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Abstract

The UC hierarchy is an extension of the KP hierarchy, which possesses not only an infinite
set of positive time evolutions but also that of negative ones. Through a similarity reduction
we derive from the UC hierarchy a class of the Schlesinger systems including the Garnier sys-
tem and the sixth Painlevé equation, which describes the monodromy preserving deformations
of Fuchsian linear differential equations with certain spectral types. We also present a uni-
fied formulation of the above Schlesinger systems as a canonical Hamiltonian system whose
Hamiltonian functions are polynomials in the canonical variables.

1 Introduction

This work is aimed to present a certain connection between infinite-dimensional integrable sys-
tems of soliton type and finite-dimensional integrable systems of isomonodromic type. The KP
hierarchy is, undoubtedly, the most basic one among the former and is a series of nonlinear par-
tial differential equations in infinitely many independent variables x = (x1, x2, x3, . . .) that are
consistent with each other. It literally includes as the first nontrivial member the KP (Kadomtsev–
Petviashvili) equation
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which is a typical soliton equation. If we count the degree of variables as deg xn = n and deg f =
−2, then both sides of (1.1) are equally homogeneous (of degree −6) as differential polynomials in
f with respect to xn. Every equation of the KP hierarchy is known to be homogeneous, in fact. In
this sense we may say that the KP hierarchy forms a homogeneous integrable system equipped with
an infinite set of time evolutions of positive degree. The UC hierarchy, introduced in [Tsu04], is an
infinite-dimensional integrable system which naturally generalizes the KP hierarchy by taking into
account the negative time evolutions besides the positive ones while keeping its homogeneity. The
independent variables of the UC hierarchy consist of two sets of infinitely many variables x and
y = (y1, y2, y3, . . .) with their degrees given as deg xn = n and deg yn = −n. In this paper we show
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that a similarity reduction of the UC hierarchy yields a broad class of the Schlesinger systems
including the Garnier system and the sixth Painlevé equation, which describes the monodromy
preserving deformations of Fuchsian linear differential equations with certain spectral types.

We begin by recalling the definition of the UC hierarchy. Let us introduce the commuting pair
of linear differential operators (called the vertex operators)

X±(z) =
∑
n∈Z

X±n zn = e±ξ(x−∂̃y,z)e∓ξ(∂̃x,z−1), (1.2a)

Y±(w) =
∑
n∈Z

Y±n wn = e±ξ(y−∂̃x,w)e∓ξ(∂̃y,w−1), (1.2b)

where we have used the notations

ξ(x, z) =
∞∑

n=1

xnzn and ∂̃x =

(
∂

∂x1
,

1
2
∂

∂x2
,

1
3
∂

∂x3
, . . .

)
.

Definition 1.1. For an unknown function τ = τ(x, y), the simultaneous bilinear equation∑
i+ j=−1

X−i τ ⊗ X+j τ =
∑

i+ j=−1

Y−i τ ⊗ Y+j τ = 0 (1.3)

is called the UC hierarchy.

The UC hierarchy is homogeneous indeed as it has the following scaling symmetry: if τ is a
solution of (1.3) then so is τ(cx1, c2x2, . . . , c−1y1, c−2y2, . . .) for any c ∈ C×. The UC hierarchy is
regarded as an extension of the KP hierarchy. If τ does not depend on y, then the latter equality of
(1.3) trivially holds and the former reduces to the bilinear expression of the KP hierarchy, which is
due to Date–Jimbo–Kashiwara–Miwa (see [Kac90, MJD00]); for reference the variable transfor-
mation toward the original KP equation, (1.1), is given by f = 2(∂/∂x1)2 log τ. We always require
the solution τ = τ(x, y), called the τ-function, to be an entire function with respect to each inde-
pendent variable. Note that τ-functions are distinguished up to multiplication by constants, as can
be seen from (1.3). Concerning the UC hierarchy there is a counterpart of the Sato theory about
the KP hierarchy; cf. [Sat81]. That is, the totality of solutions of the UC hierarchy forms a direct
product of two Sato Grassmannians and the action of its transformation group can be realized by
means of the vertex operators. For details to [Tsu04]. Of particular interest is its homogeneous
polynomial solution, which is a fixed solution with respect to the above scaling symmetry.

Let λ = (λ1, λ2, . . . , λℓ) and µ = (µ1, µ2, . . . , µℓ′) be a pair of partitions. Consider the following
determinant of twisted Jacobi–Trudi type:

S [λ,µ] = det
(

h̃µℓ′−i+1+i− j, i ≤ ℓ′
hλi−ℓ′−i+ j, i > ℓ′ + 1

)
1≤i, j≤ℓ+ℓ′

, (1.4)

where hn = hn(x) (n ∈ Z) is a polynomial in only x and is defined by the generating function

eξ(x,z) =
∑
n∈Z

hnzn,

and h̃n = h̃n(y) is exactly the same as hn except replacing x with y. If µ = ∅ then (1.4) reduces
to the (usual) Jacobi–Trudi formula: S λ = S [λ,∅] = det(hλi−i+ j), which defines the Schur function
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S λ = S λ(x). The polynomial S [λ,µ] = S [λ,µ](x, y) is called the universal character and was originally
introduced by Koike [Koi89] in the study of classical groups. It is easy to see that S [λ,µ] becomes
a homogeneous polynomial whose degree equals the difference |λ| − |µ|, where the sum |λ| =
λ1 + · · · + λℓ denotes the weight of a partition λ. A few examples are S [∅,∅] = 1, S [(1),∅] = x1,
S [(1),(1)] = x1y1 − 1, S [(2,1),(1)] = y1

(
x1

3/3 − x3

)
− x1

2, etc. Remarkably, the set of homogeneous
polynomial solutions of the UC hierarchy, (1.3), coincides with that of the universal characters
{S [λ,µ](x, y)}λ,µ:partitions.

