms for CL,,(7)
with n < 3.

We also provide another alternative. It is possible to take advantage of the
specific structure of the commutative ladder quivers to obtain algorithms. In
particular, the structure of representations of CL,,(7) lends itself very well to a
reformulation as matrix problems in the sense of [35]. This connection is explored
in the final chapter.
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1.1 Overview of contributions

The main contributions of this thesis are the following. In Subsection we
provide our definition of quiver complexes and their persistent homology.

1. We use discrete Morse theory to show that given a quiver complex X, it
is associated to a Morse quiver complex A by an acyclic matching of X.
Moreover, we show that H,(X) =~ H,(A), in Theorem (Section |3.2))

2. For use in computations, we also provide an algorithm for computation
of a Morse quiver complex A of an input quiver complex X, by modifi-
cation of the known algorithm for computing an acyclic matching. Our
computational strategy is enabled by Lemma (Section

3. We prove the representation-finite part of Theorem [T1.0.2] above by compu-
tation of the relevant Auslander-Reiten quivers. (Section [4.2)

4. We show that the representation category rep CL,,(7) is equivalent to mod 1o (KA, (7)).
From this we show that Theorem [1.0.2] follows from the main theorem of

[26]. (Subsection |4.2.2))

In spite of the proof using [26], we argue that our use of the Auslander-Reiten
quivers is valuable, because of next two contributions.

5. By using the Auslander-Reiten quivers, we generalize the definition of per-
sistence diagrams to the representations of any representation-finite bound
quiver. (Subsection [4.3.1)

6. Moreover, we give examples of ways to interpret the persistence diagrams
of representations of CL, (1) with n < 4, in the context of input data. One
example is given by the application to amorphous glass. (Subsection 4.3.3))

7. We provide an algorithm to compute indecomposable decompositions of
representations of CL3(fb). (Section |4.4)

8. In Chapter [, we link the representation theory of CL,(7) to so-called
matrix problems, and show that this may provide a more elegant algorithm
for computing indecomposable decompositions. This is an upcoming work.

This thesis primarily takes its results the author’s works [17, 18 [19]. How-
ever, at places the treatment may vary with slightly different proof strategies and
improved exposition. As discussed in the introduction, the work [33] provides
one motivation for considering the commutative ladder quivers.

1.2 Organization

In Chapter [2| we review some basic facts and definitions used throughout this
work. We start by defining some basic terms from category theory and homolog-
ical algebra. Then, we move to geometric/combinatorial models in Section
For generalizing persistent homology, we introduce the concept of quivers and
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their representations in Section [2.3] which naturally leads to modules over alge-
bras, reviewed in Section [2.5] We place Section [2.4] on persistent homology right
after the section on quivers to take advantage of the quiver-theoretic point of
view.

In Chapter |3 we discuss Morse reductions for quiver complexes. Our main
theorem appears in Section In Section [3.1] we provide a quick review of
known results that we need for building up to our theorem. In Section we
provide an algorithm for computing an acyclic matching of a quiver complex,
and its resulting Morse quiver complex.

In Chapter 4l we study the representation theory of quivers and its appli-
cations in persistence theory. In Section we review the necessary algebraic
background in the representation theory. In Section 4.2] we discuss the repre-
sentation theory of the commutative ladders quivers and the computation of the
Auslander-Reiten quivers of the finite-type commutative ladder quivers. Sec-
tion [£.3] focuses on applications of the theoretical results derived in Sections [£.]
and to topological data analysis. We place the algorithm for computing an
indecomposable decomposition of a representation of CL3(fb) in Section 4.4

In Chapter |5, we provide a link from representations of the commutative
ladders to matrix problems.

An index of terms is also provided.






Chapter 2

Background

The algebraic structure of persistent homology was first described using graded
modules over a polynomial ring. However, to provide a generalizable definition
of persistent homology, we use the point of view of quiver representations. This
motivates our use of the representation theory of quivers and K-algebras, where
K is a field. To build all this algebraic machinery, we first review some basic
terminology.

2.1 Basic terminology

2.1.1 Some category theory

We provide definitions for some of the less commonly used terms from category
theory that we need. The reader is assumed to be familiar with the basic cat-
egory theoretic notions of categories and subcategories, functors, equivalences
and dualities, direct sums (coproducts) and zero objects. For more details, see
[28] or the Appendix of [2].

Let C be a category, with class of objects ObC. For each pair of objects
X,Y, Homg(X,Y) is the set of morphisms from X to Y. We shall use the
notation X € Ob C, or even X € C, to mean that X is an object of C. Moreover,
we write f: X — Y to denote f € Home(X,Y).

Let K be a field. A K-category C' is a category such that for every X,Y €
Ob C, Hom¢(X,Y) has K-vector space structure and the composition o of mor-
phisms is K-bilinear. A K-category is said to be additive if for any finite set
X1,..., X, of objects, there exists a direct sum X1 ®...H X, in C.

A covariant functor F' : C' — D is said to be K-linear if I’ preserves direct
sums, and for each X,Y € Ob (C, the map

Fxy : Home(X,Y) — Homp(F(X), F(Y))

defined by Fxy(f) = F(f) is a K-linear map of K-vector spaces. If C and D
are K-categories, we simply say that F' : C — D is a functor where we mean
K-linear functor.

Let C be a K-category. The arrow category of C, denoted arr(C), is the
K-category defined as follows. The objects of arr(C') are morphisms (f : X —

13
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Y) € Home(X,Y) for any X,Y in ObC. The morphisms from (f : X — Y)
to (g : M — N) in arrC consist of pairs of morphisms ¢; € Home(X, M),
@2 € Homg (Y, N) such that the diagram

x L.y

ol e

M -2+ N

is commutative. We denote this morphism by (¢1, ¢2) : f — g. The composition
of morphisms in arr(C') is defined by the following. For (¢1, ¢2) : f — g, (¥1,19) :
g — h, define

(Y1,102) 0 (¢1, P2) = (Y101,02¢2) : [ — h.

The K-vector space structure of the morphisms is defined in the obvious way:

for (¢1,¢2), (¥1,¢2) : f — g and k € K, (Y1, 42) + (d1,92) = (¥1 + é1,¢%2 + ¢2)
and k(¢1, ¢2) = (ko1,kpa). It can be checked that if C' is additive, then so is

arr(C).
Let C be an additive K-category and I be a class of morphisms in C'. Suppose
that I satisfies the following properties.

1. For every X € ObC, the zero morphism Ox : X — X isin [I.
2. If f,g: X - Y arein I, then af + bg is in I for any a,be K.
3. For a diagram of objects and morphisms in C":

x 1.y 2,2

if felorgel, then gf €.

Then we say that [ is a two-sided ideal of C'. For any pair of objects X, Y € ObC,
let I1(X,Y) be the collection of morphisms f : X — Y in I. Clearly, this forms
a K-vector subspace of Hom¢(X,Y'). The quotient category C/I is the category
with objects the same as in C, and morphisms

Homg;(X,Y) = Home(X,Y)/I(X,Y).

The quotient category C/I is also an additive K-category.

2.1.2 Algebras and modules

Let K be a field. A K-algebra A is a ring with identity A which is simultaneously
a K-vector space such that the ring multiplication and the scalar multiplication
by K satisfy

k(ab) = (ka)b = a(kb)

for all k € K and a,b € A. To be precise, the condition that the ring is simulta-
neously a K-vector space simply means that the ring (A, +, -, 1) has underlying
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abelian group (A, +) that is a K-vector space. We do not assume that the prod-
uct is commutative. A K-algebra is said to be finite-dimensional if its dimension
as a K-vector space is finite. We consider only finite-dimensional K-algebras.

A left ideal (right ideal) of a K-algebra A is a K-vector subspace I of A such
that ax € [ (zae ) forallz € I, ae A. If I is both a left and right ideal of A,
it is said to be a two-sided ideal of A.

A left A-module is a K-vector space M together with a left multiplication by
A, A: Ax M — M, satisfying the following conditions. For a,be A, m,ne M,
ke K,

1. (a+b)m =am + bm and a(m + n) = am + an,
2. (ab)ym = a(bm), k(am) = (ka)m = a(km)
3. Im =m,

where we write A(a, m) = am, in the more familiar left multiplication notation.
As notation, we write 4 M to indicate that M is a left A-module. A morphism
of A-modules is a K-vector space morphism f : M — N such that f(am) =
af(m) for all a € A, m € M. The K-category of left A-modules is denoted
Mod A. This category is additive, and in fact is an Abelian K-category. The
full subcategory of finitely generated A-modules is denoted by mod A. Since
A is finite-dimensional, mod A is the same as the full subcategory of finite-
dimensional A-modules. Moreover, the category mod A has the Krull-Schmidt

property.

Proposition 2.1.1 (Krull-Schmidt Theorem). Let A be a finite-dimensional
K-algebra. Suppose that M € mod A.

1. M has an indecomposable decomposition M = M1 @®...® My where M; are
indecomposable for all i € {1,..., s}.

2. If
M=M®®..OM,=N,®...0N,

with M;, N; indecomposable for i € {1,...,s} and j € {1,...,t}. Then,
s =t and there is a permutation o of {1,...,s} such that M; = N, for
allie{l,...,s}.

2.1.3 Chain complexes

Let us review chain complexes of modules and their homologies. We refer the
reader to the book [29], for example, for more details on homological algebra.
This general point of view provides a convenient way to encapsulate the homology
of simplicial complexes and even the persistent homology of quiver complexes,
which we shall explain later.

Let K be a field, and A be a finite-dimensional K-algebra. A chain com-
plex over mod A is a sequence of A-modules {C}4ez in mod A, together with
morphisms 0, : Cy — Cy—1 such that J,0,41 = 0 for every q. A chain complex
is denoted by (Cy, dy). In this work, we consider only chain complexes with
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Cq = 0 for all ¢ < 0. A chain map between two chain complexes C' = (Cy, 0,),
D = (Dg,0dy) is a sequence of A-module morphisms ¢, : Cy — Dy, for q € Z, so

that

0
Cq *q> Cq_l

¢ql l(bq -1
a/

Dq *q> Dq,1

commutes for every q € Z.
The homology H(C') of a chain complex C' = (Cy, d,) is the collection of
A-modules
Hy(C) = Ker dy/Im 0g41

for g € Z. For a fixed q € Z, Hy(C) is called the gth homology module of C.
Moreover, if ¢ : C — D is a chain map, then ¢ induces a morphism of
A-modules

Hq(¢) : Hq(C) - Hq(D)

via z +1Im dg11 — ¢gz +1mdy 4, for z € Ker d;. Note that dpdgz = ¢4-1042 = 0,
so that ¢,z is indeed in Ker ;. Moreover, if z — 2" € Im 0441, then z — 2" = 0,41b
for some b so that ¢q(z — 2') = ¢40411b = 0y 1¢g+1b € Imay ;.

Let C' = (Cy,0,) and D = (Dg, ;) be two chain complexes, and 6 = (6, :
Cyq = Dg+1) be a sequence of morphisms in mod A. Define the morphisms

hg = 04104 + 0yy10q : Cq — Dy. (2.1)

Then, h = {hy} is a chain map from C to D. To show that h : C'— D is a chain
map, it suffices to check that for every ¢, %hq = hg—104. We have

dhg = 10, + 34010,

& 0-124

eq_gﬁq_laq + ageq_lﬁq
(eq—Qaq—l + 8{19q_1)5q
hg-10,.

Any chain map h : C' — D satisfying Eq. (2.1]) for some 6 is said to be homotopic
to 0 via the homotopy 6, denoted h ~ 0.
Let us show the following property of chain maps homotopic to 0. Let C =

(Cq,0q), D = (Dy, 0y), and E = (E,, ). If

) N Ny >y E

is a sequence of chain maps with h ~ 0, then fh ~ 0 and hg ~ 0. We have
hg = 84—104 + 0y 164 so that

fqhq = fqeq—laq + fq(9;+10q
= Jofq-104 + ag+1fq+19q
(fq@q—l)aq + ag+1(fq+10q)
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for every q. This shows that fh ~ 0 via ¢’ = {0, = fy1+10,}. A similar argument
shows that hg ~ 0.

Now, two chain maps f, g : C' — D are said to be homotopic via the homotopy
0, denoted f ~ g, if f — g ~ 0 with

fqo—9q="04-10; + a(lg+19q

for every g, for some collection of morphisms § = (6, : C; — Dgy41). By the
above property of chain maps homotopic to 0, it can be checked that given a
diagram

h
B%Ci&D%B
ho

of chain complexes and chain maps with hy ~ hs, then fhy ~ fho and h1g ~ hag.
Finally, if f,g: C — D and f ~ g, then Hy(f) = Hy(g). This follows from
definition, for:

Hy(f)(z +Im0g1) = fez+Imap

9q% + 0q—104z + 0y 1042 + 1m0y 4
9qz +1Im oy

Hy(9)(z + Im0g41)

for all (z4+Im 0g41) € Hq(C'). The following lemma follows from this observation.

Lemma 2.1.2. Let C, D be chain complexes. If there exists chain maps f :
C — D and g:D — C such that fg ~ 1p and gf ~ 1¢, then Hy(C) = Hy(D)
for every q € Z.

In the case where f : C — D satisfies the hypothesis of the lemma above,
we say that f : C — D is a chain equivalence, and that C and D are chain
equivalent, denoted C' ~ D.

Lemma 2.1.3. Suppose that B, C, and D are chain complexes. If B ~ C' and
C ~D, then B~ D.

g1 h
Proof. We have a diagram of complexes B ? C hﬁl D with gogy ~ 15,
2
gi1g2 ~ 1o and haohy ~ 1¢, hiha ~ 1p. By the above discussion,

(92h2)(h1g1) = g2(h2h1)g1 ~ g2g1 ~ 1B
and
(h191)(g2h2) = hi(g192)ha ~ hihy ~ 1p
so that B ~ D. O

2.2 Combinatorial models

To fully explain the motivation of persistent homology in terms of topological
data analysis, it is necessary to discuss the objects whose homology groups we
are interested in. For a background in homology groups applied to topology, we
refer the reader to the books [23] 32], for example.
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2.2.1 Complexes

As before, let K be a field. A complex is a pair (X, k) of a set X of elements
called cells and an incidence map x : X x X — K. The set of cells X is a
disjoint union X =| | >0 Xq- If 0 € X, we say that o has dimension ¢, denoted
dimo = ¢ and that o is a g-cell. An incidence map is amap x : X x X —» K
that satisfies the following properties. If k(o,7) # 0, then dimo = dim7 + 1,
and for p, 7€ X,

Z k(p,o)k(o, ) = 0.

ceX
Here, we only consider complexes with X finite. Where it does not cause any
confusion, we suppress writing x and just write X for a complex (X, k).

Given a complex X, its ¢-th chain group is

Co(X) =4 > coo|coe K} =KXy,

0eXq

the free K-module generated by X,. Since K is a field, this is nothing but the
K-vector space generated by X,.

Define the boundary maps d, : Cy(X) — Cy—1(X), ¢ = 1 by linear extension
of

040 = Z k(o,T)T
TeX

for 0 € X,;. Note that due to the requirement on s, any 7 that contributes a
nonzero (o, 7)7 in the summation above will necessarily be in X,_; so that
0q0 € Cq—1(X). The second requirement on x shows that dy_10, = 0 for all
q = 1, where 0y : Cy(X) — 0 is defined to be the 0 morphism. Thus, C'(X) =
(Cq(X), 04) defines a chain complex over mod K, which we call the chain complex
of the complex (X, k). From the general construction in the previous section, we
get the homology K-modules of (X, k) by Hy(X) = Hy(C(X)) = Ker dy/ Im 0g1.

Define the face relation < on the cells of (X, k) by transitive extension of the
relation <, defined by 7 <,; ¢ if and only if k(o,7) # 0. If 7 <,; 0, we say that
T is a boundary face of . If T < o, then 7 is a face of 0.

A subcomplex of a complex (X, k) is another complex (X', k) such that
X, c X, forall ¢ = 0, k" = k|x/xx/, and for every 0 € X" and 7 € X, if
k(o,7) # 0 then 7 € X’. The last condition is equivalent to requiring that the
face of any cell in X’ is also a cell in X".

We have the following important lemma.

Lemma 2.2.1. Let (X', k") be a subcomplex of (X, k). The map ¢ : (Cy(X'), 0,

) >
q
(Cq(X), 0q) induced from the inclusion is a chain map.

Proof. We check the commutativity of

/

0,
Cy(X') —= Cqa(X')

[

Cy(X) — Cya(X)
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for every g = 0. It suffices to show this for any o € X (’1, where

Wy(o) = v 2 w(oyT)T
TeX’

> k(o,T)T

TeX

= Oqt(0).

The above equalities can be verified by the following reasoning. Since X' is a
subcomplex of X and o € X', any 7 € X with x(o,7) # 0 is in X’. Then, for
any 0,7 € X', k(o,7) = K/'(0,7). O

As a consequence, we have the induced map Hy(c) : Hy(X') — Hy(X) of
homology modules, for each g = 0.

2.2.2 Simplicial complexes

Let V be a finite set of vertices. An abstract simplicial compler on V is a set S
of nonempty subsets of V' such that

1. s € S implies any nonempty ¢t c s is also in .S and,
2. for every ve V, {v} € S.

An s € Sis a g-simplez if the cardinality |s| of s is equal to g+ 1. In this case, the
dimension of s is defined to be ¢, denoted dim s = ¢. The dimension of the ab-
stract simplicial complex S is defined to be dim S = maxsg dim s. Throughout
this work, we shall drop the adjective abstract for simplicial complexes.

Let ¢ = 0. The g-skeleton of a simplicial complex S is the simplicial complex

S1={seS|dims < ¢}.

A simplicial subcomplex S’ of a simplicial complex S on vertices V is a simplicial
complex S’ on V' < V such that S’ = S as sets. If S’ is a simplicial subcomplex
of S, we write S’ < S. Clearly, the skeletons of S are all simplicial subcomplexes
of S with the same vertices.

An abstract simplicial complex as defined above is a purely combinatorial
structure, but often we give it a geometric interpretation. For example, let
V= {Uo, V1, V2, ’Ug}, with

g { {vo}, {v1}, {va}, {vs}, }

{’007 Ul}a {Ula 02}7 {’UO,UQ}, {’U27’U3}7 {UOa VU1, UQ}

The simplicial complex S can be thought of as an abstraction of the combinato-
rial (connectivity) information of the vertices, edges, and faces of the geometric
object given in Fig. For example, the 1-simplex {vg,v1} is identified with
the edge eg between vy and v;.

For more information concerning the relationship between abstract simpli-
cial complexes and topological spaces, we refer the reader to [23]. We shall be
constructing abstract simplicial complexes with vertex set V' < R"™. Then, the
geometric interpretation is fairly straightforward.
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V2 €3
v3

V0 €0 V1

Figure 2.1: A simplicial complex

One may think of abstract simplicial complexes as a higher-dimensional gen-
eralization of graphs. Any finite graph may be thought of as a one-dimensional
simplicial complex containing a 1-simplex {v, v’} if and only if there is an edge
between vertices v and v'.

A different construction of a simplicial complex from a graph is the following.
Let G be a graph with vertices Gg. The so-called clique complex of G is the
abstract simplicial complex S with vertex set G, and a subset {vo, ..., v,} of Go
is a g-simplex of the clique complex if and only if the full subgraph of G spanned
by the vertices vy, ..., v, is the complete graph on ¢ + 1 vertices. Equivalently,
the clique complex of G is largest simplicial complex with 1-skeleton G.

Next, let us prepare to define the chain complex and thus the homology
modules of a simplicial complex. First, we recall the definition of an orientation
of a simplex. With this construction, we will see later that any simplicial complex
can be viewed as a complex as we have defined in the previous section.

Let s = {vo, ..., vq} be a g-simplex in S. We define an equivalence relation on
the set of total orderings of {0,...,q} by setting two orderings to be equivalent
if they differ by an even permutation. An equivalence class of orderings under
this relation is called an orientation of the simplex s.

An oriented q-simplex is a g-simplex s € S together with an orientation of s.
We write o = [vy, . ..,vq] to denote the simplex s together with the equivalence
class of the total ordering 0 < ... < g. Note that for every g-simplex s with
q = 1, there are two oriented g-simplices with underlying g-simplex s: [vo, .. ., vq]
and [vr(), - - -, Vr(g)] for any odd permutation 7 of {0,...,q}.

The g-th chain group of S, denoted Cy(S), is defined to be the K-module
(K-vector space) generated freely by the oriented g-simplices of S, modulo the
relations

[v0, - -+ vg] = sgn(7)[Vr(0)s - - - Vr(q)]

for all g-simplices s = {vp, ..., v} and where 7 is any permutation of {0,...,¢}.
Here, sgn(7) is sign of the permutation 7 and is equal to 1 for 7 even and —1 for
7 odd. The elements of Cy(S) are formal sums

xr = ZCiO'i

modulo the relations given above, where ¢; € K and o; are oriented g-simplices.
The boundary maps d, : Cy(S) — Cy—1(S) are defined by linearly extending:

q
090 = Oglvo, ... vg] = D (1) [v0, .., i - ., vg]
=0
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for oriented g-simplices o. In the above formula, ©; means to exclude the vertex
v;; this gives 0,0 € Cy—1(S). The above formula is valid for ¢ > 1. For ¢ = 0, we
simply have 0y = 0 : Cy(S) — 0.

Then, Cy(S) together with d, for ¢ > 0 defines a chain complex over mod K.
Checking that 0% = 0 follows by straightforward computation. We obtain the
homology K-vector spaces of S, H,(S) = Ker dy/Im g1, for ¢ > 0.

The following facts are important for discussing persistent homology. If S’
is a simplicial subcomplex of S, then C,;(S’) is a K-vector subspace of Cy(S),
with an inclusion map ¢ : Cy(S") — Cy(S) for each ¢ = 0. It can be shown
that ¢ = (4¢) : C(S") — C(S) is a chain map. As before, ¢ induces morphisms of
K-modules

Hy(1) : Hy(S") — Hy(9)

for ¢ = 0.

Note that an abstract simplicial complex S gives rise to a complex (X, k).
For every g-simplex s in S, choose an orientation. Construct X, as the set of the
chosen oriented ¢-simplices for ¢ > 0 and X = |_|q20 Xg. Then, k: X x X — R
is defined by setting x(o, 7) to be the coefficient of 7 in 04(o) for all 0,7 € X,
denoted by k(o,T) = (04(0), T).

2.2.3 Simplicial complexes from point clouds

A point cloud is a nonempty finite set of points in R™. For example, a point cloud
may represent a sampling of points from some unknown manifold embedded in
R™. By the following constructions, we try to construct a simplicial complex
approximating a shape that can be inferred from the point cloud.

Let X < R™ be a point cloud. The Vietoris-Rips complex R¢(X) with param-
eter € is the abstract simplicial complex with vertex set X, and simplices defined
by the following. Form the graph with vertices X and edges {zg,z1} < X for
every zo,x1 € X with d(zg,z1) < e. Then R.(X) is the clique complex of this
graph. Equivalently, the simplices in R.(X) are given by nonempty subsets of X
with diameter less than e. The e parameter acts as a “sensitivity” or “resolution”
parameter.

The Cech complex C.(X) is defined by creating balls with radius ¢/2 at each
point of X, and checking intersections. That is, a simplex {xo, ..., x4} is defined
to be in C.(X) if and only if

i _ €
D)B(a:i,2> #J

where B(z,r) = R" is the closed Euclidean ball of radius r and center z.

Figure illustrates the difference between the Vietoris-Rips and the Cech
construction. Let P be the point cloud that forms the vertices of an equilateral
triangle on top of a square, as shown. Suppose that both the triangle and square
have side length 1. In Ry (P), all the edges of the triangle are present, so we fill
in the triangle face. In C(P), the edges of the triangle are also present, but
since the intersection of the balls of radius % at the vertices of the triangle is
empty, the face is not filled in.
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(a) Ri(P) >

(¢) Union of balls with radius
5= % centered at the vertices

Figure 2.2: Vietoris-Rips and Cech complexes of the same point cloud.

Note that both the Vietoris-Rips and Cech complex construction satisfy the
following nesting property. For any point cloud X, and if € < €, then

R(X) € Ra(X) and C(X) < Cu(X).

This property is important for defining the Vietoris-Rips and Cech filtrations,
which we shall see later.

Let us give another construction. A weighted point cloud is a finite set
P ={(pi,ri) | pie R 7; 2 0,i=1,...,N}.

From a weighted point cloud P, one can construct the so-called weighted alpha

complex [I5]. First, we assume that P satisfies a general position assumption,
to avoid certain degeneracies. For more details, see [15].

Let (p;,7i) € P. The weighted Voronoi cell of (p;,r;) in P is
Vi ={zxeR" | d(z,p)?* —r? < al(a:,pj)2 — 7’]2 Y(p;,r;j) € P}.

By letting the radius vary by some parameter o, we can study the data at
different scales. For a fixed o > — min;{r?}, we define

ri(a)

7"1-2 + .
Note that 72 + a > 0 for all @ > —min;{r?}. Define the cut balls to be
Ci(a) = V; n B(ps, ri(a)).
The weighted alpha shape of P at alpha value « is the union of the cut balls
N N
L) Cile) = | Bl ri(e)).
i=1 i=1

1=
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The weighted alpha complex of P at alpha value « is defined to be the nerve of
{Ci(a)}i=1,....n. This is the abstract simplicial complex %, (P) with vertex set

V={Ci(a)|i=1,...N}

and set of simplices

JZ{Q(P)Z{®¢SCV

ﬂc;é@}.

Ces

Clearly, for o < o/,

To(P) S o (P).

Let us give an example of an application of weighted point clouds and
weighted alpha complexes. Suppose that the input is a weighted point cloud
P = {(pi,r;)} representing an atomic configuration by its list of atoms and their
3D coordinates p; in space, and radii ;. In the introduction, this is the setting
used for our motivating example concerning amorphous glass. To give a shape
to such an atomic configuration, we use the space-filling union of balls model,
formed by taking the union of spherical balls centered at the locations of the
atoms and with corresponding radii

N —
U B puTz

However, the union of balls model is hard to treat computationally. Instead,
we use the weighted alpha complex, which is known [I5] to have underlying
topological space homotopy equivalent to the union of balls space. In this work,
we do not define what we mean by homotopy equivalence of topological spaces,
and instead refer the reader to books on topology, for example [23]. Suffice to
say, the weighted alpha complex will have homology isomorphic to that of the
union of balls space, so that we do not lose any homological information by this
substitution. In our computations, we use the software library CGAL [9], which
has a package for efficient computation of the weighted alpha complexes in the
cases where the weighted point cloud has points in dimension n = 2 or n = 3.

2.3 Quivers

As explained in the introduction, persistent homology is a diagram of K-vector
spaces and K-linear maps between them. This general point of view leads one
to the theory of quiver representations, and more generally, the theory of repre-
sentations of K-algebras. We shall use this general theory to expand the scope
of persistent homology for data analysis. First, let us review the theoretical
background.
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2.3.1 Bound quivers and their representations

A quiver @ is a directed graph. Formally, it is quadruple (Qg,Q1,s,t) of a
set of vertices @Yo, arrows Q1 and two maps s,t : Q1 — Q. For an arrow
a € @1, we call s(a) its source and t(«) its target. An arrow is also written as
a : s(a) — t(a). The underlying undirected graph of a quiver @ is denoted Q;
this is the graph with edges defined by ignoring the directions of the arrows.

For any i, j € Qo, a path ~ from i to j is a sequence of arrows aq, ..., a, with
s(aq) =1, t(ay) = j, and s(ag+1) = t(ag) for 1 < a < n. This path is denoted
by

v = (jlan . ..aq]i).

We can also talk about the source and target of a path, defined by s(v) = s(ay) =
i and t(y) = t(ay,) = j. The length of a path [() is the number of arrows in it.
Here, () = n. For every i € o, we define the trivial path (or stationary path)
at i, denoted by e; = (i|]7).

