九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

Kudo，Momonari
Graduate School of Mathematics，Kyushu University
https：／／hdl．handle．net／2324／1650651

出版情報：MI Preprint Series．2016－1，2016－03－22．九州大学大学院数理学研究院
バージョン：
権利関係：

MI Preprint Series

Mathematics for Industry Kyushu University

Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

Momonari Kudo

MI 2016-1

(Received March 22, 2016)

Institute of Mathematics for Industry
Graduate School of Mathematics
Kyushu University
Fukuoka, JAPAN

Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

Momonari Kudo*

March 22, 2016

Abstract

In algebraic geometry, a number of invariants for classifying algebraic varieties are obtained from the cohomology groups of coherent sheaves. Some typical algorithms to compute the dimensions of the cohomology groups have been proposed by Decker and Eisenbud, and their algorithms have been implemented over compute algebra systems such as Macaulay2 and Magma. On the other hand, M. Maruyama showed an alternative method to compute the dimensions in his textbook. However, Maruyama's method was not described in an algorithmic format, and it has not been implemented yet. In this paper, we give an explicit algorithm of his method to compute the dimensions and bases of the cohomology groups of coherent sheaves. We also analyze the complexity of our algorithm, and implemented it over Magma. By our implementation, we examine the computational practicality of our algorithm. Moreover, we give some possible applications of our algorithm in algebraic geometry over fields of positive characteristics.

Key words- Computer algebra Gröbner bases Algebraic geometry Cohomology groups

[^0]
Contents

1 Introduction 3
2 Preliminaries 4
2.1 Fundamental properties of the cohomology groups of coherent sheaves 5
2.2 Maruyama's method 6
3 Explicit algorithm of Maruyama's method 8
3.1 Interpretation of Maruyama's method 8
3.2 Algorithm based on Maruyama's method 10
3.2.1 Outline of our algorithm 10
3.2.2 Procedures in Step B 11
3.3 Detailed description on sub-procedures in Step B 12
3.3.1 Description on CohomologyOfStructureSheafSum 13
3.3.2 Description on RepresentationMatrix 14
3.3.3 Description on QuotientSpaceBasisMatrix 18
3.4 Correctness of Algorithm 3.2.1 19
3.5 Complexity analysis 20
4 Implementation and experiments 23
4.1 Experiments on the performance of our implementation 23
4.2 Benchmarks 27
5 Applications 28
5.1 Background 29
5.2 Computing morphisms of cohomology groups 30
5.3 Computing the action of Frobenius to the cohomology groups 32
6 Concluding remarks and future works 32
A Computation of global sections 34

1 Introduction

For a positive integer r, let $S=K\left[X_{0}, \ldots, X_{r}\right]$ be the polynomial ring of $(r+1)$ variables over a field K. The polynomial ring S can be represented as the graded ring $S=\bigoplus_{d \geq 0} S_{d}$, by taking S_{d} for each $d \geq 0$ to be the set of all linear combinations of monomials of total degree d in X_{0}, \ldots, X_{r}. Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ denote the projective r-space, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. Given a coherent sheaf \mathcal{F} on \mathbb{P}_{K}^{r} and $q \in \mathbb{Z}$, denote by $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ its q-th cohomology group. It is important to compute the cohomology groups of coherent sheaves since the groups are used to compute a number of invariants such as Hilbert functions, Euler characteristics, and arithmetic genera of algebraic varieties. Thus the computation of the cohomolgy groups is one of the most crucial topics in algebraic geometry.
J.-P. Serre [11] theoretically showed a possibility to compute the dimension $\operatorname{dim}_{K} H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ of the cohomology group $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ as a K-vector space. After that, some algorithms to compute $\operatorname{dim}_{K} H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ have been proposed by Smith [12] and Decker-Eisenbud [4]. Their algorithms are based on computational techniques of commutative algebra such as Gröbner bases for free modules, free resolutions, exterior algebra and Tate resolutions. In particular, algorithms proposed by Decker-Eisenbud have been implemented over computer algebra systems such as Macaulay2 [6] and Magma [1]. On the other hand, M. Maruyama showed an alternative method ${ }^{1}$ to compute $\operatorname{dim}_{K} H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ in his textbook [9] (unfortunately, it is written in Japanese). Different from Decker-Eisenbud's algorithms, Maruyama's method enables to directly compute $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ by computing projective resolutions and the Cech cohomology via Gröbner bases for free modules and linear algebra. We can also compute an explicit basis of $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ by Maruyama's method. As we will see in Section 5.2, this basis is useful to compute important objects in algebraic geometry. For example, for given finitely generated graded S-modules M, N and a graded homomorphism $\psi: M \longrightarrow N$ of degree zero, the induced K-linear map $H^{q}(\widetilde{\psi}): H^{q}\left(\mathbb{P}_{K}^{r}, \widetilde{M}\right) \longrightarrow H^{q}\left(\mathbb{P}_{K}^{r}, \widetilde{N}\right)$ can be computed via the basis for $q \geq 1$, where \widetilde{M} (resp. \widetilde{N}) is the coherent sheaf associated with M $($ resp. $N)$ on \mathbb{P}_{K}^{r}.

In this paper, we focus on Maruyama's method to compute the cohomology group $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ for $q \geq 1$ (in Appendix, we also introduce a method by Maruyama of the computation in the case of $q=0$). His method is not described in an algorithmic format, and it has not been implemented yet over computer algebra systems. Then our main contributions are as follows:
(1) We write down Maruyama's method as an explicit algorithm (Algorithm 3.2.1 in Subsection 3.2) to compute the dimension and a basis of the K-vector space $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$ for $q \geq 1$. We also implemented our algorithm over Magma as a new function "CohomologyBasis". (cf. Magma has the function "CohomologyDimension" ${ }^{2}$, which outputs only the dimension but not any basis of $\left.H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)\right)$. In particular, our algorithm enables to compute a representation matrix of a morphism of the cohomology groups.
(2) We analyze the complexity of our algorithm. We also examine the efficiency of our algorithm by experiments.
(3) We present some applications of our algorithm, which are useful to study algebraic geometry over fields of positive characteristics. In particular, as a typical application of our algorithm,

[^1]we show a method to compute the action of Frobenius to varieties defined over fields of positive characteristics (we briefly describe the application below).

One of the most valuable applications of our algorithm is to compute the action of Frobenius to varieties defined over a field K of positive characteristic p. Let $f_{1}, \ldots f_{s} \in S=K\left[X_{0}, \ldots, X_{r}\right]$ be homogeneous polynomials. We set X as the locus $V\left(f_{1}, \ldots, f_{s}\right) \subset \mathbb{P}_{K}^{r}$ of the zeros of the polynomials f_{1}, \ldots, f_{s}. Let \mathcal{O}_{X} be the structure sheaf on X. Then the computation of the action of Frobenius $H^{q}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\right)$ can be reduced to the computation of the morphism $H^{q}\left(X^{(p)}, \mathcal{O}_{X^{(p)}}\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\right)$ induced by the canonical inclusion $X \hookrightarrow X^{(p)}$, where $X^{(p)}$ denotes $V\left(f_{1}^{p}, \ldots, f_{s}^{p}\right)$. As we will describe in Section 5, our algorithm gives a useful tool to compute a representation matrix of the morphism $H^{q}\left(X^{(p)}, \mathcal{O}_{X(p)}\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\right)$ of K-vector spaces, by which the structure of the action of Frobenius $H^{q}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\right)$ can be obtained explicitly.

The rest of this paper is organized as follows: In Section 2, we introduce Maruyama's method to compute the dimensions and bases of the cohomology groups of coherent sheaves on the projective r-space \mathbb{P}_{K}^{r}. In Section 3, we give an explicit algorithm of Maruyama's method, and analyze its complexity. In Section 4, we show experimental results obtained from our implementation of our algorithm over Magma. We examine the computational behavior of our algorithm, by which it is conclude that our algorithm and implementation are practical. In Section 5, we discuss possible applications of our function CohomologyBasis. In Section 6, we conclude our work, and give our future works.

Notation

- $\bigoplus_{j=1}^{t} M_{j}$: the direct sum of R-modules M_{1}, \ldots, M_{t},
- $M(m)$: the m-th twisted graded R-module $\bigoplus_{t \in \mathbb{Z}} M_{m+t}$ of a graded R-module $M=\bigoplus_{t \in \mathbb{Z}} M_{t}$, where each M_{t} is the homogeneous part with degree t of M,
- \mathcal{O}_{Y} : the structure sheaf on a scheme Y,
- \widetilde{M} : the sheaf associated with an S-module M,
- $\mathcal{F}(m)$: the m-th Serre twist of a sheaf \mathcal{F} of \mathcal{O}_{Y}-modules,
- $H^{q}(Y, \mathcal{F})$: the q-th cohomology group of a sheaf \mathcal{F} on a scheme Y,
- $R_{(f)}$: the localization of a ring R by an element $f \in R$,
- R_{d} : the homogeneous part with degree d of a graded ring R,
- $\binom{m}{n}$: the binomial coefficient of two non-negative integers m and n with $m \geq n$.

2 Preliminaries

In this section, we introduce Maruyama's method given in [9, Chapter 6] to compute the dimensions of the cohomology groups of coherent sheaves on a projective space.

2.1 Fundamental properties of the cohomology groups of coherent sheaves

In this subsection, we review some general facts on the cohomology groups of coherent sheaves on projective schemes (see [7, Chapter 3] for details). These properties are necessary to describe Maruyama's method in the next subsection.

Theorem 2.1.1 ([7], Theorem 5.1) Let K be a field. Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r space \mathbb{P}_{K}^{r} with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. Let $S=\bigoplus_{d \geq 0} S_{d}$ denote the graded ring, where S_{d} is the set of all linear combinations of monomials of total degree d in X_{0}, \ldots, X_{r} for $d \geq 0$. Let $S(m)$ denote the m-th twisted graded ring $\bigoplus_{t \in \mathbb{Z}} S_{m+t}$ of S for $m \in \mathbb{Z}$. We have the following results:
(1) For all $m \in \mathbb{Z}$, there exist isomorphisms of K-vector spaces as follows:

$$
H^{0}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right) \cong\left\{\begin{array}{cl}
S_{m} & \text { for } m \geq 0 \\
0 & \text { for } m<0
\end{array}\right.
$$

In other words, for every $m \geq 0$, the set

$$
\left\{X_{0}^{l_{0}} \cdots X_{r}^{l_{r}} ; l_{i} \geq 0 \text { for } 0 \leq i \leq r, \text { and } l_{0}+\cdots+l_{r}=m\right\}
$$

of monomials of total degree m is a basis of $H^{0}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)$.
(2) $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)=0$ for $0<q<r$ and arbitrary m.
(3) Let $\left(S(m)_{\left(X_{0} \cdots X_{r}\right)}\right)_{0}$ denote the homogeneous part with degree 0 of the localization $S(m)_{\left(X_{0} \cdots X_{r}\right)}$ by $X_{0} \cdots X_{r}$. Note that $\left(S(m)_{\left(X_{0} \cdots X_{r}\right)}\right)_{0}$ is the K-vector space spanned by the set

$$
\left\{a X_{0}^{l_{0}} \cdots X_{r}^{l_{r}} ; a \in K, l_{i} \in \mathbb{Z} \text { for } 0 \leq i \leq r, \text { and } l_{0}+\cdots+l_{r}=m\right\}
$$

Let W be the K-vector subspace of $\left(S(m)_{\left(X_{0} \cdots X_{r}\right)}\right)_{0}$ spanned by

$$
\left\{X_{0}^{l_{0}} \cdots X_{r}^{l_{r}} ; l_{i} \geq 0 \text { for some } i, \text { and } l_{0}+\cdots+l_{r}=m\right\}
$$

Then we have the following isomorphism of K-vector spaces:

$$
\begin{equation*}
H^{r}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right) \cong\left(S(m)_{\left(X_{0} \cdots X_{r}\right)}\right)_{0} / W \tag{2.1.1}
\end{equation*}
$$

Hence for every $m<0$, the set

$$
\left\{X_{0}^{l_{0}} \cdots X_{r}^{l_{r}} ; l_{i}<0 \text { for } 0 \leq i \leq r, \text { and } l_{0}+\cdots+l_{r}=m\right\}
$$

gives rise to a basis of the K-vector space $H^{r}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)$ via the above isomorphism (2.1.1).
Corollary 2.1.2 ([7], Theorem 5.1) For all $m \in \mathbb{Z}$, we have the following:

$$
\begin{aligned}
& \operatorname{dim}_{K} H^{0}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)=\left\{\begin{array}{cl}
\binom{m+r}{r} & \text { for } m \geq 0 \\
0 & \text { for } m<0
\end{array}\right. \\
& \operatorname{dim}_{K} H^{r}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)=\left\{\begin{array}{cl}
\binom{-m-1}{r} & \text { for } m \leq-r-1 \\
0 & \text { for } m>-r-1
\end{array}\right.
\end{aligned}
$$

We also have $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}(m)\right)=0$ for $q \neq 0, r$ and $m \in \mathbb{Z}$.

Theorem 2.1.3 ([9], Theorem 4.78) Let $X \subset \mathbb{P}_{K}^{r}$ be a projective scheme over a field K. Let \mathcal{F} be a coherent sheaf on X. Then for all $q>r$, we have $H^{q}(X, \mathcal{F})=0$.

Theorem 2.1.4 ([7], Chapter 3, Theorem 5.2) Let $X \subset \mathbb{P}_{K}^{r}$ be a projective scheme over a field K. Let \mathcal{F} be a coherent sheaf on X.
(1) For each $q \geq 0$, the q-th cohomology group $H^{q}(X, \mathcal{F})$ is a finite-dimensional K-vector space.
(2) There exists an integer m_{0}, depending on \mathcal{F}, such that $H^{q}(X, \mathcal{F}(m))=0$ for each $q>0$ and $m \geq m_{0}$.

2.2 Maruyama's method

In this subsection, we introduce a result (Theorem 2.2.1) by Maruyama. The result gives us a method to compute the cohomology groups of coherent sheaves on a projective space.

Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P}^{r}}$, respectively. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{r}. By the definition of coherent sheaves on \mathbb{P}^{r}, there exists an exact sequence

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{t_{r+2}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(r+2)}\right) \xrightarrow{f_{r+1}} \cdots \xrightarrow{f_{3}} \bigoplus_{j=1}^{t_{1}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(1)}\right) \xrightarrow{f_{0}} \mathcal{F} \rightarrow 0 \tag{2.2.1}
\end{equation*}
$$

for some t_{i} and $m_{j}^{(i)}$ with $1 \leq i \leq r+2$ and $1 \leq j \leq t_{i}$. For an index i with $t_{i}=0$, we identify $\bigoplus_{j=1}^{t_{i}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(i)}\right)=0$. Put

$$
\begin{align*}
\mathcal{G}_{i+1} & :=\bigoplus_{j=1}^{t_{i+1}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(i+1)}\right), \tag{2.2.2}\\
\mathcal{K}_{i} & :=\operatorname{Ker}\left(f_{i}\right) \text { for } 0 \leq i \leq r+1, \quad \mathcal{K}_{-1}:=\mathcal{F} .
\end{align*}
$$

In general, for a sheaf \mathcal{F} on a topological space, the cohomology groups are defined by a (canonical) injective resolution of \mathcal{F} and they are computed by the injective resolution (see [7, Chapter 3] for details). However, in Maruyama's method, we have a projective resolution (2.2.1) for a coherent sheaf \mathcal{F} on the projective space \mathbb{P}^{r}. This implies that the cohomology groups are computed by the projective resolution without computing an injective resolution. In this case, it requires the following result to compute the cohomology groups by using the projective resolution.

Theorem 2.2.1 ([9], Chapter 6) Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P}^{r}}$, respectively. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{r}. Recall that the coherent sheaf \mathcal{F} has a projective resolution of the form (2.2.1). Put \mathcal{G}_{i} and \mathcal{K}_{i} as in (2.2.2). Then there exist the following isomorphisms of K-vector spaces:
(1) $H^{q}\left(\mathbb{P}^{r}, \mathcal{F}\right) \cong \operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$ for $1 \leq q \leq r-1$,
(2) $H^{r}\left(\mathbb{P}^{r}, \mathcal{F}\right) \cong \operatorname{Coker}\left(H^{r}\left(f_{1}\right)\right)$,
where $H^{r}\left(f_{i}\right)$ denotes the morphism $H^{r}\left(\mathbb{P}^{r}, \mathcal{G}_{i+1}\right) \longrightarrow H^{r}\left(\mathbb{P}^{r}, \mathcal{G}_{i}\right)$ induced by f_{i} for $1 \leq i \leq r+1$.

Proof. As only a sketch of a proof is given in [9], we give a complete proof here. To simplify the notations, we denote $H^{q}\left(\mathbb{P}^{r}, \mathcal{H}\right)$ by $H^{q}(\mathcal{H})$ for a coherent sheaf \mathcal{H} on \mathbb{P}^{r} in this proof.

First we show the second statement $H^{r}(\mathcal{F}) \cong \operatorname{Coker}\left(H^{r}\left(f_{1}\right)\right)$. The sequence of coherent $\mathcal{O}_{\mathbb{P}^{r-}}$ modules $\mathcal{G}_{2} \rightarrow \mathcal{G}_{1} \rightarrow \mathcal{F} \rightarrow 0$ is exact, and the functor $H^{r}(\cdot)$ is right exact. Hence the sequence

$$
H^{r}\left(\mathcal{G}_{2}\right) \xrightarrow{H^{r}\left(f_{1}\right)} H^{r}\left(\mathcal{G}_{1}\right) \xrightarrow{H^{r}\left(f_{0}\right)} H^{r}(\mathcal{F}) \longrightarrow 0
$$

is exact, and thus $H^{r}(\mathcal{F}) \cong \operatorname{Coker}\left(H^{r}\left(f_{1}\right)\right)$.
Next we show the first statement

$$
H^{q}(\mathcal{F}) \cong \operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right) \text { for } 1 \leq q \leq r-1
$$

For every $1 \leq i \leq r+2$, we have the following short exact sequence of coherent sheaves:

$$
\begin{equation*}
0 \rightarrow \mathcal{K}_{i-1} \rightarrow \mathcal{G}_{i} \rightarrow \mathcal{K}_{i-2} \rightarrow 0 \tag{i}
\end{equation*}
$$

Thus there exists a long exact sequence of cohomology groups

$$
\begin{array}{rlllll}
0 & \rightarrow H^{0}\left(\mathcal{K}_{i-1}\right) & \rightarrow H^{0}\left(\mathcal{G}_{i}\right) & \rightarrow & H^{0}\left(\mathcal{K}_{i-2}\right) \\
& \rightarrow H^{1}\left(\mathcal{K}_{i-1}\right) & \rightarrow & H^{1}\left(\mathcal{G}_{i}\right) & \rightarrow & H^{1}\left(\mathcal{K}_{i-2}\right) \\
& \rightarrow \cdots & \cdots & & & \tag{i}\\
& \rightarrow H^{r-1}\left(\mathcal{K}_{i-1}\right) & \rightarrow H^{r-1}\left(\mathcal{G}_{i}\right) & \rightarrow & H^{r-1}\left(\mathcal{K}_{i-2}\right) \\
& \rightarrow H^{r}\left(\mathcal{K}_{i-1}\right) & \rightarrow H^{r}\left(\mathcal{G}_{i}\right) & \rightarrow & H^{r}\left(\mathcal{K}_{i-2}\right) & \rightarrow 0
\end{array}
$$

for each $1 \leq i \leq r+2$.
Then we claim $H^{q}\left(\mathcal{G}_{i}\right)=0$ for $1 \leq q \leq r-1$. In fact, by its definition in (2.2.2), it follows that

$$
H^{q}\left(\mathcal{G}_{i}\right)=H^{q}\left(\bigoplus_{j=1}^{t_{i}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(i)}\right)\right) \cong \bigoplus_{j=1}^{t_{i}} H^{q}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(i)}\right)\right)
$$

since \mathbb{P}^{r} is a noetherian topological space, and the cohomology commutes with arbitrary direct sums on a noetherian topological space in general. By Theorem 2.1.1 (2), we have $H^{q}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{(i)}\right)\right)=0$ for all indexes i, j and $1 \leq q \leq r-1$. Hence we have $H^{q}\left(\mathcal{G}_{i}\right)=0$ for $1 \leq q \leq r-1$.