By considering general homogeneous solutions of the UC hierarchy that are not necessarily
polynomials, we can find a link to the theory of monodromy preserving deformations. Let us
explain it in more detail. First we derive from the original one, (1.3), similar bilinear equations
among solutions generated by successive application of vertex operators. Let τm,n = τm,n(x, y) de-
note such a sequence of solutions of the UC hierarchy. A typical example of the bilinear equations
is

τm,n ⊗ τm+1,n+1 =
∑
i+ j=0

X−i τm+1,n ⊗ X+j τm,n+1.

Next we impose on the sequence τm,n of solutions homogeneity

Eτm,n = dm,nτm,n (dm,n ∈ C) (1.5)

and periodicity
τm+L,n = τm,n+L = τm,n (1.6)

for an integer L(≥ 2) fixed. Here we have used the Euler operator

E =
∞∑

n=1

(
nxn

∂

∂xn
− nyn

∂

∂yn

)
,

which is a linear differential operator measuring the degree of a homogeneous function; for in-
stance, ES [λ,µ] = (|λ| − |µ|)S [λ,µ]. Finally we substitute into each xn and yn the ‘power sum’ of new
independent variables t = (t0, t1, . . . , tN) as

xn =
1
n

N∑
i=0

θiti
n and yn =

1
n

N∑
i=0

θiti
−n (n = 1, 2, . . .) (1.7)

where θi ∈ C are constant parameters. In view of the homogeneity (1.5), we may take t0 = 1
without loss of generality. Under the reduction conditions (1.5), (1.6), and (1.7), the UC hierarchy
yields a system of nonlinear partial differential equations in N variables, hereafter denoted by GL,N ,
whose phase space is essentially of 2N(L − 1) dimension. To sum up the above procedure, we say
that GL,N is a similarity reduction of the UC hierarchy. The system GL,N is a finite-dimensional
integrable system of isomonodromic type. For instance G2,N corresponds to the Garnier system in
N variables and G2,1, the first nontrivial case, does the sixth Painlevé equation. From the viewpoint
of the UC hierarchy we can clearly understand various aspects of GL,N , e.g., Hirota bilinear rela-
tions for τ-functions, Weyl group symmetries, and algebraic solutions expressed in terms of the
universal character.

As analogous to the case of the KP hierarchy, the UC hierarchy (1.3) generates the linear
equations for unknown functions (called the wave functions)

ψm,n = ψm,n(x, y, k) =
τm,n−1(x − [k−1], y − [k])

τm,n(x, y)
eξ(x,k),
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where [k] = (k, k2/2, k3/3, . . .). Through the reduction procedure they induce an auxiliary system
of linear differential equations; one of which is a Fuchsian system of rank L in the spectral variable
z = kL with N + 3 poles on the Riemann sphere, and the others govern its monodromy preserving
deformations. The nonlinear system GL,N can be reformulated as a compatibility condition of
this auxiliary linear system (Lax formalism). Remark here that the compatibility itself is a priori
established because all the linear equations originate from the same bilinear equation (1.3).

The spectral type of the Fuchsian system under consideration is given by the (N + 3)-tuple

(L − 1, 1), . . . , (L − 1, 1)︸                         ︷︷                         ︸
N+1

, (1, 1, . . . , 1), (1, 1, . . . , 1)

of partitions of L, which indicates how the characteristic exponents overlap at each of the N + 3
singularities. Thus we conclude that GL,N is equivalent to a particular case of the Schlesinger
systems specified by this spectral type. We also present a unified description of GL,N for any L
and N as a canonical Hamiltonian system, denoted by HL,N , whose Hamiltonian functions are
polynomials in the canonical variables.

In the next section we derive some difference (and differential) equations from the UC hierarchy
as a preliminary. In Sect. 3, we construct a sequence of homogeneous solutions of the UC hierarchy
and present its Weyl group symmetry of type A. In Sect. 4, we consider a similarity reduction
of the UC hierarchy by requiring its solutions to satisfy the homogeneity and periodicity. As
a result we obtain a nonlinear system GL,N of partial differential equations, which provides an
extension of both the Garnier system and the sixth Painlevé equation. The universal characters
S [λ,µ] are homogeneous solutions of the UC hierarchy and thereby consistent with the similarity
reduction. Hence, as described in Sect. 5, it is immediate to obtain particular solutions of GL,N

expressed in terms of S [λ,µ]. The subject of Sect. 6 is the Lax formalism of the systems GL,N , which
reveals that they constitute a class of the Schlesinger systems. We show that the auxiliary linear
problem of GL,N arises naturally from the linear equations satisfied by the wave functions of the
UC hierarchy. In Sect. 7, we transform GL,N into the canonical Hamiltonian system HL,N with
polynomial Hamiltonian functions. Section 8 is devoted to the birational symmetries. We observe
that the Weyl group actions, discussed in Sect. 3, give rise to birational canonical transformations
of HL,N . In the appendix we briefly indicate a relationship between our polynomial Hamiltonian
structure and that given by Kimura and Okamoto [KO84] for the Garnier system, i.e., the case
where L = 2.

2 Method for generating a ‘closed’ functional equation

Unlike in the case of the KP hierarchy, every differential equation of the UC hierarchy with respect
to the original variables x and y is of infinite order. In this section we show how to overcome this
difficulty, i.e., a method for generating a ‘closed’ functional equation from the UC hierarchy; cf.
[DJM82].

We first recall that if τ = τ(x, y) is a solution of (1.3) then so are X+(a)τ and Y+(b)τ for any
a, b ∈ C×. With this fact in mind, let us take our interest in bilinear equations for a sequence of
solutions generated by successive application of vertex operators. Suppose τ0,0 = τ(x, y) to be a
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solution of the UC hierarchy, (1.3). Define a sequence τm,n of solutions by

τm,n =

m−1∏
i=0

X+(ai)
n−1∏
j=0

Y+(b j)τ0,0, (2.1)

where we write as
m−1∏
i=0

X+(ai) = X+(am−1) · · · X+(a1)X+(a0).

Then we can derive similar bilinear equations from the UC hierarchy, the original one (1.3).