The pre-concatenation of the path (j|a, ... a1]i) by another path (¢|8,, . .. f1|k)
is defined as the path

(U Bm - Brlk) o (Jlom . .. ca|i) = (€] B - .. Browm . .. i)

only in the case k = j. Otherwise, the concatenation is left undefined. This
notation places sources on the right side of paths and targets on the left. We
compose paths from the left following functional notation, as we wish to think
of paths as morphisms.

We consider only finite acyclic connected quivers — that is, both Q¢ and
Q1 are finite sets, there is no nontrivial path v with s(y) = t(y), and Q is a
connected graph. In this work, unless specified otherwise the term “quiver” will
be taken to mean a finite acyclic connected quiver.

The path algebra of @Q is the K-algebra K(Q generated by paths of Q). The
elements of K@) are formal sums

Ea’}”ya

aveK,
7 path in @

with multiplication defined by concatenation of paths. That is, we define

) N | B Bra, ... onli) ifj=F,
(4B - .- P1lk) (Gl - .. ar i) = { 0 otherwise,

for paths and then extend K-linearly to elements of K(). An element e of a
K-algebra is said to be idempotent if e? = e. Clearly, the trivial paths e; for
1 € Qo are idempotents.

The assumption that @ is finite, acyclic, and connected simplifies the theory
in many ways. Since () is finite, K@) has identity element 1 = Zier €;. Since
Q is finite and acyclic, given a pair of vertices i, j, the number of distinct paths
from i to j is finite. Moreover, e;(KQ)e; for i,j € Qo treated as a K-vector
space, is the vector space of all paths from ¢ to j. This is finite-dimensional as
a K-vector space, and thus so is KQ. See [2, Corollary I1.1.11] for more details.
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A finite-dimensional representation M of a quiver () is a set of a finite-
dimensional K-vector space M (i) for each ¢ € Qp, and a linear map M («) :
M(i) — M(j) for every arrow « : ¢ — j in Q1. In this work, a representation
shall be taken to mean a finite-dimensional representation.

A morphism from a representation M to another, IV, is a set of linear maps
fi : M(i) — N(i), one for every i € (o, such that for every arrow « : i — j, the
diagram

M) 5 M ()

lfi lfj
~ N(a) .
N(i) — N(j)
commutes. The category of finite-dimensional representations and their mor-
phisms is denoted by rep Q.

Now, @ also defines the path algebra K@Q. We shall see in a bit that there
is a very close relationship between finite-dimensional K@Q-modules and finite-
dimensional representations of (). Instead of doing this now, we first define
bound quivers and exhibit this relationship in more general terms.

Let Q be a quiver. A relation o in @) is a sum of paths pi,...,pn:

oc=aip1+ ...+ a,pn € KQ

with a; € K such that all the paths p; have the same source and the same target.
We define the source of this relation as the common source of its paths, and its
target as the common target.

Let p be a finite set of relations of a quiver Q). The pair (@, p) is called a
bound quiver. We also say that @ is bound by relations p. A representation of
the bound quiver (Q,p) is an M € rep @ such that M (o) = 0 for every o € p.
Here, M (o) is the evaluation of M along the relation o, defined by the following.
The evaluation of M along a path p = (j|a, ... a1|i) is the K-linear map

M(p) = M(am) ... M(axr) : M(i) — M()).

The evaluation of M along the relation o = a1p1 + ... a,p, is given by

M(o) = > apM(py) : M(i) — M(j).
=1

A morphism f: M — N of representations of (Q, p) is a morphism f: M — N
in rep(Q). We denote the category of representations of (@, p), together with
these morphisms, by rep(Q, p).

Given an M € rep(Q@,p), a subrepresentation N < M of M is an N €
rep(Q, p) such that N (i) is a K-vector subspace of M (i) for every i € Qp, and
for each arrow « : i — j, the morphism N(«) : N(i) — N(j) is defined by the
restriction of M («a) to N(i).

Given a morphism f : M — N in rep(Q, p), Ker f is the subrepresentation
of M with (Ker f)(i) = Ker f; for every vertex i € Qp. The maps (Ker f)(«)
are of course given by restrictions of M («) for arrows « : i — j. Likewise,
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(Coker f)(i) = Coker f; and (Coker f)(c) : N;/Im f; — N;/Im f; for each arrow
a : i — j is defined by mapping n+Im f; to N(c)(n)+Im f;. This is well-defined,
by the commutativity of N(«) with f.

Let M,N € rep(Q,p). The direct sum of M and N is the representation
M@ N given by (M@ N)(i) = M(i)® N (i) for every i € Qp, and (M ®N)(a) =
M(a)®N(a): (M@ N)(i) > (M@ N)(j) for every arrow « : i — j, where

M(a) ® N(a) = [Méa) N[()a)] .

Suppose that M7 < M is a subrepresentation such that there exists another
subrepresentation My < M with M (i) = M; (i) @ M2(i) as K-vector spaces, for
each i € Qg. Then, M is said to be an internal direct sum of M7 and M, denoted
by M = M; @ M. A representation M of (@, p) is said to be indecomposable if
M = M’ @ M" implies that M’ =0 or M" = 0.

The dimension vector of M, denoted by dim M, is the function

dmM : Qo — Ny
i dim M),

where Ny = {0,1,2,...}. We shall display dimension vectors in a form that
suggests the shape of the underlying quiver. For example, the dimension vector
of the representation

K
0 > K < 0

of the quiver in Diagram is written as § 1§.

Let (@, p) be a bound quiver. Then, p generates a two-sided ideal I = (p)
of KQ. Taking the quotient, we get a finite-dimensional K-algebra A = KQ/I,
called the algebra of the bound quiver (Q,p). The following theorem is very
important.

K YK«

[y

Theorem 2.3.1 (See [2, Theorem III.1.6]). Let Q be a finite acyclic quiver, p a
finite set of relations of Q, and A = KQ/I the algebra of the bound quiver (Q, p).
There is an equivalence of categories rep(Q, p) =~ mod KQ/I.

Proof. First, let us define a functor F' : rep(Q,p) — mod KQ/I. For M =
(M (1), M())icQo,ac@: € 1ep(Q,p), construct the KQ/I-module F(M) by the

following. Let
FOM) = @ M)
i€Qo
as a K-vector space. To define its KQ/I-structure, we first give F'(M) a KQ-
module structure. Let

| M(p)(my) if s(p) =1,
P = { 0 otherwise,

for p a path in @, m; € M (7). Note that pm; € M(t(p)). For m = (m;)icq, €
F (M), define pm to be the image of > pm; under the natural inclusion M (t(p)) —
1€Qo
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F(M). By K-linear extension to arbitrary elements of K@, this gives a KQ-
module structure on F'(M).

For any relation o in p and m € F(M), it can be checked that om = 0, since
the evaluation M (o) equals 0. This shows that F'(M) is a K@)/I-module.

For f = (fi)ieq, : M — N in rep(Q, p), we define F'(f) : F(M) — F(N) as

=@ fi: D M(i) > D N()
€Qo 1€Qo 1€Qo
To check that this is KQ/I-linear, we check that for every path p = p+1 in KQ/I,
we have f'(pm) = pf’(m) for all m € F(M). It suffices to check this equality
for the image of any m; € M (i) under the natural inclusion M (i) — F(M), for
each i € Q.

In the case s(p) # i, pm; = 0 and pf’(m;) = 0 so there is nothing to check.

Otherwise,

fi(omi) = f;(M(p)m;) = N(p)fi(m:) = pfi(m),
where j = t(p) and where the second equality follows from the definition of
morphisms of representations.

In the opposite direction, we define G : mod KQ/I — rep(Q, p) by the fol-
lowing. Let M € mod KQ/I, then G(M) = (V (i), V(«)) is the representation of
(Q, p) with V(i) = &;M, where & = e; + I = (i||i) + I, for i € Q9. Moreover, the
morphism V(«) : V(i) — V(j) for an arrow « : ¢ — j is defined by

V(a)(&m) = eaem e V(j)

for ¢gm € ;M = V(i). Clearly, G(M) is a representation of the bound quiver
since if o € p is a relation, then the evaluation V(o) is defined by the action of
o=0+1=0+1.

For a morphism f : M — N in mod A, we have G(M) = (V(i),V(«))
and G(N) = (W (i), W(a)). We define G(f) = (fi)ieg, : G(M) — G(N) by
restriction

fiv &M — &N
em —  f(em) = & f(m).

We have to check the commutativity of:

&M G(M )()_M

lfz lfj

for each arrow « : i — j. For é;m € ¢; M,

@) = fieem
GV (@)(fi(eim)
confirms the commutativity.

It is easy to check that F' and G are functors, and are quasi-inverses of each
other. O
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With this theorem, we shall interchangeably use the terms module and rep-
resentation. Also, with p being the empty set, Theorem [2.3.1] provides the equiv-
alence rep () ~ mod KQ.

2.3.2 Useful quivers

Let us give some examples of quivers that we will use often in this work.

An orientation T is a sequence of symbols f and b, standing for “forwards”
and “backwards”. We write an orientation by 7 = 7,...,7,—1, where the ith
symbol of 7 is 7;, and we say that 7 has length n.

Let 7 be an orientation of length n. The linear quiver A, (7) is the quiver

An(r) = 30,800,800, oty 22)

>

where the direction of the ith arrow is determined by 7;, for i € {1,...,n — 1}.
That is, if 7; = f, the arrow «; is o; : © — 7 + 1, otherwise it is a;; : ¢ + 1 — 1.
With 7 = f... f we get the quiver

An=An(fo )= & 3 3

o3

Let 7 be an orientation of length n. The ladder quiver of type 7 is given by

QUG DU SN
Lon=1 T ] | (2:3)
O4—— 04— 04— .. 0
where for every i € {1,...,n — 1}, the pair of horizontal arrows point forwards

i—i+ 1,7 > (i+1) if r, = f, and points backwards i < ¢ + 1, ¢/ «— (i + 1)’
otherwise. In a sense, it is a “product” of an /_fg quiver in the vertical direction
and an A, (7) quiver in the horizontal direction.

The ladder quiver with orientation 7 = fb is

4 54 5 a6 6
O — 0O <—— O
a411\ aszT aesT . (2.4)
@21 @23
O —— O &<—— O
1 2 3

Here, the arrows are labeled by «us : s — t. This quiver, together with the
commutative relations

p = {as2001 — asa0u1, 52023 — 56063}

forms the bound quiver which we call the commutative triple ladder. As an
example, Diagram , which we propose to use for studying simultaneously
robust and common topological features, is a representation of the commutative
triple ladder.
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In general, let us define the commutativity relations of L, (7). For any i €
{1,....n—1} let j=i+1land j/=(i+1). If 7, = f, set

Wi = QO — Ot Ot

and if 7; = b, then
Wi = Qi QG — Qi Qe

for i € {1,...,n —1}. The set ¢ = {w;}?~ is defined to be the set of com-
mutativity relations of L, (7). This requires the commutativity in each small
square

. 4 Qs 4

474! J

! 5 7 . . s

7 3 s J

O — O O <— O
ai/’iT Taj/’j or Oéi/’iT TOC]»/J

O ——— O O4<— O

i Qji J i Q5 J

in the ladder quiver, with ,7/, j, j' as above.

Definition 2.1. The bound quiver CL,,(7) = (L(7), ¢) is called the commutative
ladder quiver with length n and orientation 7.

2.4 Persistent homology

In this section, we explain the basics of persistent homology, which forms the
foundation and motivation for much of what we do in this work.

We start with our definition of the persistent homology of a quiver complex,
which provides a generalization of the persistent homology of filtrations and
zigzag complexes.

2.4.1 Persistent homology of quiver complexes

Recall that all quivers we consider are assumed to be finite, connected and
acyclic. To generalize the filtrations used for persistent homology, we introduce
the concept of a quiver complex.

Definition 2.2. Let ) be a quiver. A quiver complex over @ is a set of complexes
(Xi, ki), one for each vertex i € @y so that whenever there is an arrow « : i — j
in Q1, (Xj, K;) is a subcomplex of (X, k).

We denote a quiver complex by X = (X, ki)icq,- We only consider finite
quiver complexes: for each i € Qq, (X;, k;) is a finite complex.

Given a quiver complex X, we construct its chain complex C'(X) below. For
each ¢ > 0, consider the representation Cy(X) of @ obtained by associating to
each vertex i the K-vector space Cy(X;), and for every arrow « : i — j the
inclusion tq : Cy(X;) — Cy(X;).

We define the commutativity relations of @) to be the set ¢ of relations of the
form w = p — p/, where p and p’ are any two unequal paths from 7 to j, for all
pairs 4,7 with i # j € Qg. Clearly, ¢ is a finite set of relations, since there are
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only a finite number of pairs ¢ # j, and for each pair ¢ # j, the number of paths
from 4 to j is finite.

Now, Cy(X) is a representation of (Q,c). To prove this, let V = Cy(X) as
a representation of @), and let w = p — p’ be a commutativity relation from
vertex i to vertex j. Then, the evaluations V(p) : Cy(Xy4)) — Cy(Xyp) and
V(p') : Cy( X)) — Cg(Xy(p)) are both equal to the inclusion Cy(X;) — Cy(X;)
so that the evaluation V(w) = V(p) — V(p') = 0. Thus, V = Cy(X) € rep(Q, ¢).

Moreover, we define morphisms J, : Cy(X) — Cy—1(X) by combining over
all i € Qo the boundary maps 0, : Cy(X;) — Cy—1(X;). For each vertex i, the
boundary maps 0q; : Cq(X;) — Cq—1(X;) are the boundary maps of the chain
complex of (X, k;), as defined in Section m To check that this is really a
morphism of representations, we only need to check the commutativity of

Cy(Xi) —— Cy(X))

aqﬂl la%j

Co1(Xi) —— Cq1(Xy)

for every arrow « : ¢ — j. This result follows from the fact that (Cy(X;), 04,i) —
(Cq(X;),0q,5) is a chain map by Lemma Moreover, 040,41 = 0 follows
from the fact that 0g,04+1,; = 0 for every i € Qo. Thus, C(X) = (Cy(X),0,) is a
chain complex over rep(Q, ¢).

Let us collect these facts below.

Lemma 2.4.1. Let X be a quiver complex over Q, with ¢ the set of commutativity
relations of Q. For each g = 0, Cy(X) is a representation of (Q,c), and C(X)
is a chain complex over mod KQ/I = rep(Q,c), where KQ/I is the algebra of

(@Q,¢).

Definition 2.3 (Persistent homology of a quiver complex). Let X be a quiver
complex with chain complex C'(X). The gth homology module of C(X):

Hy(C(X)) = Ker 0/ Im 0g+1

is also called the gth persistent homology of the quiver complex X. To simplify
the notation, we denote this by H,(X).

In the definition above, H,(X) is a K@Q/I-module and is obtained by com-
puting the quotient of the kernel and image, at the K@Q/I-module level. It can
be shown that H,(X) corresponds to the representation of (Q, ¢) with H,(X;) at
each vertex i € Qg and induced maps Hy(¢) : Hy(X;) — Hy(X;) for every arrow
a : i — j. This is the “slice-wise” (vertex-wise) point of view.

2.4.2 Persistent homology of filtrations

Let A, = An(f...f) as above. A filtration is a nested sequence of (simplicial)
complexes:

X: Xl‘

~

y X (2.5)
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This is a quiver complex on A,.

Let us give some examples of how filtrations arise in practice. For a point
cloud P and some e¢ > 0, consider the Vietoris-Rips complex R(P), or the
Cech complex C¢(P). On the other hand, given a weighted point cloud P,
consider the weighted alpha complex <7, (P). These are all simplicial complexes
X, that vary by some parameter a, where a is equal to ¢ for the Vietoris-Rips
and Cech complexes and « for the weighted alpha complex. Moreover, for a < @/,
Xa c Xa/.

However, the parameter a varies through the real numbers. We can easily
remap the unique X, in the sequence to a finite set of indices 1,...,n by the
following argument. In all cases above, X, is an abstract simplicial complex on
a fixed set of vertices V' = P. Thus, each X, is a subset of the power set of V,
X, < P(V). Since the sequence {X,}, is nondecreasing, we obtain a filtration

X, © ... X,

consisting of the finite number of unequal complexes X,, in {X;},. This con-
struction provides the Vietoris-Rips filtration, Cech complex filtration, and the
weighted alpha complex filtration, respectively.

Going back to the general case, the chain complex (Cy(X), d,) of a filtration
X'is given by the following. For a fixed ¢ = 0, Cy(X) is the representation of A,

Co(X) 0 Cy(X1) —2 Cp(Xa) —2— ... 25 Cy(X,)

where the ¢; are inclusions, and the boundary map J; = (0g.4)i : C¢(X) —
Cy—1(X) is a morphism of representations. This can be given as a commutative
diagram

Co(X1) —— Cy(X2) Cy(X)
ia%l iz?q,g Oq,n
Cq—l(Xl) — Cq_l(XQ) e > Cq—l Xn)

where 0y = (0g,i)icq, is defined “slice-wise”. The chain complex C(X) has gth
homology module

Hy(X): Hy(xy) M MDDy ), (2.6)

which is the gth persistence homology of the filtration [16],37]. By Theoremm
we also view Hy(X) as a KA,-module.

In the introduction, we roughly sketched the use of the persistence diagram,
which is obtained by a decomposition of persistent homology into intervals.
These intervals correspond to pairs of numbers (b, d) representing the lifespans
of homology generators. Let us give a precise treatment of these ideas.

First, let us define the representation I[b,d] € rep(4,,), with 1 < b < d < n,
by

0 s 0 K-ty 1K 0 0
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with I[b,d](i) = K if b < i < d, and I[b,d](i) = 0 otherwise, and identity
maps between the nonzero K-vector spaces. These are also called the interval
representations. Again by Theorem I[b,d] can be treated as a Kffn—module,
which we call an interval module.

As one of the consequences of Gabriel’s theorem [21], it is known that the
interval modules I[b,d] for 1 < b < d < n gives a complete list of indecomposable
Kffn—modules, up to isomorphism. For an elementary proof, see the book [4]
Theorem 2.14]. By this fact and by Proposition there is an indecomposable
decomposition

Hy(X) = ém =~ @ Ifbd)" (2.7)
=1

1<b<d<n

of Hy(X), unique up to isomorphism and permutations of terms, into the interval
modules. In the above decomposition, each direct summand V; is an indecom-
posable module and is isomorphic to some I[b,d].

This indecomposable decomposition can be viewed as simultaneous changes
of K-vector space bases for each of the H,(X;), ¢ € {1,...,n} that tracks how
the homology generators are mapped through the sequence. More precisely, an
indecomposable direct summand V; isomorphic to I[b,d] represents a homology
generator born at index b, and is mapped by identity (in the chosen bases) to
the homology vector spaces at indices b + 1,...,d. Then, it is mapped to 0, or
dies, after index d.

The decomposition into indecomposable representations shows the “birth”
and “death” indices of homology generators. To summarize this information,
the persistence diagram can be defined to be the multiset of pairs (b, d), where
the (b,d) occurs with multiplicity my, 4, determined from Eq. . For our
purposes, however, we use the equivalent definition of the persistence diagram
as the map

DH,X)): Ty — Ny
H[b,d] = Mpd

where Ny = {0,1,2,...} and T'y is the set of interval representations of an

The persistence diagram can be visualized by drawing the corresponding
multiset of points on the plane. For example, suppose that some quiver complex
X on Aj (a filtration with n = 5) has

H,(X) = 1[1,2] ®1[1,4]° @ 1[2,5] ®1[3,3].

We display the persistence diagram of H,(X) in Fig. where the point (1,4)
occurs with multiplicity 2. Here, we have explicitly written out the multiplicities
of the intervals. Of course, there are other ways of visualizing a persistence
diagram. Other methods to indicate the multiplicities include coloring the points
according to some color scale, or via a 3D histogram.

For later use in studying the category mod Kffn, we also need all the mor-
phisms between the interval modules of KA,. Given two fixed indecomposables
I[a,b], I[c,d], let us describe all morphisms f : I[a,b] — I[c,d]. First of all, note
that if b < ¢ or d < a, there is no nonzero morphism f : I[a,b] — I[c,d].
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1
2
1
I G

b

Figure 2.3: An example of a persistence diagram.

Suppose that a < ¢. Then, looking at the relevant part of the morphism:

I[a,b] o K1 k1
lf fc—lz()l lfc I
I[c,d] . 0—2» K

we deduce that f. = 0 due to the commutativity requirement. Further appli-
cation of the commutativity shows that f; = 0 for all ¢ € {1,...,n}, so that
f = 0. A similar argument shows that if d > b, there is no nonzero morphism
f:I[a,b] — I[e,d].

Now, consider the case ¢ < a < d < b, and suppose that f : I[a,b] — [[c,d] is
a morphism. For any vertex i outside the intersection of intervals, [a, b]n[e, d], f;
is necessarily 0. Choose any i € [a,b]n[¢,d] = [a,d]. If f; = k € Homg (K, K) =~
K, then f; = k for all j € [a,b] N [c,d] by the commutativity requirement. We
illustrate this in the diagram below:

I[a,b] 0 K ... K- K
y bl e b
I[c,d] K- k-1 7 K 0
a d
Thus,

Kfot c<a<d<b
H » (Ila,b],I[cd]) = ab’ ’
OmKA"( [a,0], I[e.d)) { 0, otherwise,

where

(fC,d) _ 1K, a<€<d,
ab /g 0, otherwise.

The choice of fi’g is a choice of basis for each of the nonzero homomorphism
spaces above. Moreover, this choice of morphisms has the nice property that if
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for a triple of pairs (a,b), (a’,V'), (a”,b”) the morphisms

"o
a/,bl a’,b

fEL a/ /
I[a,b] —=% I[a’b/] =5 1[a” "] ,

\/

o’ b
a,b

are defined and nonzero, then
" 7bl/ " 7b// /7b/
féf,b = f;l',b/ fib : (2.8)
2.4.3 Zigzag persistence

We recall zigzag persistence [7]. For some orientation 7 of length n, a zigzag
complex of type 7 is defined to be a quiver complex over the quiver A,(7). A
zigzag complex of type 7:

X: Xi+— Xg¢+—— ... +— X,
has (zigzag) persistent homology
Hy(X): Hy(X1) ¢« Hy(X2) «—— ... «—— Hy(X,)

which is a representation of A, (7), where the linear maps between the homology
vector spaces Hy(X;) are induced from the respective inclusions.

Again by Gabriel’s theorem [21], the indecomposable representations of A, (7)
are the interval representations I[a,b], given by:

0 0 K+ K 0+ ...« 0,
where of course the directions of the arrows are determined by 7. In the special
case where 7 = f...f, we get the interval representations discussed in the
previous subsection.

Thus,

Hy(X)= @ Iig]™
1<i<j<n

and this indecomposable decomposition of H,(X) is unique up to isomorphism
and permutation of summands, by Proposition From this it is easy to
define the corresponding persistence diagram.

An example is already provided in the introduction, which we repeat here.
Suppose that we have spaces X1,..., X7, with no natural filtration structure. A
way to detect common features would be to form the diagram

X1*>X1UX2 X2 > XT—IUXT%XT
with alternating arrows and then study
Hq(Xl) — Hq(Xl U XQ) — ... — Hq(XT,1 U XT) — Hq(XT)

which is a representation of A,,(7) with 7 = fb... fb and m = 2T — 1. This
allows us to extract the topological features that persist across the different
spaces.
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2.5 Modules and representations

In this section, we collect various algebraic background for the rest of this work.

First, let us give the following general comment. As shown in Theorem [2.3.1]
the representation category of a bound quiver is equivalent to the module cat-
egory of its algebra. There is a close relationship between the bound quivers
and algebras themselves. From an Artin K-algebra A, we can construct a quiver
Q 4, called the quiver of A. It is known that if K is algebraically closed, then
A =~ KQ4/I for some ideal I of KQ4. For example, see [0, Prop. 4.1.7]. If we
weaken the requirement to K being a perfect field, there is an analogous result
[5, Cor. 4.1.11] involving so-called valued quivers.

For the purpose of computation, we avoid requiring K to be algebraically
closed. For example, with K = Zs (binary) or K = Q, one aspect of imple-
menting algorithms will potentially be simplified, since we can avoid the need to
implement a custom number type. For our purposes, it is enough to be able to
construct the algebra of a bound quiver.

2.5.1 Modules

Let A be a finite dimensional K-algebra. A module M € mod A is said to be
simple if its submodules are only 0 and itself. A module is said to be semisimple
if it is the direct sum of simple modules. The module generated by all simple
submodules of M is the socle of M, denoted Soc M. It is known that Soc M is
semisimple. See [1 Proposition 9.7]

The radical Rad M of an A-module M is the intersection of its maximal sub-
modules. Similarly, the radical of A, denoted 74, is defined to be the intersection
of maximal left ideals of A. The radical r4 is equal to the intersection of maxi-
mal right ideals, and is a two-sided ideal of A. An algebra A can be considered
as a module over itself, 4 A, with radical Rad 4A. Moreover, 14 = Rad 4 A, so
we simply write Rad A for the radical of A.

A ring with unity R is said to be local if the noninvertible elements of R
forms a two-sided ideal. It is known that if R is local, the Rad R is equal to the
set of noninvertible elements of R.

For M € mod A, the endomorphism ring End 4 (M) can be given a K-algebra
structure as well.

Lemma 2.5.1 ([2, Corollary 1.4.8]). Let A be a finite-dimensional K -algebra
and M € mod A .

1. M is indecomposable if and only if End (M) is local.

2. If M is indecomposable, then any noninvertible f € End (M) is nilpotent.

A module P is said to be projective if it satisfies the following “lifting” prop-
erty. For every morphism g : P — N and every epimorphism f : M — N, there
exists an h : P — M such that fh = g, as in the diagram:
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Dually, an module [ is said to be injective if for every morphism g : M — I and
every monomorphism f : M — N, there is a morphism kA : N — [ such that

hf =g, as:

0O — M —— N.

The opposite algebra A°P of A is the K-algebra with the same elements as A
and operation - defined by a - b = ba for a,b e A°P.
Define the contravariant functor:

D(—) = Homg(—, K) : mod A — mod A°P.

That is, for M € mod A, D(M) = Homg (M, K) is defined by treating M as a
K-vector space and taking its K-dual. This has an A°°’-module structure, and
thus a right A-module structure, by the following. For f € Hompg (M, K) and
a € A, define fa € Homg (M, K) by (fa)(m) = f(am) for all m € M. See the
Prop. 4.4 of the book [I]. Let f : M — N be a morphism in mod A. Then,
D(f): D(N) — D(M) is defined by D(f)(g) = gf € D(M) for (9: N - K) €
D(N).
It is known that D(—) is a duality, with quasi-inverse given by

Hompg (—, K) : mod A°? — mod A.

which we also denote by D(—).
We also need the contravariant functor

(=)' : Homa(—, A) : mod A — mod A°P

that takes M to Homa (M, A) and f: M — N to Homa(f, A) : Homa (N, A) —
Hom (M, A). Here, Homy4 (M, A) is given the structure of a right A-module by
(fa)(m) = f(m)a for f € Homa(M,A), a€ A, and me M.

However, (—)" is not a duality in general. It is known [3, Prop. I1.4.3] that if
we restrict (—)! to the full subcategory of finitely generated projective modules
proj A, we get a duality

(—)" : proj A — proj A°P.

A submodule N of M is said to be superfluous in M if whenever N + X = M
for some submodule X implies that X = M. A projective cover of a module M
is an epimorphism f : P — M where P is projective, and Ker f is superfluous
in P. Below, let us list some properties of projective covers.

Proposition 2.5.2. Let A be a finite-dimensional K -algebra.
1. M € mod A has a projective cover f: P — M in mod A.

2. If f1 : PL > M and fy : P — M are projective covers of M € mod A, then
there exists an isomorphism h : P; — P such that fi = foh.
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3. Gwen a finite family {f; - P; — M;}"_, of epimorphisms with P; projective
n n

n
modules, @ fi : @ P, — @ M, is a projective cover if and only if each
i=1 i=1 i=1
fi : P, —> M, is a projective cover.