From the long exact sequences $\left(L_{i}\right)$ for $1 \leq i \leq r+2$, it follows that

$$
H^{q}(\mathcal{F}) \cong H^{q+1}\left(\mathcal{K}_{0}\right) \cong \ldots \cong H^{r-1}\left(\mathcal{K}_{r-q-2}\right)
$$

Recall that the sequence

$$
0 \rightarrow H^{q}(\mathcal{F}) \cong H^{r-1}\left(\mathcal{K}_{r-q-2}\right) \rightarrow H^{r}\left(\mathcal{K}_{r-q-1}\right) \rightarrow H^{r}\left(\mathcal{G}_{r-q}\right)
$$

is exact. We have $H^{q}(\mathcal{F}) \cong \operatorname{Ker}\left(\sigma_{q}\right)$, where σ_{q} denotes the K-linear map $H^{r}\left(\mathcal{K}_{r-q-1}\right) \rightarrow H^{r}\left(\mathcal{G}_{r-q}\right)$ in the above exact sequence. Note that the following diagram of morphisms of coherent sheaves commutes

where the horizontal sequence is exact. Since the functor $H^{r}(\cdot)$ is right exact, the horizontal sequence of the following commutative diagram is also exact:

$$
H^{r}\left(\mathcal{G}_{r-q+2}\right) \xrightarrow{H^{r}\left(f_{r-q+1}\right)} H^{r}(\underbrace{\longrightarrow}_{H^{r}\left(f_{r-q}\right)} \underset{H^{r}}{\substack{\left.\mathcal{G}_{r-q+1} \\ \boldsymbol{\mathcal { G }}_{r-q}\right)}} H^{\sigma_{q}}\left(\mathcal{K}_{r-q-1}\right) \longrightarrow 0
$$

Thus we have $H^{q}(\mathcal{F}) \cong \operatorname{Ker}\left(\sigma_{q}\right) \cong \operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$ as K-vector spaces.
By Theorem 2.2.1, we have the following explicit formulae.
Corollary 2.2.2 The notations are same as in Theorem 2.2.1. Then we have

$$
\operatorname{dim}_{K} H^{q}(\mathcal{F})=\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{r-q+1}\right)-\operatorname{rank} H^{r}\left(f_{r-q}\right)-\operatorname{rank} H^{r}\left(f_{r-q+1}\right)
$$

for $1 \leq q \leq r-1$, and

$$
\operatorname{dim}_{K} H^{r}(\mathcal{F})=\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{1}\right)-\operatorname{rank} H^{r}\left(f_{1}\right) .
$$

Remark 2.2.3 In a similar way to the proof of Theorem 2.2.1, it is possible to give an explicit formula for computing the dimension of the global section $\Gamma\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)=H^{0}\left(\mathbb{P}_{K}^{r}, \mathcal{F}\right)$. We shall introduce the formula in Appendix A.

3 Explicit algorithm of Maruyama's method

In this section, we give an algorithm (Algorithm 3.2.1) of Maruyama's method to compute a basis of the cohomology groups of coherent sheaves on the projective r-space \mathbb{P}_{K}^{r} over a field K.

3.1 Interpretation of Maruyama's method

In this subsection, we give an interpretation of Maruyama's key results (Theorem 2.2.1 and Corollary 2.2.2) to compute the cohomology groups of coherent sheaves. As in the previous section, let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space over a field K with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. For a coherent sheaf \mathcal{H} on \mathbb{P}_{K}^{r}, let $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ denote the q-th cohomology group of \mathcal{H}. To simplify the notations, we denote $\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}$ and $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ by $\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}$ and $H^{q}(\mathcal{H})$, respectively. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{r}. Let M be a finitely generated graded S-module corresponding to \mathcal{F}, that is, $\mathcal{F}=\widetilde{M}$.

For an integer n, we now describe Maruyama's method to compute the cohomology groups $H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$ for the n-th twisted coherent sheaf $\mathcal{F}(n)$. We note that $\mathcal{F}(n)=\widetilde{M(n)}$, where $M(n)$ is the n-th twisted graded S-module of M. As \mathcal{F} has the projective resolution (2.2.1), the S-module M has the (minimal) graded resolution of length at most $r+1$

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{t_{r+2}} S\left(-d_{j}^{(r+2)}\right) \xrightarrow{\varphi_{r+1}} \cdots \xrightarrow{\varphi_{1}} \bigoplus_{j=1}^{t_{1}} S\left(-d_{j}^{(1)}\right) \xrightarrow{\varphi} M \rightarrow 0 \tag{3.1.1}
\end{equation*}
$$

for some integers t_{i} and $d_{j}^{(i)}\left(1 \leq i \leq r+2\right.$ and $\left.1 \leq j \leq t_{i}\right)$, where $S(m)$ denotes the m-th twisted graded ring $\bigoplus_{t \in \mathbb{Z}} S_{m+t}$ of S for an integer $m \in \mathbb{Z}$. If the resolution (3.1.1) has length ℓ, we set $t_{i}=0$ for $\ell+2 \leq i \leq r+2$ (i.e., we may assume that the resolution always has length $r+1$). Note that each morphism φ_{i} is a graded homomorphism of degree zero between two free S-modules $\bigoplus_{j=1}^{t_{i+1}} S\left(-d_{j}^{(i+1)}\right)$ and $\bigoplus_{j=1}^{t_{i}} S\left(-d_{j}^{(i)}\right)$. Thus, for each $0 \leq i \leq r+1$, we can represent each morphism φ_{i} as a $t_{i+1} \times t_{i}$-matrix

$$
A_{i}:=\left[\begin{array}{ccc}
g_{1,1}^{(i)} & \cdots & g_{1, t_{i}}^{(i)} \tag{3.1.2}\\
\vdots & & \vdots \\
g_{t_{i+1}, 1}^{(i)} & \cdots & g_{t_{i+1}, t_{i}}^{(i)}
\end{array}\right],
$$

where the (k, ℓ)-entry $g_{k, \ell}^{(i)} \in S$ is homogeneous of degree $\left(d_{\ell}^{(i)}-d_{k}^{(i+1)}\right)$. For the twisted sheaf $\mathcal{F}(n)$, by the resolution (3.1.1), we have an exact sequence of coherent $\mathcal{O}_{\mathbb{P}^{r}-\text { modules }}$
where each twisted morphism $\widetilde{\varphi_{i}(n)}$ is a morphism induced by $\varphi_{i}(n)$. Here $\varphi_{i}(n)$ denotes the morphism

$$
\begin{equation*}
\bigoplus_{j=1}^{t_{i+1}} S\left(n-d_{j}^{(i+1)}\right) \longrightarrow \bigoplus_{j=1}^{t_{i}} S\left(n-d_{j}^{(i)}\right) ; \mathbf{u} \mapsto \mathbf{u} \cdot A_{i} . \tag{3.1.4}
\end{equation*}
$$

Note that each $\varphi_{i}(n)$ is also represented by A_{i} as well as φ_{i} (but the graded S-modules of the domains and codomains of φ_{i} and $\varphi_{i}(n)$ are different if $\left.n \neq 0\right)$. The exact sequence (3.1.3) gives a projective resolution for the twisted sheaf $\mathcal{F}(n)$. With the projective resolution, we can compute cohomology groups $H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$ by Theorem 2.2.1.

Specifically, we compute the dimensions of the cohomology groups as follows: As in the previous section, put

$$
\begin{gather*}
\mathcal{G}_{i+1}:=\bigoplus_{j=1}^{t_{i+1}} \mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}^{(i+1)}\right), f_{i}:=\widetilde{\varphi_{i}(n)}, \tag{3.1.5}\\
\mathcal{K}_{i}:=\operatorname{Ker}\left(f_{i}\right) \text { for } 0 \leq i \leq r+1, \mathcal{K}_{-1}:=\mathcal{F} .
\end{gather*}
$$

Then we can apply Corollary 2.2.2 to compute $\operatorname{dim}_{K} H^{q}(\mathcal{F}(n))$. In fact, we have

$$
\begin{align*}
\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right) & =\operatorname{dim}_{K} \bigoplus_{j=1}^{t_{i}} H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}^{(i)}\right)\right) \tag{3.1.6}\\
& =\sum_{j=1}^{t_{i}} \operatorname{dim}_{K} H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}^{(i)}\right)\right) .
\end{align*}
$$

Moreover, for $d=d_{j}^{(i)}$, we have

$$
\operatorname{dim}_{K} H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}(n-d)\right)=\left\{\begin{array}{cl}
\binom{-1-n+d}{r} & \text { for } n-d \leq-r-1, \tag{3.1.7}\\
0 & \text { for } n-d>-r-1
\end{array}\right.
$$

by Corollary 2.1.2. Note that the morphism $H^{r}\left(f_{i}\right)$ can be represented by the matrix A_{i}. Since K-bases of $H^{r}\left(\mathcal{O}_{\mathbb{P}_{K}^{r}}\left(n-d_{j}^{(i)}\right)\right)$ for $1 \leq j \leq t_{i}$ can be obtained by Theorem 2.1.1 (3), it is possible to compute $\operatorname{rank} H^{r}\left(f_{r-q}\right)$ and $\operatorname{rank} H^{r}\left(f_{r-q+1}\right)$, and thus $\operatorname{dim}_{K} H^{q}(\mathcal{F}(n))$ can be computed. As a summary, once

$$
\begin{equation*}
t_{i}, d_{j}^{(i)} \text { and } A_{i}=\left(g_{k, \ell}^{(i)}\right)_{\substack{1 \leq k \leq t_{i+1} \\ 1 \leq \ell \leq t_{i}}} \text {, for } 1 \leq i \leq r+2 \text { and } 1 \leq j \leq t_{i} \tag{3.1.8}
\end{equation*}
$$

are determined, we can easily compute $\operatorname{dim}_{K} H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$.

3.2 Algorithm based on Maruyama's method

In this subsection, we present an algorithm to compute a basis of cohomology groups of coherent sheaves on the projective r-space \mathbb{P}_{K}^{r} over a field K. Before we give our algorithm, we first give an outline of our algorithm in order to make procedures of our algorithm clear. Our algorithm consists of some sub-procedures, which shall be explained precisely in Subsection 3.3.

3.2.1 Outline of our algorithm

Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space over a field K with the polynomial ring $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf of \mathbb{P}_{K}^{r}. For a coherent sheaf \mathcal{H} on \mathbb{P}_{K}^{r}, let $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ denote the q-th cohomology group of \mathcal{H}. To simplify the notations, as in Subsection 3.1, we denote $\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}$ and $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ by $\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}$ and $H^{q}(\mathcal{H})$, respectively.

Given a coherent sheaf \mathcal{F} on \mathbb{P}^{r} and an integer n, we give an algorithm based on Maruyama's method to compute a basis of the cohomology group $H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$. As in Subsection 3.1, let M denote a finitely generated graded S-module corresponding to \mathcal{F}. Our algorithm has the following two main procedures Steps A and B, and Step B consists of four sub-procedures (B-1)-(B-4):
Step A. Given a set of explicit S-generators of M, we first compute a (minimal projective) resolution of the form (3.1.1) for M. Specifically, we compute all elements of (3.1.8), which are determined from the resolution (3.1.1).

Step B. Given the elements of (3.1.8), we next compute a basis of $H^{q}(\mathcal{F}(n))$ for each $1 \leq q \leq r$. This step can be divided in the following four steps:
(B-1) Given the elements of (3.1.8), we compute a basis of $H^{r}\left(\mathcal{G}_{i}\right)$ for $r-q \leq i \leq r-q+2$ by Theorem 2.1.1 (3), where $H^{r}\left(\mathcal{G}_{i}\right)$ denotes the cohomology group of \mathcal{G}_{i} given in (3.1.5).
(B-2) From bases of $H^{r}\left(\mathcal{G}_{i}\right)$ for $r-q \leq i \leq r-q+2$ and A_{i} for $r-q \leq i \leq r-q+1$, we compute the representation matrices of the maps $H^{r}\left(f_{r-q}\right)$ and $H^{r}\left(f_{r-q+1}\right)$, where

$$
H^{r}\left(f_{i}\right): H^{r}\left(\mathcal{G}_{i+1}\right) \longrightarrow H^{r}\left(\mathcal{G}_{i}\right)
$$

is a K-linear map given by $v \mapsto v A_{i}$ for $i=r-q$ and $r-q+1$.
(B-3) We next compute bases of the K-vector spaces $\operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right)$ and $\operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$.
(B-4) Finally, we compute a basis of

$$
\operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right) \cong H^{q}(\mathcal{F}(n))
$$

In Step A, we utilize theory of Gröbner bases. For Step B, we utilize partition and sorting techniques in (B-1), and linear algebra techniques in (B-2)-(B-4). In particular, in (B-4), we utilize a linear algebra technique to extend a given basis of a vector space to a basis of a higher dimensional space, and to compute a basis of a quotient vector space $\operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$ over K.

Remark 3.2.1 In Step A, we compute a (minimal) free resolution for the input module. Several computational methods for free resolutions are proposed and implemented in computer algebra systems. Such computations for free resolutions can be done in exponential time in general. However, objects such as the cohomology groups should be determined by mathematical invariants of input structures. From this, in our complexity analysis of Subsection 3.5, we set such mathematical invariants obtained from the form of free resolutions as inputs.

3.2.2 Procedures in Step B

Computation of Step A is well-known in theory of Gröbner bases (see [3, Chapter 6] for details), and we skip Step A. Here we give an algorithm of Step B. We also describe an outline of sub-producers in Step B (details of the sub-procedures shall be described in Subsection 3.3).

Recall that we obtain a minimal free resolution of length $\ell=r+1$ for the graded S-module M in Step A. Then we assume that we have the following:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{t_{\ell+1}} S\left(-d_{j}^{(\ell)}\right) \xrightarrow{\varphi_{f}} \ldots \xrightarrow{\varphi_{1}} \bigoplus_{j=1}^{t_{1}} S\left(-d_{j}^{(1)}\right) \xrightarrow{\varphi_{0}} M \rightarrow 0 . \tag{3.2.1}
\end{equation*}
$$

Put

$$
\begin{align*}
& M_{i}:=\left\{\begin{array}{cc}
\bigoplus_{j=1}^{t_{i}} S\left(-d_{j}^{(i)}\right) & (0 \leq i \leq \ell+1), \\
M & (i=0),
\end{array} \quad t:=\left[t_{1}, \ldots, t_{\ell+1}\right],\right. \tag{3.2.2}\\
& d^{(i)}:=\left[d_{1}^{(i)}, \ldots, d_{t_{i}}^{(i)}\right] \\
&(1 \leq i \leq \ell+1), \quad d:=\left[d^{(1)}, \ldots, d^{(\ell+1)}\right] .
\end{align*}
$$

Recall that φ_{i} is represented by the matrix A_{i} given in (3.1.2) for each $0 \leq i \leq \ell$. In Step A, all entries $g_{k, \ell}^{(i)}$ of A_{i} are also determined explicitly.

In Algorithm 3.2.1, we show our algorithm to compute a basis of the cohomology group $H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$. In our algorithm, we take $M, F(M):=\left(\left(M_{i}, \varphi_{i}, t_{i}, d^{(i)}, A_{i}\right)\right)_{0 \leq i \leq \ell+1}, q$ and $n \in \mathbb{Z}$ as inputs. In Subsection 3.3, we shall prove the correctness of Algorithm 3.2.1 to output a basis of $H^{q}(\mathcal{F}(n))$.

Algorithm 3.2.1 includes several sub-procedures as subroutines. In the following, we describe each of the sub-procedures (detailed description of the sub-procedures shall be given in Subsection 3.3):
(1) CohomologyOfStructureSheafSum: Given n, t and $d=\left[d_{1}, \ldots, d_{t}\right]$, this sub-procedure computes a basis of $H^{r}(\mathcal{G})$, where $\mathcal{G}:=\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)$. In Step (B-1) of Algorithm 3.2.1, we apply this sub-procedure to compute a basis of $H^{r}\left(\mathcal{G}_{i}\right)$ for $r-q \leq i \leq r-q+2$, where \mathcal{G}_{i} is defined by (3.1.5).
(2) RepresentationMatrix: Let φ be a homomorphism defined by

$$
\begin{equation*}
\varphi: \bigoplus_{j=1}^{t} S\left(m_{j}\right) \longrightarrow \bigoplus_{j=1}^{t^{\prime}} S\left(m_{j}^{\prime}\right) ; \mathbf{u} \mapsto \mathbf{u} \cdot A \tag{3.2.3}
\end{equation*}
$$

where A is a $\left(t \times t^{\prime}\right)$ matrix such that the (k, ℓ)-entry $g_{k, \ell}$ of the matrix A is a homogeneous polynomial of degree $\left(m_{\ell}^{\prime}-m_{k}\right)$ in S for each k and ℓ. Let

$$
\begin{equation*}
\mathcal{G}:=\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right) \text { and } \mathcal{G}^{\prime}:=\bigoplus_{j=1}^{t^{\prime}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{\prime}\right) \tag{3.2.4}
\end{equation*}
$$

denote the coherent sheaves associated with $\bigoplus_{j=1}^{t} S\left(m_{j}\right)$ and $\bigoplus_{j=1}^{t^{\prime}} S\left(m_{j}^{\prime}\right)$, respectively. Given φ and bases of $H^{r}(\mathcal{G})$ and $H^{r}\left(\mathcal{G}^{\prime}\right)$, this sub-procedure computes the representation matrix of the induced morphism

$$
\begin{equation*}
H^{r}(\widetilde{\varphi}): H^{r}\left(\mathbb{P}^{r}, \mathcal{G}\right) \longrightarrow H^{r}\left(\mathbb{P}^{r}, \mathcal{G}^{\prime}\right) ; w \mapsto w \cdot A \tag{3.2.5}
\end{equation*}
$$

In our implementation for this sub-procedure, we minimize the representation matrix for efficiency. We use this sub-procedure in Step (B-2) of Algorithm 3.2.1. This sub-procedure calls the following two functions:

- Action: For each element v of a basis of $H^{r}(\mathcal{G})$, this function computes the element $H^{r}(\widetilde{\varphi})(v) \in H^{r}\left(\mathcal{G}^{\prime}\right)$.
- ColumnOfRepresentationMatrix: This function computes a column of a representation matrix of $H^{r}(\widetilde{\varphi})$.
(3) QuatientSpaceBasisMatrix: Given a K-vector space V with a (row) basis matrix A and its subspace $W \subseteq V$ with a (row) basis matrix B, this sub-procedure computes a basis matrix C of the quotient vector space V / W. We use this sub-procedure in Step (B-4) of Algorithm 3.2.1.

In Table 1, we give an outline of our algorithm (Algorithm 3.2.1) to compute a basis $H^{q}(\mathcal{F}(n))$ for $1 \leq q \leq r$.

3.3 Detailed description on sub-procedures in Step B

In this subsection, we give a precise description on the sub-procedures given in Subsection 3.2.2. Recall that the following sub-procedures are used as subroutines in Algorithm 3.2.1:
(1) CohomologyOfStructureSheafSum,
(2) RepresentationMatrix,

- Action,
- ColumnOfRepresentationMatrix, and
(3) QuatientSpaceBasisMatrix.

Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. Let $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ denote the q-th cohomology group of a coherent sheaf \mathcal{H} on \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P}^{r}}$, respectively, and denote $H^{q}\left(\mathbb{P}^{r}, \mathcal{H}\right)$ by $H^{q}(\mathcal{H})$ for a coherent sheaf \mathcal{H} on \mathbb{P}^{r}.

Table 1: Outline of our algorithm (Algorithm 3.2.1) of Maruyama's method to compute $H^{q}(\mathcal{F}(n))$ for $1 \leq \underline{q \leq r}$

Procedures		Techniques	
Step A	Compute a (minimal) free resolution of M	Gröbner basis	
Step B	(B-1)	Compute a basis of $H^{r}\left(\mathcal{G}_{i}\right)$ for each $r-q \leq i \leq r-q+2$ (CohomologyOfStructureSheafSum).	Partition, Sorting
	(B-2)	Compute representation matrices of $H^{r}\left(f_{r-q}\right)$ and $H^{r}\left(f_{r-q+1}\right)$ (RepresentationMatrix, ColumnOfRepresentationMatrix and Action).	Linear algebra
	(B-3)	Compute bases of Ker $\left(H^{r}\left(f_{r-q}\right)\right)$ and Im $\left(H^{r}\left(f_{r-q+1}\right)\right)$ (Solve a linear system and compute an echelon form of a matrix)	

3.3.1 Description on CohomologyOfStructureSheafSum

Recall that given n, t and $d=\left[d_{1}, \ldots, d_{t}\right]$, this sub-procedure computes a basis of the K-vector space $H^{r}(\mathcal{G})$, where $\mathcal{G}:=\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)$. In Algorithm 3.3.1, we show an algorithm for this sub-procedure.

Proposition 3.3.1 Given n, t and $d=\left[d_{1}, \ldots, d_{t}\right]$, Algorithm 3.3.1 outputs a basis of the K-vector space $H^{r}(\mathcal{G})$, where $\mathcal{G}:=\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)$. In particular, if $H^{r}(\mathcal{G})=0$, Algorithm 3.3.1 outputs \emptyset.

Proof. It is sufficient to consider the case of $t \geq 1$. We have $H^{r}(\mathcal{G})=\bigoplus_{j=1}^{t} H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right)$. For an element $v \in H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right)$, we denote by $\iota_{j}(v)$ an element $(0, \ldots, 0, v, 0, \ldots, 0)$ in $H^{r}(\mathcal{G})$, where we let ι_{j} denote the embedding

$$
\begin{equation*}
\iota_{j}: H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right) \hookrightarrow H^{r}(\mathcal{G})=\bigoplus_{j=1}^{t} H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right) \tag{3.3.1}
\end{equation*}
$$

for $1 \leq j \leq t$. Put $R_{j}:=\operatorname{Im}\left(\iota_{j}\right)=\left\{\iota_{j}(v) ; v \in H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right)\right\}$ for $1 \leq j \leq t$. For each $1 \leq j \leq t$, the set

$$
\begin{equation*}
\left\{X_{0}^{l_{0}} \cdots X_{r}^{l_{r}} ; l_{i}<0 \text { for } 0 \leq i \leq r \text {, and } l_{0}+\cdots+l_{r}=n-d_{j}\right\} \tag{3.3.2}
\end{equation*}
$$

is a basis of the K-vector space $H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right)$ if $n-d_{j} \leq-r-1$ by Theorem 2.1.1 (3). Thus

$$
\begin{equation*}
\left\{\iota_{j}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right) ; l_{i}<0 \text { for } 0 \leq i \leq r, \text { and } l_{0}+\cdots+l_{r}=n-d_{j}\right\} \tag{3.3.3}
\end{equation*}
$$

```
Algorithm 3.2.1 CohomologyBasis( \(M, F(M), q, n\) )
Input: A finitely generated graded \(S\)-module \(M\), the minimal free resolution \(F(M):=\)
    \(\left(\left(M_{i}, \varphi_{i}, t_{i}, d^{(i)}, A_{i}\right)\right)_{0 \leq i \leq r+2}\) of \(M\), an integer \(q \in\{1, \ldots, r\}\) and \(n \in \mathbb{Z}\)
Output: A basis of \(H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{F}(n)\right)\), where \(\mathcal{F}:=\widetilde{M}\)
    /*Step A has been finished*/
    \(q^{\prime} \leftarrow r-q+1\)
    /*Step (B-1)*/
    for \(i=q^{\prime}-1\) to \(q^{\prime}+1\) do
        \(\mathcal{V}_{i} \leftarrow\) CohomologyOfStructureSheafSum \(\left(t_{i}, d^{(i)}, n\right) / *\) Basis of \(H^{r}\left(\mathcal{G}_{i}\right)^{*} /\)
        \(k_{i} \leftarrow \#\left(\mathcal{V}_{i}\right) /{ }^{\operatorname{dim}_{K}} H^{r}\left(\mathcal{G}_{i}\right)^{* /}\)
    end for
    if \(\mathcal{V}_{q^{\prime}}=\emptyset\) then
        return \(\emptyset\)
    else
        \(/ *\) Case of \(H^{r}\left(\mathcal{G}_{q^{\prime}}\right) \neq 0^{*} /\)
        \(\left\{v_{1}, \ldots, v_{k_{q^{\prime}}}\right\} \leftarrow \mathcal{V}_{q^{\prime}}\)
        /*Step (B-2) \({ }^{*} /\)
        for \(i=q^{\prime}-1\) to \(q^{\prime}\) do
            \(R_{i} \leftarrow\) RepresentationMatrix \(\left(\mathcal{V}_{i+1}, \mathcal{V}_{i}, A_{i}\right) / *\) Representation matrix of \(H^{r}\left(\widetilde{\varphi_{i}}\right)^{*} /\)
        end for
        /*Step (B-3)*/
        \(/ *\) Solve the linear system \(\mathbf{v} \cdot{ }^{t} R_{q^{\prime}-1}=\mathbf{0}\) over \(K^{*} /\)
        \(B_{\text {Ker }} \leftarrow\) (basis matrix of \(\left\{\mathbf{v} \in K^{k_{q^{\prime}}} ; \mathbf{v} \cdot{ }^{t} R_{q^{\prime}-1}=\mathbf{0}\right\} \subseteq K^{k_{q^{\prime}}}\) )
        \(/ *\) Compute the reduced row echelon form of the matrix \(R_{q^{\prime}}{ }^{*} /\)
        \(B_{\mathrm{Im}} \leftarrow\left(\right.\) basis matrix of \(\left.\left\{\mathbf{u} \cdot{ }^{t} R_{q^{\prime}} ; \mathbf{u} \in K^{k_{q^{\prime}+1}}\right\} \subseteq K^{k_{q^{\prime}}}\right)\)
        \(/^{*}\) Step (B-4)*/
        \(B_{\text {coh }} \leftarrow\) QuatientSpaceBasisMatrix \(\left(B_{\text {Ker }}, B_{\text {Im }}\right)\)
        return (the set of the row vectors of the matrix \(B_{\text {coh }} \cdot{ }^{t}\left[v_{1}, \ldots, v_{k_{q^{\prime}}}\right]\) )
    end if
```

is a basis of the K-vector space R_{j} if $n-d_{j} \leq-r-1$. We also note that $H^{r}\left(\mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\right)=0$ if $n-d_{j}>-r-1$. Thus the output basis \mathcal{V} of Algorithm 3.3.1 is a basis of the K-vector space $H^{r}(\mathcal{G})$ if there exists an index j such that $n-d_{j} \leq r-1$. In the case of $n-d_{j}>r-1$ for all $1 \leq j \leq t$, we have $H^{r}(\mathcal{G})=0$. In this case, Algorithm 3.3.1 outputs \emptyset.

3.3.2 Description on RepresentationMatrix

Let φ be a homomorphism defined by (3.2.3). Let \mathcal{G} and \mathcal{G}^{\prime} be coherent sheaves as in (3.2.4). Given φ and bases of $H^{r}(\mathcal{G})$ and $H^{r}\left(\mathcal{G}^{\prime}\right)$, this sub-procedure computes the representation matrix of $H^{r}(\widetilde{\varphi})$, defined in (3.2.5). In Algorithm 3.3.2, we give an algorithm for this sub-procedure.

Algorithm 3.3.2 calls Action and ColumnOfRepresentationMatrix as subroutines. In the following, let us first describe each function:

```
Algorithm 3.3.1 CohomologyOfStructureSheafSum \((t, d, n)\)
Input: An integer \(t \in \mathbb{Z}_{\geq 0}\), a sequence \(d=\left[d_{1}, \ldots, d_{t}\right]\) of integers, and \(n \in \mathbb{Z}\)
Output: A basis of the \(K\)-vector space \(H^{r}\left(\mathbb{P}^{r}, \mathcal{G}\right)\), or \(\emptyset\), where \(\mathcal{G}:=\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(n-d_{j}\right)\)
    \(\mathcal{V} \leftarrow \emptyset\)
    if \(t \geq 1\) then
        for \(j=1\) to \(t\) do
            if \(n-d_{j} \leq-r-1\) then
                \(\mathcal{V}_{j} \leftarrow\left\{\iota_{j}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right) ; l_{i}<0\right.\) for \(0 \leq i \leq r\), and \(\left.l_{0}+\cdots+l_{r}=n-d_{j}\right\}\)
                \(\mathcal{V} \leftarrow \mathcal{V} \cup \mathcal{V}_{j}\)
                end if
        end for
    end if
    return \(\mathcal{V}\)
```

```
Algorithm 3.3.2 RepresentationMatrix \(\left(\mathcal{V}, \mathcal{V}^{\prime}, A\right)\)
Input: Ordered bases \(\mathcal{V}=\left\{v_{1}, \ldots, v_{s}\right\}\) and \(\mathcal{V}^{\prime}=\left\{v_{1}^{\prime}, \ldots, v_{s^{\prime}}^{\prime}\right\}\) of the \(K\)-vector spaces
    \(H^{r}\left(\bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)\) and \(H^{r}\left(\bigoplus_{j=1}^{t^{\prime}} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{\prime}\right)\right)\), respectively, and a \(\left(t \times t^{\prime}\right)\) matrix \(A\) represent-
    ing a given homomorphism \(\varphi: \bigoplus_{j=1}^{t} S\left(m_{j}\right) \rightarrow \bigoplus_{j=1}^{t^{\prime}} S\left(m_{j}^{\prime}\right)\)
Output: The \(\left(s^{\prime} \times s\right)\) matrix \(R\) such that \(\left[H^{r}(\widetilde{\varphi})\left(v_{1}\right), \ldots, H^{r}(\widetilde{\varphi})\left(v_{s}\right)\right]=\left[v_{1}^{\prime}, \ldots, v_{s^{\prime}}^{\prime}\right] \cdot R\)
    \(R \leftarrow\left(\right.\) the \(\left(s^{\prime} \times s\right)\) zero matrix over \(\left.K\right)\)
    for \(i=1\) to \(s\) do
        \(\operatorname{Im}_{i} \leftarrow \operatorname{Action}\left(v_{i}, A\right) / *\) Compute \(H^{r}(\widetilde{\varphi})\left(v_{i}\right)^{*} /\)
        \(\mathrm{Cols}_{i} \leftarrow\) ColumnOfRepresentationMatrix \(\left(\operatorname{Im}_{i}, \mathcal{V}^{\prime}\right) / *\) Compute the \(i\)-th column of \(R^{*} /\)
        Replace the \(i\)-th column of \(R\) by \({ }^{t}\left(\operatorname{Cols}_{i}\right)\)
    end for
    return \(R\)
```

Description on Action: Recall that the function Action computes the element $H^{r}(\widetilde{\varphi})(v) \in$ $H^{r}\left(\mathcal{G}^{\prime}\right)$ for each element v of a basis of $H^{r}(\mathcal{G})$. In Algorithm 3.3.3, we give an algorithm for this function.

Proposition 3.3.2 Let φ be a graded homomorphism of degree zero of free S-modules defined by (3.2.3). Fix $1 \leq i \leq t$, and let $\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)$ be an element of a basis of the K-vector space $H^{r}\left(\mathbb{P}^{r}, \bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)$, where ι_{i} is defined by (3.3.1). Let $H^{r}(\widetilde{\varphi})$ denote the K-linear map given in (3.2.5). For $1 \leq j \leq t^{\prime}$, let h_{j} denote the j-th entry of $H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}^{l_{0}} \cdots X_{r}^{l_{r}}\right)\right)$, namely,

$$
H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}^{l_{0}} \cdots X_{r}^{l_{r}}\right)\right)=\left[h_{1}, \ldots, h_{t^{\prime}}\right] .
$$

Then Algorithm 3.3.3 outputs the set

$$
\left\{\iota_{j}\left(h_{j, k}\right) ; 1 \leq j \leq t^{\prime}, h_{j, k} \in\left\{\text { term of } h_{j}\right\}\right\}
$$

with $\sum_{j=1}^{t^{\prime}} \sum_{k} \iota_{j}\left(h_{j, k}\right)=H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\right)$.

```
Algorithm 3.3.3 Action \(\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right), A\right)\)
Input: An element \(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\) of a basis of the \(K\)-vector space \(H^{r}\left(\mathbb{P}^{r}, \bigoplus_{i=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)\) and
    a \(\left(t \times t^{\prime}\right)\) matrix \(A\) representing a given homomorphism \(\varphi: \bigoplus_{j=1}^{t} S\left(m_{j}\right) \rightarrow \bigoplus_{j=1}^{t^{\prime}} S\left(m_{j}^{\prime}\right)\)
Output: The set \(\left\{\iota_{j}\left(h_{j, k}\right) ; 1 \leq j \leq t^{\prime}, h_{j, k} \in\left\{\right.\right.\) term of \(\left.\left.h_{j}\right\}\right\}\) or \(\emptyset\), where each \(h_{j}\) is the \(j\)-th entry
    of the vector \(H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\right)\)
    \(\operatorname{Im} \leftarrow \emptyset\)
    for \(j=1\) to \(t^{\prime}\) do
        \(g_{i, j} \leftarrow(\) the \((i, j)\)-entry of \(A)\)
        \(N_{i, j} \leftarrow\) (the number of the terms of \(\left.g_{i, j}\right) /{ }^{*} g_{i, j}\) is a homogeneous polynomial \({ }^{*} /\)
        if \(N_{i, j} \neq 0\) then
            \(T \leftarrow\) (the (lexicographical) ordered set of the terms of \(g_{i, j}\) )
            for \(k=\left(k_{0}, \ldots, k_{r}\right) \in T\) do
            \(h_{j, k} \leftarrow 1_{K}\)
            \(a_{k} \leftarrow\) (the coefficient of \(X_{0}^{k_{0}} \cdots X_{r}^{k_{r}}\) in \(\left.g_{i, j}\right)\)
            \(\operatorname{break}\left(i^{\prime}\right) \leftarrow 0\)
            for \(i^{\prime}=0\) to \(r\) do
                if \(l_{i^{\prime}}+k_{i^{\prime}} \leq-1\) then
                        \(h_{j, k} \leftarrow h_{j, k} \cdot X_{i^{\prime}}^{\left(l^{\prime}+k_{i^{\prime}}\right)}\)
                    else
                            \(\operatorname{break}\left(i^{\prime}\right) \leftarrow 1\)
                    break \(i / *\) Means \(a_{k} X_{0}{ }^{k_{0}+l_{0}} \cdots X_{r}{ }^{k_{r}+l_{r}}=0\) in \(H^{r}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}^{\prime}\right)\right)^{*} /\)
                    end if
            end for
            if \(\operatorname{break}\left(i^{\prime}\right) \neq 0\) then
                \(h_{j, k} \leftarrow a_{k} \cdot h_{j, k}\)
                \(\operatorname{Im} \leftarrow \operatorname{Im} \cup\left\{\iota_{j}\left(h_{j, k}\right)\right\}\)
            end if
            end for
        end if
    end for
    return \(\operatorname{Im}\)
```

Proof. Let $A=\left(g_{i, j}\right)_{i, j}$ denote the representation matrix of φ defined in (3.2.3). Note that each $g_{i, j}$ is a homogeneous polynomial in S. We denote by $N_{i, j}$ the number of the terms of each $g_{i, j}$. Suppose $N_{i, j} \geq 1$ (the case $N_{i, j}$ is trivial). Then we can write

$$
g_{i, j}=\sum a_{k} X_{0}^{k_{0}} \cdots X_{r}^{k_{r}} \in S
$$

for some $a_{k} \in K \backslash\{0\}$ with $k=\left(k_{0}, \ldots, k_{r}\right) \in\left(\mathbb{Z}_{\geq 0}\right)^{r+1}$. Let T be the lexicographical ordered set consisting of the terms of $g_{i, j}$. The j-th entry of the vector $H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\right)$ is

$$
X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}} g_{i, j}=\sum a_{k} X_{0}{ }^{l_{0}+k_{0}} \cdots X_{r}^{l_{r}+k_{r}} .
$$

If $l_{i^{\prime}}+k_{i^{\prime}} \geq 0$ for some $0 \leq i^{\prime} \leq r$, then the term $a_{k} X_{0}{ }^{l_{0}+k_{0}} \cdots X_{r}^{l_{r}+k_{r}}$ can be regarded as 0 via the isomorphism (2.1.1) in Theorem 2.1.1 (3). Thus $\iota_{i}\left(h_{j, k}\right)$ is equal to $a_{k} X_{0}^{l_{0}+k_{0}} \cdots X_{r}^{l_{r}+k_{r}}$ if
$l_{i^{\prime}}+k_{i^{\prime}} \leq-1$ for all i^{\prime}. It also follows that $\left\{\iota_{i}\left(h_{j, k}\right)\right\}_{k}$ is the set of the terms of the j-th entry of the vector $H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\right)$ for each $1 \leq j \leq t^{\prime}$. Then Proposition 3.3.2 holds.