Lemma 2.1. For integers m, n ≥ 0, it holds that∑
i+ j=−m−1

X−i τ0,0 ⊗ X+j τm,n =
∑

i+ j=−n−1

Y−i τ0,0 ⊗ Y+j τm,n = 0, (2.2)

τ0,0 ⊗ τ1,n −
∑
i+ j=0

X−i τ1,0 ⊗ X+j τ0,n =
∑

i+ j=−n−1

Y−i τ1,0 ⊗ Y+j τ0,n = 0, (2.3)∑
i+ j=−m−1

X−i τ0,1 ⊗ X+j τm,0 = τ0,0 ⊗ τm,1 −
∑
i+ j=0

Y−i τ0,1 ⊗ Y+j τm,0 = 0. (2.4)

Proof. Notice that the operators X±i (i ∈ Z) satisfy the fermionic relations: X±i X±j + X±j−1X±i+1 = 0
and X+i X−j + X−j+1X+i−1 = δi+ j,0. The same relations hold also for Y±i . Moreover, X±i and Y±j mutually
commute. See [Tsu04]. By virtue of the above relations, applying 1 ⊗∏m−1

i=0 X+(ai)
∏n−1

j=0 Y+(b j),
X+(a0) ⊗∏n−1

j=0 Y+(b j), and Y+(b0) ⊗∏m−1
i=0 X+(ai) to (1.3), we obtain (2.2), (2.3), and (2.4), respec-

tively. �

We shall look closely at (2.2), which corresponds to the original UC hierarchy (1.3) when
m = n = 0. It can be rewritten equivalently into

1

2π
√
−1

∮
zmeξ(x−x′,z)dz τ0,0(x′ + [z−1], y′ + [z])τm,n(x − [z−1], y − [z]) = 0, (2.5a)

1

2π
√
−1

∮
wneξ(y−y′,w)dw τ0,0(x′ + [w], y′ + [w−1])τm,n(x − [w], y − [w−1]) = 0 (2.5b)

with x, y, x′, and y′ being arbitrary parameters, where
∮

dz
2π
√
−1

means taking the coefficient of 1/z
of the integrand as a (formal) Laurent series expansion in z. If we try to write down a differential
equation naively after the case of the KP hierarchy, namely if we consider the Taylor series ex-
pansion of (2.5a) around {x′ = x, y′ = y}, then we have an infinite set of differential equations of
infinite order; see [Tsu04]. This result reflects the fact that the integrand of (2.5a) under the sub-
stitution x′ = x and y′ = y may admit an essential singularity not only at z = 0 but also at z = ∞.
However, we can construct a functional equation in a closed expression by taking an appropriate
choice of parameters x, y, x′, and y′ instead.

Let I, J ⊂ Z be a disjoint pair of finite indexing sets. By specializing the parameters in (2.5) as

x′ = x −
∑
j∈I

[t j] +
∑
j∈J

[t j], y′ = y −
∑
j∈I

[t j
−1] +

∑
j∈J

[t j
−1],
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C2

0

C1

∞ti
−1

...

(i ∈ I)

Figure 1: Contours of integration and singularities of F(z).

we obtain

Ω1 := zmeξ(x−x′,z)dz = zm

∏
j∈J(1 − t jz)∏
j∈I(1 − t jz)

dz (|t jz| < 1),

Ω2 := wneξ(y−y′,w)dw = wn

∏
j∈J(1 − w/t j)∏
j∈I(1 − w/t j)

dw (|w/t j| < 1).

Here we have used the Taylor expansion, log(1 − u) = −∑∞
k=1 uk/k valid for |u| < 1. Suppose

zw = 1. Then we observe that

Ω2 = z−n

∏
j∈J(1 − 1/t jz)∏
j∈I(1 − 1/t jz)

(
−dz

z2

)
= −z|I|−|J|−m−n−2

∏
j∈I(−t j)∏
j∈J(−t j)

Ω1.

Consequently, both integrands of (2.5a) and (2.5b) coincide up to constant multiplication if the
condition |I| − |J| = m + n + 2 is fulfilled. In this case the integrand of (2.5a) reads

F(z) = zm

∏
j∈J(1 − t jz)∏
j∈I(1 − t jz)

τ0,0(x′ + [z−1], y′ + [z])τm,n(x − [z−1], y − [z]).

Since τ0,0(x, y) and τm,n(x, y) are entire, F(z) has the |I| + 2 singularities: z = 1/ti (simple poles)
for i ∈ I and z = 0,∞ (which may be essential singularities). Hence (2.5) becomes∫

C1

F(z)dz =
∫

C2

F(z)dz = 0, (2.6)

where the integration contour C1 (resp. C2) is a positively oriented small circle around z = 0 (resp.
z = ∞) such that all the other singularities are exterior to it; see Figure 1. We verify through the
Cauchy–Goursat theorem that ∑

i∈I
Res
z=1/ti

F(z)dz = 0 (2.7)

by canceling contribution of residues at z = ∞ and z = 0 respectively to the first and second
integrals in (2.6). In other words, we have successfully avoided the residue calculus at possible
essential singularities z = 0,∞ thanks to the presence of two bilinear equations (2.5a) and (2.5b).

Now we prepare some notations. For a function f = f (x, y), we define a shift operator Ti by
Ti( f ) = f (x − [ti], y − [ti

−1]). We also write T{i1,i2,...,ir}( f ) = Ti1 ◦ Ti2 ◦ · · · ◦ Tir ( f ) for brevity. Then
(2.7) takes the following form:∑

i∈I
ti

n

∏
j∈J(ti − t j)∏

j∈I\{i}(ti − t j)
TI\{i}(τ0,0)TJ∪{i}(τm,n) = 0,
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which can be regarded as a difference equation with each ti being the difference interval. Along the
same lines as (2.2), also (2.3) and (2.4) generate similar difference equations. Summarizing above
we have the

Proposition 2.2. The following difference equations hold.