4. For each P € proj A, the epimorphism P — P/Rad P is a projective cover.

For a proof, see Theorems 1.4.2, 1.4.4 and Proposition 1.4.3 of [3].

Dually, N ¢ M € mod A, N is said to be essential in M if X n N # 0 for
any nonzero submodule X of M. A monomorphism f : M — I with I injective
is said to be an injective envelope of M if Im f is essential in I.

Proposition 2.5.3. Let A be a finite-dimensional K -algebra. For M € mod A,

1. f: M — I is an injective envelope if and only if the induced map Soc M —
I is an injective envelope.

2. Suppose that M is a semisimple module, with a projective cover P — M
in mod A. Then, D(P?) is an injective envelope of M.

See Propositions 11.4.1 and 11.4.6 of [3].

Thus, to compute an injective envelope of M € mod A, we do the following.
First, we compute Soc M and try to find an injective envelope I for Soc M.
This induces an injective envelope for M, by Prop part 1. Since Soc M is
semisimple, a projective cover for Soc M, say P, provides an injective envelope
I = D(P?) for Soc M, by Prop. part 2. Using Prop. part 3, and since
Soc M is a direct sum of simple modules, it suffices to find projective covers for
each of its summands, which are all simple modules.

In the above procedure, we have not described how to compute Soc M, and
projective covers for the simple modules. In the case where the algebra A is given
by A = KQ/I as the algebra of a bound quiver (Q, p), a way to compute Soc M
is provided in the next subsection. Moreover, we can get a complete list (up to
isomorphism) of simple modules S; and indecomposable projective modules P;,
together with projective covers P; — P;/Rad P; = S;.

2.5.2 Representations of a bound quiver

In this subsection, we collect some useful facts concerning the representation
of bound quivers. In particular, we will focus on results that enable one to do
computations.

First, let us reformulate the duality D(—) above. Given a quiver @ =
(Qo, @1), the opposite quiver is the quiver Q°P with vertices Qp, and an arrow
a®? : j — i for every arrow « : ¢ — j in Q1. We can identify (KQ)°? = K(Q°P).

Let p = (j|laum, ..., a1|i) be a path in @. Then, the opposite path is p°? =
(i|af®, ..., am]j) in K(Q°P). If p is a set of relations of @, p induces a set of
relations p°P of Q°P by taking the opposite paths. Let I°P be the two-sided ideal
of K(Q°P) generated by p°P. We can identify the algebras

(KQ/T)™ = K(Q)/I°.
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In the case where the algebra A = KQ/I is defined by (Q, p), where I is the
two-sided ideal of KQ generated by p, Theorem provides an equivalence
rep(Q@, p) = mod A. Likewise, rep(Q°P, p°P) =~ mod A°?. Thus, D(—) : mod A —
mod A°P induces a duality

D(—) : rep(Q, p) — rep(Q°P, p°P)

also denoted by D(—).

Furthermore, this duality D(—) on quiver representations can be given ex-
plicitly by the following computation. It is easy to check that D(M) is the
representation that has the K-vector space D(M;) at each vertex i € @y, and
D(fa) : D(M;) — D(M;) for every arrow « : i — j in @), where D(—) is the
usual duality for finite-dimensional K-vector spaces. Likewise, for f: M — N a
morphism of representations, D(f) : D(N) — D(M) can be computed by taking
the dual map at every vertex.

Next, we give explicit formulations of the indecomposable projective, injec-
tive, and simple representations. Recall that an element e € A is said to be
idempotent if e> = e. The idempotents 0,1 € A are called the trivial idempo-
tents. Two idempotents e, eo are said to be orthogonal if ejes = 0 = ege;.
An idempotent is said to be primitive if it cannot be written as a sum of two
nontrivial orthogonal idempotents e = e + es.

A complete set of primitive orthogonal idempotents is a set {e1,...,e,} of
primitive and pairwise orthogonal idempotents such that 1 =e; +...+e,. Itis
known that

Lemma 2.5.4 (cf. [3| Prop. 1.4.8]). Let A be a finite-dimensional K -algebra.
Then:

1. There is a complete set of primitive orthogonal idempotents {ei, ..., en}

and A = Ae; @ ...® Ae,, (as left A-modules),

2. Given e € A an idempotent, e is a primitive idempotent if and only if Ae
s an indecomposable projective A-module.

For some choice of a complete set of primitive orthogonal idempotents {e1, ...,
we write P; = Ae; for i € {1,...,n}. This gives a complete list of isomorphism
classes of indecomposable projectives. Dually, I; = D(e;A) for i € {1,...,n}

gives a complete list of isomorphism classes of indecomposable injectives. More-
over, S; = P;/Rad P; gives all the indecomposable simple modules, up to iso-
morphism.

In particular, we are interested in the algebra of a bound quiver (Q, p). In
this case, recall that the stationary paths in KQ are defined to be e; = (i|]i) for
1 € QQo. It can be checked that the set of stationary paths modulo 1

{éi=€i+]|i€Q0}

is a complete set of primitive orthogonal idempotents of the algebra A of (Q, p).
We have the following.
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Lemma 2.5.5 ([2, Lemma I11.2.4]). Let (Q, p) be a bound quiver, with complete
set of primitive orthogonal idempotents {€; = e; + I | i € Qo} for its algebra
A=KQ/I.

1. P; = Ag; is the representation of (Q, p) with K-vector space P;(j) at the
vertex j generated by p + I for p paths from i to j in Q). For every arrow
a:j — k, the map Pj(«) : Py(j) — Pi(k) is induced by multiplication of a.

2. I; = D(&;A) is the representation of (Q,p) with I;(j) the dual of the K-
vector space generated by p + I, for p paths from j to i in Q. For every
arrow o : j — k, Ii(a) : I;(j) — I;(k) is the dual of the map induced by
multiplication of &.

3. S; = P;/Rad P; is the representation of (Q, p) with

N ) Ké; ifi=j
Si(7) = { 0 otherwise

and all maps S;() equal to O for each arrow «.

Proof. By the equivalence in Theorem [2.3.T] the representation P; corresponding
to the indecomposable projective module P; has K-vector space €;P; = €;Aég; at
vertex j € (Qg. Clearly, this is the K-vector space generated by paths modulo
from ¢ to j in @, as claimed. The statement for the indecomposable injectives
I; follows by similar arguments. The computation for S; follows easily from
S; = P;/Rad P; and the next lemma. O

The following lemma is also useful.

Lemma 2.5.6 ([2, Lemma I11.2.2]). Let V = (V(i),V(«)) be a representation
of (@ p)-

1. The radical of V., RadV is the representation (W (i), W («a)) with

W(i)= > ImV(a)

:j—1

for every vertex i that is not a source, and W (i) = 0 otherwise. The map
W(a) : W (i) = W(j) for every arrow o : i — j is given by the restriction
of V(a) to W(i).

2. The socle of V', SocV is the representation (W (i), W(«)) with

W(i) = ﬂ Ker V()

ai—j

for every vertex i that is not a sink, and W (i) = V(i) otherwise. W(a) =0
for every arrow « : i — j.
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2.5.3 Exact sequences and extensions

A sequence of A-modules and morphisms

. M;_, fic1 M, fi

is said to be ezxact if for every i, Im f;_; = Ker f;.
Let M € mod A be a module. A projective resolution of M is an exact
sequence

P, . P P, M 0

such that all the P;’s are projective modules. A projective resolution is said
to be finite and have length n if P, is nonzero and P; = 0 for all ¢ > n. If
M € mod A has a projective resolution with finite length, then the projective
dimension pdy M of M is the minimal length of all of its finite projective reso-
lutions.

The (left) global dimension of an algebra A is defined by

gl.dim A = sup{pdy M | M € mod A}.

The “left” comes from the fact that we are looking at left modules of A. There
is of course a “right” version to this definition, but here we consider only the left
global dimension.

An algebra A is said to be left hereditary if all of its left ideals are projective.
We simply call left hereditary algebras hereditary.

Lemma 2.5.7 (cf. [3, Cor. 1.5.2]). The following are equivalent for a finite-
dimensional K-algebra A.

1. A is hereditary.
2. Rad A is a projective A-module.
3. gl.dim A < 1.

It is known that if A is hereditary, the submodules of projective A-modules
are themselves projective. In particular, Rad P, < PF; is projective for each
indecomposable projective F;.

Given a diagram

M2+ N

|7
L,

in mod A, recall that a pushout of this diagram is an X € mod A together with
maps ¢ : N — X, and f' : L — X such that f'f = ¢’g and satisfying the
following universal property. If there is a Y € mod A with maps k: N — Y and
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¢: L — Y such that kg = £f, then there is a map h : X — Y such that hg’ = k
and hf' = {.

In mod A there is an explicit construction of pushouts. Let

Q = {(g(m),=f(m)) | m e M)
be the submodule of N @ L generated by elements of the form (g(m), —f(m)).
Define X = (N @ L)/Q together with ¢/ : N — X and f' : L — X via the
obvious inclusions then the projection. For m € M, f'fm = (0, fm) + Q while

g'gm = (gm,0) + @ so that f'f = g'g.
Let M and N be in mod A. An extension of M by N is a short exact sequence

f

E: 0 ML N 0

of A-modules. Note that if M, N € mod A, any extension of M by N will have
L € mod A as well.

Let 2 : M — M’, and let E be an extension of M by N. The extension zF
of M’ by N is the bottom row in:

E: 0 M4 LN 0
\Lﬁf \Ly ll )
2E : 0 Y A SN 0

where M’ % [/ & L is the pushout of M’ & M % L constructed above, and
where f': L' — N is defined by

fol=LoM))Q — N
(,m)+Q — f().

This is well-defined, since if (I, m") — (I',m") € Q, then | — ' = g(m) for some
m € M. Thus,

F@m) +Q) = f((U,m") + Q) = f(I) — f(I') = fg(m) = 0.

The other required properties can be easily checked.
Concerning short exact sequences, the following lemma is useful.

Lemma 2.5.8 (Short Five Lemma). Given a commutative diagram

f

0 M2 N 0
|
0 Y N S SN N 0

with both rows short exact, if both p and v are isomorphisms, then so is A.






Chapter 3

Morse Reductions for Quiver
Complexes

In this chapter, we generalize the use of Morse reductions for filtrations [30] to
quiver complexes. The main goal can be explained quite simply. Given a quiver
complex X, we construct a smaller quiver complex A, but with the property
that their persistent homology modules are isomorphic: Hy(X) =~ Hy(A). Such
a reduction can be used as a preprocessing step.

We first review the basic ideas of discrete Morse theory in Section The
discussion of discrete Morse theory for quiver complexes is in Section[3.2] In Sec-
tion we present an algorithm for computing an acyclic matching for an input
quiver complex X, and thus for computing A. This is done by a modification of
the algorithm presented in the paper [30].

The content here is an expanded version of the works [I8] [19], and we have
adopted a slightly different proof strategy to prove the main theorem, Theo-
rem Also, we have simplified our exposition of the algorithm by the use
of Lemma [3.3.4] It is hoped that this will clarify the main idea behind our
modifications to the algorithm.

3.1 Morse reduction for a complex

First, let us review discrete Morse theory [20] and Morse reductions for a complex
(X, k). We follow the presentation in [30].

A partial matching for a complex (X, k) is a partition of X into sets A, B, D,
together with a bijection w : B — D such that for every 5 € B, x(w(5), ) is
nonzero. We denote a partial matching by (A, w : B — D). Recall that 7 is said
to be a boundary face of o if k(o,7) # 0. Given a partial matching, for every
B € B, 8 is a boundary face of w(f) and dimw(f) = dim g + 1.

A partial matching (A, w : B — D) induces a relation <,, on B by setting
B < B if B is a boundary face of w(’) and extending transitively. The relation
<y is reflexive and transitive by definition. If in addition it is antisymmetric,
then we say that the partial matching (A, w : B — D) is an acyclic matching.
Where it is not likely to cause confusion, we refer to an acyclic matching simply
by w.

43
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Note that an acyclic matching always exists for any complex (X, ), given by
the empty acyclic matching. This is the acyclic matching (A, w : B — D) with
A=X,B=D=,and w = .

A gradient path p is an alternating sequence

(517 w(ﬂl)a ﬁ?» w(,ﬁg), cee 75717 w(ﬁn))

of cells B; € B and w(p;) € B such that ;41 is a boundary face of w(g3;) for
every i € {1,...,n — 1}. The cells §; € B in a gradient path all have the same
dimension. This can be verified by the fact that both ;.1 and 3; are boundary
faces of w(f;), the former by definition of a gradient path and the latter by that
of a partial matching. For simplicity of notation, we shall denote the gradient
path (B1,w(B1)s - » By w(Bn)) by p = (Brs -, Bn)-

Let 0,7 € A. A gradient path p = (81, ..., 3,) is said to be a connection from
o to 7, denoted p : ¢ v 7, if B1 is a boundary face of ¢ and 7 is a boundary
face of w(B,). The multiplicity of a connection p : 0 v~ 7 is defined to be

e(p) = w(a, B1)i(p)r(w(Bn), T)

where i(p) is its index as a gradient path:

|
—

n

—

w(w(Bi), Bit1)
i(p) =~ :
—r(w(Bs), Bi)

Il
—

e

~
Il
—

The multiplicity e(p) € K of a connection can be checked to be nonzero. For
o,T € A, if there is a connection p : ¢ v 7, then dim ¢ = dim 7+ 1. This follows
from the fact that dim 8y = dim 8,, dim7 = dim 3,, and dimo = dim 57 + 1.

The cells in A are called the critical cells of the acyclic matching w. In fact,
we can create a complex from the critical cells A by setting

A= An X,

so that A = | | A, gives a grading on A by dimension. Then, define a new
q=0
incidence map Ky, : A x A — K by

kw(o,7) = K(o,T) + Y €(p), (3.1)

piovoT
where the summation is taken over all connections p : ¢ v~ 7 in X.

Theorem 3.1.1 ([30, Theorem 2.4]). Let (X, k) be a complex with an acyclic
matching (A,w : B — D).

1. If Ky is the incidence map defined in Eq. (3.1)), then (A, k) is a com-
plex, called the Morse complex of (X, k) associated to the acyclic matching

(A,w: B — D).
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2. If (A, ky) is the Morse complex associated to (A,w : B — D), then
the chain complexes of (X, k) and (A, ky) are chain equivalent and thus
Hy(X) = Hy(A) for every ¢ = 0.

To show Theorem [30] uses one-step reduction, which we explain below.
This technique will also be used in the next section for quiver complexes, so it
bears repeating here.

For any arbitrary 5 € B, let us consider the pair (X', '), with X’ = X\{3, w(8)}
and incidence function k' : X/ x X’ — K defined by

k(0, B)r(w(B), T)
_"i(w(ﬂ)a 6)

for any 0,7 € X’. Lemma shows that (X', «’) is a complex, and we call
(X', k") the complex induced by removal of {8, w(3)}. By comparing Eq.
and Eq. (3.1)), it can be checked that (X', «’) is the Morse complex associated
to the acyclic matching (X', u: {8} — {w(B)}).

K (o,7) = k(o,T) + (3.2)

Lemma 3.1.2. Given a complex (X, k) with acyclic matching (A,w : B — D)
and B € B, (X', k') as defined above is a complex.

Proof. Let o,7 € X'. If ¥'(0,7) # 0, then either k(o,7) # 0 or k(o, B)k(w(B),T) #
0. In the first case, dimo = dim7 + 1 follows from definition. In the second
case, k(o, ) # 0 and k(w(B),T) # 0, together with the fact that x(w(p),5) # 0
by definition, shows that dimo = dim 7 + 1.

Next, we show that

Z K (p, o)k (o,7) =0

oeX’

for any p,7 € X’. Denote the summation on the left by S. Expanding S, we get

S= > k(p,o)k(o,7) + ] "G(Pva)%&;,;)ﬂ

X "X o Brw(B).0)
k(p,B)c(w(B),0
2 T Ko (3.3)
K(p,8)(w(8),0) (o,8)(w(8).7)
2 T @A —rw(®)B)

The last summand in Eq. is always zero. If not, then there exists a o € X’
such that x(p, B)k(w(B),0) # 0 and (o, B)k(w(B),T) # 0. This implies that o
is a boundary face of w(f), and § is a boundary face of o, leading to dimw(53) =
dimo + 1 = (dimf + 1) + 1, contradicting the fact that dimw(5) = dim g + 1.

To simplify the remaining summations, we use the fact that for any x,y € X’,

>, wlz,0)r(o,y) = —rlz, H)r(B,y) — wlz, w(B)r(w(B),y),

oeX’

which follows from . k(z,0)k(0,y) = 0 and X = X' u {8, w(B)}. Using this
oeX
equality one can show that S = 0. O
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Next, given the complex (X', ') induced by removal of {3, w(8)} from (X, k),
let us construct chain equivalences between C'(X) and C(X’). Since we will use
the chain equivalences in the next section, let us give the definitions of the chain
equivalences ¥, ¢ between C(X) and C(X’), together with the homotopy 6
between ¢y and 1o(x).

We first define 1, ¢, and 6 as sequences of morphisms. Lemma then
shows that these are the required chain equivalences and the homotopy, respec-
tively. Let 1) be the sequence of morphisms ) = (g : Cq(X) — Cy(X')) defined
by linear extension of the formula

0 if . = w(p)
H(w(ﬁ)va) 1 —
Yea) =1 ~ L Kw@s© =5 (3.4)
x otherwise,

for x € X, for each ¢ > 0. Note that this is well-defined, because if dimz = ¢,
then the formula for ¢,(z) above is a g-chain in Cy(X’). Similarly, define the
sequence of morphisms ¢ = (¢q : Cq(X') — C¢(X)) by linear extension of

- w(B), (3-5)

for z € X7 and ¢ > 0. Again, dimz = ¢ implies that ¢,(z) € Cy(X). Finally,
0 = (0 : Cq(X) = Cy41(X)) is defined by K-linear extension of

)w(ﬂ) ifz=p

1
0q(z) = { w(w(B), (3.6)

B
0 otherwise.
for x € Xy, and for ¢ > 0.

Lemma 3.1.3 (cf. [30, Lemma 2.5]). The collection of maps ¢ : C(X) — C(X')
and ¢ : C(X') — C(X) as defined above are chain maps. Moreover, ¢ = 1o(xv),
and ¢ ~ 1o(x). Thus, ¥ and ¢ are chain equivalences.

The proof of Lemma [3.1.3] which we skip here, is by straightforward compu-
tations to check that required identities are satisfied.
A final ingredient is needed to show Theorem

Definition 3.1. Given a complex (X, ) and an acyclic matching w = (A, w :
B — D) on (X, k), let (X', k") be the complex induced by removal of {3, w(3)}
for some (€ B.

The acyclic matching w’ = (A4,w’ : B" — D’) on (X', x’) induced from w by
removal of {3, w(B)} is defined by B’ = B\{8}, D' = D\{w(p)}, and w’'(b) = w(b)
for each be B'.

We can thus iterate this process of removing pairs {3, w(5)} from the induced
complexes. Lemma[3.1.4) ensures that in the end, the repeated one-step removals
of pairs {f,w(B)} gives an induced complex that is the same as (A, k).
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Lemma 3.1.4 ([30, Prop. 2.6]). Let (X, k) be a complex with an acyclic matching
(A,w: B — D). Fiz a e B, and let (X',r'), (A,w' : B' — D') be the complex
and acyclic matching, respectively, induced by removal of {B,w(B)}, as above.
Then,

kw = (K )w

For a proof, see the paper [30].

Proof of Theorem [3.1.1, Put some arbitrary ordering on the cells in B, say 1, . . ., On.
Then, let (X%1,%%) be the complex induced by removal of {£1,w(B;1)} from
(X,k). For every i € {2,...,N}, let (X% xP) be induced from removal of
{Bi,w(B)} from (XPi=1 kPi=1). Similarly, for each i, let (A, w® : B% — D) be
the induced acyclic matching on (X5, k7).

Then, by repeated application of Lemma

Rw = (K’Bl)wﬁl
(FGBQ)@U@

RPN,

The last step follows since we have removed all the paired cells B, D. Thus,
(’A’ K”w) = (XIBN, KBN)

and (A, ky) is a complex by Lemma This shows the first part of Theo-
rem Moreover, by repeated application of Lemma [3.1.3] we get a sequence
of chain equivalences

C(X) ~C(XP)~ ...~ C(XPN) = C(A),
showing the second part of the theorem. O

In the next section we extend Theorem to the quiver complex case.

3.2 Morse quiver complexes

Recall that a quiver complex over a quiver @ is a set of complexes, consisting of a
complex (X, k;) for each i € QQp, such that whenever there is an arrow « : i — j
in @1, (Xi, k;) is a subcomplex of (Xj, k;).

In this section we expand the results reviewed in the previous section to
the setting of quiver complexes. In particular, we give a definition of acyclic
matchings of quiver complexes. We show that Theorem has a natural
analogue in this case. The main idea is to collect the chain equivalences given in
the previous section “vertex-wise”. By our definition of the acyclic matchings of
quiver complexes, these collections then form the necessary chain equivalences.
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Definition 3.2. Let X = (Xj,K;)ieq, be a quiver complex on the quiver Q.
An acyclic matching of X is a collection (Aj;,w; : B; — Dj)ieq, of an acyclic
matching of (Xj, k;) for every vertex i € Qg such that for every arrow « : i — j,
the conditions A; ¢ A;, B; € Bj, D; € D; and w;(o) = w;(o) for every o € B;
are satisfied.

Intuitively speaking, we require the acyclic matchings to agree across the
inclusions. Our definition of an acyclic matching for a quiver complex is inspired
by the definition of filtration-subordinate acyclic matchings used in [30]. To
abbreviate the notation, we simply write w for the acyclic matching (A;, w; :
Bi — D;)ieq,-

The following equivalent characterization is convenient.

Lemma 3.2.1. Let X = (X, Ki)icQ, be a quiver complex on Q, and w = (A;, w;
Bi — D;)icq, @ collection of acyclic matchings, one for each (X;, k;). The fol-
lowing are equivalent.

1. w is an acyclic matching of X.

2. For every arrow o : 1 — j, we have A; = A; n Xy, B, = B;n X;, D; =
Dj n X; and wi(o) = w;(o) for every o € B;.

Proof.

1—2 Let w be an acyclic matching of X. We only show the proof for A; =
A; n X;. The others are exactly the same in form. Clearly, A; < A; and
A; © X, so that A; < A n X;.
Now if 0 € A; n X; but 0 ¢ A;, then o is in B; or D; since A;, B;, D;
is a partition of X; by definition. It follows that o is in B; or Dj, a

contradiction, since o is in A; and Aj, B;, D; is a partition of X;. Thus
.AZ' ) Aj N Xi.

2—1 This follows directly from the definition.

g

Let X = (Xj, Ki)ieq, be a quiver complex, and w = (A;, w; : Bi — D;)ieq, an
acyclic matching of X. For every vertex i € (), associated to the acyclic matching
w; of (Xj, ki) is the Morse complex (A;, (Ki)w,), by part I of Theorem To
simplify the notation, we write &; for (K;)w, .

Definition 3.3 (Morse quiver complex). In the setting given above, the col-
lection of complexes A = (A;, R;)ieq, is called the Morse quiver complex of X
associated to the acyclic matching w.

Lemma shows that A is indeed a quiver complex. To prove Lemma(3.2.3
let us first show the following technical lemma.
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Lemma 3.2.2. Let X = ((X1,k1) — (X2,k2)) be a quiver complex over the
quiver Ay and

(Ai,w; : Bi = Dj)i—1,2

an acyclic matching of X. Suppose that o,7 € Ay < Xo with a connection
p=(P1,---,0n) 0> 1 in Xo. If 0 € Ay, then T is also in Ay and moreover
Bi€ Xi forallie{l,...,n}.

Proof. Suppose that o € A; < X;. Since 1 is a boundary face of o, 51 € X3
and so 81 € X1 n By = B.

If 5; € By, then wo(B;) = w1 (i) € D1 < X1. Furthermore, ;41 is a boundary
face of wy(p;) by definition, and so f;+1 € X; and thus 811 € X5 n By = By.
Inductively, we get that 3; € By for all i € {1,...,n}. The final step is to note
that 7 is a boundary face of wa(5,) = w1(8,) € D1 < X1, so 7 € X;. Since 7 is
also in Ay, we get that 7 € A;j. O

The following justifies calling the Morse quiver complex as such, since it is
in fact a quiver complex.

Lemma 3.2.3. Let X be a quiver complex over ), and w be an acyclic matching
of X, as above. Then, for every arrow « : i — j in Q, (A;, k;) is a subcomplex
of (Aj,kj). Thus, A is a quiver complex.

Proof. By definition, for each arrow o : i — j in Q1, A; < A;j as sets. To show
that (A;, ;) is a subcomplex of (Aj,%;), we need to check the following two
conditions.

1. il axa, = Fi.
2. For any 0,7 € Aj, if 0 € A; and 7 is a face of o (in (A;,R;)), then 7 € A;.
Let 0,7 € A; = A;. By definition,
Rj(o,7) = Kj(o,T) + Z €i(p),
piowoT in X;
as given in Eq. (3.1)). Since (Xj, &) is a subcomplex of (X, k;),
ki(o,T) = Kj(0,T)

follows from definition. Furthermore, since o € A; < X;, Lemma [3.2.2] shows
that 7 € A;  X;, that all the cells in any connection p : 0 v~ 7 are in X;, and
thus €;(p) = €;(p). From this, we conclude that

Rj(o,T) = Ri(o,T),

and the first condition holds.

It suffices to show the second condition for 7 a boundary face of o. So suppose
that 7;(o, 7) # 0 for some o € A; and 7 € A;. Then, either x;(c,7) # 0, or there
is a connection p : 0 v~ 7. In the first case we get 7 € X; since (X, ;) is a
subcomplex of (X}, k;). Because 7 € Aj, it is also in A;. In the second case, it
follows from Lemma that 7 € A;. O
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Let a quiver complex X over a quiver ) be given. Recall that by Lemma/|2.4.1
for any ¢ > 0, Cy(X) is a representation of (@), c), where c is the set of commuta-
tivity relations of Q). Moreover, the chain complex of X, C(X) = (Cy(X), 0q)4 is
a chain complex over mod KQ/I = rep(Q, ¢), where KQ/I is the algebra of the
Q).

We state our main theorem in this section.

Theorem 3.2.4. Let X be a quiver complex on a quiver Q, and let w = (A;, w; :
Bi — D;)icq, be an acyclic matching on X, with associated Morse quiver complex
A. Then, the chain complexes C(X) and C(A) are chain equivalent. Thus, for
all ¢ = 0, the KQ/I-modules Hy(X) and Hy(A) are isomorphic.

The rest of this section is devoted to proving Theorem above. Before
giving the proof, let us first explain the proof technique. Similar to the proof of
Theorem [3.1.1] we shall use a one-step reduction, by defining the quiver complex
X8 (in Lemma induced by the removal of a pair {3, wy(5)} for some (3 € By,
for some £ € Q.

Before going into details, first note that our definition of a quiver complex
and its acyclic matching is local at each vertex, requiring consistency only across
the arrows. Thus, when we define X?, we should be careful that we are using
only the local information.

Suppose that 3 € B; for some j € Qp. Let us illustrate an example where
trying to remove {3, w;(3)} from all (a global view) of the complexes (X;, k;)
with § € X; may lead to inconsistencies.