Description on ColumnOfRepresentationMatrix: Recall that this function computes a column of a representation matrix of $H^{r}(\widetilde{\varphi})$. In Algorithm 3.3.4, we give an algorithm for this function.

```
Algorithm 3.3.4 ColumnOfRepresentationMatrix (Im, \(\mathcal{W}\) )
Input: A finite subset \(\operatorname{Im}=\left\{\iota_{i(k)}\left(a_{k} X_{0}^{k_{0}} \cdots X_{r}^{k_{r}}\right) ; k_{i}<0 \text { for } 0 \leq i \leq r \text {, and } \sum_{i} k_{i}=m_{i(k)}\right\}_{k}\) indexed
    by \(k=\left(k_{0}, \ldots, k_{r}\right)\) 's of the \(K\)-vector space \(W:=H^{r}\left(\mathbb{P}^{r}, \bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)\) and its basis \(\mathcal{W}=\)
    \(\left\{\iota_{j}\left(X_{0}{ }^{l_{0}} \cdots X_{r}^{l_{r}}\right) ; 1 \leq j \leq t, l_{i}<0\right.\) for \(0 \leq i \leq r\), and \(\left.l_{0}+\cdots+l_{r}=m_{j}\right\}\), where \(t \in \mathbb{Z}_{>0}\) and \(m_{j}\)
    \((1 \leq j \leq t)\) are given
Output: The vector \(\left[b_{1}, \ldots, b_{s}\right] \in K^{s}\) such that \(\sum_{h \in \operatorname{Im}} h=\sum_{j=1}^{s} b_{j} w_{j}\), where \(s=\#(\mathcal{W})\) and
    \(\mathcal{W}=\left\{w_{1}, \ldots, w_{s}\right\}\)
    \(\mathbf{b} \leftarrow\left[0_{K}, \ldots, 0_{K}\right] \in K^{s}\)
    \(N_{\mathrm{Im}} \leftarrow\) (the (ordered) finite set of the indexes \(k=\left(k_{0}, \ldots, k_{r}\right)\) of Im)
    for \(k=\left(k_{0}, \ldots, k_{r}\right) \in N_{\operatorname{Im}}\) do
        \(\iota_{i(k)}\left(a_{k} X_{0}{ }^{k_{0}} \cdots X_{r}{ }^{k_{r}}\right) \leftarrow(\) the element of Im corresponding to the index \(k\) )
        \(\mathcal{W}_{k} \leftarrow \mathcal{W}\)
        \(\left\{\iota_{i(j)}\left(X_{0}{ }^{j_{0}} \cdots X_{r}{ }^{j_{r}}\right)\right\}_{j} \leftarrow \mathcal{W}_{k}\)
        Ind \(\left(\mathcal{W}_{k}\right) \leftarrow\) (the set of the indexes \(j=\left(j_{0}, \ldots, j_{r}\right)\) of \(\left.\mathcal{W}_{k}\right)\)
        for \(j=\left(j_{0}, \ldots, j_{r}\right) \in \operatorname{Ind}\left(\mathcal{W}_{k}\right)\) do
            \(\iota_{i(j)}\left(X_{0}{ }^{j_{0}} \cdots X_{r}{ }^{j_{r}}\right) \leftarrow\left(\right.\) the element of \(\mathcal{W}_{k}\) corresponding to the index \(\left.j\right)\)
            if \(\left(k_{0}, \ldots, k_{r}, i(k)\right)=\left(j_{0}, \ldots, j_{r}, i(j)\right)\) then
                Replace by \(a_{k}\) the entry of \(\mathbf{b}\) corresponding to \(\iota_{i(j)}\left(X_{0}{ }^{j_{0}} \cdots X_{r}{ }^{j_{r}}\right)\)
                \(\mathcal{W}_{k} \leftarrow \mathcal{W}_{k} \backslash\left\{\iota_{i(j)}\left(X_{0}{ }^{j_{0}} \cdots X_{r}{ }^{j_{r}}\right)\right\}\)
            break \(j\)
            end if
        end for
    end for
    return b
```

Proposition 3.3.3 Let

$$
\operatorname{Im}=\left\{\iota_{i(k)}\left(a_{k} X_{0}^{k_{0}} \cdots X_{r}^{k_{r}}\right) ; k_{i}<0 \text { for } 0 \leq i \leq r, \text { and } \sum_{i} k_{i}=m_{i(k)}\right\}_{k}
$$

be a (ordered) finite subset indexed by $k=\left(k_{0}, \ldots, k_{r}\right)$'s of the K-vector space $H^{r}\left(\mathbb{P}^{r}, \bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P} r}\left(m_{j}\right)\right)$ with the basis

$$
\mathcal{W}=\left\{\iota_{j}\left(X_{0}{ }^{l_{0}} \cdots X_{r}^{l_{r}}\right) ; 1 \leq j \leq t, l_{i}<0 \text { for } 0 \leq i \leq r, \text { and } l_{0}+\cdots+l_{r}=m_{j}\right\},
$$

where ι_{j} is defined by (3.3.1). We put $s:=\#(\mathcal{W})$. Let $\left\{w_{1}, \ldots, w_{s}\right\}$ be the (ordered) set of all elements of \mathcal{W}. Then Algorithm 3.3.4 outputs the vector $\left[b_{1}, \ldots, b_{s}\right] \in K^{s}$ such that $\sum_{h \in \operatorname{Im}} h=$ $\sum_{j=1}^{s} b_{j} w_{j}$.

Proof. The iteration starts with some $k=\left(k_{0}, \ldots, k_{r}\right) \in N_{\mathrm{Im}}$, where N_{Im} denotes the (ordered) finite set of the indexes $k=\left(k_{0}, \ldots, k_{r}\right)$ of Im. We set $\mathcal{W}_{k}:=\mathcal{W}$. Since \mathcal{W}_{k} is a basis of the K vector space $H^{r}\left(\mathbb{P}^{r}, \bigoplus_{j=1}^{t} \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)$, there exists unique $w_{j\left(k^{\prime}\right)} \in \mathcal{W}$ such that $\iota_{i(k)}\left(X_{0}{ }^{k_{0}} \cdots X_{0}{ }^{k_{r}}\right)=$ $w_{j\left(k^{\prime}\right)}$. Then we set $b_{j\left(k^{\prime}\right)}:=a_{k}$. Note that $\iota_{i(l)}\left(X_{0}{ }^{l_{0}} \cdots X_{0}{ }^{l_{r}}\right) \neq w_{j\left(k^{\prime}\right)}$ for each $l \neq k$. Thus we obtain $b_{j\left(k^{\prime}\right)} \in K$ such that $\iota_{i(k)}\left(a_{k} X_{0}{ }^{k_{0}} \cdots X_{0}{ }^{k_{r}}\right)=b_{j\left(k^{\prime}\right)} w_{j\left(k^{\prime}\right)}$ for each $k \in N_{\mathrm{Im}}$. As a result, we have $\sum_{h \in \operatorname{Im}} h=\sum_{j=1}^{s} b_{j} w_{j}$, where we set $b_{j}:=0$ if $\iota_{i(k)}\left(a_{k} X_{0}{ }^{k_{0}} \cdots X_{0}{ }^{k_{r}}\right) \neq b_{j} w_{j}$ for each $k \in N_{\text {Im }}$.

Correctness of RepresentationMatrix: Here we prove the correctness of the function RepresentationMatrix
(Algorithm 3.3.2).
Proposition 3.3.4 Let φ be a homomorphism defined by (3.2.3). Let \mathcal{G} and \mathcal{G}^{\prime} be coherent sheaves as in (3.2.4). Given φ and bases \mathcal{V} and \mathcal{W} of $H^{r}(\mathcal{G})$ and $H^{r}\left(\mathcal{G}^{\prime}\right)$, Algorithm 3.3.2 outputs the representation matrix of $H^{r}(\widetilde{\varphi})$, defined in (3.2.5) via the bases.

Proof. Each element $v \in \mathcal{V}$ can be written as $v=\iota_{i}\left(X_{0}{ }^{l_{0}} \ldots X_{r}{ }^{l_{r}}\right)$ for some i and l_{0}, \ldots, l_{r}. By Proposition 3.3.2, Algorithm 3.3.3 outputs the set

$$
\left\{\iota_{j}\left(h_{j, k}\right) ; 1 \leq j \leq t^{\prime}, h_{j, k} \in\left\{\text { term of } h_{j}\right\}\right\}
$$

such that $\sum_{j=1}^{t^{\prime}} \sum_{k} \iota_{j}\left(h_{j, k}\right)=H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0} l_{0} \cdots X_{r}{ }^{l_{r}}\right)\right)$, where each h_{j} is an element in $H^{r}\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}\left(m_{j}\right)\right)$. Put $s:=\#(\mathcal{W})$. By Proposition 3.3.3, Algorithm 3.3.4 outputs the vector $\left[b_{1}, \ldots, b_{s}\right] \in K^{s}$ such that $\sum_{j=1}^{t^{\prime}} \sum_{k} \iota_{j}\left(h_{j, k}\right)=\sum_{j=1}^{s} b_{j} w_{j}$, and thus we have $H^{r}(\widetilde{\varphi})\left(\iota_{i}\left(X_{0}{ }^{l_{0}} \cdots X_{r}{ }^{l_{r}}\right)\right)=\sum_{j=1}^{s} b_{j} w_{j}$. Consequently Algorithm 3.3.2 outputs the representation matrix of $H^{r}(\widetilde{\varphi})$ via \mathcal{V} and \mathcal{W}.

3.3.3 Description on QuotientSpaceBasisMatrix

Recall that given a K-vector space V with a (row) basis matrix A and its subspace $W \subseteq V$ with a (row) basis matrix B, this sub-procedure computes a basis matrix C of the quotient vector space V / W. In Algorithm 3.3.5, we show an algorithm for this sub-procedure.

Proposition 3.3.5 Given a K-vector space V with a (row) basis matrix A and its subspace $W \subseteq V$ with a (row) basis matrix B, Algorithm 3.3.5 outputs a basis matrix of the K-quotient space V / W.

Proof. We denote by $\mathbf{a}_{i}=\left[a_{i, 1}, \ldots, a_{i, m}\right]$ and $\mathbf{b}_{j}=\left[b_{j, 1}, \ldots, b_{j, m}\right]$ the i-th row vector of the matrix A and the j-th row vector of the matrix B, respectively. Since the K-vector space W is a subspace of the K-vector space V, there exist unique $u_{1, j}, \ldots, u_{m_{1}, j} \in K$ such that $\mathbf{b}_{j}=u_{1, j} \mathbf{a}_{1}+\cdots+u_{m_{1}, j} \mathbf{a}_{m_{1}}$ for each $1 \leq j \leq m_{2}$. Note that $\mathbf{u}_{j}:=\left[u_{1, j}, \ldots, u_{m_{1}, j}\right]$ is the j-th row of U in Algorithm 3.3.5 for each $1 \leq j \leq m_{2}$, where U is the ($m_{2} \times m_{1}$) matrix such that $B=U \cdot A$. Let U^{\prime} be a basis matrix of $K^{m_{1}}$ obtained by extending the basis of the row vectors of the matrix U. We denote by $\mathbf{u}_{j}^{\prime}=\left[u_{1, j}^{\prime}, \ldots, u_{m_{1}, j}^{\prime}\right]$ the j-th row vector of the matrix U^{\prime} for each $m_{2}+1 \leq j \leq m_{1}$. Let $U^{\prime \prime}$ be the $\left(\left(m_{1}-m_{2}\right) \times m_{1}\right)$-matrix such that its j-th row vector is $\mathbf{u}_{j+m_{2}}^{\prime}$ for each $1 \leq j \leq m_{1}-m_{2}$. The $m_{1}-m_{2}$ elements $u_{1, j}^{\prime} \mathbf{a}_{1}+\cdots+u_{m_{1}, j}^{\prime} \mathbf{a}_{m_{1}} \in V$ for $m_{2}+1 \leq j \leq m_{1}$ are linearly independent since $U^{\prime \prime}$ is a full-rank matrix. In addition, the dimension of the K-vector space V / W is precisely equal to $m_{1}-m_{2}$. Thus the matrix $U^{\prime \prime} \cdot A$ can be regarded as a basis matrix of the K-quotient space V / W.

```
Algorithm 3.3.5 QuotientSpaceBasisMatrix \((A, B)\)
Input: A basis matrix \(A\) of a \(K\)-vector subspace \(V\) of \(K^{m}\) and a basis matrix \(B\) of a \(K\)-vector
    subspace \(W \subseteq V\) of \(K^{m}\)
Output: A basis matrix \(C\) of the \(K\)-quotient space \(V / W\)
    if \(B\) is a zero matrix then
        return \(A\)
    else
        \(m_{1} \leftarrow\) (the number of the rows of \(A\) (the dimension of \(\left.V\right)\) )
        \(m_{2} \leftarrow\) (the number of the rows of \(B\) (the dimension of \(W\) ))
        \(U \leftarrow\left(\right.\) the \(\left(m_{2} \times m_{1}\right)\) matrix such that \(\left.B=U \cdot A\right)\)
        \(U^{\prime} \leftarrow\) (a basis matrix of \(K^{m_{1}}\) obtained by extending the basis of the row vectors of \(U\) )
        \(U^{\prime \prime} \leftarrow U^{\prime}\)
        for \(j=1\) to \(m_{2}\) do
            \(\mathbf{b}_{j} \leftarrow\) (the \(j\)-th row vector of \(U\) )
            Remove \(\mathbf{b}_{j}\) from \(U^{\prime \prime}\) and update \(U^{\prime \prime}\)
        end for
        return \(U^{\prime \prime} \cdot A\)
    end if
```


3.4 Correctness of Algorithm 3.2.1

In Subsection 3.3, we gave a precise description on the sub-procedures of Algorithm 3.2.1. In this subsection, we prove the correctness of Algorithm 3.2.1.

Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space over a field K with the polynomial ring $S=$ $K\left[X_{0}, \ldots, X_{r}\right]$. Let $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ be the structure sheaf of \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P} r}$, respectively, and denote $H^{q}\left(\mathbb{P}^{r}, \mathcal{H}\right)$ by $H^{q}(\mathcal{H})$ for a coherent sheaf \mathcal{H} on \mathbb{P}^{r}. Recall that for a given coherent sheaf \mathcal{F}, integers $q \geq 1$ and n, our aim is to compute a basis of the K-vector space $H^{q}(\mathcal{F}(n))$. As in the previous subsection, let M denote a finitely generated graded S-module corresponding to \mathcal{F}. Recall that M has a (minimal) free resolution of length $\ell=r+1$ of the form (3.1.1). We also recall that the input parameters of Algorithm 3.2.1 are M, $F(M):=\left(\left(M_{i}, \varphi_{i}, t_{i}, d^{(i)}, A_{i}\right)\right)_{0 \leq i \leq \ell+1}, q \geq 1$ and $n \in \mathbb{Z}$, where $M_{i}, t_{i}, d^{(i)}$ and A_{i} are given in (3.1.2) and (3.2.2) for $0 \leq i \leq \ell+\overline{1}$.

Theorem 3.4.1 The notations are same as above. For input parameters $M, F(M)=\left(\left(M_{i}, \varphi_{i}, t_{i}, d^{(i)}, A_{i}\right)\right)_{0 \leq i \leq \ell+1}$ $q \geq 1$ and $n \in \mathbb{Z}$, Algorithm 3.2.1 outputs a basis of the K-vector space $H^{q}(\mathcal{F}(n))$.

Proof. Recall that by Theorem 2.2.1 (1), the cohomology group $H^{q}(\mathcal{F}(n))$ is isomorphic to the K vector space $\operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$ via the following complex:

$$
H^{r}\left(\mathcal{G}_{r-q+2}\right) \xrightarrow{H^{r}\left(f_{r-q+1}\right)} H^{r}\left(\mathcal{G}_{r-q+1}\right) \xrightarrow{H^{r}\left(f_{r-q}\right)} H^{r}\left(\mathcal{G}_{r-q}\right) .
$$

Put $q^{\prime}:=r-q+1$. Let $\mathcal{V}_{i}=\left\{v_{1}^{(i)}, \ldots, v_{k_{i}}^{(i)}\right\}$ be the ordered set output by Algorithm 3.3.1 for inputs $t_{i}, d^{(i)}$ and n. By Proposition 3.3.1, \mathcal{V}_{i} is a basis of the K-vector space $H^{r}\left(\mathcal{G}_{i}\right)$ for $q^{\prime}-1 \leq i \leq q^{\prime}+1$. If $H^{r}\left(\mathcal{G}_{q^{\prime}}\right)=0$ (i.e., $\mathcal{V}_{q^{\prime}}=\emptyset$), then $\operatorname{Ker}\left(H^{r}\left(f_{q^{\prime}-1}\right)\right)=\operatorname{Im}\left(H^{r}\left(f_{q^{\prime}}\right)\right)=0$ and $H^{q}(\mathcal{F}(n))=0$. Thus the output \emptyset by Algorithm 3.2.1 is correct if $\mathcal{V}_{q^{\prime}}=\emptyset$.

Suppose $\mathcal{V}_{q^{\prime}} \neq \emptyset$. Put $k_{q^{\prime}}:=\#\left(\mathcal{V}_{q^{\prime}}\right)=\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{q^{\prime}}\right)$. Let R_{i} denote the matrix output by Algorithm 3.3.2 for inputs $\mathcal{V}_{i+1}, \mathcal{V}_{i}$ and A_{i} for $i=q^{\prime}-1$ and q^{\prime}. By Propositions 3.3.4, R_{i} is the representation matrix of $H^{r}\left(f_{i}\right)$ with respect to the ordered bases \mathcal{V}_{i+1} and \mathcal{V}_{i} for $i=q^{\prime}-1$ and q^{\prime}. By the construction of $B_{\text {Ker }}\left(\right.$ resp. $\left.B_{\mathrm{Im}}\right)$, the matrix $B_{\mathrm{Ker}} \cdot{ }^{t}\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$ (resp. $B_{\mathrm{Im}} \cdot{ }^{t}\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$) is clearly a basis matrix of $\operatorname{Ker}\left(H^{r}\left(f_{q^{\prime}-1}\right)\right)$ (resp. $\operatorname{Im}\left(H^{r}\left(f_{q^{\prime}}\right)\right)$). Let $B_{\text {coh }}$ be the matrix output by Algorithm 3.3.5 for inputs B_{Ker} and B_{Im}. By Proposition 3.3.5, $B_{\mathrm{coh}} \cdot{ }^{t}\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$ is a basis matrix of $\operatorname{Ker}\left(H^{r}\left(f_{q^{\prime}-1}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{q^{\prime}}\right)\right)$. Hence Theorem 3.4.1 holds.

3.5 Complexity analysis

In this subsection, we investigate the complexity of Algorithm 3.2.1. Recall that from Remark 3.2.1, we estimated the complexity of our algorithm for mathematical invariants of the input object since the cohomology groups in algebraic geometry should be determined by such invariants.

The notations are same as in Algorithm 3.2.1. Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. Let $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ denote the q-th cohomology group of a coherent sheaf \mathcal{H} on \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P}^{r}}$, respectively, and denote $H^{q}\left(\mathbb{P}^{r}, \mathcal{H}\right)$ by $H^{q}(\mathcal{H})$ for a coherent sheaf \mathcal{H} on \mathbb{P}^{r}.

First we recall the input and output parameters and the objects to compute in Algorithm 3.2.1 (cf. Step. B in Table 1 of Subsection 3.2.2). Let M be a finitely generated graded S-module. The module M has a (minimal) free resolution of the form (3.2.1). The input parameters of Algorithm 3.2.1 are $M, F(M):=\left(\left(M_{i}, \varphi_{i}, t_{i}, d^{(i)}, A_{i}\right)\right)_{0 \leq i \leq \ell+1}, 1 \leq q \leq r$ and $n \in \mathbb{Z}$, where $M_{i}, \varphi_{i}, t_{i}, d^{(i)}$ and A_{i} are given in (3.1.2) and (3.2.2), q is the degree of the output cohomology group $H^{q}(\mathcal{F}(n))$, and n is the twist number of the sheaf $\mathcal{F}=\widetilde{M}$ associated with the module M on \mathbb{P}^{r}. Throughout this section, we set

$$
\begin{equation*}
q^{\prime}:=r-q+1 \tag{3.5.1}
\end{equation*}
$$

The output of Algorithm 3.2 .1 is a basis of the K-vector space $H^{q}(\mathcal{F}(n))$. In Algorithm 3.2.1, the objects to compute in Step B are bases of the K-vector spaces $H^{r}\left(\mathcal{G}_{i}\right)$ for $r-q \leq i \leq r-q+2$, where each sheaf \mathcal{G}_{i} is defined in (3.1.5). From Step B-2 to Step B-4 of Algorithm 3.2.1, the objects to compute are
(B-2) The representation matrices R_{i} of the K-linear maps $H^{r}\left(f_{i}\right)$ via the bases obtained in Step B-1 for $i=r-q$ and $r-q+1$, where $H^{r}\left(f_{i}\right)=H^{r}\left(\widetilde{\varphi_{i}(n)}\right)$ is given as in (3.2.5) for each i,
(B-3) The basis matrix $B_{\text {Ker }}$ (resp. B_{Im}) of the K-vector space $\operatorname{Ker}\left(R_{r-q}\right):=\left\{\mathbf{v} \in K^{k_{q^{\prime}}} ; \mathbf{v}\right.$. $\left.{ }^{t} R_{q^{\prime}-1}=\mathbf{0}\right\}$ (resp. $\operatorname{Im}\left(R_{r-q+1}\right):=\left\{\mathbf{v} \cdot{ }^{t} R_{q^{\prime}} ; \mathbf{v} \in K^{k_{q^{\prime}+1}}\right\}$), where $k_{i}:=\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right)$ for $r-q \leq i \leq r-q+2$,
(B-4-1) The basis matrix $B_{\text {coh }}$ of the K-quotient space $\operatorname{Ker}\left(R_{r-q}\right) / \operatorname{Im}\left(R_{r-q+1}\right)$,
(B-4-2) The matrix $B_{\mathrm{coh}} \cdot t\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$.
Here $\mathcal{V}_{i}=\left\{v_{1}^{(i)}, \ldots, v_{k_{i}}^{(i)}\right\}$ is a basis of the K-vector space $H^{r}\left(\mathcal{G}_{i}\right)$ for each $q^{\prime}-1 \leq i \leq q^{\prime}+1$. For fixed r and q, all of the above objects to compute are determined by $t_{i}, d^{(i)}, A_{i}$ and n for $q^{\prime}-1 \leq i \leq q^{\prime}+1$. From this, we analyze the complexity of Algorithm 3.2.1 according to the parameters $n, t^{(\max)}:=\max \left\{t_{i} ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\}$ and $d^{(\max)}:=\max \left\{d^{(i, \max)} ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\}$,
where $d^{(i, \max)}:=\max \left\{d_{j}^{(i)} ; 1 \leq j \leq t_{i}\right\}$ for $q^{\prime}-1 \leq i \leq q^{\prime}+1$. For a simplicity, suppose that $H^{r}\left(\mathcal{G}_{i}\right) \neq 0$ for all $q^{\prime}-1 \leq i \leq q^{\prime}+1$.