1. If |I| − |J| = m + n + 2 and m, n ≥ 0, then∑
i∈I

ti
n

∏
j∈J(ti − t j)∏

j∈I\{i}(ti − t j)
TI\{i}(τ0,0)TJ∪{i}(τm,n) = 0. (2.8)

2. If |I| − |J| = n + 1 and n ≥ 0, then

TI(τ0,0)TJ(τ1,n) =
∑
i∈I

∏
j∈J(1 − t j/ti)∏

j∈I\{i}(1 − t j/ti)
TI\{i}(τ1,0)TJ∪{i}(τ0,n). (2.9)

3. If |I| − |J| = m + 1 and m ≥ 0, then

TI(τ0,0)TJ(τm,1) =
∑
i∈I

∏
j∈J(1 − ti/t j)∏

j∈I\{i}(1 − ti/t j)
TI\{i}(τ0,1)TJ∪{i}(τm,0). (2.10)

Example 2.3. Consider the case m = n = 0, I = {1, 2, 3}, and J = {4}. Write τ = τ0,0. Then (2.8)
reduces to the equation

(t1 − t2)(t3 − t4)T1,2(τ)T3,4(τ) + (t2 − t3)(t1 − t4)T2,3(τ)T1,4(τ)
+ (t3 − t1)(t2 − t4)T1,3(τ)T2,4(τ) = 0,

which was found by Ohta [Oht07] as a quadratic relation for the universal character.
Let m = 1, n = 0, I = {1, 2, 3}, and J = ∅. Then (2.8) reduces to

(t1 − t2)T1,2(τ0,0)T3(τ1,0) + (t2 − t3)T2,3(τ0,0)T1(τ1,0) + (t3 − t1)T1,3(τ0,0)T2(τ1,0) = 0. (2.11)

Let n = 1, I = {1, 2}, and J = ∅. Then (2.9) reduces to

(t1 − t2)T1,2(τ0,0)τ1,1 = t1T1(τ0,1)T2(τ1,0) − t2T2(τ0,1)T1(τ1,0). (2.12)

The above difference equations, (2.11) and (2.12), were introduced in a study of the connection
between the universal character and q-Painlevé equations; see [Tsu05b, Tsu09a].

Furthermore, we can obtain a functional equation that involves derivative terms from the dif-
ference equations through a limit process causing a confluence of the poles z = 1/ti. For instance
let us take the limit t3 → t1 in (2.11). Rewrite (t, s) = (t1, t2) and shift the variables as x 7→ x + [t]
and y 7→ y + [t−1]. Then we find(

Dδt +
t

s − t

)
τ0,0(x − [s], y − [s−1]) · τ1,0(x, y)

+
t

t − s
τ0,0(x − [t], y − [t−1])τ1,0(x + [t] − [s], y + [t−1] − [s−1]) = 0. (2.13)

7



Here we have introduced the vector fields

δt =

∞∑
n=1

(
tn ∂

∂xn
− t−n ∂

∂yn

)
and δ̃t =

∞∑
n=1

(
ntn ∂

∂xn
+ nt−n ∂

∂yn

)
,

and let Dv denote the Hirota differential with respect to a vector field v. If we take continuously
the limit s→ t in (2.13) with divided by t − s, then we obtain(

Dδt
2 − Dδt + Dδ̃t

)
τ0,0(x − [t], y − [t−1]) · τ1,0(x, y) = 0. (2.14)

In this manner we can produce various functional equations from the UC hierarchy. We list the
ones relevant to the following sections.

Proposition 2.4. The following difference (and differential) equations hold:

(t − s)τm,n(x − [t] − [s], y − [t−1] − [s−1])τm+1,n+1(x, y)

− tτm,n+1(x − [t], y − [t−1])τm+1,n(x − [s], y − [s−1])

+ sτm,n+1(x − [s], y − [s−1])τm+1,n(x − [t], y − [t−1]) = 0, (2.15)(
Dδt − 1

)
τm,n+1(x, y) · τm+1,n(x, y)

+ τm,n(x − [t], y − [t−1])τm+1,n+1(x + [t], y + [t−1]) = 0, (2.16)(
Dδt +

t
s − t

)
τm,n(x − [s], y − [s−1]) · τm+1,n(x, y)

+
t

t − s
τm,n(x − [t], y − [t−1])τm+1,n(x + [t] − [s], y + [t−1] − [s−1]) = 0. (2.17)

Proof. Clearly (2.15) and (2.17) are equivalent to (2.12) and (2.13), respectively. Taking the limit
s→ t in (2.15) leads to (2.16). �

3 Homogeneous τ-sequence and its Weyl group symmetry

This section is concerned with a sequence of homogeneous solutions of the UC hierarchy, con-
nected by vertex operators. We show that such a sequence naturally admits a commutative pair of
Weyl group actions of type A generated by a permutation of two serial vertex operators.

We first introduce partial differential operators VX(c) and VY(c′) (c, c′ ∈ C) defined by

VX(c) =
∫
γ

X+(z)z−c−1dz and VY(c′) =
∫
γ′

Y+(z−1)zc′−1dz,

where the integration paths γ, γ′ : [0, 1]→ C is taken such that [X+(z)z−c]γ(1)
γ(0) = [Y+(z−1)zc′]γ

′(1)
γ′(0) = 0.

For instance γ and γ′ can be chosen to be cycles. Note that in general γ and γ′ may depend on c
and c′, respectively. It is easy to see that VX(c) and VY(c′) mutually commute.

Suppose τ0,0 = τ0,0(x, y) to be a solution of the UC hierarchy (1.3) satisfying the homogeneity
Eτ0,0 = d0,0τ. Instead of (2.1), let us consider a sequence {τm,n}m,n≥0 determined recursively by

τm+1,n = VX(cm)τm,n and τm,n+1 = VY(c′n)τm,n

8



for arbitrary constant parameters cm, c′n ∈ C given. Since the UC hierarchy (1.3) takes the form of
bilinear equations, it can be verified in exactly the same way as (2.1) that each τm,n gives a solution
of (1.3). Furthermore, they all obey the homogeneity

Eτm,n = dm,nτm,n

with dm+1,n = dm,n+cm and dm,n+1 = dm,n−c′n, as a consequence of the formulae [E,VX(c)] = cVX(c)
and [E,VY(c′)] = −c′VY(c′); cf. [Tsu09b, Lemma 2.4]. Hence the balancing condition

dm,n + dm+1,n+1 = dm,n+1 + dm+1,n

is fulfilled. We call the above sequence of homogeneous solutions of the UC hierarchy a ho-
mogeneous τ-sequence. Obviously, any functional equation in Sect. 2 still remains valid for the
homogeneous τ-sequence {τm,n}; we may call also VX(c) and VY(c′) vertex operators.