Set the base field to be K = Zs and consider @ = As(bf), with a quiver
complex X = (X, k;)3_; as follows:

(X1 = {vo,v1,v2,e0,€1,€2, f}
(32’1]0 =€yt e+ e
a1,1(30 = V1 + Vo X = {'U()}
diner =v2 + vy ’ { Og2 =0
O1,1€2 = Vg + V2

L Go1 =0

X3 = {vo, v2,e0}
, and 317360 = Vg + vy
00,3 =0

where we have abbreviated the definitions of ;(-,-) by instead specifying the
values of the boundary maps

0q,i0 = Z ki(o,T)T
TEXi

for o € X; with dimo = ¢q. For example, d21f = eg + €1 + e2 means k1 (f,eg) =
ki1(f,e1) = k1(f,e2) =1 and k1(f,x) = 0 for = # eg,e1, ez in X.
This can be visualized as the following diagram of simplicial complexes:

V2

€2 €1

/ Vs
. €o

Vo €0 U1 Vo Vo
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In particular, note that ep in (X1, k1) has boundary vy + v1, but its boundary
in (X3, k3) is vp + vo. While this may seem wrong, nothing in our definition of
a quiver complex prevents this!

Now consider the acyclic matching w on X given by:

A; = {vo,v1,v2,e1,e2}; B ={eo}; D1 ={f}; wi:ep— f,

and empty acyclic matchings on (X, ;) for i = 2,3. The ¢y at vertex 1 is
matched to f, but the ey at vertex 3 is matched to nothing. Thus when we
remove the pair {eg, f}, we should take care that vertex 3 is not affected.

The above example motivates the following definition. It will be used fre-
quently enough that it needs to be highlighted.

Definition 3.4. Let X = (Xj, k;)icq, be a quiver complex. Suppose that o € X,
for some fixed £ € Q. The locus of o in £ is the set of vertices L(o,{) < Qo with
i in L(o, /) if and only if there is a (possibly stationary) path in @ from ¢ to i
such that for every vertex k on that path, o is a cell in (X, Kkg).

In the definition above, recall that @ is the underlying graph of @ so that
the paths considered above are undirected paths. Note that the locus L(o, /)
depends on both ¢ and 0. We also warn that ¢ € X does not imply that
k € L(o,¢), though the converse is true.

In this section, we will primarily be dealing with the loci of 8 € By when
given an acyclic matching (A;, w; : B; — D;)icq,- Using Lemma it can
be checked that if i € L(8,/), then 5 € B; and that w(5) = wy (5) for every
k,k e L(8,¢). We denote the common matched cell by 4.

The following technical lemma is useful for treating vertices on the boundary
of the locus.

Lemma 3.2.5. Let 8 € By and let L(3,¢) be its locus. Suppose that there is an
arrow o : 1 — j in Qq

1. Ifie L(B,¢), then j e L(5,0).
2. Ifi¢ L(B,¢) and j € L(B,£), then B and w;(B) are not in X;.
Proof.

1. Since i € L(3,£), by the definition, there exists a path p from ¢ to i in Q
such that for all vertices k on this path, § € X. In particular, 5 € X;, so
that 5 € X; since X; < X;. Extend the path p to a path p’ from ¢ to j by
appending the underlying edge of o : ¢ — j. From this we conclude that

j € L(B,0).

2. Since j € L(3,£), there exists a path p from ¢ to j in @Q such that for all
vertices k on this path, 8 € Xj.

If 8 € X;, then extending the path p via the underlying edge of the arrow
o i — j, we get a path p’ from £ to ¢ in @ such that for all vertices k
on this path, f € Xj. This shows that i € L(f, /), a contradiction. Thus

B¢ X;.
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Suppose that w;(3) € X;. Since k;(w;(5), 5) # 0 by definition of an acyclic
matching, we conclude that § € X; because (Xj,k;) is a subcomplex of
(Xj,Kj). This is a contradiction to what we have just proved.

O]

Finally we can give the definition of the quiver complex XZ. Let us call X8

obtained in Lemma the quiver complex induced by removal of {53, we(5)}
from L(3, /) in X. Clearly, X? is dependent not only on § but also on .

Lemma 3.2.6. Given a quiver complexr X with acyclic matching w, fizx a vertex
Le Qo and a B € By. Then, the collection of complexes:

57, :{ (X787 ifie L(B.0),
! (Xi, ki)  otherwise,

) 8 B\ . .
forms a quiver complex XP. Here, each (X, K;) is the complex induced by

removal of {8, w;(B)} from (X, ki), as in the previous section.

Proof. To show that this is a quiver complex, let us first define p = (A%, y; :
B’ — D')icq,, a collection of acyclic matchings, one for each (Xj, K;).

Recall that for every k, k' € L(8,£), wg(8) = wi/(B) and that this common
matched cell is denoted by ¢. For i € L(f,¢), let

'A; = Xl\{/Ba 5}a

B; = {8},
D; = {0},
iz B 0.

Note that this is well-defined, since i € L(/3,¢) implies that 5 € B; and § =
wi(B) € D;. For i ¢ L(B,¥), define u; to be the empty acyclic matching on
(X, ki)

In fact, p is an acyclic matching of X. We need only check the consistency
conditions given in Definition for each arrow « : ¢ — j. By Lemma [3.2.5
part 1, it is not possible to have i € L(5,¢) and j ¢ L(53,¢), so there are only
three cases to check.

Case 1: i,j € L(8,¢). The inclusions

Ap = X\{B,0} <= A= X;\{B,6},
B ={8} < B;={p},
D= {5} < D ={s}

hold, and p; and p; are in fact the same maps.
Case 2: i ¢ L(5,¢) and j € L(B,¢). Here,

‘Ag:Xi < A;':Xj\{ﬁ’cs}v
B-g < B -4
Di=g < D ={5),
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where the first inclusion above follows from the fact that § and § = w;(3) are
not in X;, by the second part of Lemma The fact that u; = ¢ is equal to
pj restricted to B; = J is vacuously true.
Case 3: i,j ¢ L(B,¢). This case is trivial.

By definition, X is the Morse quiver complex of X associated to the acyclic
matching p. From Lemma we conclude that X? is a quiver complex. [

Since X? is a quiver complex on @Q, its chain complex C(X?) is a chain
complex over rep(@, c) by Lemma Next, we show that C(X) and C(X?)
are chain equivalent. First, we need to construct the appropriate collections of
morphisms. For each ¢ > 0, i € Qq, define

Vpi - Ca(X3) = Cy(Xi) — Cy((X7)y)

to be
oo = | Yai: Cy(Xi) = Co(XP) ifie L(B,0),
@t 1:0(X;) » C(Xy) otherwise,

where each 1, ; is the map induced by the removal of {5, w(8)} from (X;, K;) at
fixed vertex i, as defined in Eq. (3.4). Similarly, define

wqﬂ,@- : Cq((X’B)i) — Cy(Xi) = Cg(X5)

by
o = | 9ai: CoX])) = Co(Xs) i i€ L(B,0),
ot 1:0(X;) - C(Xy) otherwise,

where ¢ ; is induced from the removal of {8, w(/5)} from (X;, k;) at fixed vertex
i, as in Eq. (3.5). We apologize to the reader for the proliferation of indices.
For each ¢ = 0, we form the collections

W8 = (0 )ieqo and &F = (60 )icqq

and define ¢# = W?)@O and ¢f = (¢qﬁ)q>0.
To visualize ¥?, we provide the following. For any arrow o : i — j in Q; and
for any ¢ > 1, we have a diagram

i
Cq(Xi) - Cq((XP);)
a0,
0Oq,i L
v
. Cy-1(X3) L Cq1((XP):)
(3.7)
w[;?" v
Cq(Xj) = CQ((Xﬂ)]) v
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that we have not yet shown to be entirely commutative. Note that the spaces
on the right face depend on the membership of ¢ and j in the locus of § in
¢, L(3,¢). The commutativity of left and right faces follow from the fact that
(X, K4) is a subcomplex of (X, x;) and (Xf, ﬁf) is a subcomplex of (Xf,n?)
by Lemma [3.2.6, Then Lemma [2.2.1] can be applied. The next two propositions
show that Diagram is in fact commutative.

Proposition 3.2.7. For each ¢ > 0, 1/1q = (qu)zer : Oy(X) = Cy(XP) and

qﬁq = (qbqZ)ZEQO : Cy(XP) — Cy(X) as defined above are morphisms of represen-
tations of (Q,c).

Proof. We divide the proof into two parts, one for wg and the other for qbg .

1. For fixed ¢ = 0, and for any arrow « : ¢ — j, we need to show the
commutativity of

D
Co(Xi) —= Co((XP);)
[
Cq(XJ QL Cq((xﬁ)j)-

As in the proof of Lemma there are three cases.

Case 1: i,j € L(53,¢). As discussed above, it can be checked that § is in
both B; and Bj, and that w;(5) = w;(B). For x € X; with dimx = ¢,

0 if x = w;(B),
"‘%(wz(ﬁ) o) :
B — -2 w0 (B if z =0,
L'(/qui(x> = o—eX z( z(ﬂ) 5)
T otherwise.
On the other hand,
0 if z = w;(B),
. ki (w;(B),0) . B
vl (@) = Z 5 (7)) FRo iz =8, (3.8)
’ oeX
T otherwise.

We only need to check the equality in the case that x = 3.

In the summation in Eq. (3.8]), suppose that for some o € X ]5 , the term
Kj (w] (B),0) # 0 contributes a nonzero summand. Then, we claim that o €

X Since (Xf, f) is a subcomplex of (Xf, ]'8) and w;(8) = w;i(B) € X,

it follows that ¢ € X;. Since 0 € X ]B by assumption, o € X f , as required.

Thus the summation in Eq. (3.8) can be taken over o € Xf . Moreover,
kj(w;(B),0) = ki(wi(B),0) since both o and w;(8) = w;(B) are in Xj.
Similarly, xj(w;(8), 8) = ki(w;(5),B). This shows the desired equality.

Case 2: i ¢ L(3,¢) and j € L(,£). By definition, (X?); = X; and wfzi is
the identity.
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For all z € X; with dimx = q,
wa,z(fv) =T = ngb(x)

where the equality on the right follows from definition of v, ; and the fact
that € X; cannot be equal to 8 nor w;(3), since Lemma part 2,
asserts that 3, w;(8) ¢ X;.

Case 3: i,j ¢ L(3,£). This case is trivial, for both wg,i and (bqﬂ’i are identity
morphisms.

2. The proof for qbg is similar. For every arrow « : ¢ — j, we need to show
the commutativity of

o7,
Co(Xi) +—— Cy((XP);)

e

Ca(Xj) == Cy((XP);).

Case 1: i,j € L. By definition, 3 is in both X; and X;. Then, for every
re (X8, = XZ-B with dimz = g,

Hi<x75)

WP (2) =g — —

w;(B)

and
Kj(z, B)

bou(e)=a— —L2
P00 =T i (8). B)

w;(B).

These are clearly equal.

Case 2: i ¢ L(B,¢), j € L(B,¢). By definition, gbgﬂ- is the identity mor-
phism.

We claim if x € X, then £;(z, 8) = 0. If this were not the case, then 5 € X;

since (Xj, k;) is a subcomplex of (X, x;). This contradicts Lemma
part 2. Thus, for x € X; with dimz = ¢,

Kj(‘r’ﬂ)

— W =r = B -
m(w,(3), 8P )

) =2~
as required.
Case 3: i,j ¢ L. This case is trivial.
O

Incidentally, Proposition [3.2.7] shows the commutativity of the front and
back faces of the cube in Diagram (3.7). We have the following analogue of
Lemma B.1.3

Proposition 3.2.8.
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1. The collection of morphisms 1° : C(X) — C(XP) and ¢° : C(XP) - C(X)

are chain maps.
2. Moreover, PP = loxsy and PP ~ lo-
Thus C(X) ~ C(X5).
Proof.

1. To show that ¥® and ¢” are chain maps, we need to check that for all
qg=0:

(a) wg and qﬁqﬁ are morphisms of representations, and

(b) gy =) 10, and 0,04 = ¢l3_, 04

Part (a) is shown in Proposition It suffices to check the equalities
in (b) for each vertex i € Qg. In other words, we only need to show the
commutativity of the top face in Diagram (3.7)) for any vertex i € Q.

For a fixed i € L(f3, /), Lemma shows that the collection @Dg ; over all
q = 0 is a chain map, so that

B 8
aq,iwq wq 12 q,

as required. Otherwise, if ¢ ¢ L(3,7), (wq ;)g=0 is the identity morphism
and the above equality is automatically satisfied.

This shows that ©)? is a chain map. The proof for ¢? being a chain map is
similar.

2. Since @Dﬁ d)ﬁ Loy ((xpy,) for every i € L(B,¢) by Lemma and for
i¢ L(B,0), waqbgl Lo, (xe),) = Loy (x,) by definition,

W’ = 1ogxs).

Let us now prove that ¢%y? ~ lo(x)y by constructing the required homo-
topy. For each vertex i € L(3,7), let gbﬁ (¢§z)q>0 and 1/16 (¢51)q>0 We
already know that gZ)B 1/}[3 ~ lo(x;), via Lemma For every i € L(3,7),

Ogi = Co(Xi) — +1(Xi)

1 ] e
T — i (w; (5)15)101(5) iftz=p (3.9)
0 otherwise

provides a homotopy between czﬁf 1/)? and lo(x,).-

Form the collection 6 = (64,i)icq,, Where 8,; is as defined in Eq. . ) for
i€ L(B,£), and 6,; = 0 otherwise. For each q = 0, 0, is a morphism of
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representations 0, : Cq(X) — Cq41(X). This can be checked by showing
the commutativity of

Oq.i
Cq(Xi) — = Cyp1(Xy)

| I

0 .
Cy(Xj) — Cogr1(Xj)

for each ¢ = 0, for each arrow « : i — j. Let x € X; with dimz = ¢q. If x
is not 3, then 0,z = 0 = 0, jex independent of the membership of i and
jin L(B,¢). Thus we only need to check the cases for when z = .

Case 1: i,j € L(f,(). For x = f € X; c X; and if dimx = ¢, it is clear

that
1

1
0.5 = _ — 0,..B.
Ooil = e B)B) ~ myws (B).B) P

Case 2: i ¢ L(8,{), j € L(8,{). By part 2 of Lemma B¢ X; so
there is nothing to check.

Case 3: i,j ¢ L(S,¢). This case is still trivial.
Finally,

Qﬁ?lﬁqﬂ — 1Cq(X) = 9q_1(9q + 8q+10q

can be checked “vertex-wise”, using Lemma for vertices i € L(3,7),
and the fact that 1-1—1 = 00g; + dq—1,;0 for vertices i ¢ L(3,¢).

This shows that 6§ = (6,) is provides a homotopy between ¢°¢® and Lox)-
O

Finally, we can provide the proof for Theorem |3.2.4

Proof of Theorem[3.2.7]. 1f all acyclic matchings w; in w were empty, then there
is nothing to do. Suppose that there a vertex £ € Q9 with a nonempty acyclic
matching wy. Arbitrarily choose a 3 € By.

By the construction above, we let X? be induced by removal of the pair
{B,w(B)} from L(5,¢) in X as given in Lemma From Proposition it
follows that C(X) ~ C(X5).

To iterate this procedure, we need to show that the acyclic matching w of
X induces an acyclic matching w’ of X8. For each vertex i € Qp, w; induces
an acyclic matching w) on (X8);, as in Definition . Let us explicitly write
down these acyclic matchings. In the case that i ¢ L(3,¢), w)} is the same as
w; = (Aj,w; : Bi — D;). Otherwise, it is w} = (A;,w; : B, — D}) where
B, = B\{B}, D, = D;\{w;(5)}, and w}(b) = w;(b) for each b e B;.

Then, to show that the collection w' = (w});eq, defines an acyclic matching
of X#, we need to check the consistency across arrows o : i — j.

Case 1: i,j € L(f,¢). Note that w;(3) = w;(5). The inclusions

.Ai C .Aj,
Bi = B\{B} < B =B;\{s},
D; = D\{wi(B8)} < D;=Dj\{w;(B)}
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are satisfied. Moreover, for any b € Bj, w}(b) = w;(b) = w;(b) = wi(b).
Case 2: i ¢ L(3,¢) and j € L(5,¢). By part 2 of Lemma B,w;(B) ¢ X;.
Hence,

.AZ' c Aj,

B < B;=B\{8},

D; < Dj=D;\{w;(8)},

and for b € B;, b # [ so that wj(b) = w;(b) = w;(b), as required.
Case 3: 4,5 ¢ L(3,/). In this case, w, = w; and w; = w; and so the required
conditions hold because w is an acyclic matching.

Repeated application of the above construction of the induced quiver complex
and induced acyclic matching gives us the result. Note that at each step, the
number defined as

i€Qo

the total cardinality of the sets B;, strictly decreases. After a finite number of
iterations we are left with an empty acyclic matching. At this point, the induced
quiver complex is the same as A, which can be checked vertex-wise and applying
Lemma as in the previous section.

Thus, C(X) ~ C(A) and the theorem is proved.

3.3 Algorithm and numerical examples

In this section, we give an algorithm for computing an acyclic matching for an
input quiver complex X = (Xj, K;)ieQ,- We make the simplifying assumption
that there is a complex (X, k) such that (X;, ;) is a subcomplex of (X, k) for
every i € Qo. This (X, k) does not necessarily have to be a complex in X. The
assumption above will allow us to talk of cells in a global manner. For example,
given the quiver complex

Xy —— X, uY, +——— Y,

J I ]

X, — X, uY, +—Y,

on the commutative triple ladder, each complex is a subcomplex of X U Y.
Of course in the general case, this assumption may not hold. Instead, given
a quiver complex X, let us construct a complex (X, k). We then show that we
can rename the cells in each (X, ;) to get complexes (X'Z, ;) with the property
(Xi, ki) is a subcomplex of (X, k) for each i € Qp. We identify the complexes
(X, ki) in X with the complexes (X, #;) consisting of the renamed cells. Let us
show this construction below.
Let || X; = {(0,i)|0 € X;,i € Qo} be the disjoint union of the complexes
1€Qo
of X. Define an equivalence relation on | | X; by (0,i) ~ (7,7) if and only if
1€Qo
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o = 7 and there is a path p in @ from i to j such that for all vertices ¢ on the
path p, 0 € Xy. That ~ is an equivalence relation can be easily checked.

Let 0 € X;. Recall that the locus L(o,7) of o at i is defined to be the set of
vertices j in Qo such that there is a (possibly stationary) path p in Q from i to
7 satisfying the property that o € X} for any vertex k£ on the path p. Note that
(0,1) ~ (1,7) if and only if 0 = 7, and j € L(o,4) or i € L(7,j). Moreover, if
m € L(o,1), then L(o,1) = L(o,m).

Let X = || X;/ ~ and denote the equivalence class of (0,i) by [o,i] € X.

1€Qo
The set X is given a grading from the gradings on X;. That is, X, = {[o,1] |
dimo = ¢}.

In order to define an incidence map x : X x X — K, let us show that
the incidence maps (o, T) are consistent over L(c,7). First, let us show the
following technical lemma.

Lemma 3.3.1. Let 0 € X;, 7 € X;. If there exists some £ € Qqy such that
e L(o,i) n L(7,7) and ke(o,7) # 0, then, i € L(7,j) and ki(o,7) = ke(o, 7).

Proof. This is equivalent to showing that 7 € X;, (1,5) ~ (7,4), and k;(o,7) =
k¢(o, 7). By definition, £ € Qo has the property that (o,i) ~ (0,¢) and (7,j) ~
(7,£), and so there is a path p in Q from i to £ such that o € X}, for all vertices
k in p.

Let the vertices of the path p from ¢ to £ be

kn =i,kn_1,...,k1,¢ = ko,

in that order. By induction over s = 0,..., N, let us show that for all s =
{0,...,N}, 7€ X, and (7,7) ~ (7, ks) and kg (0,7) = k¢(o, 7). The case s =0
is true. In this case, ks = £ and the statement follows from definition.

Now suppose that the statement is true for some 0 < s < N. Since kg4 1 and
ks are adjacent vertices on a path in @, then either there is an arrow ke — ks
or there is an arrow ksy1 < ks in Q. In the first case, X, , is a subcomplex
of Xy, . Since 0 € Xy, and ry,(0,7) # 0, then 7 € Xj_, . In the second case,
7 € X}, follows from the fact that Xj is a subset of Xy _,.

In either case, 7 € Xy, and ksy1(0,7) = ks(0,7) = k¢(o,7) is clear. By
inductive hypothesis, (,7) ~ (7, ks) and so there is a path path p’ in @ from j
to ks such that 7 € X, for all vertices m in p’. Extend the path p’ by underlying
edge of the arrow between ks;1 and kg. This shows that (7,7) ~ (7, kst1)-

By induction, the statement is true for all s = 0,..., N and in particular
true for s = N, ky = 1. O

Lemma 3.3.2. Let 0 € X;, 7 € Xj. If there exists some £ € QQy such that { €
L(o,i) n L(7,j) and ke(o,7) # 0, then L(o,i) < L(7,7) and km(o,T) = ke(o,T)
for all m € L(o,1).

Proof. Note that for any m € L(o,i), L(o,m) = L(o,i). Substituting, ¢ €
L(o,m) n L(t,j) and k¢(o,7) # 0. By the previous lemma, m € L(7,7) and
km(0,T) = kg(o, 7). This also shows that L(o,i) < L(T, j). O
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Given a filtration, recall that the birth index of a cell ¢ is the smallest
index ¢ such that o € X;. The above result (roughly) states that the locus of
a boundary face 7 of ¢ should contain the locus of o. This result is analogous
to the fact that in the filtration case, the birth index of a boundary face of o
should be no larger than the birth index of . Indeed, in the filtration case,
L(o,?) = {i|b(c) < i < n}, where b(co) is the birth index of o.

Now, define a map k: X x X — K by

ke(o,7) if 3 € Qg such that £ € L(o,1) n L(T,7)

lloil, [ 1) = { 0 otherwise. (3.10)

By Lemma this definition is well-defined. If k¢(o,7) above is nonzero,
Lemma shows that this is equal to ky, (o, ) for any m € L(o,i) = L(o,i) N
L(7, j).

Lemma 3.3.3. Given (X, k) as defined above, (X, k) is a complex.

Proof. We need to show that x defined in Eq. (3.10) is an incidence map. The
condition that ([e,1],[7,j]) # 0 implies dim|[o,i] = dim[7,j] + 1 obviously
holds. Let us show that the summation

>, el o iDr([o 41 [ k)

[o5]eX

is zero for any fixed [p,i],[7, k] € X.
Consider only [0, j] € X contributing nonzero summands. By definition of x
and together with Lemma L(p,i) < L(o,7),

K“([ﬂ? Z]: [07]]) = ’%i(pa U)
and similarly, L(o,j) < L(7, k) so that ¢ € L(p,i) < L(o,j) < L(7,k),

k([o, 7], [1, k]) = Ki(o, T).

Thus,
> wllp,il o, jDs(lo, gl [T k) = X w(lp, il [o,d])s([o, ], [7,1])
[0.5]eX [o,i]eX
= 2 kilp,o)ki(o,7)
oeX;
= 0,
as claimed. ]

Finally, rename the cells of all (X;, ;) by replacing o by [c,¢]. This gives
the same complex. Strictly speaking, we want to define a category of complexes
and identify (X, ;) with the complex (X;, £;) containing the renamed cells by
an isomorphism in that category. We skip this category-theoretic complication.

Let us show that for every i € Qq, (Xz, K;) is a subcomplex of (X, k). By
definition, X; = X as sets. For any [o,i],[T,i] € X; corresponding to o, 7 € X,

K([(L i]? [T7 Z]) = Iﬂi(O', T) = /@‘([O’, i]v [7—7 Z])
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by definition. Moreover, if x([o,1],[7,j]) # 0 for some [o,i],[7,j] € X, then
by Lemma we have i € L(7,j) and so 7 € X; and [7,j] = [r,i]. Thus,
[7,i] € X; corresponding to T € X;.

Next, we give the following lemma, which we will later use to explain the
strategy behind the algorithm for computing an acyclic matching for X.

Lemma 3.3.4. Let (X, k) be a complex with an acyclic matching (A,w : B —
D).

1. Let (X', k) be a subcomplex of (X,k). If for every B € B, B € X' if and
only if w(B) € X', then w induces an acyclic matching (A',w' : B — D’)
on X' defined by:

B = BnX
D = DnX'
A = X\(BuD)

W'(B) = w(B) forBeB.

2. With the hypothesis of part 1, let (A,R) be the Morse complex of (X, k)
associated to w, and (A',k') the Morse complex of (X', k') associated to
w’. Then for every o,7 € A,

& (o,7) = k(o,T).

3. Let X = (X, Ki)ieQ, be a quiver complex over @ such that for every i e Qo,
(Xi, ki) is a subcomplex of (X, k). Suppose that (A,w : B — D) is an
acyclic matching of (X, k). If for every 8 € B and for each i€ Qo, B € X;
if and only if w(B) € X;, then the collection of acyclic matchings w; on

(X, ki) induced by w, as above, forms an acyclic matching (w}) of X.

Proof.

1. The required properties are easy to check.

2. In this setting, (X', k') — (X, k) can be viewed as a quiver complex on
the quiver Ay : o —— o . Moreover, by definition of w’, the pair of
acyclic matchings w’, w forms an acyclic matching of this quiver complex.
It follows from Lemma [3.2.3] that

(Alv "%/) — (Aa ’%)

is a quiver complex. In particular, (A’,&") is a subcomplex of (A, %) so
that for every o, 7€ A,

& (o,7) = &(o, 7).

3. For every i, w induces an acyclic matching w; on (X;, x;) by the first part



62 Chapter 3. Morse Reductions for Quiver Complexes

of this lemma. For any arrow « : 7 — j in @1, it can be checked that

Bi = BﬂXiZBﬁ(XjﬁXi)

= Bj @ Xi,

Di = DﬁXiZDﬁ(XjﬁXi)
= Dj M Xz

./41‘ = XZ\(Bl U Dl)

[X;\(Bj v Dj)] n X
.Aj N Xi
wi(B) = w(p)

= wj(B) for B € B;.

It follows from Lemma that w’ = (w}) is an acyclic matching of X.

O]

The strategy of the algorithm is as follows. Let X = (Xj, k;)ieq, be a quiver
complex and (X, k) a complex such that for each i € Qq, (X;, ;) is a subcomplex
of (X, k). We compute an acyclic matching w for (X, k) satisfying the condition
that for every g € B, f € X; if and only if w(f) € X;. By Lemma part 3,
(w}) induced from w is an acyclic matching of X. Moreover, by computing the
incidence map & of (A, &), we also get the incidence maps &; for each (A;, &;) in
A.

We use the algorithm given in [30], with some modifications. We have to
be careful that the acyclic matching we produce satisfies the hypothesis in
Lemma [3.3.4] To this end, define the birth indicator function of a cell o € X,
b(o) : Qo — {0,1}, by
1 ifoe Xi,

0 otherwise.

)i - {

At initialization, place all the cells of (X, k) into a set U of the unprocessed
cells. We also need the following definitions. The boundary of a cell o, relative
to the current state of the unprocessed cells, is

Yo = Z k(o,T)T,

TeU

while its coboundary is
chy(e) = {p e U | nl(p,0) # 0}.

The algorithm will iterate through the cells in U. While the set U of un-
processed cells in not empty, we take a cell of minimal dimension and make it
critical. At the end, the set of critical cells will be the cells of the Morse complex
A. The rest of the cells are paired up by w.

Recall that an elementary coreduction pair [31] (relative to U) is a pair (8, J)
of cells, such that 0V = uf3, for some u # 0 in K. The algorithm looks for
elementary coreduction pairs to remove. We define the acyclic matching by
setting w(f) = 9, for every pair (/3,0) sent to REMOVEPAIR. However, we also
require that all pairs (8,6 = w(f)) so extracted satisfy b(d) = b(3).
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Now, the removal of a cell (either by being declared critical, or being removed
as part of a pair) may cause its coboundary cells to become part of some ele-
mentary coreduction pair (3,0). We insert the coboundary cells into a queue Q
that keeps track of candidate & cells. The queue structure should have a guard
in place to ensure that each cell gets queued no more than once into Q for each
iteration of the outer while loop.