Proposition 3.5.1 We use the same notations as above. Algorithm 3.2.1 (not counting the computation of a basis of the K-vector space $H^{r}\left(\mathbb{P}^{r}, \mathcal{G}_{i}\right)$ for $\left.r-q \leq i \leq r-q+1\right)$ runs in

$$
\begin{equation*}
O\left(\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)^{4}\right) \tag{3.5.2}
\end{equation*}
$$

arithmetic operations over $S=K\left[X_{0}, \ldots, X_{r}\right]$.
Proof. We determine the complexity based on a theory of linear algebra (see [10] for details). Let $\mathcal{V}_{i}=\left\{v_{1}^{(i)}, \ldots, v_{k_{i}}^{(i)}\right\}$ denote the basis of the K-vector space $H^{r}\left(\mathcal{G}_{i}\right)$ in Algorithm 3.2.1 for $q^{\prime}-1 \leq i \leq q^{\prime}+1$.
(B-2) The representation matrices R_{i} of the K-linear maps $H^{r}\left(f_{i}\right)$ for $i=r-q$ and $r-q+1$: In this part, we first compute the image of $\left\{v_{1}^{(i)}, \ldots, v_{k_{(i)}}^{(i)}\right\}$ by the K-linear map $H^{r}\left(f_{i-1}\right)$. Recall that by (3.1.6) and (3.1.7), the dimension $k_{i}:=\#\left(\mathcal{V}_{i}\right)$ of the K-vector space $H^{r}\left(\mathcal{G}_{i}\right)$ is

$$
k_{i}=\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right)=O\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)
$$

for $q^{\prime}-1 \leq i \leq q^{\prime}+1$. We compute the vector $v_{j}^{(i)} \cdot A_{i-1}$ for $1 \leq j \leq k_{i}$. Note that A_{i-1} is a ($t_{i} \times t_{i-1}$)-matrix over $K\left[X_{0}, \ldots, X_{r}\right]$. Thus the computation runs in

$$
\begin{equation*}
O\left(\left(t^{(\max)}\right)^{2}\left(d^{(\max)}-n\right)^{r}\right) \tag{3.5.3}
\end{equation*}
$$

arithmetic operations over the polynomial ring $K\left[X_{0}, \ldots, X_{r}\right]$. We then obtain $O\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)$ elements in $H^{r}\left(\mathcal{G}_{i-1}\right)$. By comparing the elements with the ordered basis $\left\{v_{1}^{(i-1)}, \ldots, v_{k_{i-1}}^{(i-1)}\right\}$, we obtain the representation matrix R_{i-1} in

$$
\begin{equation*}
O\left(\left(t^{(\max)}\right)^{2}\left(d^{(\max)}-n\right)^{2 r}\right) \tag{3.5.4}
\end{equation*}
$$

arithmetic operations over $K\left[X_{0}, \ldots, X_{r}\right]$. Thus the arithmetic complexity in this step is given by (3.5.4).
(B-3) The basis matrix $B_{\text {Ker }}\left(\right.$ resp. $\left.B_{\mathrm{Im}}\right)$ of the K-vector space $\operatorname{Ker}\left(R_{r-q}\right)\left(\right.$ resp. $\left.\operatorname{Im}\left(R_{r-q+1}\right)\right)$: We assume that the computation is done by the Gaussian elimination over the field K. In this case, since R_{i} is a matrix over K and the number of the rows and the columns of R_{i} is bounded by $t^{(\max)}\left(d^{(\max)}-n\right)^{r}$, the naive computation gives

$$
\begin{equation*}
O\left(\left(t^{(\max)}\right)^{3}\left(d^{(\max)}-n\right)^{3 r}\right) \tag{3.5.5}
\end{equation*}
$$

arithmetic operations over K.
(B-4-1) The basis matrix $B_{\text {coh }}$ of the K-quotient space $\operatorname{Ker}\left(R_{r-q}\right) / \operatorname{Im}\left(R_{r-q+1}\right)$: In this step, we first compute the matrix U such that $B_{\mathrm{Im}}=U \cdot B_{\text {Ker }}$. We solve the linear system $\mathbf{b}_{i}=\mathbf{u} \cdot B_{\text {Ker }}$ by the Gaussian elimination over K for each i, where \mathbf{b}_{i} is the i-th row of the matrix B_{Im}. Thus the above U is determined in

$$
\begin{align*}
& O\left(\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)\left(\left(t^{(\max)}\right)^{3}\left(d^{(\max)}-n\right)^{3 r}\right)\right) \\
= & O\left(\left(\left(t^{(\max)}\right)^{4}\left(d^{(\max)}-n\right)^{4 r}\right)\right) \tag{3.5.6}
\end{align*}
$$

arithmetic operations over K because the number of the rows of both of the matrices B_{Im} and $B_{\text {Ker }}$ are $O\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)$. We then compute the square matrix of full rank by extending the basis of the row vectors of U. Since U is a matrix over K and the number of the rows and the columns of U is bounded by $t^{(\max)}\left(d^{(\max)}-n\right)^{r}$, this computation can be done in

$$
\begin{equation*}
O\left(\left(t^{(\max)}\right)^{2}\left(d^{(\max)}-n\right)^{2 r}\right) \tag{3.5.7}
\end{equation*}
$$

arithmetic operations over K.
(B-4-2) The matrix $B_{\mathrm{coh}} \cdot{ }^{t}\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$: Finally, we compute the basis matrix $B_{\mathrm{coh}} \cdot{ }^{t}\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right]$ of the K-vector space $H^{q}(\mathcal{F}(n))$. The number of the rows and the columns of $B_{\text {coh }}$ is bounded by $t^{(\max)}\left(d^{(\max)}-n\right)^{r}$. Recall that $k_{q^{\prime}}=O\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)$. Thus the multiplication of the matrix $B_{\text {coh }}$ and the vector ${ }^{t}\left[v_{1}, \ldots, v_{k_{q^{\prime}}}\right]$ requires

$$
\begin{equation*}
O\left(\left(t^{(\max)}\right)^{2}\left(d^{(\max)}-n\right)^{2 r}\right) \tag{3.5.8}
\end{equation*}
$$

arithmetic operations over $K\left[X_{0}, \ldots, X_{r}\right]$.
Putting all the steps together, namely considering (3.5.3)-(3.5.8), Proposition 3.5.1 holds.
Corollary 3.5.2 It is possible to estimate the complexity of Algorithm 3.2.1 over K. The notations are same as in Proposition 3.5.1. Let α be the maximum of the number of the terms of the components of A_{i} for $q^{\prime}-1 \leq i \leq q^{\prime}+1$. The arithmetic complexity of Algorithm 3.2.1 over K (not counting the computation of a basis of the K-vector space $H^{r}\left(\mathcal{G}_{i}\right)$ for $\left.q^{\prime}-1 \leq i \leq q^{\prime}+1\right)$ is

$$
\begin{equation*}
O\left(\left(t^{(\max)}\left(-n+d^{(\max)}\right)^{r}\right)^{4}+\alpha^{2}\left(t^{(\max)}\left(-n+d^{(\max)}\right)^{r}\right)^{2}\right) \tag{3.5.9}
\end{equation*}
$$

The value

$$
\begin{equation*}
D:=\max \left\{\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right) ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\} \tag{3.5.10}
\end{equation*}
$$

is appropriate as an asymptotic parameter of Algorithm 3.2.1. We describe the reason why the parameter D is appropriate as an asymptotic parameter of Algorithm 3.2.1. Recall that we have

$$
\begin{equation*}
\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right)=\sum_{j=1}^{t_{i}}\binom{n-d_{j}^{(i)}}{r} \text { for } q^{\prime}-1 \leq i \leq q^{\prime}+1 \tag{3.5.11}
\end{equation*}
$$

and thus $\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right)=O\left(t^{(\max)}\left(d^{(\max)}-n\right)^{r}\right)$. The values t_{i} and $d_{j}^{(i)}$ are uniquely determined for the input module M since the form of the projective resolution of M is uniquely determined. Thus each value $\sum_{j=1}^{t_{i}}\binom{n-d_{j}^{(i)}}{r}$ is also uniquely determined by M and n. From this we can take D as an asymptotic parameter of Algorithm 3.2.1. In a similar way to Corollary 3.5.2, the arithmetic complexity of Algorithm 3.2.1 with respect to D over K is as follows.

Corollary 3.5.3 The notations are same as in Proposition 3.5.1. We set $D:=\max \left\{\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{i}\right) ; q^{\prime}-\right.$ $\left.1 \leq i \leq q^{\prime}+1\right\}$ as in (3.5.10). Then the arithmetic complexity of Algorithm 3.2.1 over K is

$$
\begin{equation*}
O\left(D^{4}+\alpha^{2} D^{2}\right) \tag{3.5.12}
\end{equation*}
$$

where α is same as in Corollary 3.5.2.

4 Implementation and experiments

In this section, we show experimental results on our implementation of Algorithm 3.2.1. Our aim is to confirm the performance of our implementation, and we observe that our implementation performs more efficiently than the complexity estimated in Subsection 3.5 for several benchmark examples. This behavior is considered as a result of our computational improvement and its details are given in Observation 4.1.2. We use a computer with 2.60 GHz CPU (Intel Corei5) and 8GB memory. The OS is Windows 8.1 Pro 64bit. We implemented Algorithm 3.2.1 over Magma V2.20-10 [1]. The source code of our implementation and the computation results in this sec-
 CohomologyBasis.txt).

4.1 Experiments on the performance of our implementation

Let $\mathbb{P}_{\mathbb{Q}}^{r}=\operatorname{Proj}(S)$ be the projective r-space on the field \mathbb{Q} of rational numbers, where $S:=$ $\mathbb{Q}\left[X_{0}, \ldots, X_{r}\right]$. For given m and T, we choose a set \mathcal{C} of 10 tuples of homogeneous polynomials $f_{1}, \ldots, f_{m} \in S$ randomly chosen so that it satisfies the following:
(1) For each tuple $\left(f_{1}, \ldots, f_{m}\right) \in \mathcal{C}$,
(a) $\left\langle f_{1}, \ldots, f_{m}\right\rangle \neq S$, where $\left\langle f_{1}, \ldots, f_{m}\right\rangle$ denotes the ideal of S generated by f_{1}, \ldots, f_{m}.
(b) The number of the terms of f_{i} is equal to T for each $1 \leq i \leq m$.
(c) All coefficients of f_{i} are equal to 1 for each $1 \leq i \leq m$.
(d) $\sqrt{\left\langle f_{i}\right\rangle} \not \subset \sqrt{\left\langle f_{j}\right\rangle}$ for $1 \leq i<j \leq m$, where \sqrt{I} denotes the radical of an ideal $I \subseteq S$.
(e) The polynomial f_{i} is irreducible over \mathbb{Q} for each $1 \leq i \leq m$.
(2) For two different tuples $\left(f_{1}, \ldots, f_{m}\right)$ and $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ in $\mathcal{C},\left\langle f_{1}, \ldots, f_{m}\right\rangle \neq\left\langle f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right\rangle$ as ideals.
(3) For two tuples $\left(f_{1}, \ldots, f_{m}\right)$ and $\left(f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right)$ in \mathcal{C}, two graded S-modules $M=S /\left\langle f_{1}, \ldots, f_{m}\right\rangle$ and $M^{\prime}:=S /\left\langle f_{1}^{\prime}, \ldots, f_{m}^{\prime}\right\rangle$ have the same form of minimal free resolutions, that is, they have the minimal free resolutions

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{t_{r+2}} S\left(-d_{j}^{(r+2)}\right) \xrightarrow{\varphi_{r+1}} \cdots \xrightarrow{\varphi_{1}} \bigoplus_{j=1}^{t_{1}} S\left(-d_{j}^{(1)}\right) \xrightarrow{\varphi_{\rho}} M \rightarrow 0 \tag{4.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \rightarrow \bigoplus_{j=1}^{t_{r+2}} S\left(-d_{j}^{(r+2)}\right) \xrightarrow{\varphi_{r+1}^{\prime}} \cdots \xrightarrow{\varphi_{1}^{\prime}} \bigoplus_{j=1}^{t_{1}} S\left(-d_{j}^{(1)}\right) \xrightarrow{\varphi_{0}^{\prime}} M^{\prime} \rightarrow 0 . \tag{4.1.2}
\end{equation*}
$$

Note that $\varphi_{i} \neq \varphi_{i}^{\prime}$ for $0 \leq i \leq r+1$ in general.
For each set \mathcal{C} and each tuple $\left(f_{1}, \ldots, f_{m}\right) \in \mathcal{C}$, we compute bases of the K-vector spaces $H^{q}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for some $n \in \mathbb{Z}$ and $1 \leq q \leq r$ by Algorithm 3.2.1, where \mathcal{F} is the coherent sheaf associated with $M:=\mathbb{Q}\left[X_{0}, \ldots, X_{r}\right] /\left\langle f_{1}, \ldots, f_{m}\right\rangle$. Let $\mathcal{O}_{\mathbb{P}_{\mathbb{Q}}^{r}}$ be the structure sheaf on $\mathbb{P}_{\mathbb{Q}}^{r}$. We fix the following notations:

$$
\begin{aligned}
q^{\prime} & :=r-q+1, \quad t^{(\max)}:=\max \left\{t_{i} ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\}, \\
d^{(i, \max)} & :=\max \left\{d_{j}^{(i)} ; 1 \leq j \leq t_{i}\right\} \text { for } q^{\prime}-1 \leq i \leq q^{\prime}+1, \\
d^{(\max)} & :=\max \left\{d^{(i, \max)} ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\}, \\
\mathcal{G}_{i} & :=\bigoplus_{j=1}^{t_{i}} \mathcal{O}_{\mathbb{P}_{\mathbb{Q}}^{r}}\left(n-d_{j}^{(i)}\right) \text { for } q^{\prime}-1 \leq i \leq q^{\prime}+1, \\
D & :=\max \left\{\operatorname{dim}_{K} H^{r}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{G}_{i}\right) ; q^{\prime}-1 \leq i \leq q^{\prime}+1\right\} .
\end{aligned}
$$

To simplify the notations, we denote by $H^{q}(\mathcal{H})$ the q-th cohomology group $H^{q}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{H}\right)$ of a coherent sheaf \mathcal{H} on $\mathbb{P}_{\mathbb{Q}}^{r}$. Let $\mathbf{f}=\left(f_{1} \ldots, f_{m}\right) \in \mathcal{C}$. For the representation matrix $A_{i}=\left(g_{k, \ell}^{(i)}\right)_{1 \leq k \leq t_{i+1}, 1 \leq \ell \leq t_{i}}$ of each homomorphism φ_{i} in the resolution (4.1.1), we denote by $\alpha_{i, \mathbf{f}}$ the maximum of the number of the terms of $g_{k, \ell}^{(i)}$ for $1 \leq k \leq t_{i+1}$ and $1 \leq \ell \leq t_{i}$. Then let $\alpha_{\mathbf{f}}$ be the maximum of $\alpha_{r-q, \mathbf{f}}$ and $\alpha_{r-q+1, \mathbf{f}}$. Moreover, let $\alpha^{\text {(bound) }}$ be the maximum of $\alpha_{\mathbf{f}}$ for $\mathbf{f} \in \mathcal{C}$.

Remark 4.1.1 As the twist number n decreases, the asymptotic parameter D increases by (3.5.10) and (3.5.11). Thus it is possible to investigate the performance of our implementation by decreasing n.

In the following, we describe the form of the minimal free resolutions in our experiments.
Case 1 Put $r:=3, m:=2, T:=3$ and $q:=1$. We choose a pair of two homogeneous polynomials f_{1} and f_{2} in $\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ (uniformly) at random so that the following conditions hold:
(a) The minimal free resolution of $M:=S /\left\langle f_{1}, f_{2}\right\rangle$ forms

$$
0 \rightarrow S(-6) \xrightarrow{\varphi_{2}} \bigoplus_{j=1}^{2} S(-3) \xrightarrow{\varphi_{1}} S \xrightarrow{\varphi_{0}} M \rightarrow 0 .
$$

(b) The number of the terms of f_{i} is equal to 3 for $i=1$ and 2 .

In this case, it follows that

$$
t=[1,2,1,0,0], \quad d^{(1)}=[0], \quad d^{(2)}=[3,3], \quad d^{(3)}=[6] .
$$

We compute bases of $H^{1}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for $n=0,-5,-10$ and -15 . Note that $q^{\prime}=r-q+1=$ $3, t^{(\max)}=2$ and $d^{(\max)}=6$.

Case 2 Put $r:=3, m:=2, T:=3$ and $q:=1$. We choose a pair of two homogeneous polynomials f_{1} and f_{2} in $\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ (uniformly) at random so that the following conditions hold:
(a) The minimal free resolution of $M:=S /\left\langle f_{1}, f_{2}\right\rangle$ forms

$$
0 \rightarrow S(-8) \xrightarrow{\frac{\varphi_{2}}{\mapsto}} \bigoplus_{j=1}^{2} S(-4) \xrightarrow{\varphi_{1}} S \xrightarrow{\varphi_{9}} M \rightarrow 0 .
$$

(b) The number of the terms of f_{i} is equal to 4 for $i=1$ and 2.

In this case, it follows that

$$
t=[1,2,1,0,0], \quad d^{(1)}=[0], \quad d^{(2)}=[4,4], \quad d^{(3)}=[8] .
$$

We compute bases of $H^{1}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for $n=0,-5,-10$ and -15 . Note that $q^{\prime}=r-q+1=$ $3, t^{(\max)}=2$ and $d^{(\max)}=8$.

Case 3 Put $r:=3, m:=3, T:=3$ and $q:=1$. We choose a tuple of three homogeneous polynomials f_{1}, f_{2} and f_{3} in $\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}\right]$ (uniformly) at random so that the following conditions hold:
(a) The minimal free resolution of $M:=S /\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ forms

$$
0 \rightarrow S(-9) \xrightarrow{\varphi_{3}} \bigoplus_{j=1}^{3} S(-6) \xrightarrow{\varphi_{2}} \bigoplus_{j=1}^{3} S(-3) \xrightarrow{\varphi_{1}} S \xrightarrow{\varphi_{0}} M \rightarrow 0
$$

(b) The number of the terms of f_{i} is equal to 3 for $1 \leq i \leq 3$.