Example 3.1. If we take c = c′ = n to be an integer and each γ and γ′ a positively oriented small
circle around the origin z = 0, then VX(n) = 2π

√
−1X+n and VY(n) = 2π

√
−1Y+n according to (1.2).

Recall now that these operators play roles of raising operators for the universal characters; namely,

S [λ,µ](x, y) = X+λ1
. . . X+λℓY

+
µ1
. . . Y+µℓ′ .1

for any pair of partitions λ = (λ1, λ2, . . . , λℓ) and µ = (µ1, µ2, . . . , µℓ′); see [Tsu04, Theorem 1.2].
Starting from a trivial solution τ(x, y) = S [∅,∅](x, y) ≡ 1 of the UC hierarchy, we thus obtain a
homogeneous τ-sequence expressed in the universal characters by successive application of X+n
and Yn

n .

Next we consider the Weyl group symmetry of the homogeneous τ-sequence. Fix a positive
integer k. Let us look at m = k cites in the (m, n)-lattice and interchange the (k − 1)th and kth
operations of the vertex operators VX in view of the fermionic relation VX(a)VX(b)+VX(b−1)VX(a+
1) = 0. To be more precise, we transform the original sequence

· · · VX(ck−2)−→ τk−1,n
VX(ck−1)−→ τk,n

VX(ck)−→ τk+1,n
VX(ck+1)−→ · · ·

into a new one
· · · VX(ck−2)−→ τk−1,n

VX(ck+1)−→ τ̂k,n
VX(ck−1−1)−→ τk+1,n

VX(ck+1)−→ · · ·
that is identical with the original one except τk,n is replaced by

τ̂k,n = VX(ck + 1)τk−1,n.

Besides, the degree of τ̂k,n reads

d̂k,n = dk−1,n + ck + 1 = dk−1,n − dk,n + dk+1,n + 1.

We refer to the above permutation of vertex operators as rk. Put

αk = d̂k,n − dk,n = dk−1,n − 2dk,n + dk+1,n + 1, (3.1)

which is a quantity that does not depend on n. The operation rk induces the transformation

rk(αk) = −αk, rk(αk±1) = αk±1 + αk, and rk(αℓ) = αℓ (ℓ , k, k ± 1).
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Therefore αk can be regarded as a root variable of the Weyl group of type A, and 〈rk〉 indeed fulfills
its fundamental relations

rk
2 = 1, rkrk±1rk = rk±1rkrk±1, and rkrℓ = rℓrk (ℓ , k, k ± 1).

Along the same lines we can derive from a permutation of operators VY another action of the Weyl
group of type A, which commutes with the previous one. As demonstrated in Sect 8, this kind of
Weyl group actions gives rise to a group of birational canonical transformations of the Hamiltonian
systemHL,N .

We conclude this section with some formulae that will be employed later.

Lemma 3.2. It holds that

τk−1,n ⊗ τk+1,n −
∑

i+ j=−1

X−i τ̂k,n ⊗ X+j τk,n =
∑

i+ j=−1

Y−i τ̂k,n ⊗ Y+j τk,n = 0, (3.2)

τk−1,n+1 ⊗ τk+1,n −
∑

i+ j=−1

X−i τ̂k,n+1 ⊗ X+j τk,n = τ̂k,n ⊗ τk,n+1 −
∑
i+ j=0

Y−i τ̂k,n+1 ⊗ Y+j τk,n = 0. (3.3)

Proof. First we have ∑
i+ j=−2

X−i τk−1,n ⊗ X+j τk,n =
∑

i+ j=−1

Y−i τk−1,n ⊗ Y+j τk,n = 0, (3.4)

which is equivalent to (2.2) with m = 1 and n = 0. Applying VX(ck + 2) ⊗ 1 and VX(ck + 1) ⊗ 1
respectively to the first and second equalities in (3.4) leads to (3.2). We deduce (3.3) from (3.2) by
applying VY(c′n) ⊗ 1. �

Lemma 3.3. The following difference (and differential) equations hold:

Dδt τ̂k,n(x, y) · τk,n(x, y) − tτk−1,n(x − [t], y − [t−1])τk+1,n(x + [t], y + [t−1]) = 0, (3.5)

tτk−1,n+1(x − [t], y − [t−1])τk+1,n(x, y)

− τ̂k,n+1(x, y)τk,n(x − [t], y − [t−1]) + τ̂k,n(x − [t], y − [t−1])τk,n+1(x, y) = 0. (3.6)

Proof. The verification can be done along the same argument as Proposition 2.2. First we shall
regard the symbol f ⊗ g as a product of two functions f (x′, y′)g(x, y) in distinct indeterminates
(x′, y′) and (x, y). Taking the variables in (3.2) as x − x′ = 2[t] and y − y′ = 2[t−1] thus leads to
(3.5). Similarly, we deduce (3.6) from (3.3) with x − x′ = [t] and y − y′ = [t−1]. �

4 Similarity reduction of UC hierarchy

In this section we consider a reduction of the UC hierarchy by requiring certain homogeneity and
periodicity. As a result we derive a finite-dimensional integrable system of partial differential
equations, denoted by GL,N , which provides an extension of both the Garnier system and the sixth
Painlevé equation PVI.