We also define the gradient chain g(-) for every cell. At initialization, we
set g(o) = 0. As we progressively remove cells, the values of g(o) will change,
reflecting the changes made to the incidence map. Then, when a cell A is made
critical, g(A) contains the boundary of A in the resulting Morse complex, 0o

procedure UPDATEGRADIENTCHAIN(0)
for p e cby(o) do
if c = A€ A then
9(p) — g(p) + K(p,A)A
else

9(p) < g(p) + k(p,o)g(o)

procedure REMOVEPAIR(S, 6, d) procedure MAKECRITICAL
remove: J from U choose: A € U of minimal di-
enqueue: cby(f) in Q mension
if dim 8 = d then add: Ato A
g9(B) <« —@ UPDATEGRADIENTCHAIN(A)
UPDATEGRADIENTCHAIN() remove: A from U
remove: 3 from U 0AA —g(A)
return A

procedure MORSEREDUCE(U, k, b)
while U # ¢J do
A «— MAKECRITICAL()
Q «— new Queue
enqueue: cby(A4) in Q
while Q # J do
dequeue: ¢ from Q
if 0U¢ = 0 then
enqueue: cby(§) in Q
else if 0Y (&) = u-n with b(¢) = b(n), u # 0 then
REMOVEPAIR(7, £, dim A)

return A, 04

The following theorem is simply Theorem 5.1 and Proposition 5.2 of [30],
applied to the trivial filtration of (X, k).

Theorem 3.3.5 ([30, Theorem 5.1]). The algorithm MORSEREDUCE terminates
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with an acyclic matching (A,w : B — D) of (X, k) defined by
B={p](5,0) was sent to REMOVEPAIR.}

D ={0](B,0) was sent to REMOVEPAIR.}
and w(B) = § for all (B,0) sent to REMOVEPAIR. Moreover, for cells A, A’ € A:

R(A, A = (04A, A,

Finally, we state the following theorem, which shows that the algorithm
computes an acyclic matching for the input quiver complex X.

Theorem 3.3.6. Given an input quiver complez X on @ and complex (X, k)
such that (X;, k;) < (X, k) for all vertices i € Qq, the algorithm MORSEREDUCE
gives an acyclic matching of X, (w]) = (A%, w} : B — D))icq, induced from the
acyclic matching w of (X, k) as defined in Theorem . Moreover, for every
verter © € Qo and cells A, A’ € A;,

Ri(A,A) = (04A, A,

Proof. By construction, b(8) = b(w(8)) for every 8 € B. Thus, 8 € X; if and
only if w(B) € X, for every vertex i € QQg. The result then follows immediately
from Theorem [3.3.5 and Lemma [3.3.4] O

Let us give the numerical results appearing in [I8, [19]. We use K = Zg, the
finite field with two elements, and compute gth persistent homology modules
with ¢ = 1. The underlying quiver @) of the quiver complexes will either be
Ap(7), where n = 8 and 7 is randomized, or CL3(fb). In either setting, the
procedures performed are the same. As the first procedure, we start with a
quiver complex X, then compute Hy(X) and an indecomposable decomposition
of Hy(X).

In the case @ = A, (7), the computation of the indecomposable decompo-
sition uses the algorithm for zigzag persistence provided in [7]. On the other
hand, for the case @Q = CL3(fb), we use the algorithm in [I7], which we will also
discuss in the next chapter, in Section [£.4]

To compare the use of the Morse reduction algorithm we have described
above, we do the following as a second procedure.

1. Compute a Morse quiver complex A of X by MORSEREDUCE, then

2. compute Hy(A), and an indecomposable decomposition of Hy(A).

Note that the only difference between the two procedures is whether or not we
do Morse reduction as a preprocessing step. By Theorem H,(X) = Hy(A)
and both procedures above give isomorphic output.

We summarize the time taken in seconds for the computations in the table
below. The column under tyithout (first procedure) contains the total times
taken for computing without using Morse reductions and working with H,(X),
while ¢yitn (second procedure) gives the total times taken for following the steps
above. This latter entry includes the time taken for first computing the Morse
quiver complex A with the time taken to compute H,(A) and its indecomposable
decomposition. We also provide the sizes of the quiver complexes, |X| and |A]|.
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# Q |X| |A| Lwithout Lwith

1| As(r) | 2001 | 977 | 8.868 0.841

2 | As(r) | 2000 | 1012 | 8.792 0.732
3 Ag(T) 2004 | 1076 10.849 1.293
4 | CL3(fb) | 15,341 | 2,777 903.31 39.53
5 | CLs(fb) | 17,626 | 7,164 | 3497.55 | 143.41
6 | CL3(fb) | 32,540 | 7,834 | 5162.12 | 42.34

As expected, |A| < |X]|. In all cases above, using Morse reduction as a prepro-
cessing step reduces the total computation time needed for the whole procedure.

Now, the algorithm we used for the computation of the indecomposable de-
composition of the persistent homology modules may not be the most efficient
available. However, in the testing we performed above, the same algorithm has
been used for both trials. Thus, any improvements to the persistent homology
algorithm should improve both fyithout and twith-






Chapter 4

Representation Theory of
Quivers

Motivated by a practical application, we proposed the study of persistent homol-
ogy on the commutative ladder quivers CL, (7). More generally, we have seen
that the persistent homology H,(X) of a quiver complex X is a representation of
a quiver bound by commutativity. By the equivalence between representations
and modules given in Theorem [2.3.1] we can view Hy(X) as an A-module, where
A is the algebra of the bound quiver.

This brings us to the study of modules over K-algebras. We first provide a
review in Section of the general material concerning the Auslander-Reiten
theory of modules over algebras. We then apply these general techniques to
the representations of commutative ladder quivers, and interpret the resulting
theory from the point of view of topological data analysis.

4.1 Auslander-Reiten theory

In this section, we provide a review of the basics of Auslander-Reiten theory.
For more detailed treatments, we refer the reader to the books [2, [3,[5]. We omit
some of the proofs and instead provide links to the references. The exposition
here is oriented towards applications to persistent homology, and we provide
perspectives from this viewpoint.

We use the path algebra Kffn of the quiver /Yn to provide examples. Recall
from the introduction and background chapters that a filtration is a quiver com-
plex over /Tn, and that its persistent homology is a representation of ffn, and
thus a KA,-module. By our use of KA, we give hints as to how the general
theory in this section can be applied to persistent homology on the commutative
ladders. This application will be developed in the later sections.

In the first subsection, we discuss several functors that will be used later for
computations. In the second subsection, we introduce one of the main objects
in Auslander-Reiten theory, the almost split sequences. A similar discussion can
be made in general for Artin algebras, but we restrict our attention to finite-
dimensional K-algebras over a field K which is not required to be algebraically
closed.

67
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4.1.1 Transpose and translations

Let A be a finite-dimensional K-algebra. Recall that mod A is the category
of finite-dimensional A-modules. A minimal projective presentation of M is an
exact sequence

) N UV} 0 (4.1)

where Py and P are projective modules and p; : P, — Im p; are projective covers
for i = 0,1. By Proposition [2.5.2] it follows that for any M € mod A, M has a
minimal projective presentation. Of course, if M = P is projective, then it has
a minimal projective presentation

0 P, p 0.

Given an indecomposable nonprojective module M, apply the contravariant
functor (—)! = Homa(—, A) to its minimal projective presentation in Eq. (4.1)).
Since (—)! is left exact,

Pt > P} Coker p{ —— 0

is an exact sequence in mod A°P. The transpose of M, denoted by Tr M, is
defined to be the A°P-module Coker p}. Note that Tr M is unique up to isomor-
phism, by the uniqueness of minimal projective presentations.

So far, we only describe M +— Tr M as a map from objects in mod A to objects
in mod A°P. To properly define a functor, we do the following construction.
Recall that the arrow category arr C' of a K-category C has objects consisting
of the morphisms between objects in C. Let proj A be the full subcategory of
mod A consisting of projective A-modules.

We define the functor Coker : arrproj A — mod A. The functor Coker is
defined on objects by Coker(f : P, — Py) = Coker f. Given a morphism
(91,92) : f — f' in arrproj A, Coker(g1, g2) is the unique morphism that makes
the diagram

f

P Py » Coker f —— 0
lgl L‘D lCOker(gl ,92)
P P Coker f/ — 0

commute. Explicitly, for p + Im f € Coker f, define Coker(g1,¢92)(p + Im f) =
gop + Im f'. To show that this is well-defined, note that if p — p’ € Im f, then
g2p — g2p’ € go(Im f) < Im f’ since gof = f'g1. Checking the other claimed
properties is also easy.

As defined above, the functor Coker is not an equivalence. One way to get
an equivalence is the following. First, we define the two-sided ideal P(f, ') of
arr(proj A) to consist of morphisms (g1,92) : (f : PA — Fy) — (f' : P{ — P))
such that there is some h : Py — Pj satisfying f'h = g2 or hf = g1, as in the
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diagram
P L) P()

lgl h/’ \LQQ
L

P LB

On the other hand, a morphism f : M — N is said to factor through a
projective module if there is a projective module P and a factorization f = hg
with h : P - N, g: M — P. Let P(M,N) be the two-sided ideal of mod A
consisting of the morphisms f : M — N that factor through a projective.

It can be shown that (g1,¢2) is in P(f, f) if and only if Coker(gi,g2) €
P(M,N) where M = Coker f, M’ = Coker f’. Let mod A be the quotient
category (mod A)/P, called the projectively stable module category of A.

Proposition 4.1.1 ([3, Props. IV.1.3, IV.1.6]).

1. The functor Coker : arrprojA — mod A induces an equivalence Coker :
(arrproj A)/P — mod A.

2. The duality (=)' : proj A — proj AP induces a duality (arr proj A)/P —
(arr proj A°P) /P which induces the duality Tr : mod A — mod A°P.

The second part of Prop. provides the correct setting for defining the
Tr duality. Let us also list some properties of the object map

Tr : Obmod A — Obmod A°P

defined from Tr. First, we need the following definition. By the existence and
uniqueness up to isomorphism of the indecomposable decomposition of M €
mod A, we can write

M=MpdM

where Mp has no nonzero projective summands and M’ is projective. Define
modp A to be the full subcategory of mod A of modules with no projective direct
summand. That is, modp A consists of M € mod A such that M = Mp.

Proposition 4.1.2 ([3, Prop. IV.1.7]).

1. Tr M = 0 if and only if M is projective.

2. Te(P M;) = P Tr(M;) for M; € mod A.
i=1 i=1

3. Tr'Tr M = Mp.
4. M,N € modp A then M = N if and only if Tr M =~ Tr N.

As an example, let us compute Tr M for the indecomposable modules M
of the path algebra A = KA,. As discussed in Section the list of interval
representations I[a,b], 1 < a < b < n, gives the complete list of indecomposable
representations up to isomorphism. Here, let us abbreviate I[a,b] by [a,b]. By
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Lemma the indecomposable projective representations are given by [a, n]
forl<a<n.

Some preparation is needed. First, A4, = An(f ... f) has opposite quiver
An(b...b) and thus the opposite of its path algebra, A°? = (KA,)P, can be
identified with KA, (b...b) = K(A). We similarly define the interval modules
for A°? and denote them by [a,b]°P to remind us that the arrows are reversed
(compared to those in A,). An easy computation shows that D([a,b]) = [a, b]°P.

Next, we compute ([a,n])* = Hom4([a, n], A). By the proof of Theorem2.3.1]
the K-vector space associated to the vertex c of the representation correspond-
ing to the module Homy4([a,n], A) is given by Hom4([a,n], A)e.. Note that
Homy([a,n], A) is a right A-module, so we multiply by e, on the right. This is
isomorphic to the K-vector space

K ifc<a,

fom(fa. ], Aec) = Homa(fo,nl feon) = { 1 0=

Then, checking the action of a € A, we get
(la,n])" = [1,a].

Let us compute Tr[a, b] for [a,b] indecomposable nonprojective. By assump-
tion, b # n and [a, b] has minimal projective presentation

[b+1,n] —2— [a,n] — [a,b] —— 0. (4.2)

Applying (—), we get
'3
[1,a]® —2— [1,b+ 1] —— Cokerp! —— 0
with Tr[a,b] = Cokerp' = [a + 1,b + 1]°P, an A°P-module. To get back into
mod A, we can apply D(—) and get D Tr[a,b] = [a + 1,b + 1]°PP =~ [a+1,b+1].
We also phrase Tr in terms of more familiar functors, at least for certain

simple cases. Note that Eq. (4.2) above not only provides a minimal projective
presentation, but can also be extended to an exact sequence

0 —— [b+1,n] —2—= [a,n] s [a, b] 0.

This furnishes a projective resolution of [a,b], from which we can compute
Ext!([a, ], A) by using Homy(—, A) = (—)! to get the (not necessarily exact)
sequence

0 —— ([a,b])" ——> [1,a]® —2 [1,b+1]°° —% 0,

with Ext) ([a,b], A) = Ker 0/ Im p* = Cokerp' = Tr[a, b].
This is no accident. First, we note that KA, is a hereditary K-algebra. In
fact, a more general result can be given.

Proposition 4.1.3 (cf. [2, Theorem VII.1.7]). If Q is a finite, connected, acyclic
quiver, then KQ is a hereditary K -algebra.
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It can be checked that the usual Ext!(—, A) functor induces a functor on
the projectively stable module categories. Then, Cor. IV.1.14 of [3] states that
for A a hereditary finite-dimensional K-algebra, Tr : mod A — mod A°P and
Exth(—, A) : mod A — mod A°P are isomorphic.

In general, of course, Tr may not be isomorphic to ExtY(—, A). Nevertheless,
the above example suggests that the functor D Tr allows us to construct new
indecomposables out of previously known ones. We will see this in the next few
subsections.

Definition 4.1. The Auslander-Reiten translations are defined to be
7=DTr and 7' = Tr D.

These translations play a very important role in the Auslander-Reiten theory.
Properties similar to those listed in Prop. for Tr can be inferred for 7 and
o

Let us properly write down these translations as functors. Recall that Tr :
mod A — mod A°P is a duality. Let Z be the two-sided ideal of mod A defined
by letting Z(M, N) to consist of the morphisms f : M — N that factors through
an injective. Similar to mod A, we define the injectively stable module category

mod A to be the quotient category (mod A)/Z.
Theorem 4.1.4 ([3, Prop. IV.1.9]).

1. The duality D(—) : mod A — mod A°P induces a duality D(—) : mod A —
mod A°P.

2. The Auslander-Reiten translations T = D Tr : mod A — mod A and 71 =
Tr D : mod A — mod A are equivalences and are inverses of each other.

Here, we will mainly use 7 and 7! as maps between objects.
For computational purposes, we also define the endofunctor

v(—) = DHomy(—, A) = D((—)") : mod A — mod A
called the Nakayama functor. It is known that v restricts to an equivalence
v(—):projA — inj A,

where inj A is the full subcategory of mod A consisting of injective A-modules.
This has quasi-inverse

v1(=) = Homu(D(A4),—) : inj A — proj A.

We need the following definition before giving Prop. Let M € mod A.
A minimal injective presentation of M is an exact sequence

0 MLy,

where Iy and I are injective modules and ig : M — Iy and i} : Cokerig — Ih
are both injective envelopes. Here, 7} is induced from ;.

There is a close relationship between the translations 7, 7~ and the Nakayama
functors v, v~1. The following can be shown by a straightforward calculation.
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Proposition 4.1.5 ([2, Prop. IV.2.4]). Let M € mod A.

1. Let PP -2 p 25N 0 be a minimal projective presentation
of M. Then, there is an exact sequence:

vp1 vpo
vP vM

Vv
e

0 — ™M vP

Vv

2. Let 0 s M~ T "5 [' be a minimal injective presentation of
M. Then, there is an exact sequence:

_ v—1; _ v—1i _ _
0 ——> v iy 220 - ir Z 2 -l s 71— 0.

In the Section of Chapter [2, we described a method for computing an in-
jective envelope of M € mod A, and thus minimal injective presentations. More-
over, if {e1,..., ey} is a complete list of primitive orthogonal idempotents for A,
then P = Aey, I, = D(eiA) for ke {1,...,n} gives a complete list of indecom-
posable projectives and injectives, up to isomorphism. We have v P, = I and
v~ = P,. Since direct summands of projective modules (injective modules)
are projective (injective), we can use the additivity of the functors v and v~! to
then compute the middle terms in Prop The fact that

v M = Homa(D(A4), M) = (P Homu(D(e; A), M)
i=1
is also useful.

4.1.2 Almost split sequences

So far we have discussed the computation of the Auslander-Reiten translations 7,
7! with only small hints as to their importance. Here, we show that there exist
certain exact sequences (called almost split sequences) in mod A that provides a
very powerful tool to study mod A. Moreover, the translations 7, 7! provide a
way to compute these almost split sequences.

A morphism f : M — N is said to be right minimal if any endomorphism
h: M — M with fh = f is an isomorphism. Dually, f : M — N is said to be
left minimal if any h: N — N with hf = f is an isomorphism.

Let f : M — N be a morphism, a morphism h : X — N is said to factor
through f if there is an z : X — M such that h = fx. Similarly, a morphism
h: M — Y is said to factor through f if thereisa y: N — Y such that h = yf.
These cases are given by the diagrams

f

M — N M — N
AL emd N
X Y.

Recall that a morphism f : M — N is said to be a split epimorphism if the
identity 1x : N — N factors through f. That is, there is some h : N — M such
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that 15 = fh. Dually, we have the concept of a split monomorphism which is a
morphism f : M — N such that 1;; factors through f. The following fact about
split morphisms is standard.

Lemma 4.1.6 ([29, Prop. 1.4.3]). The following are equivalent for a short exact
sequence in mod A

0 sy M —2— L ! > N > 0
1. f is a split epimorphism.
2. g is a split monomorphism.
3. The sequence is isomorphic to
0 » M —» M®N 2> N 0

A short exact sequence is said to be split if it satisfies any of the equivalent
conditions above.

Of interest are the following “almost split” morphisms. A morphism f :
M — N is said to be right almost split if the following conditions hold.

1. The morphism f is not a split epimorphism.

2. For any morphism h : X — N that is not a split epimorphism, h factors
through f.

If f: M — N is a split epimorphism, then there is a morphism s : N — M
such that fs = 1y. Given any h : X — N, we have fsh = h so that h factors
through f (via sh). The converse also holds: if f : M — N has the property
that for any h : X — N, h factors through f, then f is a split epimorphism.
Thus, f is a split epimorphism if and only if for any morphism h: X — N, h
factors through f.

In the right almost split case, we do not require that all morphisms A : X —
N satisfy the factorization property, only those that are not split epimorphisms.
In this sense a morphism f that is not a split epimorphism is “almost” split.

Dually, a morphism f : M — N is said to be a left almost split morphism if
it satisfies the following conditions.

1. The morphism f is not a split monomorphism.

2. For any morphism A : M — X that is not a split monomorphism, h factors
through f.

Lemma 4.1.7 ([3, Lemma V.1.7]). Let f : M — N be a morphism in mod A.
1. If f is right almost split, then N is indecomposable.

2. If f is left almost split, then M is indecomposable.
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Proof. If N were decomposable, then the inclusions from the summands of N
factors through f since f is right almost split. However, this implies that 1
factors through f, a contradiction to the fact that f is not a split epimorphism.
Part 2 can be proved in a similar manner. O

The following characterization is important.

Proposition 4.1.8 ([3, Prop V.1.9]). Given f : M — N, the following are
equivalent.

1. The morphism f is left almost split.

2. The morphism f is not a split monomorphism, and every nonisomorphism
h: M —Y withY indecomposable factors through f.

In short, it suffices to check the defining property for left almost split mor-
phisms only for nonisomorphisms A : M — Y with Y indecomposable. We skip
writing down the dual version. See [3, Prop V.1.8].

A typical example of a right almost split morphism is the following. If P
is an indecomposable projective module, then the inclusion ¢+ : Rad P — P is
right almost split. First of all, ¢ is clearly not a split epimorphism. Since P is
projective, h : X — P is a split epimorphism if and only if A is an epimorphism.
So it suffices to check the second property for all h : X — P that are not
epimorphisms. But this is trivial, since Im h being a proper submodule of P
implies that Imh < Rad P so that h factors through . This shows that ¢ :
Rad P — P is right almost split. In fact, it can be checked that ¢ is also right
minimal.

Let us study morphisms that are both right minimal and right almost split.
We call these morphisms right minimal almost split (RMAS). Of course, we
have the dual concept of left minimal almost split (LMAS) morphisms, which
are morphisms that are both left minimal and left almost split.

The following gives the RMAS ending at an indecomposable projective P,
and the LMAS starting at an indecomposable injective I.

Proposition 4.1.9 ([2| Prop. IV.3.5]). Let P be indecomposable projective. If a
morphism [ : X — P is a monomorphism with Im f ~ Rad P, then f is RMAS.
Dually, let I be indecomposable injective. If g : I — X is an epimorphism with
Kerg =~ Socl, then g is LMAS.

The following lemma shows that for any fixed M or N, RMAS morphisms
ending at N or LMAS morphisms starting at M are unique up to isomorphism.

Lemma 4.1.10 (|2, Prop. IV.1.2]).

1.If f: M — N and f' : M' — N are RMAS, then there exists an isomor-
phism h : M — M’ such that f = f'h.

2. Ifg: M — N and g : M — N' are LMAS, then there exists an isomor-
phism h : N — N’ such that ¢’ = hg.
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Proof. Since f and f’ are both right almost split, f factors through f’ and f’
factors through f. Thus there exists h : M — M' and ' : M’ — M with f = f'h
and f' = fh'. We then have f’ = f'hh/ and f = fh'h. Since both f and f’
are right minimal, hh" and h'h are automorphisms (of M’ and M, respectively).
Thus h and A’ are isomorphisms with the required property.

The proof for part 2 is similar. O

Definition 4.2. An almost split sequence is a short exact sequence

0— M-y -t N_ o

such that g is LMAS and f is RMAS.

To show the properties of almost split sequences, let us first give the following
technical lemmas.

Lemma 4.1.11 (cf. [3, Cor. IV.4.4]). Let

0— M -5 -t N30

be an eract sequence. Then, for any Y € mod A, the following are equivalent.
1. For any h: 77'Y — N, h factors through f.
2. For any h: M — Y, h factors through g.

Lemma 4.1.12 (cf. 29, Lemma II1.3.1]). Consider the following exact sequences
in mod A.

E: 0 M—2 5L N 0
| A
2B : 0 MLy LN 0,

where x E is the short exact sequence induced by taking the pushout M’ g, rerp
of M' & M 5 L. The exact sequence xE is split if and only if x factors through
g.
Proof. Suppose that x factors through g. There is a £ : L — M such that
kg = x. At the same time, there is the identity 1 : M’ — M’. Thus, we have a
diagram

ML

where the existence of the arrow r is inferred by the property of L’ being a
pushout. Moreover, rg’ = 1 so that xE splits.

Now, suppose that xzF splits. Then, there is an r : L’ — M’ such that
rg' = 1. Then, z = r¢'z = ryg = (ry)g. Thus, z factors through g. O
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Of course, a dual statement can be given for Lemma, but we do not
need it in this work.

Finally we can give some of the important properties of almost split se-
quences. Also, we see how the Auslander-Reiten translations are related to
RMAS and LMAS morphisms. The proof below appears in [3], but we have
added in more details.

Proposition 4.1.13 ([3, Prop. V.1.14)). The following are equivalent for a short

exact sequence

f

0 M2 N

~
=

1. The exact sequence is almost split.
2. f is RMAS.

3. g is LMAS.

4. N =~ 77M and g is left almost split.
5 M ~ 71N and f is right almost split.

Proof. We break the proof into several parts. First we show that 5 implies 2,
and then 2 implies & and 5. Dually, it can be shown that 4 implies 3, and &
implies 2 and 4. This shows that 2, 3, 4, and 5 are equivalent. Equivalence with
1 then follows by definition.

5 — 2. Since f is right almost split, N is indecomposable by Prop. and thus
M =~ 7N is also indecomposable. Note that M # 0, for if otherwise, f is
an isomorphism and thus a split epimorphism, which is a contradiction.

Now, let us consider any endomorphism h : L. — L with fh = f. We have

a diagram
0 —— Kerf —“— L TN 0
N
L‘//f
0 —— Ker f » L > N 0

where Ker f @ M, and ¢ is defined by restriction of h to Ker f. Since
fh(z) = f(xz) = 0 for any = € Ker f, h|kerf(z) € Ker f so that ¢ €
End(Ker f).

Now, suppose that ¢ is not an automorphism. Since Ker f =~ M is inde-
composable, End(Ker f) is local and ¢ is nilpotent by Lemma Thus
there is some positive integer m such that ¢ = 0, and so h™t = 0 where
¢t : Ker f — L is the inclusion.

This shows that A" factors through f, so that there is some k£ : N — L
such that ™ = kf. Since f is an epimorphism, we can right-cancel f from
f=fh™ = fkf. Thus, 1 = fk showing that f is a split epimorphism, a
contradiction.

The above argument shows that ¢ is an automorphism. The final step
is to use the short five lemma (Lemma to conclude that h is an
automorphism and thus f is right minimal.
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2 — 3 5. For 5, we only need to show that with f RMAS, Ker f ~ 7N. Without
loss of generality, we identify M = Ker f in the exact sequence. The proof
for 3 requires only a little extra effort, so we combine these two.

n
First, Ker f is indecomposable. To see this, suppose that Ker f =~ P A;

is a nontrivial indecomposable decomposition of Ker f. Since ¢ : Ke; j} —
L is not a split monomorphism, there is some A; so that the projection
p; : Ker f — A; does not factor through . Otherwise, ¢+ will be a split
monomorphism, a contradiction.

Via pushout, we construct the following diagram:

E: 0—Kerf —* s —J N 0
P
piE: 0 >Ai AUKerfB%N*)().

Since p; does not factor through ¢,  is not a split epimorphism, by Lemmal4.1.12

By construction, f = tv. Then, for any h : X — N not a split epimor-
phism, h factors through f, h = fx for some x : X — L, so that h = tvx
and h factors through ¢. This shows that ¢ is right almost split.

By a similar proof as above (in showing & implies 2) we can conclude that
t is also right minimal, since A; is indecomposable. Thus, ¢ is RMAS. By
uniqueness of RMAS morphisms ending at N, the top and bottom rows
of the above diagram are isomorphic, and so Ker f =~ A;, a contradiction.
Therefore Ker f is indecomposable.

Since N is indecomposable and f is not split, g is left minimal. Again, this
follows from a proof similar to what we have done above.

Finally, we show that Ker f ~ 7N, and that g is left almost split. Let
us consider all morphisms h : Ker f — Y with Y indecomposable and
Y £ 7N.

We have two cases to check. The first is that Y is injective. In this case,
Y % Ker f since otherwise, g splits which is a contradiction.

If Y is not injective, then 77'Y is nonzero. In this case, since Y % 7N,
certainly 77'Y 2 N. Now, f being right almost split implies that any
771Y — N factors through f. By Lemma this is equivalent to the
statement that any h : Ker f — Y factors through g. Thus, Y % Ker f
since g is not split.

In either case, we have the following. For any indecomposable Y % 7N,
Y % Ker f. Since Ker f is indecomposable, we can infer Ker f =~ 7N. Also,
by Prop. we conclude that g is left almost split. This shows both 3
and 5.

O]

Finally, we see that in the module category mod A, there are enough almost
split sequences.
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Proposition 4.1.14 ([3, Prop. V.1.15]). In the case that N is an indecomposable
nonprojective, or that M 1is an indecomposable noninjective, then there is an
almost split sequence

in mod A.

Since the construction of the almost split sequence is interesting, let us pro-
vide the proof here. The book [3] provides a proof for the case where N is
indecomposable projective. Here, let us do the dual case and consider M inde-
composable noninjective.

Proof. By Prop. [4.1.13] it suffices to show that there is an almost split sequence

f

0 M2 L s 7 IM —— 0

when M is indecomposable noninjective.
Clearly, 7~'M is nonprojective, so there is a nonsplit exact sequence

E: 0 Vv_h,p_Jt 1y g

Now, there is an x : V — M that does not factor through h. Otherwise, if
every x : V. — M factors through h, then every y : 7'M — 7'M factors
through j by Lemma [4.1.11] In particular 1,-1,; factors through j and j splits,
a contradiction.