In this case, it follows that

$$
\begin{aligned}
t & =[1,3,3,1,0], \quad d^{(1)}=[0], \quad d^{(2)}=[3,3,3], \\
d^{(3)} & =[6,6,6], \quad d^{(4)}=[9] .
\end{aligned}
$$

We compute bases of $H^{1}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for $n=0,-5,-10$ and -15 . Note that $q^{\prime}=r-q+1=$ $3, t^{(\max)}=3$ and $d^{(\max)}=9$.

Case 4 Put $r:=5, m:=4, T:=3$ and $q:=1$. We choose a tuple of four homogeneous polynomials f_{1}, f_{2}, f_{3} and f_{4} in $\mathbb{Q}\left[X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]$ (uniformly) at random so that the following conditions hold:
(a) Put $I:=\left\langle f_{1}, f_{2}, f_{3}, f_{4}\right\rangle$. The minimal free resolution of $M:=S / I$ forms

$$
0 \rightarrow S(-8) \xrightarrow{\varphi_{4}} \bigoplus_{j=1}^{4} S(-6) \xrightarrow{\varphi_{3}} \bigoplus_{j=1}^{6} S(-4) \xrightarrow{\varphi_{2}} \bigoplus_{j=1}^{4} S(-2) \xrightarrow{\varphi_{1}} S \xrightarrow{\varphi_{9}} M \rightarrow 0
$$

(b) The number of the terms of f_{i} is equal to 3 for $1 \leq i \leq 4$.

In this case, it follows that

$$
\begin{array}{cl}
t=[1,4,6,4,1,0,0], & d^{(1)}=[0], \quad d^{(2)}=[2,2,2,2], \\
d^{(3)}=[4,4,4,4,4,4], & d^{(4)}=[6,6,6,6], \quad d^{(5)}=[8] .
\end{array}
$$

We compute bases of $H^{1}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for $n=0,-2,-4$ and -6 . Note that $q^{\prime}=r-q+1=5$, $t^{(\max)}=4$ and $d^{(\max)}=8$.

Case 5 Put $r:=7, m:=5, T:=2$ and $q:=2$. We choose a tuple of five homogeneous polynomials f_{1}, \ldots, f_{5} in $\mathbb{Q}\left[X_{0}, \ldots, X_{7}\right]$ (uniformly) at random so that the following conditions hold:
(a) Put $I:=\left\langle f_{1}, \ldots, f_{5}\right\rangle$. The minimal free resolution of $M:=S / I$ forms

$$
\begin{aligned}
0 \rightarrow S(-10) & \xrightarrow{\varphi_{5}} \bigoplus_{j=1}^{5} S(-8) \quad \xrightarrow{\varphi_{4}} \bigoplus_{j=1}^{10} S(-6) \xrightarrow{\varphi_{3}} \bigoplus_{j=1}^{10} S(-4) \\
& \xrightarrow{\varphi_{2}} \bigoplus_{j=1}^{5} S(-2) \quad \xrightarrow{\varphi_{1}} S \xrightarrow{\varphi_{0}} M \rightarrow 0 .
\end{aligned}
$$

(b) The number of the terms of f_{i} is equal to 2 for $1 \leq i \leq 5$.

In this case, it follows that

$$
\begin{aligned}
t & =[1,5,10,10,5,1,0,0,0], \\
d^{(1)} & =[0], \quad d^{(2)}=[2,2,2,2,2], \quad d^{(3)}=[4,4,4,4,4,4,4,4,4,4], \\
d^{(4)} & =[6,6,6,6,6,6,6,6,6,6], \quad d^{(5)}=[8,8,8,8,8], \quad d^{(6)}=[10] .
\end{aligned}
$$

We compute bases of $H^{2}\left(\mathbb{P}_{\mathbb{Q}}^{r}, \mathcal{F}(n)\right)$ for $n=0,-2,-4$ and -5 . Note that $q^{\prime}=r-q+1=6$, $t^{(\max)}=5$ and $d^{(\max)}=10$.

In Table 2, we show the results of the computations for each case.
Observation 4.1.2 From the timing ("Average") in Table 2, we see that our implementation of Algorithm 3.2.1 performs more efficiently than the complexity estimated in Subsection 3.5. The timing in Table 2 implies that the practical complexity is $O\left(D^{2}\right)$ while the complexity estimated in Subsection 3.5 is $O\left(D^{4}\right)$ for a fixed α. This seems due to that we pruned unnecessary operations in our implementation. More precisely, in Step B-2, our implementation minimizes the representation matrices, by which the linear systems in Step B-3 are solved more efficiently than the estimated complexity $O\left(D^{3}\right)$. Step B-4 can be also terminated more efficiently than the estimated one $O\left(D^{4}\right)$. From this, the practical complexity of our algorithm is considered $O\left(D^{2}\right)$. We conclude that our implementation of Algorithm 3.2.1 has sufficiently practical performance to experimentally investigate some properties of algebraic varieties.

Table 2: Experimental results on Algorithm 3.2.1. We performed experiments for Cases 1-5. Parameters r and q are the dimensions of the projective space and the degree of the cohomology group to compute, respectively. The values of the parameters $t^{(\max)}, d^{(\max)}$ and $\alpha^{(\text {bound })}$ are determined from the forms of minimal free resolutions. The parameter D is the asymptotic parameter for the complexity estimated in Subsection 3.5. (The parameter D depends on the value of n in our experiments.) "Average" means the average of time for performing our implemetation.

Case	Parameters fixed in each case		Parameters $\left(t^{(\max)}, d^{(\max)}\right.$ and $\alpha^{\text {(bound) }}$ are determined from resolutions)					Experimental results on our algorithm (Algorithm 3.2.1)	
	r	q	n	$t^{(\text {max })}$	$d^{(\max)}$	$\alpha^{\text {(bound) }}$	D	The dimension of the output $H^{q}(\mathcal{F}(n))$	$\begin{gathered} \text { Average } \\ \text { (sec.) } \end{gathered}$
1	3	1	0	2	6	3	10	10	0.01
	3	1	-5	2	6	3	120	54	0.12
	3	1	-10	2	6	3	455	99	1.91
	3	1	-15	2	6	3	1,360	144	14.14
2	3	1	0	2	8	4	35	33	0.02
	3	1	-5	2	8	4	220	112	0.29
	3	1	-10	2	8	4	680	192	3.54
	3	1	-15	2	8	4	1,632	272	22.06
3	3	1	0	3	9	9	56	0	0.03
	3	1	-5	3	9	9	360	0	1.28
	3	1	-10	3	9	9	1,365	0	17.52
	3	1	-15	3	9	9	3,420	0	123.12
4	5	1	0	4	8	11	21	17	0.01
	5	1	-2	4	8	11	126	48	0.19
	5	1	-4	4	8	11	504	80	2.27
	5	1	-6	4	8	11	1,848	112	21.90
5	7	2	0	5	10	4	36	31	0.03
	7	2	-2	5	10	4	330	160	0.58
	7	2	-4	5	10	4	1,716	416	19.51
	7	2	-5	5	10	4	3,960	592	86.19

4.2 Benchmarks

We also show benchmarks by our implementation of Algorithm 3.2.1. The notations are same as in Subsection 4.1. Recall from Subsection 3.5 that main computations of Algorithm 3.2.1 are the following:

Each procedure and its complexity of Algorithm 3.2.1		
Object to compute	Complexity	
(B-2)	The representation matrices R_{i} of the K-linear maps $H^{r}\left(f_{i}\right)$ for $i=r-q$ and $r-q+1$	$O\left(\alpha^{2} D^{2}\right)$
(B-3)	The basis matrix $B_{\text {Ker }}\left(\right.$ resp. $\left.B_{\mathrm{Im}}\right)$ of the K-vector space $\operatorname{Ker}\left(R_{r-q}\right):=\left\{\mathbf{v} \in K^{k_{q^{\prime}}} ; \mathbf{v} \cdot{ }^{t} R_{q^{\prime}-1}=\mathbf{0}\right\}$ $\left(\right.$ resp. Im $\left(R_{r-q+1}\right):=\left\{\mathbf{v} \cdot{ }^{t} R_{q^{\prime}} ; \mathbf{v} \in K^{\left.\left.k_{q^{\prime}+1}\right\}\right)}\right.$	$O\left(D^{3}\right)$
(B-4-1)	The basis matrix $B_{\text {coh }}$ of the K-quotient space $\operatorname{Ker}\left(R_{r-q}\right) / \operatorname{Im}\left(R_{r-q+1}\right)$	$O\left(D^{4}\right)$
(B-4-2)	The matrix $B_{\text {coh }} \cdot t\left[v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}^{\left(q^{\prime}\right)}}\right]$, where $\mathcal{V}=\left\{v_{1}^{\left(q^{\prime}\right)}, \ldots, v_{k_{q^{\prime}}}^{\left(q^{\prime}\right)}\right\}$ is a basis of $H^{r}\left(\mathcal{G}_{q^{\prime}}\right)$	$O\left(\alpha^{2} D^{2}\right)$

Note that the above complexity is estimated over K. Table 3 shows the result of the benchmarks for one sample in Case 4 (see Subsection 4.1). We denote by $C^{(\max)}$ the maximum of the coefficients of the components of the representation matrices $A_{i}\left(\right.$ for $\left.q^{\prime}-1 \leq i \leq q^{\prime}+1\right)$.

Table 3: The result of the benchmarks for one sample in Case 4 by our implementation of Algorithm 3.2.1. The parameter D is the asymptotic parameter for the complexity estimated in Subsection 3.5. (The parameter D depends on the value of n in our experiments.)

$\begin{gathered} \text { Parameters (}\left(C^{(\max)}\right. \text { is } \\ \text { determined from resolutions) } \end{gathered}$				Time for each procedure and total time (sec.)				
n	D	α	$C^{(\max)}$	B-2	B-3	B-4-1	B-4-2	Total time (sec.)
-2	126	3	1	0.094	0.000	0.000	0.063	0.157
-4	504	3	1	1.750	0.031	0.000	0.313	2.094
-5	1,848	3	1	18.671	0.359	0.000	1.265	20.295

Observation 4.2.1 It is implied that our implementation follows the complexity determined in Subsection 3.5 for any case. (It does not take much time for the computation of $B_{\text {Ker }}$ in certain cases because we use the built-in function over Magma to compute the kernel of a matrix, and because the algorithms implemented in the function include the LU decomposition, which performs faster than the Gaussian elimination.)

5 Applications

In this section, we introduce two possible applications of Algorithm 3.2.1. The first application is to compute the rank of morphisms of the cohomology groups via Maruyama's method. The second one
is an algorithm to compute the action of Frobenius to the cohomology groups on algebraic varieties (e.g., algebraic curves). In particular, the rank of the action of Frobenius on a (non-singular) algebraic curve is said to be the Hasse-Witt rank of the curve. The Hasse-Witt rank is a very important invariant of such varieties in algebraic geometry over fields of positive characteristics.

5.1 Background

Let K be a field of positive characteristic $\operatorname{char}(K)=p>0$. We assume that K is a perfect field (e.g., $K=\mathbb{F}_{q}$ or $\overline{\mathbb{F}_{q}}$). Let f_{1}, \ldots, f_{t} be homogeneous polynomials in the graded ring $S=K\left[X_{0}, \ldots, X_{r}\right]$. For homogeneous polynomials $f_{1}, \ldots, f_{t} \in K\left[X_{0}, \ldots, X_{r}\right]$, we denote by $V_{K}\left(f_{1}, \ldots, f_{t}\right)$ the locus of the zeros in the projective r-space $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ of the system of f_{1}, \ldots, f_{t}. Put $X:=V_{K}\left(f_{1}, \ldots, f_{t}\right)$ and $X^{(p)}=V_{K}\left(f_{1}^{p}, \ldots, f_{t}^{p}\right)$. Let $F: X \rightarrow X$ be the (absolute) Frobenius morphism on X. In algebraic geometry over fields of positive characteristics, it is important to compute the action of Frobenius $F^{*}: H^{q}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{q}\left(X, \mathcal{O}_{X}\right)$ for $1 \leq q \leq r$, where \mathcal{O}_{X} is the structure sheaf on X and $H^{q}\left(X, \mathcal{O}_{X}\right)$ denotes the q-th cohomology group of \mathcal{O}_{X} on X. In algebraic geometry over fields of positive characteristic and arithmetic geometry, it is very important to compute the rank of F^{*} via a basis of the K-vector space $H^{q}\left(X, \mathcal{O}_{X}\right)$ The variety X is said to be superspecial if $F^{*}=0$ and X is non-singular over \bar{K}.

Now we describe a basic strategy to compute the action of Frobenius F^{*}. For a simplicity, we assume that X is a non-singular algebraic curve, and we consider the case of $q=1$. Let $\mathcal{I}:=\widetilde{I}$ and $\mathcal{I}^{p}:=\widetilde{I^{p}}$ be the ideal sheaves associated with the ideals $I:=\left\langle f_{1}, \ldots, f_{t}\right\rangle_{S}$ and $I^{p}:=\left\langle f_{1}^{p}, \ldots, f_{t}^{p}\right\rangle_{S}$, respectively. Let F_{1} be the (absolute) Frobenius morphism on \mathbb{P}_{K}^{r}. The following diagram commutes:

Here the morphism $H^{1}\left(X^{(p)}, \mathcal{O}_{X^{(p)}}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)\left(\right.$ resp. $\left.H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}^{p}\right) \rightarrow H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}\right)\right)$ is induced by the canonical morphism from $\mathcal{O}_{X^{(p)}}$ to \mathcal{O}_{X} (resp. \mathcal{I}^{p} to \mathcal{I}) corresponding to the homomorphism $S / I^{p} \rightarrow S / I$ (resp. $\left.I^{p} \rightarrow I\right)$. In other words, $H^{1}\left(X^{(p)}, \mathcal{O}_{X^{(p)}}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)$ is the morphism induced by the immersion $X \hookrightarrow X^{(p)}$. In our method, to compute the rank of F^{*}, it requires to compute
(1) An explicit basis of $H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}\right)$ and
(2) The representation matrix of the homomorphism $H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}^{p}\right) \rightarrow H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}\right)$ via the basis.

By Algorithm 3.2.1, we can compute a basis of $H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}\right)$. In the next subsections, we first give an algorithm to compute the representation matrix, after that, we also give an algorithm to compute the rank of F^{*}.

Remark 5.1.1 Let X be an elliptic curve in \mathbb{P}_{K}^{2} defined by a homogeneous polynomial $f \in S=$ $K[x, y, z]$ with $\operatorname{deg} f=3$. The action of Frobenius F^{*} is the zero map or a bijective map on
$H^{1}\left(X, \mathcal{O}_{X}\right)$ since $H^{1}\left(X, \mathcal{O}_{X}\right)$ is a 1-dimensional K-space and since K is a perfect field with the positive characteristic p. The condition $F^{*} \neq 0$ (resp. $F^{*}=0$) is said that X has Hasse invariant 1 (resp. X has Hasse invariant 0). In this case, it is easy to determine whether X has Hasse invariant 1 or 0 . In fact, $H^{2}\left(\mathbb{P}_{K}^{2}, \mathcal{I}\right)$ always has the canonical basis $\left\{\frac{1}{x y z}\right\}$ and $F_{1}\left(\frac{1}{x y z}\right)=\frac{1}{x^{p} y^{p} z^{p}}$. The morphism $H^{2}\left(\mathbb{P}_{K}^{2}, \mathcal{I}^{p}\right) \rightarrow H^{2}\left(\mathbb{P}_{K}^{2}, \mathcal{I}\right)$ is represented by f^{p-1}. Thus the Hasse invariant of X is determined by the coefficients of $(x y z)^{p-1}$ in f^{p-1} (see [7, Chapter 4] for details).

5.2 Computing morphisms of cohomology groups

Let K be a field (in this subsection, the characteristic $\operatorname{char}(K)$ is not necessary to be positive). Let f_{1}, \ldots, f_{t} be homogeneous polynomials in the graded ring $S=K\left[X_{0}, \ldots, X_{r}\right]$. As in the previous subsection, put $X:=V_{K}\left(f_{1}, \ldots, f_{t}\right)$ (resp. $X^{(p)}=V_{K}\left(f_{1}^{p}, \ldots, f_{t}^{p}\right)$), where $V_{K}\left(f_{1}, \ldots, f_{t}\right)$ (resp. $\left.V_{K}\left(f_{1}^{p}, \ldots, f_{t}^{p}\right)\right)$ is the locus of the zeros in the projective r-space $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ of the system of f_{1}, \ldots, f_{t} (resp. $f_{1}^{p}, \ldots, f_{t}^{p}$). In the case of $\operatorname{char}(K)>0$, to compute the action of Frobenius on X, it requires to compute the representation matrix of the morphism $H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}^{p}\right) \rightarrow H^{2}\left(\mathbb{P}_{K}^{r}, \mathcal{I}\right)$ in the previous subsection. Here \mathcal{I} (resp. \mathcal{I}^{p}) is the ideal sheaf induced by the ideal $I:=\left\langle f_{1}, \ldots, f_{t}\right\rangle_{S}$ (resp. $\left.I^{p}:=\left\langle f_{1}^{p}, \ldots, f_{t}^{p}\right\rangle_{S}\right)$.

In this subsection, we consider a more general case. In more detail, we consider to compute the morphism $H^{q}(\Psi): H^{q}(X, \mathcal{F}) \rightarrow H^{q}\left(X, \mathcal{F}^{\prime}\right)$ induced by a morphism $\Psi: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ of given coherent sheaves on X. (The characteristic of K does not need to be a positive integer.) We propose an algorithm to compute $H^{q}(\Psi)$ for $1 \leq q \leq r$ as an application of Algorithm 3.2.1. To simplify the notations, we denote $\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}$ and $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ by $\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}$ and $H^{q}(\mathcal{H})$, respectively. Let $\psi: M \rightarrow M^{\prime}$ be a homomorphism of finitely generated graded S-modules. For free resolutions of M and M^{\prime}, there exist ψ_{i} for $1 \leq i \leq r+2$ such that the following diagram commutes:

Note that it is possible to compute each morphism ψ_{i} (e.g., see [5, Chapter 15] for details). We set

$$
\begin{aligned}
& \mathcal{G}_{i+1}:=\bigoplus_{j=1}^{t_{i+1}} \mathcal{O}_{\mathbb{P}^{r}}\left(-d_{j}^{(i+1)}\right), f_{i}:=\widetilde{\varphi}_{i}, \mathcal{K}_{i}:=\operatorname{Ker}\left(f_{i}\right) \text { for } 0 \leq i \leq r+1, \mathcal{K}_{-1}:=\mathcal{F}, \\
& \mathcal{G}_{i+1}^{\prime}:=\bigoplus_{j=1}^{t_{i+1}^{\prime}} \mathcal{O}_{\mathbb{P}^{r}}\left(-c_{j}^{(i+1)}\right), f_{i}^{\prime}:=\widetilde{\varphi_{i}^{\prime}}, \mathcal{K}_{i}^{\prime}:=\operatorname{Ker}\left(f_{i}^{\prime}\right) \text { for } 0 \leq i \leq r+1, \mathcal{K}_{-1}^{\prime}:=\mathcal{F}^{\prime} .
\end{aligned}
$$

We denote by Ψ_{i} the induced morphism $\widetilde{\psi}_{i}: \mathcal{G}_{i} \longrightarrow \mathcal{G}_{i}^{\prime}$. Since the diagram

commutes, where the horizontal sequences are exact. In a similar way to the proof of Theorem 2.2.1, we have the following commutative diagram:

where σ_{q} and σ_{q}^{\prime} denote the K-linear maps $H^{r}\left(\mathcal{K}_{r-q-1}\right) \rightarrow H^{r}\left(\mathcal{G}_{r-q}\right)$ and $H^{r}\left(\mathcal{K}_{r-q-1}^{\prime}\right) \rightarrow H^{r}\left(\mathcal{G}_{r-q}^{\prime}\right)$, respectively. Here a morphism between the quotient spaces $\operatorname{Ker}\left(H^{r}\left(f_{r-q}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}\right)\right)$ and $\operatorname{Ker}\left(H^{r}\left(f_{r-q}^{\prime}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r-q+1}^{\prime}\right)\right)$ is induced as follows:

The diagram

commutes, where τ and τ^{\prime} are the K-isomorphisms naturally induced by $H^{r}\left(\mathcal{G}_{r-q+1}\right) \rightarrow H^{r}\left(\mathcal{K}_{r-q-1}\right)$ and $H^{r}\left(\mathcal{G}_{r-q+1}^{\prime}\right) \rightarrow H^{r}\left(\mathcal{K}_{r-q-1}^{\prime}\right)$, respectively. Hence the following diagram commutes:

Thus it follows that $\operatorname{rank} H^{q}(\Psi)=\operatorname{rank} H^{r}\left(\Psi_{r-q+1}\right)$. From the above commutative diagrams and the equality $\operatorname{rank} H^{q}(\Psi)=\operatorname{rank} H^{r}\left(\Psi_{r-q+1}\right), \operatorname{rank} H^{q}(\Psi)$ is computable as follows:
(1) Compute bases of the K-vector spaces $H^{q}(\mathcal{F})$ and $H^{q}\left(\mathcal{F}^{\prime}\right)$ by Algorithm 3.2.1. Let \mathcal{V} and \mathcal{V}^{\prime} be the bases of the K-vector spaces $H^{q}(\mathcal{F})$ and $H^{q}\left(\mathcal{F}^{\prime}\right)$, respectively.
(2) Compute the lifting map ψ_{r-q+1} (e.g., see [5, Chapter 15] for details). Let C_{r-q+1} be the representation matrix of ψ_{r-q+1}.
(3) Compute $\operatorname{rank} H^{r}\left(\Psi_{r-q+1}\right)$ by $\left(\mathcal{V}, \mathcal{V}^{\prime}, C_{r-q+1}\right)$, and it.