Fix integers L ≥ 2 and N ≥ 1. Let τm,n = τm,n(x, y) be a sequence of the solutions satisfying
(2.15)–(2.17) in Proposition 2.4. Suppose that τm,n are homogeneous of degree dm,n ∈ C, i.e.,

Eτm,n = dm,nτm,n with E =
∞∑

n=1

(
nxn

∂

∂xn
− nyn

∂

∂yn

)
,
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and fullfil the periodic condition: τm+L,n = τm,n+L = τm,n (up to multiplication by constants). Re-
mark here that the relation dm,n + dm+1,n+1 = dm,n+1 + dm+1,n necessarily holds; cf. Sect. 3. Let us
replace the independent variables xn and yn respectively with the nth and (−n)th power sum of new
ones t = (t0, t1, . . . , tN) as

xn =
1
n

N∑
i=0

θiti
n and yn =

1
n

N∑
i=0

θiti
−n. (4.1)

Consequently we have

ti
∂

∂ti
= ti

∞∑
n=1

(
∂xn

∂ti

∂

∂xn
+
∂yn

∂ti

∂

∂yn

)
= θi

∞∑
n=1

(
ti

n ∂

∂xn
− ti

−n ∂

∂yn

)
= θiδti , (4.2)

E =
N∑

i=0

ti
∂

∂ti
=

N∑
i=0

θiδti . (4.3)

In view of the homogeneity, no generality is lost by taking t0 = 1. Set σm,n(θ, t) = τm,n(x, y) under
the above conditions. For notational simplicity we shall use the abbreviation σm,n(θi ± 1) to mean
that among the constant parameters θ = (θ0, θ1, . . . , θN) only the indicated one θi is shifted by ±1
while all the others are unchanged. Then we have the

Proposition 4.1. The functions σm,n = σm,n(θ, t) satisfy the bilinear equations

(ti − t j)σm,nσm+1,n+1(θi + 1, θ j + 1)
= tiσm+1,n(θi + 1)σm,n+1(θ j + 1) − t jσm+1,n(θ j + 1)σm,n+1(θi + 1), (4.4a)

(tiDi + θi)σm+1,n · σm,n+1 = θiσm,n(θi − 1)σm+1,n+1(θi + 1), (4.4b)(
(t j − ti)Di + θi

)
σm,n(θ j − 1) · σm+1,n = θiσm,n(θi − 1)σm+1,n(θi + 1, θ j − 1), (4.4c)

together with the homogeneity constraint

N∑
i=0

ti
∂σm,n

∂ti
= dm,nσm,n. (4.4d)

Here Di denotes the Hirota differential with respect to ∂/∂ti.

Proof. It is immediate to obtain (4.4a) from (2.15) with (t, s) = (ti, t j). Using (4.2) we verify (4.4b)
and (4.4c) from (2.16) and (2.17), respectively. �

Next we shall write down nonlinear differential equations for appropriately chosen dependent
variables. Let us introduce the functions f (i)

m,n = f (i)
m,n(θ, t) and g(i)

m,n = g(i)
m,n(θ, t) defined by

f (i)
m,n =

σm,n−1(θi + 1)σm−1,n−1

σm−1,n(θi + 1)σm,n−2
, (4.5)

g(i)
m,n =

tiDiσm,n−1 · σm−1,n

σm,n−1σm−1,n
+ θi = θi

σm−1,n−1(θi − 1)σm,n(θi + 1)
σm,n−1σm−1,n

(4.6)
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for i = 0, 1, . . . ,N. Note that the second equality in (4.6) is a consequence of (4.4b). We have the
conservation law

L∏
j=1

f (i)
m+ j,n− j = 1 and

L∑
j=1

g(i)
m+ j,n− j = Lθi. (4.7)

In addition we prepare auxiliary variables U (i, j)
m,n and V (i, j)

m,n (i , j) defined by

U (i, j)
m,n =

θit j

ti − t j

σm,n−1(θi − 1, θ j + 1)σm,n(θi + 1)
σm,n−1σm,n(θ j + 1)

,

V (i, j)
m,n =

θiti

ti − t j

σm−1,n(θi − 1, θ j + 1)σm,n(θi + 1)
σm−1,nσm,n(θ j + 1)

.

Then we have the following relations among the dependent variables.

Lemma 4.2. For i , j, it holds that

V (i, j)
m,n − U (i, j)

m,n = g(i)
m,n, (4.8)

U (i, j)
m−1,n

V (i, j)
m,n−1

=
t j f ( j)

m,n

ti f (i)
m,n

, (4.9)

V (i, j)
m,n−1 − U (i, j)

m−1,n = g(i)
m,n(θ j + 1), (4.10)

U (i, j)
m,n

V (i, j)
m,n

=
t j f ( j)

m,n(θi − 1)

ti f (i)
m,n(θi − 1)

. (4.11)

Proof. Clearly (4.9) and (4.11) are direct consequences of the definition of f (i)
m,n, (4.5). We obtain

(4.8) and (4.10) from the bilinear equation (4.4a). �

Solving the linear equations (4.8) and (4.9) for U (i, j)
m,n and V (i, j)

m,n with the aid of the (L, L)-
periodicity, we conclude that

U (i, j)
m,n =

1(
ti
t j

)L
− 1

L∑
b=1

g(i)
m−b+1,n+b−1

b−1∏
a=1

ti f (i)
m−a+1,n+a

t j f ( j)
m−a+1,n+a

,

V (i, j)
m,n =

1(
ti
t j

)L
− 1

L∑
b=1

g(i)
m−b,n+b

b−1∏
a=0

ti f (i)
m−a,n+a+1

t j f ( j)
m−a,n+a+1

.

In fact U (i, j)
m,n and V (i, j)

m,n can be expressed as polynomials in f (i)
m,n and g(i)

m,n via (4.7).
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Theorem 4.3. The functions f (i)
m,n and g(i)

m,n satisfy the system of nonlinear differential equations

ti
∂ f (i)

m,n

∂ti
=

κm,n − g(i)
m,n−1 +

∑
j,i

(
U ( j,i)

m−1,n − V ( j,i)
m,n−1

) f (i)
m,n, (4.12a)

t j
∂ f (i)

m,n

∂t j
=

(
−g(i)

m,n−1 − U ( j,i)
m−1,n + V ( j,i)

m,n−1

)
f (i)
m,n (i , j), (4.12b)

ti
∂g(i)

m,n

∂ti
= −

∑
j,i

(
U (i, j)

m,n g( j)
m,n + V ( j,i)

m,n g(i)
m,n

)
, (4.12c)

t j
∂g(i)

m,n

∂t j
= U (i, j)

m,n g( j)
m,n + V ( j,i)

m,n g(i)
m,n (i , j), (4.12d)

where

κm,n = dm,n−1 − dm−1,n +

N∑
i=0

θi =

N∑
i=0

g(i)
m,n ∈ C (4.13)

are constant parameters.