Let I' = End 4 (M)°P. We have the following sequence of I'-modules

Homu(B, M) — Hom(V, M) —— Coker Hom(h, M) — 0

where h* = Homy(h, M). Since z € Homyu(V, M) does not factor through h,
Coker Hom 4 (h, M) is nonzero. Moreover, x can be chosen so that it generates a
simple submodule I'(z + Im h*) of Coker Hom 4 (h, M).

We get the short exact sequence xF from E via pushout in the diagram:

E: 0 N VLA S B N
] [
zF 0 v M —2 s Ly o,

Let us show that the bottom row zFE is the required almost split sequence. By

Lemma [£.1.12] the bottom row is not split, since z does not factor through h.
To show that g is left almost split, we show that for any y : M — Y not a

split monomorphism, ¥ factors through g. By Lemma this is equivalent
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to showing that the bottom row y(zFE) in:

E: 00—V -2y — 0
. L

oE 0 SM 0 T LM —— 0
y l ll

y(zE) : 0 vy L o
P
M

is split for any y not a split monomorphism.

To do this, we prove that any 2z : ¥ — M factors through ¢’. This is
equivalent to showing that any morphism 7'M — 771 M factors through f’ by
Lemmal[4.1.11] In particular, this shows that 1 : 7='M — 7= 1M factors through
f" and thus the bottom row is split.

Forany z:Y — M, zy : M — M cannot be an isomorphism since y is not a
split monomorphism. Since M is indecomposable, I' is local so Rad ' contains
the noninvertible endomorphisms of M. Thus,

zyx € (RadT')(Tx).

Since the image of x in Coker Hom 4 (h, M) is a simple I'-module, and the image
of (RadT")(I'x) is a proper submodule of that simple module, the image of zyz
in Coker Hom 4 (h, M) is 0. Thus, zyx is in Im Hom 4 (h, M) and factors through
h.

This shows that there is a map r : B — M such that rh = zyz. Since L
is the pushout of h : V. — B and = : V — M, there is an s :— M such that
sg = zy. Then, since L’ is a pushout, there is a ¢t : L' — M such that tg’ = z.
Thus, z : X — M factors through ¢'.

As noted above, we have shown that ¢ is left almost split. Together with

Prop. this shows that

f

0 M2 L sy 7 IM —— 0

is an almost split sequence. This completes the proof. O

4.1.3 Auslander-Reiten quivers

We review another concept that we need. If the exact sequence

f

0 s M 25 L N 0

is almost split, then M and N are indecomposable. However, the module L may
have a nontrivial indecomposable decomposition. The next question is, can we
characterize the induced morphisms ¢g; : M — L; and f; : L; — N, where L; is
an indecomposable summands of the middle term L? Overall, the approach is



80 Chapter 4. Representation Theory of Quivers

to study the indecomposables of mod A and morphisms among them that satisfy
certain minimality conditions.

A morphism f : M — N is said to be an irreducible morphism if it is
neither a split epimorphism nor a split monomorphism, and whenever there
is a factorization f = gh, either h is a split monomorphism or g is a split
epimorphism. Note that we do not need to discuss left or right versions. This
concept is self-dual, for f : M — N is irreducible if and only if D(f): D(N) —
D(M) is irreducible.

Theorem 4.1.15 ([3, Theorem V.5.3]). Let M, N € mod A be indecomposable.

1. A morphism g : M — L is irreducible if and only if L # 0 and there exists
an L' e mod A and ¢’ : M — L’ such that [5/] M > L®L is LMAS.

2. A morphism f : L — N is irreducible if and only if L # 0 and there exists
an L' e mod A and f': L' - N such that [f f'] : L& L — N is RMAS.

In the definition below, each vertex [M] is the isomorphism class of some
M € mod A indecomposable. We say that a vertex [M] is a projective vertex if
M is projective, and that [M] is an injective vertex if M is injective.

Definition 4.3. Let A be a finite-dimensional K-algebra and let T'(A) be the
quiver with vertices given by all the isomorphism classes of indecomposable A-
modules in mod A, with an arrow [M] — [N] if there is an irreducible map
M — N. The functor 7 = D Tr induces a map from nonprojective to noninjective
vertices.

The Auslander-Reiten quiver (AR quiver) of A is the quiver I'(A) together
with 7.

Using Lemma [4.1.10] we shall talk of “the” LMAS morphism or RMAS mor-
phism or almost split sequence starting or ending at an indecomposable. One
should remember that this is only unique up to isomorphism in their respective
senses.

In the usual definition, the Auslander-Reiten quiver is a valued quiver. That
is, each arrow [M] — [N] is given a valuation (a,b), a,b € Ny, where a is defined
to be the number such that there is an RMAS morphism £ = M*® X — N,
where M is not a summand of X. That is, a is the multiplicity of M as a direct
summand of E. Dually, b is the multiplicity of N as a direct summand in F,
where M — E is the LMAS morphism starting from M. For simplicity however,
we drop the valuations on the arrows. In this work, we do not yet need the extra
information contained in the valuations.

Recall that a K-algebra A is said to be representation-finite if the number
of isomorphism classes of indecomposable A-modules is finite. Otherwise, it is
said to be representation-infinite. Similarly, a bound quiver (Q,p) is said to
be representation-finite if its algebra A = KQ/I is representation-finite, and
representation-infinite otherwise.

The rest of this section is devoted to a discussion of the computation of the
Auslander-Reiten quivers of representation-finite algebras. There is a “knitting”
procedure for attempting to compute Auslander-Reiten quivers. For example,
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see the book [3, pages 233 to 234] or [4]. We roughly follow the presentation of
the latter.

First, let us state the following useful proposition. As one consequence, if
we obtain a finite connected component of I'(4), we can conclude that A is
representation-finite.

Proposition 4.1.16 (cf. [2 Thm. IV.5.4], [4, Thm. 7.7]). Suppose that there
is a finite connected component T in the Auslander-Reiten quiver I'(A). Then,
rA) =r.

The following gives some guidelines on how to proceed. Note that to some
extent the knitting procedure can be automated, as can be seen in the examples
later. However, there are still sections that require case-by-case analysis. Below,
we take the term irreducible morphism to mean only irreducible morphisms
between indecomposable modules.

1. For an indecomposable noninjective Z, construct 7=!Z (by Prop. for
example). Note that 7717 is necessarily nonprojective. We also compute
the almost split sequence starting at Z and ending at 7 Z:

f

0 y 7 —2 5 B y 777 —— 0.

Let £ = @Efl be an indecomposable decomposition of E. Via The-
orem we can check for the existence of an irreducible morphism
h : Z — X based on whether or not X is isomorphic to an F;. Likewise,
we get the irreducible morphisms &' : X — 7717,

2. For irreducible morphisms ending at an indecomposable projective P or
starting at an indecomposable injective I, use Prop. to construct the
RMAS morphism ending at P or the LMAS morphism starting from I.

Then apply Theorem

3. We start the computation by listing all indecomposable projectives P; of
A and their radicals Rad P;. We assume that A = KQ/I is the algebra of a
bound quiver (@, p). Since @ is a finite acyclic connected quiver, @ has a
sink vertex j. It is clear that P; = S; is a simple projective representation
of (@, p), and thus corresponds to a simple projective module of A.

Let us give an example. Suppose that we have computed all the arrows
ending at [X], and that for each [Z] immediate predecessor of [X], we have
already computed the arrows starting from [Z]. From:

[£1] [E1]
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by computing 7717 for every noninjective predecessor [Z] of [X], as in item 1
above. By Theorem we obtain all the arrows ending at [77!Z] since we
computed these arrows from the RMAS f: E — 7717,

Then, we place an arrow [X] — [P] for every indecomposable projective P
such that X isomorphic to a direct summand of Rad P. Thus, the diagram:

now contains all the arrows starting from [X].

From here, we can continue to the “next column”, for example with [r~1Z]
serving as [X] this time, assuming that we have computed all the immediate
successors of all the immediate predecessors of [771Z] by a similar procedure
(one may have to deal with the direct summands of F first, in a similar manner).

For indecomposable projective P, however, it is not clear that we can im-
mediately continue the knitting. Here, Rad P may have other direct summands
other than X, leading to other immediate predecessors of P. In the example
above, it may be possible to get:

where X’ @ X =~ Rad P. Hopefully the vertex [X'] either already has appeared
in the knitting process, or will appear later, so that we get its predecessors.
Similarly, for indecomposable injective I, we use Proposition to get the
LMAS starting from 1.
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To start the procedure, we note that there is no irreducible morphism ending
at a simple projective S. Thus, we can initialize the above computation with
[X] = [S].

While the knitting of some small examples may give the impression that the
knitting procedure is very powerful, in many cases it can be limited. One obvious
limitation is that if the algebra is representation-infinite, then the knitting proce-
dure will go on indefinitely. As hinted above, the appearance of indecomposable
projectives and indecomposable injectives requires special care. The algebras we
consider have rather uncomplicated structures of indecomposable projectives, so
this poses no special problems for our computation.

For examples of cases where the knitting procedure may run into problems,
see the Section 7.4 of the book [4]. In particular, [4] provides an example of
where some ad hoc arguments are required to continue knitting.

One technique we discussed for the computation of 7717 is the use of the
Nakayama functor !, via Prop. However, this computation may be very
tedious. One way to mitigate this is to instead compute just dimension vectors
dim. That is, if we have an exact sequence

v v

0— p-lz Yo p

—1,;
3 —
1> P, T 1Z > 0,

from application of Prop. then dim7-'Z = dim P’ — dim P + dimv~'Z.
In the general case, there is no guarantee that two indecomposable representa-
tions M and N with dim M = dim N are isomorphic. Nevertheless, the above
computation via dimension vectors does provide a quick way to first guess and
then check the form of 7=1Z in simple cases.

4.1.4 Auslander-Reiten quiver of A,

As an example, let us compute the Auslander-Reiten quivers of KA,. Other
than using the knitting procedure, it is also possible to compute the AR quiver
of KA, using elementary methods. In the paper [17], we provide a computation
using the knitting of the Auslander-Reiten quiver.

In the background, we have stated that the interval modules I[a,b], 1 < a <
b < n provides a complete list, up to isomorphism, of indecomposable KA,-
modules. Moreover, we have computed all the homomorphism spaces between
these interval modules:

Kfd e<a<d<b,

H » (Ia,b|,I|c,d]) =
OmKAn( [CL, ]7 [C> ]) { 0, otherwise,

where
a</l<d,

( fc,d> _ ) 1k,
ab /g 0, otherwise.
To simplify the notation, let us write [a, b] for I[a,b].
Fix [a, b] nonprojective. Let us check by using Eq. (2.8]) that the (K-multiples
of) the morphisms

a a

£y [a+1,6] = [a,b] or f27,, < [a.b+ 1] = [a,b]
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give all irreducible morphisms from some indecomposable module to fixed [a, b].

Consider fZ}-b : [4,7] — [a,b]. The case where (i,j) = (a,b) does not give us
irreducibles, for in this case fg’é) = 1 is an isomorphism and cannot be irreducible.
In the case where (i,7) # (a + 1,b) and (i,5) # (a,b + 1), Eq. (2.8) provides a
factorization f;" J’-b = gh where simultaneously A is not a split monomorphism and
g is not a split epimorphism.

a,b

Finally, suppose that f = f 7, , or f = fg’é) 41+ Clearly f is not a split

epimorphism nor a split monomorphism. It can be checked that if f = gh, then
either ¢ is a split epimorphism or A is a split monomorphism.

In a previous subsection, we have already computed 7[a,b] = [a + 1,b + 1]
for nonprojective indecomposables [a,b]. Similarly, 77[a,b] = [a — 1,b — 1]
for noninjective indecomposables [a, b]. Thus, the following are the almost split
sequences for [a, b] nonprojective:

0 — 7la,b]=la+1,b+1] — [a+1,0]®D[a,b+ 1] — [a,b] — 0.
Similarly, for [a, b] noninjective, we get almost split sequences:

0 — [a,b] — [a,b—1]®[a—1,b] — [a—1,b—1] =7"1[a,b] — 0.

Using the above results, the Auslander-Reiten quiver of KA, is:

VAN
[2,n] [1,n—1]
N0 A N
[3,m] [2,n—1] [1,n—2]
AN A N SN (4.3)
AN A N
nfl,n] [172]
A N N N SN
[n,n] [n—1,n—1] [2,2] [1,1]

We follow the convention in the representation theory literature of placing
the projectives on the left hand side and [7~'M] to the right of a vertex [M]
for M indecomposable. It is also customary to draw a dotted arrow from [N] to
[7N]. In this work, we choose not to draw these dotted arrows.

Applying a 45° clockwise rotation around [1, 1] and the reflecting about the
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axis of injective vertices, we get the diagram

[1,n] <— [2,n] <— [38,n] < .. <[n—1n}k— [nn]
1 1 1 1 1
[Ln=1]+—[2)n—1]— .. <— .. <—[n—-1n-1]
1 1 1 1
[Ln—2]«— .. < .. <+ ..
l 1 1 (4.4)
1 1
[1,2] < [2,2]

1

[1,1]

Displayed this way, it is easy to see that the vertices of the AR quiver cor-
responds to the domain of a (classical) persistence diagram. Using this rela-
tionship to the Auslander-Reiten quivers, we extend the definition of persistence
diagrams, in a later section. Before that, in the next section we show the compu-
tation of the Auslander-Reiten quivers for the representation-finite commutative
ladders CL,(7), so that the extended definition can actually be used.

4.2 Representations of the commutative ladders

Motivated by extending the use of persistent homology to be able to extract
simultaneously common and robust topological features, we have introduced
persistent homology on the commutative ladder quivers, and on quiver complexes
in general. In this section, let us apply the general theory reviewed in the
previous section to the algebras of the commutative ladder quivers.

Recall that the ladder quiver is given by

L,(7) =

=0 — O~
VO —— O,
@O —— O,
30 — O3

where the directions of the pairs of arrows are determined by the entries of T,
and that CL, (1) is the quiver L(7) bound by the commutativity relations. We
have the following theorem.

Theorem 4.2.1 (cf. [I7]). Let 7 be an arbitrary orientation of length n. The
commutative ladder quiver CL,,(T) is representation-finite if n < 4 and representation-
nfinite if n > 4.

While Theorem can be shown to follow from the main result of [26],
we believe that our computation of the AR quivers of CL,(7) with n < 4 is
worthwhile. The computation provides a list of all the isomorphism classes of
the indecomposable representations, via the AR quiver. We then use the AR
quiver to extend the definition of persistence diagrams, and show its use in
topological data analysis.
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4.2.1 Computation of AR quiver

Let us prove the following statement (the representation-finite part of Theo-
rem [4.2.1)) by computation of the relevant AR quivers.

Let 7 be an arbitrary orientation of length n. The commutative
ladder quiver CL, () is representation-finite if n < 4.

For brevity, we only show the computation for the quiver CL3(bf):

|
|

T

=0 — O»
NO — Ow
wO — O

with length n = 3 and orientation 7 = bf via the knitting procedure described
in Subsection The computations of the AR quivers of CL,,(7) with n < 4
use the same general principles.

In the computation, we abbreviate representations of CL3(bf) by their di-

mension vectors. For example, we may write P(1) = 199, where we actually

mean dim P(1) = 19J. We note that in general, two nonisomorphic indecom-
posable representations may have the same dimension vector. In certain cases,
it is possible to infer from the dimension vector what indecomposable represen-
tation is meant (up to isomorphism). However, where this notation may cause
ambiguity, we shall take care to write out the indecomposable representation.

The AR quiver of CL3(bf) is given in Fig. [1.1] where the indecomposable

representations with dimension vectors 131 and 919 are the representations

K [10] K2 [01] K 0 K 0

IS I B R
pa 2 \

K T K T K K\[Ul] [10],K

respectively. The computation starts from the indecomposable projectives in
the left and works its way towards the indecomposable injectives, in the right
of Fig. In the discussion below, we refer to column numbers, correspond-
ing to the columns in Fig. to guide the reader as to where we are in the
computation. The column numbers are written below each column in Fig.

To start the computation, we first list all the indecomposable projectives:
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Figure 4.1: The Auslander-Reiten quiver of CL3(bf).

and their radicals:

Rad P(1) = }§ = P(4) = S(4),

Rad P(2) = 1 §1,

RadP(3) = §8} = P(6) = 5(6),

Rad P(4) = 0,

Rad P(5) = 393 = S(4)@S(6).

Rad P(6) = 0.

For convenience, let us also write down the indecomposable injectives:

I4) =119, I(5)=19818, I(6)=011,
11)=998, 1(2)= 0898, 1(3)=§97.

We have two simple projectives: P(4) and P(6). Since both Rad P(1) =
P(4) and Rad P(5) have a direct summand isomorphic to P(4), the almost split
sequence starting from P(4) is of the form:

0 — P(4) — P)®PB)OM — 771P(4) — 0 (4.5)

where M is some other module that we need to compute. A minimal injective
presentation of P(4) is

0 y P(4) — I(4) —— I(1) @ I(5).

The last term in the above is computed as follows. We have Coker: = 179,

with socle S(1) @ S(5), which has injective envelope I(1) @ I(5). Then apply
Prop. part 1 to get an injective envelope for Coker ¢.
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Applying the Nakayama functor v~ !,
0 —— v 1P4) — P4) —— PO)@®P(5B) —— 7 1P(4) —— 0

is an exact sequence. Moreover, v~ !P(4) = 0, so that 77'P(4) = {}}. By a
dimension counting argument on the almost split sequence in Eq. (4.5, M =0,

and the almost split sequence starting at P(4) is

0 > P(4) Ply@®P(B) — 15§ —— 0.
A similar computation starting from P(6) yields the almost split sequence

L0

o

0 —— P(6) PB)@®P(5) — |

This gives the three leftmost columns of Fig.
Next, we compute 71 P(1) = 301, 77 P(5) = 1 {1, and 771 P(3) = § } 9.
We start by computing a minimal injective presentation of P(1). The in-
decomposable P(1) has socle S(4) with injective envelope I(4), leading to the
first term below. Next Soc Cokerig = S(5), so that the following is a minimal
injective presentation of P(1):

0 —— P(1) —° I(4) I1(5).

From this, we obtain an exact sequence

0 —— v 1P(1) P(4) » P(5) —— 77 1P(1) —— 0.
Here, v~1P(1) = 0, so that 77! P(1) has dimension vector § § §. Since we already
know that there is an irreducible morphism
100 , 111
100 100>
the almost split sequence starting from P(1) = 1 §9 is of the form

0 —— P(1)= 13§ — 160@OM — §55 =7 'P(1) — 0.

By dimension counting it is clear that M = 0.
Similar computations give the almost split sequences starting at P(5) and

P(3) as:

111 111 ;11 111
0——=P0B)=000 — 100D oo > 101 > 0

=

and

_ 001 111 110
0—— PB3)=2001 » 001 > 000 > 0.

From the above arguments, we have obtained the vertices of the four leftmost
columns of Fig. together with all arrows going into those vertices. Moreover,
we are also guaranteed that we have all the arrows starting from the vertices in
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columns 1 to 3. Next, we compute the arrows starting from the vertices in

column 4.
The indecomposable 1} 1 is (isomorphic to) the radical of P(2) = 111.
Thus, the inclusion {1 — 111 is an irreducible morphism. This gives an
111 _, 111

arrow 757 — 1 1- At this stage, we have all the indecomposable projectives,
and so we can continue knitting until we get indecomposable injectives.

We compute the following almost split sequences, using the same procedure
as above.

1. Up to 5th column, we have almost split sequences

111 111 011 011
0 > 100 > 101D 000 * 001 0,
111 111 5110 110
0 * 001 > 101D 000 > 100 0,
and the RMAS
111 111 _
Radp<2)—101 >111—13(2)-

2. Up to the 6th column, the almost split sequences

011 011 000
0 > 000 * 001 001 >0,
110 110 000
0 > 000 » 100 100 >0,
111 011,111,110 121
0 * 101 0019111 ®P100 — 1171 —— 0

are computed.

Here, we get an indecomposable with a 2-dimension vector space. Let us show

how we compute 77 1(111) = 121 VWe have a minimal injective presentation
p 101 111 y p

of 1{1 given by

0—— 11 2y ry@I(6) —Lo 16) @ I1(2) .

The cokernel of the map ip : 1 §1 — I(4) @ I(6) has dimension vector given by

8 % 8 and is isomorphic to the representation

0 < K > 0
T [10]1\ Ta
0 < K? » 0

which is equal to I(5) ® I(2). We have f: I(4) ®1(6) — I(5) ® I(2) via
I(4)®1(6) —— Cokerig = I(5)DI1(2) .
Thus, we get the exact sequence

0— v (131) — P@@P6) — PR)@®PE) — r (111 — 0



90 Chapter 4. Representation Theory of Quivers

by application of v 1.
In order to get the form of the maps in 1
cokernel. First of all, we write

21, we must compute v~ f and its

K,[lo] K2 [01] K

I(4)@1(6) = 1] 591 1] :
2
K [10] K [01]
and

0 K 0
IG)®I(2) = T [10]T T

0 K2 0

The maps of f: I(4)@®1(6) — I(5)®1(2) are given by fo = [} T'], f5 = [1-1],
and f; = 0 elsewhere, in the chosen bases. After a tedious computation, v~ f :
P(4)® P(6) — P(5) ® P(2) can be shown to be

K+—0—K

||
0+—0—>—-0
(o]

Computing Coker v~ f and choosing bases, we get

K,[lo] K2 [01] K
b= ]
K T K T K

We continue

1. to the Tth column with the almost split sequences

, 011 000,121 110
0 001 > 001D 1711 111 0,
, 110 L 000121 011
0 100 100P111 111 0,
111 121 010
0 P 111 P11 000 0
2. We get to the 8th column by computing
000 110 110
0 > 001 P11 110 0,
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0— 988 — 911 — 11—,
0 151 »1i1@860@ il — Y — 0,
3. and then to the 9th column via
0—— 11} — 110® 719 » 918 0,
0—— i — §11® 719 » 011 0,
0 858 —— 218 —— 228 0,

From the 9th column and onwards, we warn that we may get indecomposables
M with v~ M nonzero.

Going to column 10, note that there are indecomposable injectives at column
8 I(4) = 119 and I(6) = J11. By Prop. the LMAS starting at I(4)
and I(6) are given by I(4) — I(4)/SocI(4) = $1§ and I(6) — I(6)/SocI(6) =
01 9. These are the irreducible morphisms from I(4) and I(6) to indecomposable
modules, respectively, and are already accounted for.

So we compute the almost split sequence

010 010010 010 010
0 P 111 > 11091119Do11 * 121 0
starting at §19. The indecomposable {19 has a dimension vector with entry 2.
It can be shown that {49 is isomorphic to the indecomposable representation

K

0 0

el T
pa 2 N

K \TEY o7 K

The remaining few steps are similar. Going to column 11, we compute the
almost split sequences

010 010 000
0 —— 119 — 121 —— 011 —— 0,
010 010 000
0 —— 011 — 121 —~ 110 —— 0,
000 010 010
0 —— 771 — 121 —~ o010 —— 0.

0 — 13§ — 311 @ 4130118 — §1§ —0

At this stage, I(3) = 899, 1(5) = 319, I(1) = 999 are injective, with LMAS
morphisms I(3) — I(2), I(5) — I(2), and I(1) — I(2) by Prop.[4.1.9, Moreover,
099 =1(2) = 5(2) is injective simple and so no LMAS starts at 1(2).
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Thus, we have found a connected component of I'(CL3(bf)) that is finite.
Proposition [4.1.16| shows that this connected component is equal to I'(CL3(bf)),
and that CL3(bf) is representation-finite.

Similar computations show that for n < 4 and any orientation 7, CL,(7)
is representation-finite. For fixed n, it is not necessary to check all 2" possible
orientations 7. For example, CL3(f f) and CL3(bb) are essentially the same bound
quiver after renaming the vertices. Also, CL3(fb) is isomorphic to the opposite
bound quiver CL3(bf)°?. The other AR quivers of the commutative ladders of
finite type are given in the Appendix.

4.2.2 Equivalent categories of rep CL, ()

In this subsection, we take a small detour and rephrase the representation cat-
egory of the commutative ladder quivers, rep CL,(7), in terms of other objects.
This provides a way to link the commutative ladders to other works in repre-
sentation theory. Moreover, we provide another proof of Theorem by [26].
Lemma [£:2.2] is also interesting in its own right, for it serves as the foundation
for applying the technique of matrix problems that we will explain in the next
chapter.

Lemma 4.2.2. There is an isomorphism of categories
rep CL,,(7) = arr(rep A,(7)).

Roughly speaking, a representation of CL,(7) can be viewed as a morphism
from the bottom row to the top row. The isomorphism should be clear from
definition, but let us belabor the point.

Proof. Define a functor F : rep CL,,(7) — arr(rep A, (7)) by taking the represen-
tation

1" "

1
—1
M{ «—— MY «2— .. s M)

M: g ng gnT

to the arrow F(M) = (g : M’ — M"), where M' = (M, f,) and M" = (M, fI)
are representations of A, (7). Note that g = (g;) is truly a morphism of repre-
sentations because of the commutativity relations imposed on M.

Suppose that ¢ : M — N is a morphism in rep CL,(7) and that F(M) =
(9 : M — M"), F(N) = (h : N' — N”"). Then, ¢ is a collection of maps
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¢, : M! —> N/ and ¢! : M! — N/

M{ +—— M} < > M)

N « > NJ e > N/
n

hﬂ\hﬁ h,ﬂ

N «—— Nj +—— ... «—— NJ.
Define F(¢) to be the pair (¢, ¢") : F(M) — F(N), where ¢/ = (¢)),
¢" = (¢7). The collections ¢’ and ¢” are morphisms of representations of A, (7)

since together they form a morphism of representations of CL,,(7). That this is
a morphism of arrows follows from the fact that

M// d)” N//

T

M/ N/
commutes. The inverse functor G with F'G = 1 and GF = 1 is defined in the
obvious way. O

The triangular matriz algebra of a finite-dimensional K-algebra A is the
algebra
A0
To(4) = { A A ]
of 2 x 2 lower triangular matrices with entries in A. Addition and multiplication
are defined in the usual way. If [‘“ 0 ] , [Z; 1703] € T»(A), then [‘“ 0 ]+ [bl 0 ] =

az az az az ba b3

[‘“H’l 0 ] and [ 21 0] [2; 1,03] = [ o1 O ] It is clear that T5(A) is also

ag+bs asz+bs az as asby +asbs asbs
a finite-dimensional K-algebra.
Then, we have the following.

Proposition 4.2.3. There is an equivalence of categories
mod Ta (KA, (7)) = rep CL, (7).
Proof. By Lemma and Theorem [2.3.1
rep CL, (1) = arr(rep A, (7)) = arr(mod KA, (7)).
It follows from Proposition I11.2.2 in [3] that
arr(mod A) = mod T»(A)

for any finite-dimensional K-algebra A. Applying this to our case with A =
KA, (7), we get the desired result. O
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We have rephrased the representation category of the commutative ladders as
the module category of a triangular matrix algebra. This gives us the following
proof.