5.3 Computing the action of Frobenius to the cohomology groups

As in Section 5.1, let K be a field of positive characteristic $\operatorname{char}(K)=p>0$. Suppose that K is a perfect field (e.g., $K=\mathbb{F}_{q}$ or $\overline{\mathbb{F}_{q}}$). Let f_{1}, \ldots, f_{t} be homogeneous polynomials in $S=K\left[X_{0}, \ldots, X_{r}\right]$ with $\operatorname{gcd}\left(f_{i}, f_{j}\right)=1$ for $1 \leq i<j \leq t$. Put $X:=V_{K}\left(f_{1}, \ldots, f_{t}\right)$ and $X^{(p)}=V_{K}\left(f_{1}^{p}, \ldots, f_{t}^{p}\right)$, where $V_{K}\left(f_{1}, \ldots, f_{t}\right)$ (resp. $\left.V_{K}\left(f_{1}^{p}, \ldots, f_{t}^{p}\right)\right)$ denotes the locus of the zeros in the projective r-space $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ of the system of f_{1}, \ldots, f_{t} (resp. $\left.f_{1}^{p}, \ldots, f_{t}^{p}\right)$. Let $F: X \rightarrow X$ be the (absolute) Frobenius morphism on X, and $F^{*}: H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right)$ the action of Frobenius for $q=1$, where \mathcal{O}_{X} is the structure sheaf on X and $H^{1}\left(X, \mathcal{O}_{X}\right)$ denotes the 1st cohomology group of \mathcal{O}_{X} on X.

In this subsection, for given p and f_{1}, \ldots, f_{t}, we give an algorithm to compute the action of Frobenius F^{*}. Let $\mathcal{I}:=\widetilde{I}$ and $\mathcal{I}^{p}:=\widetilde{I^{p}}$ be the ideal sheaves associated with the ideals $I:=$ $\left\langle f_{1}, \ldots, f_{t}\right\rangle_{S}$ and $I^{p}:=\left\langle f_{1}^{p}, \ldots, f_{t}^{p}\right\rangle_{S}$, respectively. Let $\psi: S / I^{p} \rightarrow S / I$ denote the homomorphism defined by $f+I^{p} \mapsto f+I$, which corresponds to the immersion $X \hookrightarrow X^{(p)}$. For free resolutions of S / I^{p} and S / I, there exist ψ_{i} for $1 \leq i \leq r+2$ such that the following diagram commutes:

Here we give an algorithm to compute a representation matrix of F^{*}.
(1) Compute a basis $\mathcal{V}=\left\{v_{1}, \ldots, v_{g}\right\}$ of the K-vector space $H^{2}\left(\mathbb{P}^{r}, \mathcal{I}\right)$ by Algorithm 3.2.1.
(2) Compute the the lifting map ψ_{r} (e.g., see [5, Chapter 15] for details). Let C_{r} be the representation matrix of ψ_{r} as a homomorphism of S-modules.
(3) Compute $C_{r} \cdot\left(v_{i}\right)^{p}$ for $1 \leq i \leq g$, and the representation matrix of F^{*} via the basis \mathcal{V}.

6 Concluding remarks and future works

In this paper, we introduced and analyzed Maruyama's method to compute the dimensions of the cohomology groups of coherent sheaves on a projective space. Our main contributions are as follows:
(1) We wrote down Maruyama's method as an explicit algorithm (Algorithm 3.2.1 in Subsection 3.2) which compute not only the dimension but also a basis. As mentioned below, this basis is very useful to computes important invariants. We also implemented the algorithm over Magma as a new function "CohomologyBasis".
(2) We analyzed the complexity of our algorithm to verify that our implementation has no unnecessary operations. We also examined the efficiency of our algorithm by experiments. In fact, the practical complexity of Algorithm 3.2.1 estimated by our implementation and experiments is $O\left(D^{2}\right)$ while the complexity estimated theoretically in Subsection 3.5 is $O\left(D^{4}\right)$, where D is the asymptotic parameter of Algorithm 3.2.1 in our analysis. This is due to apply the pruning unnecessary operations to our implementation. Thus Algorithm 3.2.1 and our implementation are practical to investigate the structures of varieties in algebraic geometry.
(3) As applications of Algorithm 3.2.1, we gave two further algorithms. One is an algorithm to compute the rank of morphisms of cohomology groups via bases obtained by Algorithm 3.2.1. Another one is to compute the rank of the representation matrix of the action of the Frobenius to varieties such as modular curves over fields of positive characteristics. The rank of the representation matrix of the action of the Frobenius is said to be the Hasse-Witt rank which is a very important invariant of varieties in algebraic geometry over fields of positive characteristics.

From our contributions of this work, it is concluded that Maruyama's method provides a very computationally useful tool to investigate the structures of varieties in algebraic geometry.

However, our algorithm works well under the assumption that a free resolution of a module has been computed. Thus it is necessary to improve the computation of a free resolution for a finitely generated module. From this, our future works are the following:

- Improve the efficiency of computing syzygies and free resolutions.
- Investigate the behavior of the Hasse-Witt rank of varieties over fields of positive characteristics and find a special class of varieties whose Hasse-Witt ranks take strange behavior.

Acknowledgements The author dedicates this paper to the late Masaki Maruyama and would like to offer the author's deepest sympathy. The author thanks Kazuhiro Yokoyama, Masayuki Noro, Yuichiro Taguchi and Masaya Yasuda for many helpful comments, corrections, and suggestions on this work. The author thanks Eiichi Sato and Shushi Harashita for helpful suggestions. The author also thanks Shun'ichi Yokoyama for many helpful comments and discussions on our implementation over Magma. The author is grateful to Toshiro Hiranouchi for helpful comments, and to Shinya Okumura for giving valuable information about Magma.

References

[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. Journal of Symbolic Computation 24, 235-265 (1997)
[2] Cox, D., Little, J., O'shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, New York (1992)
[3] Cox, D., Little, J., O'shea, D.: Using Algebraic Geometry. GTM 185, Springer-Verlag, New York - Berlin (1998)
[4] Decker, W., Eisenbud, D.: Sheaf algorithms using the Exterior algebra. In: Computations in Algebraic Geometry with Macaulay2, Springer Algorithms and Computation in Mathematics Series 8, 215-247, Springer-Verlag (2002)
[5] Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. GTM 150, Springer (1996)
[6] Eisenbud, D., Grayson, D., Stillman, M.: Appendix C: Using Macaulay 2. pp. 355-379. In: Computational Methods in Commutative Algebra and Algebraic Geometry [V] (1998)
[7] Hartshorne, R.: Algebraic Geometry. GTM 52, Springer-Verlag (1977)
[8] Kudo. M.: On the computation of the dimensions of the cohomology groups of coherent sheaves on a projective space. Kyushu University, 2015/2/6 (2015) available at http://www2.math.kyushu-u.ac.jp/~m-kudo/
[9] Maruyama, M.: [Gröbner Bases and the Application] (in Japanese). Kyoritsu Publisher (2002)
[10] Schrijver, A.: Theory of Linear and Integral Programming. Wiley-Interscience series in discrete mathematics and optimization, Wiley (1998)
[11] Serre, J.-P.: Faisceaux algébriques cohérents. Ann. of Math. 61, 197-278 (1955)
[12] Simith, G. G.: Computing Global Extension Module. Journal of Symbolic Computation 29, 729-746 (2000)
[13] Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Algorithms and Computation in Mathematics 2, Springer (1998)

A Computation of global sections

Let $S=K\left[X_{0}, \ldots, X_{r}\right]$ be the polynomial ring with $r+1$ variables over a field $K, \mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ the projective r-space on the field K, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. For a coherent sheaf \mathcal{H} on \mathbb{P}_{K}^{r}, let $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ denote the q-th cohomology group of \mathcal{H}. To simplify the notations, we denote $\mathbb{P}_{K}^{r}, \mathcal{O}_{\mathbb{P}_{K}^{r}}$ and $H^{q}\left(\mathbb{P}_{K}^{r}, \mathcal{H}\right)$ by $\mathbb{P}^{r}, \mathcal{O}_{\mathbb{P}^{r}}$ and $H^{q}(\mathcal{H})$, respectively. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{r}, and M a finitely generated graded S-module corresponding to \mathcal{F}, that is, $\mathcal{F}=\widetilde{M}$.

In this appendix, we give an algorithm to compute the dimension of the global section $\Gamma\left(\mathbb{P}_{K}^{r}, \mathcal{F}(n)\right)=$ $H^{0}\left(\mathbb{P}_{K}^{r}, \mathcal{F}(n)\right)$, where $\mathcal{F}(n)$ denotes the n-th Serre twist of the coherent sheaf \mathcal{F}. The coherent sheaf $\mathcal{F}=\widetilde{M}$ (resp. the finitely generated graded S-module M) has a resolution (2.2.1) (resp. a (minimal) free resolution (3.1.1)). In the following, we give an explicit formula of $\operatorname{dim}_{K} H^{0}(X, \mathcal{F})$.

Theorem A.0.1 ([9], Chapter 6) Let $\mathbb{P}_{K}^{r}=\operatorname{Proj}(S)$ be the projective r-space with $S=K\left[X_{0}, \ldots, X_{r}\right]$, and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ the structure sheaf on \mathbb{P}_{K}^{r}. To simplify the notations, we denote \mathbb{P}_{K}^{r} and $\mathcal{O}_{\mathbb{P}_{K}^{r}}$ by \mathbb{P}^{r} and $\mathcal{O}_{\mathbb{P}^{r}}$, respectively. Let \mathcal{F} be a coherent sheaf on \mathbb{P}^{r}. Recall that the coherent sheaf \mathcal{F} has a projective resolution in a form (2.2.1). Put \mathcal{G}_{i} and \mathcal{K}_{i} as in (2.2.2). Then there exist the following isomorphisms of K-vector spaces::

$$
\begin{equation*}
H^{0}(\mathcal{F}) \cong\left(H^{0}\left(\mathcal{G}_{1}\right) / \operatorname{Ker}\left(H^{0}\left(f_{0}\right)\right)\right) \oplus\left(\operatorname{Ker}\left(H^{r}\left(f_{r}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r+1}\right)\right)\right) . \tag{1}
\end{equation*}
$$

(2) $\operatorname{Ker}\left(H^{0}\left(f_{0}\right)\right) \cong H^{0}\left(\mathcal{K}_{0}\right)$.
(3) $H^{0}\left(\mathcal{K}_{0}\right) \cong \operatorname{Im}\left(H^{0}\left(f_{1}\right)\right) \oplus \operatorname{Ker}\left(H^{r}\left(f_{r+1}\right)\right)$,
where $H^{q}\left(f_{i}\right)$ denotes the morphism $H^{q}\left(X, \mathcal{G}_{i+1}\right) \longrightarrow H^{q}\left(X, \mathcal{G}_{i}\right)$ induced by f_{i} for $1 \leq i \leq r+1$. Thus we have the following formula of $\operatorname{dim}_{K} H^{0}(\mathcal{F})$:

$$
\operatorname{dim}_{K} H^{0}(\mathcal{F})=\operatorname{dim}_{K} H^{0}\left(\mathcal{G}_{1}\right)-\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{r+2}\right)+\operatorname{dim}_{K} H^{r}\left(\mathcal{G}_{r+1}\right)-\operatorname{rk} H^{0}\left(f_{1}\right)-\operatorname{rk} H^{r}\left(f_{r}\right),
$$

where we set $\operatorname{rk} H^{r}\left(f_{i}\right):=\operatorname{dim}_{K} \operatorname{Im}\left(H^{r}\left(f_{i}\right)\right)$.
Proof. As only a sketch of a proof is given in [9], we give a complete proof here.
(1) We have the following exact sequence of cohomology groups:

$$
\begin{equation*}
0 \rightarrow H^{0}\left(\mathcal{K}_{0}\right) \rightarrow H^{0}\left(\mathcal{G}_{1}\right) \rightarrow H^{0}(\mathcal{F}) \rightarrow H^{1}\left(\mathcal{K}_{0}\right) \rightarrow 0 . \tag{A.0.1}
\end{equation*}
$$

Since the K-homomorphism $H^{0}(\mathcal{F}) \rightarrow H^{1}\left(\mathcal{K}_{0}\right)$ is surjective, it follows that

$$
H^{0}(\mathcal{F}) \cong \operatorname{Im}\left(H^{0}\left(f_{0}\right)\right) \oplus H^{1}\left(\mathcal{K}_{0}\right) \cong\left(H^{0}\left(\mathcal{G}_{1}\right) / \operatorname{Ker}\left(H^{0}\left(f_{0}\right)\right)\right) \oplus H^{1}\left(\mathcal{K}_{0}\right)
$$

In the same way as $H^{q}(\mathcal{F})(1 \leq q \leq r)$ (Theorem 2.2.1), we have the isomorphism $H^{1}\left(\mathcal{K}_{0}\right) \cong$ $\operatorname{Ker}\left(H^{r}\left(f_{r}\right)\right) / \operatorname{Im}\left(H^{r}\left(f_{r+1}\right)\right)$.
(2) The result clearly holds by the exact sequence (A.0.1).
(3) By the exact sequence

$$
H^{0}\left(\mathcal{G}_{2}\right) \rightarrow H^{0}\left(\mathcal{K}_{0}\right) \rightarrow H^{1}\left(\mathcal{K}_{1}\right) \rightarrow 0
$$

we have $H^{0}\left(\mathcal{K}_{0}\right) \cong \operatorname{Im}(\tau) \oplus H^{1}\left(\mathcal{K}_{1}\right)$, where τ denotes the morphism $H^{0}\left(\mathcal{G}_{2}\right) \rightarrow H^{0}\left(\mathcal{K}_{0}\right)$. Note that the following diagram commutes:

Since the morphism $H^{0}\left(X, \mathcal{K}_{0}\right) \rightarrow H^{0}\left(X, \mathcal{G}_{1}\right)$ is injective, we have $\operatorname{Ker}\left(H^{0}\left(f_{1}\right)\right)=\operatorname{Ker}(\tau)$. Hence we have

$$
\begin{aligned}
\operatorname{Im}(\tau) & \cong H^{0}\left(X, \mathcal{G}_{2}\right) / \operatorname{Ker}(\tau) \\
& \cong H^{0}\left(X, \mathcal{G}_{2}\right) / \operatorname{Ker}\left(H^{0}\left(f_{1}\right)\right) \\
& \cong \operatorname{Im}\left(H^{0}\left(f_{1}\right)\right)
\end{aligned}
$$

In the same way as $H^{q}(\mathcal{F})(1 \leq q \leq r)$ (Theorem 2.2.1), we have the isomorphism $H^{1}\left(\mathcal{K}_{1}\right) \cong$ $\operatorname{Ker}\left(H^{r}\left(f_{r+1}\right)\right)$ because $\mathcal{K}_{r} \cong \mathcal{G}_{r+2}$.

By Theorem A.0.1, in a similar way to the case of $1 \leq q \leq r$ (Section 3), it is possible to give an explicit algorithm to compute the dimension of the global section $\Gamma\left(\mathbb{P}^{r}, \mathcal{F}(n)\right)=H^{0}\left(\mathbb{P}^{r}, \mathcal{F}(n)\right)$ (let us omit to write down it explicitly in this paper).