For each (m, n) fixed the system (4.12) is closed with respect to the 2LN-tuple of dependent
variables g(i)

m+ j,n− j and f (i)
m+ j,n− j+1/ f (0)

m+ j,n− j+1, where i = 1, 2, . . . ,N and j ∈ Z/LZ. Moreover, it
possesses the 2N conserved quantities; recall (4.7). Accordingly the dimension of the phase space
is essentially 2N(L − 1). If L = 2 then it is in fact equivalent to the Garnier system in N variables,
whose phase space is 2N-dimensional; see also the appendix. Let GL,N denote the nonlinear system
(4.12). As shown in Sect. 7, the system GL,N can be transformed into a canonical Hamiltonian
system with polynomial Hamiltonian functions.

Proof of Theorem 4.3. We shall demonstrate only (4.12a) here because the others can be done in
quite a similar manner. By virtue of the homogeneity (4.4d) we see that

N∑
i=0

(
g(i)

m,n − θi

)
=

N∑
i=0

tiDiσm.n−1 · σm−1,n

σm.n−1σm−1,n
= dm,n−1 − dm−1,n.

Therefore (4.13) certainly holds. By combining (4.10) with (4.13) we have also

g(i)
m,n(θi + 1) = κm,n + 1 −

∑
j,i

g( j)
m,n(θi + 1)

= κm,n + 1 +
∑
j,i

(
U ( j,i)

m−1,n − V ( j,i)
m,n−1

)
. (4.14)

Taking the logarithmic derivative of f (i)
m,n shows that

ti

f (i)
m,n

∂ f (i)
m,n

∂ti
=

tiDiσm,n−1(θi + 1) · σm−1,n(θi + 1)
σm,n−1(θi + 1)σm−1,n(θi + 1)

− tiDiσm,n−2 · σm−1,n−1

σm,n−2σm−1,n−1

= g(i)
m,n(θi + 1) − g(i)

m,n−1 − 1, using (4.6),

= κm,n − g(i)
m,n−1 +

∑
j,i

(
U ( j,i)

m−1,n − V ( j,i)
m,n−1

)
, using (4.14).

We have verified (4.12a) as desired. �
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Remark 4.4 (Toda equation). We shall derive a differential-difference equation of Toda-type for
σm,n, associated with the shift (θi, θ j) 7→ (θi + 1, θ j − 1) of parameters. First we differentiate with
respect to s the equation (2.17) after shifting the variables (x, y) to (x+ [s]/2, y+ [s−1]/2). We thus
find that(

(s − t)Dδt Dδs − 2sDδt + tDδs

)
τm,n

(
x − [s]

2
, y − [s−1]

2

)
· τm+1,n

(
x +

[s]
2
, y +

[s−1]
2

)
+ tDδsτm,n

(
x − [t] +

[s]
2
, y − [t−1] +

[s−1]
2

)
· τm+1,n

(
x + [t] − [s]

2
, y + [t−1] − [s−1]

2

)
= 0.

Substitution of (4.1) and (t, s) = (ti, t j) leads to(
(t j − ti)DiD j − (2θ j + 1)Di + θiD j

)
σm,n · σm+1,n(θ j + 1)

+ θiD jσm,n(θi − 1, θ j + 1) · σm+1,n(θi + 1) = 0.

Hence, with the aid of (4.4c), we verify that

(ti − t j)2 DiD jσm,n · σm+1,n(θ j + 1)
σm,nσm+1,n(θ j + 1)

= −θi(2θ j + 1) + θiθ j
σm,n(θi + 1, θ j − 1)σm,n(θi − 1, θ j + 1)

σm,n
2

+ θi(θ j + 1)
σm+1,n(θi + 1)σm+1,n(θi − 1, θ j + 2)

σm+1,n(θ j + 1)2

+ (ti − t j)2
(

Diσm,n · σm+1,n(θ j + 1)
σm,nσm+1,n(θ j + 1)

) (
D jσm,n · σm+1,n(θ j + 1)
σm,nσm+1,n(θ j + 1)

)
. (4.15)

Next we express (4.4c) in the form

(ti − t j)
Diσm,n · σm+1,n(θ j + 1)
σm,nσm+1,n(θ j + 1)

= θi − θi
σm,n(θi − 1, θ j + 1)σm+1,n(θi + 1)

σm,nσm+1,n(θ j + 1)
.

By differentiating this with respect to t j, we have

(ti − t j)2 ∂

∂t j

(
Diσm,n · σm+1,n(θ j + 1)
σm,nσm+1,n(θ j + 1)

)
= θi + θiθ j

σm,n(θi + 1, θ j − 1)σm,n(θi − 1, θ j + 1)
σm,n

2

− θi(θ j + 1)
σm+1,n(θi + 1)σm+1,n(θi − 1, θ j + 2)

σm+1,n(θ j + 1)2 . (4.16)

Finally, combining (4.15) and (4.16), we arive at the Toda equation:

(ti − t j)2 DiD jσm,n · σm,n

σm,n
2 = −2θiθ j + 2θiθ j

σm,n(θi + 1, θ j − 1)σm,n(θi − 1, θ j + 1)
σm,n

2 . (4.17)

Note that (4.17) is still valid without requiring the homogeneity and periodicity. Such a differential-
difference equation of Toda-type has previously been studied for the case of PVI, i.e., (L,N) = (2, 1)
by Okamoto [Oka87]; and for the case of the Garnier systems, i.e., L = 2 and general N ≥ 1, refer
to [Tsu06].
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5 Particular solutions expressed in terms of the universal character

As described in Sect. 4, the system GL,N is a similarity reduction of the UC hierarchy. Since the
universal characters S [λ,µ] = S [λ,µ](x, y) are homogeneous solutions of the UC hierarchy, they sur-
vive through the reduction procedure; recall Example 3.1. Therefore we can immediately construct
a solution of GL,N expressed in terms of the universal character.