Proof of Theorem[[.2.1. By Prop. A = KA,(7) is a finite-dimensional
hereditary K-algebra. By Corollary II.1.11 in [2], A is also a basic algebra.
Then, the main theorem of [26] can be applied, which states that T5(A) is
representation-finite if and only if the valued graph of A is a disjoint union
of diagrams of the form A,, with n < 4 and Bs. Since A = KA, (7) is given, the
valued graph of A is A,,. Thus, To(KA, (7)) is representation-finite if and only

if n < 4. Apply Proposition [.2.3] O

4.3 Persistence diagrams and AR quivers

4.3.1 Persistence diagram

Recall that any representation V' of the quiver ffn has an indecomposable de-
composition into the interval representations

Vv

lle

@ I[a, b]™e?,

1<a<b<sn

which unique up to isomorphism and rearrangement of terms. That is, the
collection of numbers m, 3, 1 < a < b < n, is an invariant determining V' up
to isomorphism. Previously we have considered only V = H,(X) the persistent
homology of some filtration. Here, we take the more general point of view and
consider V' any representation of A,

As noted before, the persistence diagram of V € rep A, is a map

Dy : ind KA, — Ny
[a, b] = Mgy

where Ny = {0,1,2,...} and ind KA, is the set of isomorphism classes of inde-
composables of mod KA,,. Note that ind KA, is equal to the set of vertices of
the Auslander-Reiten quiver I'(KA,,).

In Fig. we have placed the AR quiver of KA, which is Diagram (4.4)
with n = 5, side-by-side with the persistence diagram of a representation

V >~ I[1,2] ®I[1,4)° @ 1[2,5] ®1[3,3],

as an example. Compare the presentation in Fig. to the way we visualized
the persistence diagram in Fig. |2.3
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[1,5] < [25] < [3,5] « [45] < [55] % 0 <« 1 « 0 « 0 < 0
N A
[1,4] < [2,4] < [34] < [4,4] 2 &« 0 + 0 <+ 0
Ll L
[1,3] < [2,3] < [3,3] 0 « 0 « 1
U 1
[1,2] « [2,2] 1 < 0
1 1
[1,1] 0
b,
(a) AR quiver of KAs (b) PD of a representation of As.

Figure 4.2: The AR quiver of Kffg,, and an example persistence diagram of a
representation V' of As. The domain of the persistence diagram is the vertices of
the AR quiver. To emphasize this relationship, we have placed the multiplicity
numbers m,j, on the vertices of the AR quiver.

Thus, we propose the following definition.

Definition 4.4 (Persistence Diagram). Let A = KQ/I be the algebra of a
bound quiver (@, p) with Auslander-Reiten quiver I', and let V' € rep(Q, p). The
persistence diagram of V' is the map

Dy: T'y — Ny
] — myp,

where the numbers m7) are the multiplicities in an indecomposable decomposi-
tion of V,
V> @ 1
[T]eTo
and I'g is the set of vertices of T'.

This is well-defined, by the uniqueness up to isomorphism of indecomposable
decompositions. Moreover, this definition encompasses persistence diagrams of
representations of /_fn Note that the function Dy is an invariant for representa-
tions. That is, if V = W are two isomorphic representations, then Dy = Dyy.

Suppose that (Q, p) is representation-finite. Similar to how we visualize per-
sistence diagrams of representations of ffn, we can visualize the persistence di-
agrams of representations of (Q,p) by attaching the multiplicities mp; to the
corresponding vertices [I] in its Auslander-Reiten quiver I'.

The Auslander-Reiten quiver of CL3(fb) is shown in Fig. [4.3| where the ver-
tices 13 % and § % (1) correspond to the isomorphism classes of the indecomposable

representations

LK+ K
[11] J : (4.6)
>y K2 K

(1]

=

—
—

=

(o]
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and
o B, 8
of 1] of - (47
0 —— K +5—0

respectively. The AR quiver I'(CL3(fb)) in Fig. 4.3| can be computed in a similar

manner as the computation we have for I'(CL3(bf)) in the previous section.
011 100 000
011 000 110

/\/\/\/\

\/\/\/\/

001 000
000 011

Figure 4.3: The Auslander-Reiten quiver of CL3(fb).

As an example, the persistence diagram of the representation

K23 K+ K : K23 K+ K ’
V= J J J @ J J 0
K1y K+l K K1y K+% 0

of CL3(fb) is displayed in Fig.

\\\/\
A9
PIKKS

Figure 4.4: An example of the persistence diagram of a representation V of

CL3(fb).

4.3.2 Bottleneck distance

Our definition of the persistence diagram also suggests the following interesting
generalization of the ¢1-bottleneck distance between persistence diagrams. Let
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V be a representation of En, with persistence diagram

Dy: T'v — Ny
[a,b] — mgp.

Equivalently, Dy is a multiset of isomorphism classes of indecomposable repre-
sentations [a, b] with multiplicity m,_p. Define Dy to be the multiset Dy together
with the elements [i,7 — 1] of infinite multiplicity for each i € {1,...,n}.

Let V,W e rep ffn The ¢1-bottleneck distance between Dy and Dy is defined
to be

di(Dy, D) = inf sup [Jv —(0)]lx
veDy

where the infimum is taken over all bijections v : Dy, — Dy of multisets. For
v = [a1,b1] and y(v) = [ag, b2], define

[[v =y (v)|l1 = |a1 — az| + [b1 — ba].

Let us express the bottleneck distance in terms of the Auslander-Reiten
quiver I'(KA,,) of KA,. In order to have vertices corresponding to the [i,i — 1],
we create vertices Z; = I[ii — 1] and let I'(KA,) be the AR quiver I'(KA,)
together with additional vertices Z; and arrows [i,i] — Z;. The bottleneck
distance between Dy and Dy is equal to

dB(DV7DW) = inf sSup d(’U,’y(U))

UEDV

where d(v,7y(v)) is defined to be the minimum of the lengths of all undirected
paths between the vertices v and y(v) in ['(KA,).

Motivated by this formulation, we define the ¢1-bottleneck distance between
persistence diagrams Dy and Dy of V. W € rep(Q, p), where (Q, p) is a representation-
finite bound quiver.

Some preparation is needed. First, let I'(A) be the Auslander-Reiten quiver
of A = KQ/I, the algebra of (@, p). Then, suppose that S;, i € {1,...,n} is a
complete list of simple A-modules, up to isomorphism. Each S; corresponds to a
vertex [S;] in T'(4). Let I'(A) be the quiver I'(4) with additional vertices labeled
[Z;] and additional arrows [S;] — [Z;], for i € {1,...,n}. Given the persistence
diagram Dy of a V € rep(Q,p), let Dy the the multiset Dy together with
elements [Z;], each of infinite multiplicity, for ¢« = 1,...,n. The ¢;-bottleneck
distance between persistence diagrams Dy and Dy is defined to be

dg(Dy, Dw) = inf sup d(v,v(v))

v UEDV

where d(v,~y(v)), the graph distance, is the minimum of the lengths of all undi-
rected paths between the vertices v and (v) in the underlying graph of I'(A).

As a future work, it may be interesting to study the properties of this gener-
alized bottleneck distance dg. Moreover, the definition we have provided ignores
the directions of the arrows in f(A) and works with undirected paths. Replacing
d(v,~(v)) by the directed graph distance could possibly provide more interesting
information.
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4.3.3 Interpretations of persistence diagrams

From the side of representation theory, the function from indecomposables to
multiplicities determined by a representation is nothing new. It simply expresses
the representation as a direct sum of m() copies of indecomposable representa-
tions I.

By looking at Dy from the point of view of topological data analysis, however,
we are able to say more. In the case that A is representation-finite, we easily
visualize plot Dy and perform an analysis on the persistence diagram, much like
in the classical case. For this, though, we need to use the information about
where we got the representation V from.

To be concrete, we work with CL3(fb), and with the following representation
in mind. Let X and Y be two families of simplicial complexes on the same set
of vertices V', parametrized over R so that for parameter values r < s, X, € X
and Y, € Y;. In this subsection, let us fix the quiver complex X to be

X —— X, uY, +—— Y,

X: T ] ] : (4.8)

X, — X, uY,. «—Y%,

for some fixed parameter values r, s, and where it can be checked that the unions
XsuYs, X, uY, are simplicial complexes as well. Consider the representation

Hy(Xs) —— Hy(X5 0 Ys) «—— Hy(Y5)
V = Hy(X) : T T T (4.9)
Hy(X,) —— Hy(X, 0 Yr) «—— Hy(Yr)

of CL3(fb) obtained as the gth persistent homology of X, which can be used
for detecting simultaneously robust and common features, as explained in the
introduction.

Let us review this interpretation. Restricting to the left and right vertical
columns in Diagram , we can extract features that are persistent in the
two-step persistent homology modules

Hq(0)

MO g (X,) and H,y(Y,) 22

Hq(Xr) — Hq<Y9) :

As a shorthand, we call these features robust, for they are persistent in the
parameter interval [r,s]. Whether they are robust or not in the usual sense of
the word depends on the parameter values r and s and the input data.

Similarly, the horizontal direction captures common features between X and
Y, at parameter values » and s independently. Taken together, we detect the
presence, if any, of simultaneously robust and common features via direct sum-
mands of V' isomorphic to the indecomposable representation

K-ty K«l K

11 i

K-ty K«l K
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Figure 4.5: Indecomposables with common features between X and Y.

By computing an indecomposable decomposition

Ve @ Imn
[/]eTo

we get the persistence diagram Dy of V. We postpone the discussion of our
algorithm for computing an indecomposable decomposition of V' to Section
Here, we assume we have an indecomposable decomposition and Dy on hand.

Other than counting the number and getting the generators of the simulta-
neously robust and common features, if any, there is more information we can
get using the persistence diagram. In classical persistence, one way of interpret-
ing the intervals that are close to the diagonal is to say that they correspond
short-lived topological features and thus are most likely noise. Analogously, we
highlight certain regions in I'(CL3(fb)) that deserve more attention.

1. Shared features. In Fig. we have marked the region of indecomposables
where X and Y share some common feature. Beyond just 111, it may be
interesting to study other common features that are less robust.

The indecomposables 191 and 111 are particularly interesting. First, 1 {1
captures the features that were common at parameter value r, but are no longer
shared at parameter value s. On the other hand }11 represents features not
shared at parameter value r, but come together at s. Indeed, restricting to the

lower row, 121 decomposes as 110 @ 01 1.

2. Further decomposition of robust features. Now suppose that we have
an understanding of the left space X, and wish to derive some information about
Y by comparing it to X. The two-step persistence

Hg (1)

Hy(Xr) —— Hy(X5)

is a representation of ffg, with indecomposable decomposition isomorphic to

12,2 @1[1,2]"2 @ 1I[1,1]"

for some numbers I, l12,11 € Ny. Let us relate these persistent features in X to
the features of Y, via Fig.
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Figure 4.6: Indecomposables with corresponding to different robust features in
X

In Fig. [4.6] by looking at the left side of the dimension vectors of the inde-
composable representations, we see that the regions Lo, Li2, Ly can be thought
of as a further classification of the two-step persistence according to how the
persistent features are related to the features of Y. Suppose that V = H,(X)
has indecomposable decomposition

Ve @ Irmm.

[I]EFO

Then, the following equalities hold

l2= Z mm, 112= Z 'm[[], l1= 2 m[]] (4.10)

[I]ELQ [I]€L12 [I]ELl

This shows a further classification of the summands 1[2,2]"2, 1[1,2]"2, and 1[1,1]"
according to how they are related to Y.

As an example, suppose that H,(X) has persistence diagram as given in
Fig. f4] Let us overlay the marked regions in Fig. over the persistence
diagram:

By Eq. (4.10)), there are 5 robust features in X. As a representation of A, the
two-step persistent homology of X decomposes as

Hq(e)

< Hy(X,) =55 Hy(Xy) > ~ 1[1,2)°.
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Moreover, by the persistent diagram above, of these 5 persistent features in X,
only 2 are common with Y at both parameter values r and s.

As another example, let us apply our newly developed tool to our motivating
example of amorphous glass. Recall that the data consists of the atomic configu-
ration of amorphous glass and its atomic configuration after pressurization. We
then construct their weighted alpha complex filtrations X and Y, respectively.
Note that both atomic configurations contain exactly the same atoms, so that
all the simplicial complexes in X and Y are defined on the same set of vertices.

We have argued that the vertical regions C'p in the respective persistence di-
agrams of X and Y, as shown in Fig.[T.3] contain topological features of interest.
The vertical region C'p is then shown to be robust between two parameter values
r =0 and s = 0.36. The robust features that are preserved under pressurization
are given by the simultaneously robust and common features. This brings us to
our proposed use of the persistent homology over CL3(fb).

We compute the gth persistent homology H,(X) of the quiver complex X
with the given X, Y and ¢ = 1. Then, using the algorithm in Section [£.4] we
get
0 1 636
SN SN S
30 0 28

0

NN

0 0

SoN N SN SN S
00— 0 — 0 —719— 0 — 43 4

NN SN /N
0

139

as its persistence diagram Dy, (x)-
Here, the region Lo corresponds to the robust features in X, and corresponds
to the features in C'p of X. Using Eq. (4.10)), we compute that there are

lig =4+42304+ 1+ 14 = 2323

such features. The vertex 111 corresponds to the simultaneously robust and

common features, and in Dy, (x) has multiplicity 2304. Thus, of the 2323 features
in Cp, roughly 99.18% (~ 2304/2323) persist under the pressurization.

3. Further decomposition of common features. A similar analysis can be
done for the common features. For example, consider the top row of V,

V= Hy(Xy) —— Hy(X, 0 Ys) «—— Hy(Ys) . (4.11)
This restriction gives a representation V' of As(fb), which has indecomposable

decomposition
V= @I
1

where I varies over the interval representations of As(fb), given by I[i,j] for
1 <i < j < 3. We can then give similar equations as in Eq. (4.10)). For example,
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U(] 01

Figure 4.7: Indecomposables corresponding to different types of common features
between X and Y at parameter value s

ug,3) = Z mir], Ui2,3] = Z m], etc.
[I]€U111 [I]EU()ll

Note also that there are overlaps at the vertices § 2} and 19 1. This makes
sense, as restricting to the top row,

(K o], 7o [ K)

and

lIe
=
I
=
T
D
Ie
=
P
=

(K50 K )=(K20&0)P(0%0& K)

as representations of A3(fb), so that the vertices §3 1, 191 each belong to two
different corresponding regions.

In the above, we have given three possible ways of interpreting the persis-
tence diagrams of representations of CL3(fb). Similar analysis can be given for
the persistence diagrams of representations of the commutative ladder quivers
CLy (1) with n < 4.

Finally, let us note the following. In the discussion above, we highlighted
regions in the AR quiver useful for further analysis. Looking only at the per-
sistence diagrams, we only have information about multiplicities of isomorphism
classes [I] for I indecomposable, by definition. By referring back to the inde-
composable decomposition, it is possible to study the homology generators as
well, once we have determined vertices [I] of interest. Suppose that V' has an
indecomposable decomposition
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where each V; is an indecomposable representation. If [I] is a vertex that we
have determined to correspond to interesting topological features, we can study
the generators of V; for V; =~ I in the decomposition above.

4.4 Computation of indecomposable decompositions

In this section, we give our algorithm presented in the paper [I7] for computing
an indecomposable decomposition, and thus the persistence diagram, of a rep-
resentation of CL3(fb). We will skip some of the details. In spite of this, the
rest of the algorithm can be filled-in easily, as we discuss its most complicated
parts. Moreover, using the same general principles, the strategy of the algorithm
can be used to derive similar algorithms for the cases of CL,(7) with n < 3 and
arbitrary 7.

Let
V4 f54 Vo f56 V6
vV f41T f52T fGBT
Vi fo1 V2 fos V3

be a representation of CL3(fb). We place the indices of the K-vector spaces in
V' as superscripts. Moreover, contrary to [I7], the indices of the morphisms are
to be read from right to left. That is,

i V=V,

consistent with our notation for arrows and paths of a quiver.
We compute an indecomposable decomposition

where each M; is isomorphic to some I with [I] € T'g, to get the persistence
diagram of V. Here, Ty are the vertices of the AR quiver of CL3(fb) as given in

Fig.
Given numbers d;, i € {1,...,6}, let I(zi 3; Zg) be the (up to isomorphism)

indecomposable representation of CL3(fb) with dimension vector 3‘1* g; gg , if one

exists. In the case of CL3(fb), it can be checked by referring to its AR quiver
that this notation does cause any ambiguity.

The algorithm is divided into several steps. As a general pattern, each step
of the algorithm is then divided into two major parts. The first part extracts
a subrepresentation V' specified by a subspace U of a space V. In this part,
called subspace tracking, we “track” how the subspace is mapped by the maps
in the representation. The meaning of this term will become clear as we discuss
the algorithm.

The second part, called bases arrangement, chooses the correct bases, so that
we get the subrepresentation V' as a direct summand of V = V'@ V"”. We then
decompose that direct summand V”’ into its indecomposable decomposition. This
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is what we mean by extraction of direct summands. The remaining summand
V" is sent to the next step.
The steps of the algorithm are the following.

1.

Track Ker fo; (and Ker fa3 by symmetry) and extract the determined direct
summand subrepresentation.

. Track Ker f4; (and Ker fg3 by symmetry) and extract the determined direct

summand subrepresentation.

Track Ker f54 (and Ker f56 by symmetry) and extract the determined direct
summand subrepresentation.

. This step is subdivided into two substeps. Here, we track Im fg3, but the

indecomposables I(111) and I(111) need to be treated separately.

. The remaining representation is a representation of the D4 quiver

O — 0 <—— O
O

A procedure similar to steps 1 to 4 extracts an indecomposable decompo-
sition for the representation.

For ease of notation, we shall identify the maps fj; : Vi — VJ with their
matrix forms in the current basis.
Step 1.

S1.

S2.

Corresponding to a basis change on V!, we can write
fa=[0]x]:VI=Ul®Xx'>V?

by transforming fo; to a column-echelon form. Here, U} is the kernel of
fo1, and is the subspace we would like to track.

By basis change on V4, the matrix of f4; becomes

fa1 = {%‘%] UleXx!' > viext=v4

in a row-echelon form. Here, V4, = f41(U{) and so the horizontal line is
placed after the fth row, where £ is determined as the largest £ such that
the left dim U} entries of the fth row are nonzero. There is no need to
track further, since fs4(ViY) = fsafa1(UL) = fsafo1(UL) = 0.

Roughly speaking, we have tracked Ker fy; through the spaces V! and V4.
In the next part we start choosing proper bases to get a direct summand.
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B1. A basis change on U{ gives f4; the matrix form

10
Ju = [ﬁ‘%] 3V114<‘BV11@X1 _’V1%1®X47

by computing a column-echelon form for the upper-left submatrix. Here,
1 is an identity matrix of appropriate size. This basis change does not
change the form of fo; at all.

Finally, by the basis change of

1 0 -5
01 O
00 1

on V!, where S is the upper-right submatrix of f41, f41 is now in the form

1/0|0
f41:{0 0 *]3‘/1111@‘/'11@}/1%‘/1%1@)(4:‘/4,

while fo1 is now in the form
f21=[0‘0‘*]2V1:V114®‘/11®Y1_>V2'

Let my = dim V{! and my4 = dim Vj}; = dim V. In the chosen bases, we
have the following direct summands of V:

00— 0<«+—0

T I I T

and

0
My = J T T = I(190)™.
0

0 —— 02—V}
and
0 —— 0 «+— V&
M3 = T T J = I(§91)m"
0 —— 05— Vi
Thus, V. = VM B M 4a@ Ms@P Mse, and V' has no direct sum-

mands isomorphic to 1(999), 1(1939), 1(3939), nor I(J931). The repre-

sentation V' gets sent to the next step.
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Step 2. At this stage, fo1 and fo3 are monomorphisms. Using similar arguments
as above, by tracking Ker f;; through the spaces V1, V2, V3 V6 we get all the
direct summands of V' isomorphic to

I(Y98), I(R99), 1(R91).

By symmetry, tracking Ker fo3 we get all the direct summands of V' isomorphic
to

1G99, 1(999), 119 9).

Of course, at this stage, the direct summands isomorphic to I(9 ¢ ) have already
been extracted and so will not appear again.

Step 3. Now, fo1, fo3, fa1, and fg3 are monomorphisms. In this step, we track
Ker f54 through the spaces V#, V1, V2 V3 V6 (and Ker f55 by symmetry) to get
indecomposable direct summands of V' isomorphic to

1(660),1(186): 1(191),1(371), and I(§ 5 g)-

Step 4a. At this stage, all maps except fso are monomorphisms. Let us track
Im fg3. This step is split into two parts, because we treat the indecomposables
I(}11) and I(}11) separately.

S1. By a change of basis on V5, we get a row-echelon form on fg3:

1
f63 = {0} : V3 — V6 = U§6®X6.

Here, U$; = Im fg3 and is the subspace of interest. We can get an identity
submatrix because fg3 is a monomorphism.

S2. On V?, row-echelon form:

1 =
fs6 = [ 0| = } U ® X0 — VO = Uy @ X°.

Note that fsg is a monomorphism, too.
S3. On V4, column-echelon form:
%

*
J5a = { 0= ] V= Usyse @ X' — Uy @ X°.

S4. On V!, column-echelon form:

* *
fa [T‘T} V= Ulsyse @ X' — Usyse @ X

So far, everything is similar to steps 1 through 3. However, we need to be
careful to avoid the indecomposables I(111) and I(111).
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B1. Perform row operations on fs4; to change it to the form:

0 =
1%

far = oo F Ulyase @ X' = Vasasg ® Uizase @ W
0|1

That is, we do basis changes on U§1456 and X4, independently of each other.
Then, by adding multiples of the 1 in the lower-right corner, we can zero
out the entries above it, and get:

0|0

10
f41 = TT : U113456 @Xl - ‘/2%456 @U{l3456 ®Z4

0|1

The effect on the matrix form of f54 is that it is now:

S| S | *
f54:[ 01 02 " } : V= Viguse @ Ulsuse @ 2" — Ul ® X7,

where it can be checked that the columns of S; and Sy are linearly inde-
pendent.

In this step, we do not yet extract the spaces U 54, as they are involved
in the indecomposables I(111) and I(111).

B2. By basis changes on U§56 and X°, independent of each other, we now have

0/0|T
1|0 |75
fsu=| 0|1 [Ty | : Vaguss@Uisu56DZ" — Vase® Vasasg ®Ursas6 O W,
0/0]|O0
0|01

Then the basis change by

1 0 00 -7
010 0 -1
0 01 0 13
0001 O
0000 1

on V° gives

J54 = : Visase D Ulzass D Z* — Visse D Vizasg D Utzase D Z°.

© O|IOo=O
©C ORIl o
=) Nen] Nan) an)
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B3. The matrix form of f5¢ is now

ES ES
B 6 6 5 5 5 5
J56 = 1 | Use @ X° — Vazse @ Vazuse @ Ursase @ 27,
0| %

Note that at step S2 above, we have U§6 >~ U3556, and U§56 ~ Vz%g,ﬁ ®
Vas56 ® Utsase- Thus, Ugy = Vs ® Valyse © Utsse and we can perform a
change of basis on V0 to get:

f56 =

Vs ® Vasass ® Utsase ® Z° —

o|l=olo
* | QO

(=] Nl N Y Nen]

(=] Nl Nl ol

Vaiss © Vasasg ® Ulsasg ® Z2°.

B4. Basis changes on V3, and then on V? turns fg3 and fos into similar forms.
In these chosen bases, the matrices of V' are now in the forms:

oj(0|O0 1/0|0]|0
1/0(0 o|j1/0|0
oj1/|0 o|0|1|0
0|0 | % 0[0|0]| =%

V4 V5 V6
olo 1/0/|0
— - o|1|0
1|0 f52 1|/0|0
| 0|01
0| % o|1|0

0|00
0|0 |1
0|00
Vl V2 V3

By commutativity, it can be checked that in the chosen bases,

1/0/0|5;
0|1]0|.5,

foz = 00155 V22356 ® V223456 @ U123456 ®X? -
00|10 =

‘/25356 ® Vv253456 ® U153456 ® Z5'

By a change of basis on V2, we can obtain the form

f2 = V22356 @ V223456 S U123456 ® 7> —

(=] =) Nl
(=) Nl N Y ]
ol=olCo
* | QO

‘/25356 @ V253456 S Uir)3456 S Z5
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and this does not affect the form of f32. Again by commutativity,

0

0

10

* *

fo1 =

t Ulsgs ® X' = Visse D Vias D Utsase ® Z°.

We do not need Uy, 54 at this stage. In the chosen bases, the matrices are

in the forms:

0|[0]|O0 1/0|/0|O0

100 o|1]|/0|O0

oj[1]0 o|0j|j1|0

0| O] = 0|0/ 0] = X
V4 Vo %%
o 1/0(|0|0O0 1010
— o|1(o0]|O0 o|1(o0
*
— o|o0f1|0 0|01
%

0|0 0] = 0|0f{ O
Vl - V2 VS

0 1010

0 o|1( 0

* 0|0

* | o|o0f| O

where we emphasize the direct summands that we extract by the double
lines. These are:

0 5 1 6
0 V2356 V2356

[ a1

0 2 1 3
0 —— V2356 — V2356

Il

I(gL s

and
4 1 5 1 6
Vasase — Vasase < Vasase

oo

2 1 3
0 —— Vasuse < Vaiuse

~ I(é % %)m2,3,4,5,6.

By symmetry, we also get indecomposable summands isomorphic to I(1 1 8 )
and I(11).

Step 4b. In step 4b, some special arguments are needed to deal with the inde-
composables I(}11) and I(111). Note that all maps except fs2 are monomor-
phisms. This allows us to obtain the appropriate identity submatrices, denoted

1, in the steps below.
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S1. By a change of basis on V%, we get a row echelon form

1
f41—[0 } VS vi=UL @ Xt

S3. Perform a change of basis on V?° to get

[ 9 v -t e

via row operations.

S3. Perform a change of basis on V% (corresponding to the appropriate column
operations on f5s) to obtain the matrix form

10
f56 = { 0 ] VO = Ul @ X0 - VP = Upys @ X°.

Note that we can obtain a submatrix 1 in the upper left of fsg, since
the direct summands isomorphic to I(}}§) have all been removed in the

previous step.
S4. Perform a change of basis on V3 so that we get the form

1
fez = [0] VP Ufyse @ XO.

Here, we can obtain a submatrix 1 in fg3, since the direct summands

isomorphic to I(11}) have all been removed.

The above matrix forms provides a sequence of isomorphisms
TAagrd ~7/5 ~7786 ~ 13
VI Uy = Uy = Ulysg = V2,

showing that dim V! = dim V3. We denote this dimension by s.
Next, we need to choose the correct bases to extract direct summands isomor-
phic to I(111) and I({11), where the indecomposable representation I(111)

is given in Eq. (4.6). Denote the columns in the matrix forms of fo; and fas by

fa=|a -+ as]| and fas=|b -+ b ],

where a; and b; are the columns of fo; and fa3, respectively. By commutativity
in CL3(fb) and the bases chosen in the subspace tracking, it can be checked that
fs2(a;) = fsa(b;) € VO fori e {1,...,s} and that these vectors in V° are linearly
independent.

Define the matrix

C=[a1 b1 as bQ Qg bs]
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by interleaving the columns of the matrix forms of fo; and fs3. In the following
induction, we transform C' into the form

-1 -

»
I
—_
—_

(4.12)
0

0 0

by row operations and certain column operations, with a 25y x 2s1 identity matrix
in the upper left and an so X 259 matrix in the middle right for some s1, s2 € Ny
with s = s1 + s3. In transforming C to the form C’, only column operations
on pairs of columns ¢;,¢; in C = [¢1 ... cas] with ¢ = j(mod 2) are permissible.
That is, we do not to mix the columns of fs; and fo3.

Note that a row operation on C' corresponds to a basis change on V2. The
above permissible column operations ensure that each column operation corre-
sponds to a basis change for either V! or V3. In the bases chosen via the trans-
formation of C to C, the matrices of fo; and fa3 will taken on their corresponding
forms. That is, fo; now has matrix form consisting of the odd-numbered columns
of C, while fo3 has matrix form consisting of the even-numbered columns of C.

Of course, the matrix forms of f41, f54, f56, fe3 already obtained in the sub-
space tracking in steps S1 to S4 may change under this process. In each induction
step, we also perform changes of bases on V4, V? V6 to restore them to the forms
obtained in the subspace tracking.