List of MI Preprint Series, Kyushu University
 The Global COE Program Math-for-Industry Education \& Research Hub

MI
MI2008-1 Takahiro ITO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI
Abstract collision systems simulated by cellular automata
MI2008-2 Eiji ONODERA
The intial value problem for a third-order dispersive flow into compact almost Hermitian manifolds

MI2008-3 Hiroaki KIDO
On isosceles sets in the 4-dimensional Euclidean space
MI2008-4 Hirofumi NOTSU
Numerical computations of cavity flow problems by a pressure stabilized characteristiccurve finite element scheme

MI2008-5 Yoshiyasu OZEKI
Torsion points of abelian varieties with values in nfinite extensions over a p-adic field
MI2008-6 Yoshiyuki TOMIYAMA
Lifting Galois representations over arbitrary number fields
MI2008-7 Takehiro HIROTSU \& Setsuo TANIGUCHI
The random walk model revisited
MI2008-8 Silvia GANDY, Masaaki KANNO, Hirokazu ANAI \& Kazuhiro YOKOYAMA
Optimizing a particular real root of a polynomial by a special cylindrical algebraic decomposition

MI2008-9 Kazufumi KIMOTO, Sho MATSUMOTO \& Masato WAKAYAMA
Alpha-determinant cyclic modules and Jacobi polynomials
MI2008-10 Sangyeol LEE \& Hiroki MASUDA
Jarque-Bera Normality Test for the Driving Lévy Process of a Discretely Observed Univariate SDE

MI2008-11 Hiroyuki CHIHARA \& Eiji ONODERA
A third order dispersive flow for closed curves into almost Hermitian manifolds
MI2008-12 Takehiko KINOSHITA, Kouji HASHIMOTO and Mitsuhiro T. NAKAO
On the L^{2} a priori error estimates to the finite element solution of elliptic problems with singular adjoint operator

MI2008-13 Jacques FARAUT and Masato WAKAYAMA
Hermitian symmetric spaces of tube type and multivariate Meixner-Pollaczek polynomials

Riemann zeta-values, Euler polynomials and the best constant of Sobolev inequality

MI2008-15 Takashi NAKAMURA

Some topics related to Hurwitz-Lerch zeta functions
MI2009-1 Yasuhide FUKUMOTO
Global time evolution of viscous vortex rings
MI2009-2 Hidetoshi MATSUI \& Sadanori KONISHI
Regularized functional regression modeling for functional response and predictors

MI2009-3 Hidetoshi MATSUI \& Sadanori KONISHI

Variable selection for functional regression model via the L_{1} regularization
MI2009-4 Shuichi KAWANO \& Sadanori KONISHI
Nonlinear logistic discrimination via regularized Gaussian basis expansions

MI2009-5 Toshiro HIRANOUCHI \& Yuichiro TAGUCHII

Flat modules and Groebner bases over truncated discrete valuation rings
MI2009-6 Kenji KAJIWARA \& Yasuhiro OHTA
Bilinearization and Casorati determinant solutions to non-autonomous $1+1$ dimensional discrete soliton equations
MI2009-7 Yoshiyuki KAGEI
Asymptotic behavior of solutions of the compressible Navier-Stokes equation around the plane Couette flow

MI2009-8 Shohei TATEISHI, Hidetoshi MATSUI \& Sadanori KONISHI
Nonlinear regression modeling via the lasso-type regularization
MI2009-9 Takeshi TAKAISHI \& Masato KIMURA
Phase field model for mode III crack growth in two dimensional elasticity

MI2009-10 Shingo SAITO

Generalisation of Mack's formula for claims reserving with arbitrary exponents for the variance assumption

MI2009-11 Kenji KAJIWARA, Masanobu KANEKO, Atsushi NOBE \& Teruhisa TSUDA Ultradiscretization of a solvable two-dimensional chaotic map associated with the Hesse cubic curve

MI2009-12 Tetsu MASUDA
Hypergeometric τ-functions of the q-Painlevé system of type $E_{8}^{(1)}$
MI2009-13 Hidenao IWANE, Hitoshi YANAMI, Hirokazu ANAI \& Kazuhiro YOKOYAMA A Practical Implementation of a Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination

MI2009-14 Yasunori MAEKAWA
On Gaussian decay estimates of solutions to some linear elliptic equations and its applications

MI2009-15 Yuya ISHIHARA \& Yoshiyuki KAGEI
Large time behavior of the semigroup on L^{p} spaces associated with the linearized compressible Navier-Stokes equation in a cylindrical domain

MI2009-16 Chikashi ARITA, Atsuo KUNIBA, Kazumitsu SAKAI \& Tsuyoshi SAWABE Spectrum in multi-species asymmetric simple exclusion process on a ring

MI2009-17 Masato WAKAYAMA \& Keitaro YAMAMOTO
Non-linear algebraic differential equations satisfied by certain family of elliptic functions

MI2009-18 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of an Elliptical Flow Subjected to a Coriolis Force
MI2009-19 Mitsunori KAYANO \& Sadanori KONISHI
Sparse functional principal component analysis via regularized basis expansions and its application

MI2009-20 Shuichi KAWANO \& Sadanori KONISHI
Semi-supervised logistic discrimination via regularized Gaussian basis expansions
MI2009-21 Hiroshi YOSHIDA, Yoshihiro MIWA \& Masanobu KANEKO
Elliptic curves and Fibonacci numbers arising from Lindenmayer system with symbolic computations

MI2009-22 Eiji ONODERA
A remark on the global existence of a third order dispersive flow into locally Hermitian symmetric spaces

MI2009-23 Stjepan LUGOMER \& Yasuhide FUKUMOTO
Generation of ribbons, helicoids and complex scherk surface in laser-matter Interactions

MI2009-24 Yu KAWAKAMI
Recent progress in value distribution of the hyperbolic Gauss map
MI2009-25 Takehiko KINOSHITA \& Mitsuhiro T. NAKAO
On very accurate enclosure of the optimal constant in the a priori error estimates for H_{0}^{2}-projection

MI2009-26 Manabu YOSHIDA
Ramification of local fields and Fontaine's property (Pm)
MI2009-27 Yu KAWAKAMI
Value distribution of the hyperbolic Gauss maps for flat fronts in hyperbolic threespace

MI2009-28 Masahisa TABATA
Numerical simulation of fluid movement in an hourglass by an energy-stable finite element scheme

MI2009-29 Yoshiyuki KAGEI \& Yasunori MAEKAWA
Asymptotic behaviors of solutions to evolution equations in the presence of translation and scaling invariance
MI2009-30 Yoshiyuki KAGEI \& Yasunori MAEKAWAOn asymptotic behaviors of solutions to parabolic systems modelling chemotaxis
MI2009-31 Masato WAKAYAMA \& Yoshinori YAMASAKIHecke's zeros and higher depth determinants
MI2009-32 Olivier PIRONNEAU \& Masahisa TABATA
Stability and convergence of a Galerkin-characteristics finite element scheme oflumped mass type
MI2009-33 Chikashi ARITAQueueing process with excluded-volume effect
MI2009-34 Kenji KAJIWARA, Nobutaka NAKAZONO \& Teruhisa TSUDA Projective reduction of the discrete Painlevé system of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2009-35 Yosuke MIZUYAMA, Takamasa SHINDE, Masahisa TABATA \& Daisuke TAGAMI Finite element computation for scattering problems of micro-hologram using DtN map
MI2009-36 Reiichiro KAWAI \& Hiroki MASUDA
Exact simulation of finite variation tempered stable Ornstein-Uhlenbeck processes
MI2009-37 Hiroki MASUDAOn statistical aspects in calibrating a geometric skewed stable asset price model
MI2010-1 Hiroki MASUDAApproximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes
MI2010-2 Reiichiro KAWAI \& Hiroki MASUDAInfinite variation tempered stable Ornstein-Uhlenbeck processes with discrete obser-vations
MI2010-3 Kei HIROSE, Shuichi KAWANO, Daisuke MIIKE \& Sadanori KONISHIHyper-parameter selection in Bayesian structural equation models
MI2010-4 Nobuyuki IKEDA \& Setsuo TANIGUCHI
The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons
MI2010-5 Shohei TATEISHI \& Sadanori KONISHINonlinear regression modeling and detecting change point via the relevance vectormachine
MI2010-6 Shuichi KAWANO, Toshihiro MISUMI \& Sadanori KONISHISemi-supervised logistic discrimination via graph-based regularization
MI2010-7 Teruhisa TSUDAUC hierarchy and monodromy preserving deformation
MI2010-8 Takahiro ITO
Abstract collision systems on groups

MI2010-9 Hiroshi YOSHIDA, Kinji KIMURA, Naoki YOSHIDA, Junko TANAKA \& Yoshihiro MIWA
An algebraic approach to underdetermined experiments
MI2010-10 Kei HIROSE \& Sadanori KONISHI
Variable selection via the grouped weighted lasso for factor analysis models
MI2010-11 Katsusuke NABESHIMA \& Hiroshi YOSHIDA
Derivation of specific conditions with Comprehensive Groebner Systems
MI2010-12 Yoshiyuki KAGEI, Yu NAGAFUCHI \& Takeshi SUDOU
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Poiseuille type flow

MI2010-13 Reiichiro KAWAI \& Hiroki MASUDA
On simulation of tempered stable random variates
MI2010-14 Yoshiyasu OZEKI
Non-existence of certain Galois representations with a uniform tame inertia weight
MI2010-15 Me Me NAING \& Yasuhide FUKUMOTO
Local Instability of a Rotating Flow Driven by Precession of Arbitrary Frequency
MI2010-16 Yu KAWAKAMI \& Daisuke NAKAJO
The value distribution of the Gauss map of improper affine spheres

MI2010-17 Kazunori YASUTAKE

On the classification of rank 2 almost Fano bundles on projective space
MI2010-18 Toshimitsu TAKAESU
Scaling limits for the system of semi-relativistic particles coupled to a scalar bose field

MI2010-19 Reiichiro KAWAI \& Hiroki MASUDA
Local asymptotic normality for normal inverse Gaussian Lévy processes with highfrequency sampling

MI2010-20 Yasuhide FUKUMOTO, Makoto HIROTA \& Youichi MIE
Lagrangian approach to weakly nonlinear stability of an elliptical flow
MI2010-21 Hiroki MASUDA
Approximate quadratic estimating function for discretely observed Lévy driven SDEs with application to a noise normality test

MI2010-22 Toshimitsu TAKAESU
A Generalized Scaling Limit and its Application to the Semi-Relativistic Particles System Coupled to a Bose Field with Removing Ultraviolet Cutoffs

MI2010-23 Takahiro ITO, Mitsuhiko FUJIO, Shuichi INOKUCHI \& Yoshihiro MIZOGUCHI Composition, union and division of cellular automata on groups

[^2]
MI2010-25 Toshimitsu TAKAESU
 On the Essential Self-Adjointness of Anti-Commutative Operators

MI2010-26 Reiichiro KAWAI \& Hiroki MASUDA
On the local asymptotic behavior of the likelihood function for Meixner Lévy processes under high-frequency sampling

MI2010-27 Chikashi ARITA \& Daichi YANAGISAWA
Exclusive Queueing Process with Discrete Time
MI2010-28 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Motion and Bäcklund transformations of discrete plane curves

MI2010-29 Takanori YASUDA, Masaya YASUDA, Takeshi SHIMOYAMA \& Jun KOGURE On the Number of the Pairing-friendly Curves

MI2010-30 Chikashi ARITA \& Kohei MOTEGI
Spin-spin correlation functions of the q-VBS state of an integer spin model
MI2010-31 Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling and spike detection via Gaussian basis expansions
MI2010-32 Nobutaka NAKAZONO
Hypergeometric τ functions of the q-Painlevé systems of type $\left(A_{2}+A_{1}\right)^{(1)}$
MI2010-33 Yoshiyuki KAGEI
Global existence of solutions to the compressible Navier-Stokes equation around parallel flows

MI2010-34 Nobushige KUROKAWA, Masato WAKAYAMA \& Yoshinori YAMASAKI Milnor-Selberg zeta functions and zeta regularizations

MI2010-35 Kissani PERERA \& Yoshihiro MIZOGUCHI
Laplacian energy of directed graphs and minimizing maximum outdegree algorithms
MI2010-36 Takanori YASUDA
CAP representations of inner forms of $S p(4)$ with respect to Klingen parabolic subgroup

MI2010-37 Chikashi ARITA \& Andreas SCHADSCHNEIDER
Dynamical analysis of the exclusive queueing process
MI2011-1 Yasuhide FUKUMOTO\& Alexander B. SAMOKHIN
Singular electromagnetic modes in an anisotropic medium
MI2011-2 Hiroki KONDO, Shingo SAITO \& Setsuo TANIGUCHI
Asymptotic tail dependence of the normal copula
MI2011-3 Takehiro HIROTSU, Hiroki KONDO, Shingo SAITO, Takuya SATO, Tatsushi TANAKA \& Setsuo TANIGUCHI
Anderson-Darling test and the Malliavin calculus
MI2011-4 Hiroshi INOUE, Shohei TATEISHI \& Sadanori KONISHI
Nonlinear regression modeling via Compressed Sensing

MI2011-5 Hiroshi INOUE
Implications in Compressed Sensing and the Restricted Isometry Property
MI2011-6 Daeju KIM \& Sadanori KONISHI
Predictive information criterion for nonlinear regression model based on basis expansion methods

MI2011-7 Shohei TATEISHI, Chiaki KINJYO \& Sadanori KONISHI
Group variable selection via relevance vector machine
MI2011-8 Jan BREZINA \& Yoshiyuki KAGEI
Decay properties of solutions to the linearized compressible Navier-Stokes equation around time-periodic parallel flow
Group variable selection via relevance vector machine
MI2011-9 Chikashi ARITA, Arvind AYYER, Kirone MALLICK \& Sylvain PROLHAC Recursive structures in the multispecies TASEP

MI2011-10 Kazunori YASUTAKE
On projective space bundle with nef normalized tautological line bundle
MI2011-11 Hisashi ANDO, Mike HAY, Kenji KAJIWARA \& Tetsu MASUDA
An explicit formula for the discrete power function associated with circle patterns of Schramm type

MI2011-12 Yoshiyuki KAGEI
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a parallel flow

MI2011-13 Vladimír CHALUPECKÝ \& Adrian MUNTEAN
Semi-discrete finite difference multiscale scheme for a concrete corrosion model: approximation estimates and convergence

MI2011-14 Jun-ichi INOGUCHI, Kenji KAJIWARA, Nozomu MATSUURA \& Yasuhiro OHTA Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

MI2011-15 Hiroshi INOUE
A generalization of restricted isometry property and applications to compressed sensing

MI2011-16 Yu KAWAKAMI
A ramification theorem for the ratio of canonical forms of flat surfaces in hyperbolic three-space

MI2011-17 Naoyuki KAMIYAMA
Matroid intersection with priority constraints
MI2012-1 Kazufumi KIMOTO \& Masato WAKAYAMA
Spectrum of non-commutative harmonic oscillators and residual modular forms
MI2012-2 Hiroki MASUDA
Mighty convergence of the Gaussian quasi-likelihood random fields for ergodic Levy driven SDE observed at high frequency

MI2012-3 Hiroshi INOUE
A Weak RIP of theory of compressed sensing and LASSO
MI2012-4 Yasuhide FUKUMOTO \& Youich MIE
Hamiltonian bifurcation theory for a rotating flow subject to elliptic straining field
MI2012-5 Yu KAWAKAMI
On the maximal number of exceptional values of Gauss maps for various classes of surfaces

MI2012-6 Marcio GAMEIRO, Yasuaki HIRAOKA, Shunsuke IZUMI, Miroslav KRAMAR, Konstantin MISCHAIKOW \& Vidit NANDA
Topological Measurement of Protein Compressibility via Persistence Diagrams
MI2012-7 Nobutaka NAKAZONO \& Seiji NISHIOKA
Solutions to a q-analog of Painlevé III equation of type $D_{7}^{(1)}$
MI2012-8 Naoyuki KAMIYAMA
A new approach to the Pareto stable matching problem
MI2012-9 Jan BREZINA \& Yoshiyuki KAGEI
Spectral properties of the linearized compressible Navier-Stokes equation around time-periodic parallel flow

MI2012-10 Jan BREZINA
Asymptotic behavior of solutions to the compressible Navier-Stokes equation around a time-periodic parallel flow

MI2012-11 Daeju KIM, Shuichi KAWANO \& Yoshiyuki NINOMIYA
Adaptive basis expansion via the extended fused lasso
MI2012-12 Masato WAKAYAMA
On simplicity of the lowest eigenvalue of non-commutative harmonic oscillators
MI2012-13 Masatoshi OKITA
On the convergence rates for the compressible
Navier- Stokes equations with potential force
MI2013-1 Abuduwaili PAERHATI \& Yasuhide FUKUMOTO
A Counter-example to Thomson-Tait-Chetayev's Theorem
MI2013-2 Yasuhide FUKUMOTO \& Hirofumi SAKUMA
A unified view of topological invariants of barotropic and baroclinic fluids and their application to formal stability analysis of three-dimensional ideal gas flows

MI2013-3 Hiroki MASUDA
Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes

MI2013-4 Naoyuki KAMIYAMA
On Counting Output Patterns of Logic Circuits
MI2013-5 Hiroshi INOUE
RIPless Theory for Compressed Sensing

MI2013-6 Hiroshi INOUE
Improved bounds on Restricted isometry for compressed sensing
MI2013-7 Hidetoshi MATSUI
Variable and boundary selection for functional data via multiclass logistic regression modeling

MI2013-8 Hidetoshi MATSUI
Variable selection for varying coefficient models with the sparse regularization
MI2013-9 Naoyuki KAMIYAMA
Packing Arborescences in Acyclic Temporal Networks
MI2013-10 Masato WAKAYAMA
Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun's differential equations, eigenstates degeneration, and Rabi's model

MI2013-11 Masatoshi OKITA
Optimal decay rate for strong solutions in critical spaces to the compressible NavierStokes equations

MI2013-12 Shuichi KAWANO, Ibuki HOSHINA, Kazuki MATSUDA \& Sadanori KONISHI Predictive model selection criteria for Bayesian lasso

MI2013-13 Hayato CHIBA
The First Painleve Equation on the Weighted Projective Space
MI2013-14 Hidetoshi MATSUI
Variable selection for functional linear models with functional predictors and a functional response

MI2013-15 Naoyuki KAMIYAMA
The Fault-Tolerant Facility Location Problem with Submodular Penalties
MI2013-16 Hidetoshi MATSUI
Selection of classification boundaries using the logistic regression
MI2014-1 Naoyuki KAMIYAMA
Popular Matchings under Matroid Constraints
MI2014-2 Yasuhide FUKUMOTO \& Youichi MIE
Lagrangian approach to weakly nonlinear interaction of Kelvin waves and a symmetrybreaking bifurcation of a rotating flow

MI2014-3 Reika AOYAMA
Decay estimates on solutions of the linearized compressible Navier-Stokes equation around a Parallel flow in a cylindrical domain

MI2014-4 Naoyuki KAMIYAMA
The Popular Condensation Problem under Matroid Constraints

MI2014-5 Yoshiyuki KAGEI \& Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry

MI2014-6 This paper was withdrawn by the authors.

MI2014-7 Masatoshi OKITA
On decay estimate of strong solutions in critical spaces for the compressible NavierStokes equations

MI2014-8 Rong ZOU \& Yasuhide FUKUMOTO
Local stability analysis of azimuthal magnetorotational instability of ideal MHD flows

MI2014-9 Yoshiyuki KAGEI \& Naoki MAKIO
Spectral properties of the linearized semigroup of the compressible Navier-Stokes equation on a periodic layer

MI2014-10 Kazuyuki TSUDA
On the existence and stability of time periodic solution to the compressible NavierStokes equation on the whole space

MI2014-11 Yoshiyuki KAGEI \& Takaaki NISHIDA

Instability of plane Poiseuille flow in viscous compressible gas

MI2014-12 Chien-Chung HUANG, Naonori KAKIMURA \& Naoyuki KAMIYAMA
 Exact and approximation algorithms for weighted matroid intersection

MI2014-13 Yusuke SHIMIZU
Moment convergence of regularized least-squares estimator for linear regression model
MI2015-1 Hidetoshi MATSUI \& Yuta UMEZU
Sparse regularization for multivariate linear models for functional data
MI2015-2 Reika AOYAMA \& Yoshiyuki KAGEI
Spectral properties of the semigroup for the linearized compressible Navier-Stokes equation around a parallel flow in a cylindrical domain

MI2015-3 Naoyuki KAMIYAMA
Stable Matchings with Ties, Master Preference Lists, and Matroid Constraints
MI2015-4 Reika AOYAMA \& Yoshiyuki KAGEI
Large time behavior of solutions to the compressible Navier-Stokes equations around a parallel flow in a cylindrical domain

MI2015-5 Kazuyuki TSUDA
Existence and stability of time periodic solution to the compressible Navier-StokesKorteweg system on R^{3}

MI2015-6 Naoyuki KAMIYAMA
Popular Matchings with Ties and Matroid Constraints

MI2015-7 Shoichi EGUCHI \& Hiroki MASUDA
Quasi-Bayesian model comparison for LAQ models
MI2015-8 Yoshiyuki KAGEI \& Ryouta OOMACHI
Stability of time periodic solution of the Navier-Stokes equation on the half-space under oscillatory moving boundary condition

MI2016-1 Momonari KUDO
Analysis of an algorithm to compute the cohomology groups of coherent sheaves and its applications

[^0]: *Graduate School of Mathematics, Kyushu University. E-mail: m-kudo@math.kyushu-u.ac.jp

[^1]: ${ }^{1}$ In [13, Chapter 8$]$, only an example is computed by using a similar method to the method while Maruyama gave the method in a general style.
 ${ }^{2}$ The source code of our implementation and the computation results are available at http://www2.math.kyushu-u.ac.jp/~m-kudo/ (our source code is in the file CohomologyBasis.txt).

[^2]: MI2010-24 Toshimitsu TAKAESU
 A Hardy's Uncertainty Principle Lemma in Weak Commutation Relations of HeisenbergLie Algebra