To compress the notation, define the nk x mk matrix Dy (M), given an n x m
matrix M, as the matrix

M
obtained by placing k copies of M along the block diagonal. Then,

1 0
C=|0 Dy([1 1]
0 0

where the 1 identity submatrix in the upper left is of size 2s;.
To begin each induction step, assume that the matrix C' is in the form

-[§ ]

C'=|0 Dy([1 1]

*

where C' is
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and the 1 identity submatrix in the upper left is of size 2¢;. Clearly, the matrix
C' is of size m x 20, where ¢ = £1 + {5 and m = 201 + {s.

As the inductive step, we show that the number of columns of C’ can be
extended from 2¢ to 2¢ + 2 without affecting the matrix forms of f41, f54, f56,
fe3. As for the number of rows of C’, it either becomes m + 1 or m + 2.

The column in C' adjacent to C’ is the column coy,1 and corresponds to the
(¢ + 1)st column aypq; of fio. If all the entries a; ¢41 of the column ayy; are 0 for
1 > m, then apy1 can be expressed as a linear combination

0y

!
a1 = Y, (i + Bibi) + . i

i=1 i=41+1

for some «;, 5; € K, due to the current form of the matrix C. Applying fse and
by linearity,

4y l
fiolarsn) = D (@i + i) fro(a) + ), aifsalai).
-1 i=1+1

This contradicts the fact that fse(aq),..., fs2(ags1) are linearly independent.
Hence there exists a nonzero entry a; ¢4 for some ¢ > m in the column ag41.
After suitable row operations, we can transform C' to the form

(22 + 1)st
C' 0| =

C = O |1 |* [(m+1)st
0 0] =

The next adjacent column is copyo of C, corresponding to the column by
of fo3. Here, there are two possible cases, giving the cases where the number of
rows of C’ either extends to m + 2 or m + 1, respectively.

Case 1: If the column by has a nonzero element b; 1 for some ¢ > m + 1,
then C can be transformed into

(m + 1)st

(m + 2)nd

0
0
1
0

* | % ¥ | ¥

oo O

by suitable row operations. Appropriate column and row permutations finish
the induction step.

Case 2: Otherwise, b; 11 = 0 for all @ > m + 1. That is, all row entries in
column by below row m + 1 are 0. Again, by referring to the current form of
C, the column vector byy1 can be expressed as a linear combination

151 4

ber = ) (i + Bib) + ), @iai + apprai
i=1 i=+1
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for some o, f; € K. Mapping both sides to V° by fs5o leads to

0o ¢
(1= ags1) fooaesr) = D (e + Bi) fsalai) + Y cuifsa(as).
i=1 i=01+1

By linear independence, all the coefficients above must be 0, so that

—Bi, 1=1,...,41,

a1 =1, O‘i:{o i=b+ 1.0

Therefore, the matrix C' has the form

aq
—a
c'lo *
C = R0}
—ay,
0
0|1 1 *
010 0 *

By taking the odd-numbered columns of C for fo; and the even-numbered
columns of C for fa3, we see that fo; and fos now have matrix forms

(£ + 1)st (£+ 1)st
Dy, 00| = Dy |0 |y | =
for = 0 [1L[O0]x* |, fo3= 01| 0 |=
0 |0]1]= 00| 1 |=% |’
0 |00 = 00| 0 |=

where D, = Dy, ([{]) and Dy = Dy, ([{]) are the 2¢; x ¢1 matrices

1 _ 0 _
1
1
Da = 0 ) Db - 1
1 0
i i | I
and where B ~ B ~
a1 a1
—Q1 0 a7
ot = y Ay = , 0=
Oéel Oégl agl
L — @ U

for convenience of notation.
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At this stage, we want to zero out a4 in C. Note that we cannot just use
the by,+1041 = 1 entry below a4 as pivot to zero out a4 via row operations
because the (2¢+ 1)st column in C will be affected. Instead, we first use column
operations, taking advantage of the symmetry in o .

In fo3, the entries containing a 1 to the left of a4 are in the even-numbered
rows. We perform a basis change on V3 corresponding to column operations on
f23. The even-numbered entries in a4 can be zeroed out, giving

£+ 1)st

Db 0 Qg | *

fo3 = 0|1 0 |=
00| 1 |=
0 |0 O |=

via the basis change matrix on V3
1 «
1
R- 0 (4.13)
1

where « is on the (¢ + 1)st column of R. The effect of this change of basis on
the matrix form of fg3 is that it is now

o e[

We will see later that fgs can be restored to its proper form within the current
inductive step.

At this stage, we can now use the by, 1041 = 1 entry to zero out a4 in fo3
via row operations:

(£ + 1)st

Dy |00 =
Jo3 = 0 [1|0]=
0 [0|1]=
0 [0]|0]=
This is effected by the basis change matrix
(m + 1)st
1 —ay -
1 0
1
1

on V2, which changes the matrix form of fy; to

1 —Qy D, | 0|0 = D, 0| —ay | =

B 1] o 0 1[0« | | of1] 0 [«
for = 1 olo|[1l+« ]| | oo 1 [=
1 0 |o|o0= 0|0 0 |=
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Intuitively speaking, we have transferred oy from fo3 to fo; as —ay. Then, —a
can be zeroed out from fo; by column operations corresponding to a change of
basis on V!. We obtain

(£ + 1)st

D, 00| =

for = 0 [1]0]=
0 [0]1]=

0 |00 =

by a basis change matrix that is of the same form as R in Eq. (4.13). Thus, fu
is now in the form
1 R
el ]ee o]

It remains to transform the maps f41, f54, f56, f63 into the forms obtained in
the steps S1 to S4. Currently, we have the matrix forms fy; = [83] and fg3 =
[}g] where the number of rows in the 0 submatrices may be different. By the
basis change matrices of the form [13’, (1]] on V4 and V®, we get the forms

f41—[(1)] andfﬁg—{(ll}.

In these bases, fs4 and fs6 will now have matrix forms

e8] e8]

Finally, a change of basis on V° by [gb (1’] simultaneously gives fs4 and fsg the

matrix forms
10 10
f54—[0 *},f%:[o *]

as required. This finishes the induction step.
To summarize, we now have the matrix forms

1 0 0 1 0 0
01 0 0 1 0
0 0 0 0
e * e V6
1 0 10
0 1 f52 0o 1
0 0 0 0
Vl VQ V3

f1 f23



116 Chapter 4. Representation Theory of Quivers

where

for = 1 , foz = 1
0 0

0 0

0 0 0 0

in the chosen bases, by the form of C. By commutativity, fso now has matrix
form

-1 1 _
0 T
1 1
fs2 = 1
0 T2
1
L 0 0 *

Using column operations, corresponding to a basis change on V2, the submatrices
T7 and T5 can be zeroed out without affecting the forms of fo1 and fo3.

This gives the forms

V4 V5 V6
10 Ds,([11]) o]0 10
0 1 0 10 0 1
0 O 0 OH* 0 0

Vl V2 V3

Day([g] o Dy (9] o
0 1 0 1
0 0 0 0

where again we have emphasized the direct summands we can extract. This
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clearly gives all the direct summands of V' isomorphic to

ﬁ [111] J

and

K1y Kkl K

1 1 1T'

K"+ K+ K
Step 5. The remaining representation can be viewed as a representation of
Dy, since V1 = V3 = 0, and fo1, fo3, fa1, and fg3 will be 0. The rest of the
algorithm can be derived in a similar manner as what we have given above,
specifically following Steps 1 and 4a as templates. For more details, see the
paper [17].






Chapter 5

Matrix Problems

In the previous chapter, we studied the representation theory of CL,(7) and its
applications to topological data analysis. Here, we reformulate representations
of CL,(T) as certain matrix problems. This is an alternative viewpoint that
we expect will provide a more elegant algorithm for computing indecomposable
decompositions.

By Lemma the categories rep CL,(7) and arr(rep A, (7)) are isomor-
phic. As a consequence, we can identify M € rep CLy,(7) with the arrow F(M) =
(¢: V — W) as given in the proof of Lemma

Let such an arrow ¢ : V. — W be given. Since V € rep A, (7), there is an
isomorphism to an indecomposable decomposition

ny V= (—B I[a,b]™,

1<a<b<n

where [[a,b] are the interval representations of A, (7). A similar isomorphism 7y
can be constructed for W. Using these isomorphisms, the arrow ¢ is isomorphic

to
mweny' s @ Ia b > @ Ia,b]™e.

1<a<b<sn 1<a<b<sn

/b/

This can be written in a matrix form [(I)Zé where each entry

] (a,b),(a’,b")
(i ény ) = ®2F < Ia, b — [’ b

is obtained by inclusion from and projection to the appropriate direct summand.
It can be shown that for arbitrary orientations 7, the morphisms between
the interval representations of A, (7) satisfy

dim g HomKAn(T) (I[a, b], H[a,a b/]) <1,

by using the property of commutativity. However, precisely which pairs of pairs
(a,b),(a’,b') give rise to nonzero homomorphism spaces depends on 7. This
computation, however, is not needed in what follows.
For each pair of pairs (a,b), (a/,0") with Hom gy, ) (I[a, b],I[a’,b']) # 0, we
define a morphism
fg:};bl € HomKAn(T) (H[a7 b]? H[alﬂ b/])

119
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by the following. Note first that if Hompgy, () (I[a,b],I[a’,b']) # 0, then the
intersection of the intervals

[a,b) n[d V] ={i|la<i<bln{i|d <i<V}=#.

There is therefore an index ¢ € [a, b] n[a’,V/]. By the commutativity requirement
on morphisms, it can be checked that any f : I[a,b] — I[a’,b'] is determined by
its map at index ¢, f; : K — K. Since dimg Homg (K, K) = 1, this shows that
dim g Homgy,, () (I[a, b],I[a’,b']) = 1. Moreover, by this property, we choose

fg:l;b, to be the uniquely defined morphism f determined by f; = 1x. In this
case, fp = 1 for all ¢/ in [a,b] N [d',V].

Note that fg:l;bl is only defined for pairs of intervals with nonzero corre-
sponding homomorphism K-vector space. This choice of morphisms satisfies the
following very important property. For any triple of pairs (a,b), (a’,V'), (a”,0")
with

Hom gy, (- (I[a, 0], I[a’, 0']) # 0O,
Hompy, (- (I[a’, '], I[a”,b"]) # 0, and
HomKAn(T) (H[a, b], H[a”, b”]) # 0,

the chosen morphisms satisfy the property that
// b// "o /7b/
far” = Fay fas -

This property can be checked immediately, from the definition. With the con-
ditions given, the three intervals [a, b], [@/,b'], [a”,b"] have pairwise nonempty
intersections. It can then be checked that the three intervals have a common
intersection. On each index in this intersection, the equality above is simply
1K = 1K o lK.

Then, the above morphisms q)a/’bl can be factored into Fal’b/ fad @Y where each

" b
ng’ is a matrix of size m’ oy X Map With entries in K. Contrast thls with <I>a :

which is a matrix of morphisms in Homgy,, () (I[a, b], I[a’, b']).

To illustrate this procedure, let us give the example with 7 = f. Up to
isomorphism, the indecomposable representations of Ay(f) are I[1,1], I[1,2],
I[2,2]. Given a CL(f)-module

g4:
Vs —25 V)

V= 9311\ 9421\ )

g2
Vi 2 Vo

we can choose bases on V; so that the matrix forms of g43 and go1 are of the
form [} 9], possibly of different sizes. In the chosen bases, V is

10
Vg@vgﬂ [00] VXG‘)V”

4
91/311\ [1 0] QQQT ’

Viev! 2% ey
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where ¢4, and g}, are the matrix forms of g3 and g4o.

Let g5, = [éi gi] and gy = [é; gz]. By commutativity,
[AlBl]::[AQO]
00 C2 0
must be satisfied. Now, the representation V' is mapped by the equivalence into

the category arr(rep As(f)), with image the arrow g = (gs1,942). In matrix
forms, this arrow is given by

where A = A1 = As.
In this form, we have a decomposition (in rep As(f)) of the upper and lower
rows, as follows:

(0= Vi@ (Vs —=V)e(Vy ——0)
d
(0 "=V )o(V ==V )a(V —=0).
Thus, g = (g31, g42) is isomorphic to an arrow
(I[2,2]™2) @ (I[1,2]™2) @ (I[1, 1] ™)
d
(I[2,2]™2) @ (I[1, 2]™) @ (I[1, 1]™)
where mby, = dimVy, mj; = dimVy’, and m}, = dimV35 = dimV] for the

codomain, and maog = dim V', my; = dim V', and mq2 = dim V] = dim VJ.
It can be checked that written as a matrix, ¢ is given by:

~ 2:2 1:2 1:1 _
2,2
2:2|  Dafy 0 0
12| Bofyd  Af; 0 L@ b~ @ Ia, b
1<a<b<2 1<a<b<2
w| o asi bl

In this notation, we have labeled columns and rows by symbols a:b, corresponding
to the direct summands I[a,b]™ for columns and I[a,b]™e for rows.

Suppose that two arrows ® to ¥ are already in the form given above. By
definition of the arrow category, a morphism from ® to ¥ is a pair of morphisms
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(F1, Fy) in rep As(f) such that the diagram

D Iab]™ —2= D Ia, b

1<a<b<2 1<a<bd<2

[ I

@ Ia,b" —Y— P 1a,b]"

1<a<b<?2 1<a<b<s2

commutes, or equivalently WF) = Fy®. Because their domains and codomains
are already expressed as direct sums, we can similarly write F; and F5 in matrix
forms.

Let us summarize the above matrix problem. Note that we remove mention
of the fill;b/, to simplify the presentation. Once the objects, morphisms, and

composition rules are known, fs/l;b/ can be hidden.
Example 5.1. Form the category with:

e Objects are
M(l’41)
M= | M(xzs1) M(xs52)
M(z62) M (w63)

where each block entry M (x;;) is a matrix with entries in K, of appropriate
sizes.

e Morphisms are F' = (Fy, F») : M — N given by

F(v32) F(w3) F(vgs) F(ws)

satisfying F» = M = N = Fj. The block entries F'(x) are matrices with
entries in K, of appropriate sizes. The identity morphism of M is given

1 1 .
by ([0 P 1] , [0 1 1]) : M — M, where the 1’s and 0’s are appropriately-
sized identity and zero matrices.

e Compositions is given by the following. For F = (Fj,F») : M — N,
G =(G1,G2): L > M, FG = (Fy * G1, Fy * G3).

In the above, * is the usual multiplication of block matrices, except that the
lower-left block entry is always kept empty.

The matrix problem associated with this category is to describe its indecom-
posable objects, and given an object M, to find its indecomposable decomposi-
tion.

That the multiplication = above keeps the lower-left entry empty is related
to the fact that dimy Homgya, () (I[2,2],1[1,1]) = 0 and that f1121 2122 = 0. Note

that in this case, le 21 is not even defined.
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At this stage, it is not necessary to understand xj;, vj;, w; as anything other
than indexing symbols for the tuples of matrices that comprise the objects and
morphisms. While we do not explain it here, the use of this notation will become
clear in the context of generators of bocses and differential biquivers.

The category given above is equivalent to arr(rep Aa(f)), and thus to rep CLa(f).
We will do this in general via Theorem later. For now, let us further ex-
pound on the matrix problem by converting it into a problem involving matrices
and certain permissible row and column operations.

Given an object M of the category above, we are interested in finding a
normal form in the isomorphism class of M. If M =~ N, then we have an
isomorphism F = (Fy, Fy) : M — N, so that N = Fy « M = Fl_l.

From the restrictions made on the form of morphisms F' = (F}, F»), only the
following operations are permissible.

1. Any elementary row or column operation within the same row or column
block.

2. Any addition of a K-multiple of a row in row block 1 to a row in row block
2, and a row in 2 to a row in 3.

3. Any addition of a K-multiple of a column in column block 3 to a column
in 2, and a column in 2 to one in 1.

By a row block, we mean the collection of block entries in the matrix sharing
the same row in the block matrix structure of M. For example, the second row
block of an object M is given by the rows of

[ M($51) M(LL‘52) ]

The term column block is defined similarly. Also, it is important to remember
that the lower-left block entry is always kept empty — not as a requirement for
the row and column operations, but rather that no matter what operation we
do, it is always empty.

Let us use the permissible operations to find an indecomposable decomposi-
tion for M an object of the category in Example We denote by * the nonzero
block entries in the matrix. In general, an object M of the category above is:

* *
* *
— W -

where the arrows to represent permissible operations of type 2 and 3.

By using operations of type 1, we can transform each diagonal block into a

Smith normal form g 9, where F is an identity matrix. In other words, M is
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isomorphic to an object of the form

2:2 1:2 1:1

. EO0

2:2| F9

12| rx EO

. * ok EO0
1.1 % % 00

Using operations of type 2 and 3, we can transform the above matrix into
the following form. By pivoting using the entries in each F submatrix, we can
zero out entries in some of the blocks sharing the same row or column as that
E. Of course, which of these blocks can be zeroed out is determined by what
operations are permissible. In this simple case, the entries to the left and below
each E can be zeroed out.

22 1:2 11
221 £
12 32 69
1 33 &8

We extract the extractable summands as below,

_(2\:2 :2 1:1
2:2 | +58

12| 48— 58
11 50— b8
S N U\/ = . (51)

For example, the middle cross region gives s indecomposable summands with
dimension vector 1 1, if the middle F is an s by s identity matrix. More precisely,
in the form given in Eq. (5.1), the matrix is a direct sum

2:2 1:2 1:1

221 &9
1:2
1:2[ E ]@ 12 o+ 0 :
11 g 69

and the matrix [E] above is the arrow E : I[1,2]* — I[1,2]°, which corresponds
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to the representation

K1+ K

of CLy(f). That is, we obtain s copies of the indecomposable representation

of CLy(f) with dimension vector 11. Using similar arguments for the other

encircled regions in Eq. (5.1)), we also extract direct summands corresponding to
: : 0T 10 01 00
the dimension vectors ¢ 1, 19, g, and 7 -

What remains is

9.9 1.9 2:2 1:2
1:1 * 1:1 &

from which we may immediately extract more summands. We obtain §1, 19
00 00 11 10
01> 11> 00> and gg-

The remaining matrix is empty, and so the algorithm ends. At this stage, we

have accounted for all the indecomposable representations. This can be checked
against the AR quiver of CLy(f) given in Figure which was derived by the
knitting procedure.

Let us also write down the general matrix problem corresponding to arr(rep A, (7)) =

)

rep CL, (7). First, note that there are A = % isomorphism classes of inde-
composables in rep A, (7), given by the isomorphism classes of the interval repre-
sentations [[a,b] for 1 < a < b < n. Order the indecomposables I[a,b] arbitrarily
as

Ji,Joy . A

To summarize the structure of the morphisms fgll;b/, we use the following

formalism.

Definition 5.1 (The relation =). Let Ji, Jo,...Jyx be some arbitrary ordering
of all the interval representations I[a,b] € rep A, (7). Define a relation = on the
set {1,...,A} by i = j if and only if Homgy,, (- (Ji, J;) # 0.

Clearly, i = ¢ for all © € {1,...,A}. It can be checked that = is antisym-
metric: if ¢ = j and j = 4, then i = j. However, = is not transitive. From
i = j and j = k, we cannot conclude that : = k. Thus = is not a partial order.
Moreover, we warn that having a path from J; to J; in the AR quiver I'(A, (7))
does not guarantee that ¢ = j, although from 7 = j we can conclude that there
is a path from J; to J;.

We need two copies of the indices {1,...,A}, one for row indices and another
for column indices of objects. We use {1,..., A} for columns and {1’,..., A’} for
rows. To index the submatrices in our matrix problem, create the symbols x/;,
vji, and vy, for all pairs (7, j) with i = j. In the definition below, the subscripts
i = j in the matrices means to vary through all pairs (i, j) with ¢ = j.
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Definition 5.2. Form the category C(7) with:

e An object is a sequence of numbers d;, d; indexed by i € {1,...,A} and a
set of matrices

[M(xj,i)]i:j

where each block entry M (xj;) is a matrix of size dj x d; with entries in
K, for pairs (i,7) with i = j.

o Let M = (d;,dyr, M(x;;)) and N = (a?i,a?i/,M(xj/i)). A morphism is F' =
(Fl,FQ) M — N, with
(Fla F2) = ([F(UJ'L)]Z:] I [F(U]/Z/)]Zi])

where each block entry F'(vj;) is a K-matrix of size ch x d; and each F'(vj;r)
is a K-matrix of size dy x dy, satisfying the equalities

D VF (i) M (pes) = Y N (o) F(vgs) (5.2)

are satisfied for every pair (7,7) with ¢ = j. The summations are taken
over all k€ {1,...,A} such that i = k and k = j.

e Compositions: For F: M - N, G: L—-> M, FG: L —> N

(FG)(vi) = Y, F(vjr)G(vgi) (5.3)
and
(FG)(vyir) = >, Fl(vjw)Glogs) (5.4)

for every pair (i,7) with i = j.

Clearly, Example is C(7) in Definition in the case of n = 2, 7 =
f, with indices {1,2,3,4 = 1',5 = 2,6 = 3}, and symbols w; = v;; for i €
{1,2,3,1’,2,3'}. The above conditions for morphisms and their compositions
are simply the defining equations, written entry-wise, of conditions originally
written as matrix multiplication: Fy * M = N = Fy, (FG); = F; = G1, and
(FG)Q = Fg * GQ.

Theorem 5.0.1. Given an orientation T, the category C(7) constructed in Def-
inition is equivalent to arr(rep Ay (7)).

Proof. This follows by construction. Let us, however, explicitly construct an
equivalence Y : C(7) — arr(rep A, (7)).

Given an object M = (d;,d;, [M(a;]/,)] ), define T(M) as the arrow:

=7

A A
(T(M) : C—B ) Jf“) € arr(rep A, (7))
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so that in matrix form, Y(M) is just M. Precisely speaking, this means that for

=7,
7T (M) = M(zp) fo3 T — g

a7 1 -]

;s
where J; = I[a,b], J; = I[a’,b'], and 7 and ¢ is the projection to J;” and the

) . d.r
inclusion from Jl-d’, respectively. For i ¢ j, 7T(M)e =0 Jl-dz — Jjj .
Let

A
(T(N ;G__Dl . —>@J )earrrepA())

be likewise given. A morphism F': M — N in C(7), then, is a pair (Fy, F3) of
matrices which we can similarly turn into arrows:

Define Y(F') = Y(F1, F») to be the morphism
(T(F1), Y(Fy)) : Y(M) — T(N)

in arr(rep A,(7)). Let us check that Y(F') is a morphism arr(rep A,(7)). We
need to show that

A
@ st 1 @ gt
=1

ma)l lT(Fz)

@ T S @ 5

commutes. To see this, note that Eq. (5.2) implies

N Flop) M) £ = D) Napn) Fow) £

i=k=j i=k=j

// b//

for each pair 4,7 with ¢ = j and where J; = I[a,b], J; = I[a”,b"]. Using the

. . " b//
factorization property of f;l y » we have

// l/ /l b// /7bl
ZF v]’k:' ’b’ (.’Ek/ ) ZN $j/k f ’b’ F(vkz>f:’b (55)

i=k=j i=k=j

where in the notation above the numbers o', b’ with J, = I[a’,b’] vary with k as
we take the summation. By the definition of T and multiplication of matrices,

Eq. (5.5 is nothing but

FL(E)Y(M)e = R (N)T(Fy)e s I — I
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v ds
where ¢ is the inclusion from Jid “ and 7 is the projection to J j] . Now, the above
equality holds for each pair 4, j with ¢ = j. For i 3 j,

7Y (F)Y(M)e = 0 = 70 (N)YL(F)e

by definition. We conclude that Y (F>)Y (M) = T(N)Y(F).

Thus, T(F) : Y(M) — YT(N) is a morphism in arr(rep A, (7)). Likewise, it
can be checked that T(FG) = T(F)Y(G) by using Egs. and (5.4).

That T is fully faithful follows from construction. Moreover, T is dense since

A < A 5
any arrow (¢ : V' — W) is isomorphic to an arrow of the form (@ S in - P Jid"'>,
i=1 i=1

from which we can construct an M € C(7) with Y (M) = ® by the construction
at the start of this chapter. This shows that Y is an equivalence. O

Computing indecomposable decompositions of objects M in C(7) = arr(rep A, (7)) =
rep CL,,(7) can be interpreted in terms of finding “normal forms” using permissi-
ble operations on matrices, as a matrix problem. However, it is not immediately
clear that a finite sequence of permissible operations, similar to what we have
described for Example can completely solve this problem, even just for the
representation-finite case.

These definitions can be rephrased in terms of representations of differential
biquivers, and in more generality, in terms of representations of bocses [35]. The
paper [14] provides a proof of Drozd’s tame and wild theorem using the represen-
tation theory of bocses. The proof is essentially algorithmic in nature, and can
be applied to compute the normal forms we need. The application of these ideas
for the computation of indecomposable decompositions of representations of the
representation-finite commutative ladder quivers will be treated in an upcoming
work.



Appendix A

Auslander-Reiten quivers of
CLp(7), n <4

Al n=1

With n = 1, only the empty orientation 7 = (J is possible. Moreover, CL1 ()
can be identified with As.

1
/1\
1 0
0 i

Figure A.1: T'(CL1(W))

A2 n=2

0
0

11 0 10
00 1 10
01 11 11 10 00
00 01 11 11 10
01 10 00
01 00 11

Figure A.2: T'(CLa(f))
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Appendix A. Auslander-Reiten quivers of CL,(T), n
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A3 n=3
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Figure A.3: T(CLs(ff))
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Figure A.4: T'(CL3(fb))



Appendix A. Auslander-Reiten quivers of CL, (1), n <4 131

A4 n=14

::/gi\c::
i’i\oc/i:\oc
AN N
2;\32/2:\0_/2:

N N
D:/::\if/:f\oo/fi
::\oﬂ/f\oo/:g\m
oﬂ/if\i/ﬂi;\@/;;
gg\oﬂ/ii\oﬁ/;\m
O:/:;\E/’ff\oa/’gg
R SR

N\
!
N
)
N
/%
Figure A.5: T(CL4(fff))
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acyclic matching
of a complex,
of a quiver complex,
algebra
K-algebra,
hereditary, [40]
of a bound quiver,
opposite algebra,
path algebra,

triangular matrix algebra,

almost split sequence,

Auslander-Reiten translations,

category
arrow category, [L3]
quotient category, [14]
two-sided ideal of,
chain
chain complex,
chain equivalence, [I7]
chain equivalent,
chain map, [16]
homotopic chain maps,
homotopy, [17]
commutativity relations,
complex, [I§|
subcomplex,
critical cells,

filtration,

homology
homology modules,
of a chain complex,

of a complex,
of a simplicial complex,

idempotent,
incidence map,
injective envelope,

interval module,
interval representation, [32]

local ring,

minimal injective presentation,
minimal projective presentation,
module
injective module,
projective module,
semisimple module,
simple module,
morphism
factors through a projective,
factors through an injective,
irreducible morphism,
left almost split,
left minimal,
left minimal almost split,
right almost split,
right minimal, [72]
right minimal almost split, [74]
split epimorphism, [72]
split monomorphism, [73]

orientation
of a simplex,
of a quiver,

path,
persistence diagram,

of a filtration,
persistence homology

of a filtration,

of a quiver complex,
point cloud,

weighted point cloud,
projective cover, [36]
projective resolution,
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quiver, [24]
AR quiver,
Auslander-Reiten quiver,
bound quiver, 25|
commutative ladder quiver,
commutative triple ladder,
ladder quiver,
linear quiver A, (1),
opposite quiver, [37]
relation on a quiver,
quiver complex,

radical,

representation
evaluation on relations,
of bound quiver,
of quiver, [25]

simplex,
oriented simplex,
simplicial complex
Cech complex,
abstract,
clique complex,
simplicial subcomplex,
skeleton,
Vietoris-Rips complex,
weighted alpha complex, 23]
socle,
stable module category
injectively,
projectively,
stationary path,

transpose, [68]
two-sided ideal,

weighted alpha shape,
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