First we recall some terminology. A subset m ⊂ Z is said to be a Maya diagram if i ∈ m
(for i ≪ 0) and i < m (for i ≫ 0). Each Maya diagram m = {. . . ,m3,m2,m1} corresponds to a
partition λ = (λ1, λ2, . . .) via mi−mi+1 = λi−λi+1+1. We can associate with a sequence of integers
ν = (ν1, ν2, . . . , νL) ∈ ZL a Maya diagram

m(ν) = (LZ<ν1 + 1) ∪ (LZ<ν2 + 2) ∪ · · · ∪ (LZ<νL + L);

let λ(ν) denote its corresponding partition. Note that λ(ν + 1) = λ(ν) where 1 = (
L︷      ︸︸      ︷

1, 1, . . . , 1). We
call a partition of the form λ(ν) an L-core partition. A partition λ is L-core if and only if λ has no
hook with length of a multiple of L; see [Nou04, Proposition 7.13]. For example, if L = 2 and
ν = (0, n) (n > 0) then the result is a staircase partition λ(ν) = (n, n−1, . . . , 2, 1), thereby two-core.

There is a cyclic chain of the universal characters attached to L-core partitions that is connected
by the action of vertex operators; see [Tsu05a, Lemma 2.2].

Lemma 5.1. It holds that
X+Lνm−|ν|S [λ(ν(m−1)),µ] = ±S [λ(ν(m)),µ]

for arbitrary ν = (ν1, ν2, . . . , νL) ∈ ZL and partition µ. Here ν(m) = ν + (
m︷  ︸︸  ︷

1, . . . , 1,
L−m︷  ︸︸  ︷

0, . . . , 0) and
|ν| = ν1 + ν2 + · · · + νL. A similar formula holds for the operators Y+n also.

Hence we are led to the following expression of rational solutions of GL,N in terms of the
universal character attached to a pair of L-core partitions.

Theorem 5.2. Let ν, ν′ ∈ ZL be arbitrary sequences of integers. Define

σm,n(θ, t) = S [λ(ν(m)),λ(ν′(n))](x, y)

under the substitution

xn =
1
n

N∑
i=0

θiti
n and yn =

1
n

N∑
i=0

θiti
−n.

Then the functions σm,n satisfy the bilinear equations (4.4a)–(4.4c) and the homogeneity (4.4d),
where dm,n − dm−1,n = Lνm − |ν| and dm,n − dm,n−1 = −Lν′n + |ν′|. Consequently the functions f (i)

m,n

and g(i)
m,n defined by (4.5) and (4.6) give a rational solution of the system GL,N , (4.12), with the

parameters κm,n = L(νm + ν
′
n) − |ν| − |ν′| +∑N

i=0 θi.

6 Lax formalism

In this section we derive from the UC hierarchy the auxiliary linear problem whose compatibility
condition amounts to the nonlinear system GL,N (Lax formalism). It is seen that GL,N describes the
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monodromy preserving deformations of a Fuchsian system of linear differential equations with a
certain spectral type.

We introduce the wave function

ψm,n(x, y, k) =
τm,n−1(x − [k−1], y − [k])

τm,n(x, y)
eξ(x,k),

which is a function in (x, y) = (x1, x2, . . . , y1, y2, . . .) equipped with an additional parameter k (the
spectral variable). Define φm,n(θ, t, k) = ψm,n(x, y, k) under the change of variables (4.1). We then
have the

Proposition 6.1. The wave functions φm,n = φm,n(θ, t, k) satisfy the linear equations

φm,n =
1

f (i)
m+1,n+1

φm,n+1(θi + 1) − tikφm+1,n(θi + 1), (6.1)

ti
∂

∂ti
φm,n =

(
g(i)

m+1,n − θi

)
φm,n + tikg(i)

m+1,nφm+1,n(θi + 1), (6.2)k ∂∂k
−

N∑
i=0

ti
∂

∂ti

 φm,n = (dm,n − dm,n−1)φm,n. (6.3)

Proof. To begin with, we recall the definition of variables f (i)
m,n and g(i)

m,n; see (4.5) and (4.6).
Substitution of (t, s) = (ti, 1/k) in (2.15) and (2.17) produces respectively (6.1) and (6.2), with the
aid of (4.2). We deduce from the homogeneity condition Eτm,n = dm,nτm,n that(

E − k
∂

∂k

)
τm,n(x − [k−1], y − [k]) = dm,nτm,n(x − [k−1], y − [k]).

On the other hand, we have (E − k∂/∂k)eξ(x,k) = 0. Hence we are led to the formula(
E − k

∂

∂k

)
ψm,n = (dm,n−1 − dm,n)ψm,n,

which implies (6.3) via (4.3). The proof is now complete. �

Because of the (L, L)-periodicity, the linear equations (6.1) can be solved for φm,n(θi + 1); thus,

φm,n(θi + 1) =
1

1 − (tik)L

L∑
b=1

(tik)b−1

 b∏
a=1

f (i)
m+a,n−a+1

 φm+b−1,n−b.

If we eliminate φm+1,n(θi + 1) from (6.2) by using the above formula, then we have

ti
∂

∂ti
φm,n =

(
g(i)

m+1,n − θi

)
φm,n +

g(i)
m+1,n

1 − (tik)L

L∑
b=1

(tik)b

 b∏
a=1

f (i)
m+a+1,n−a+1

 φm+b,n−b. (6.4)

Notice that for each m and n fixed (6.4) is closed with respect to φm+ j,n− j ( j ∈ Z/LZ). With this fact
in mind, we shall write down the linear differential equations satisfied by the vector

Φ = T
(
φ−1,0, kφ0,−1, k2φ1,−2, . . . , kL−1φL−2,−L+1

)
.
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Consider the change of variables

z = kL and ui = ti
−L. (6.5)

We can express (6.4) in the L × L matrix equation

∂

∂ui
Φ = BiΦ (6.6)

with

Bi = diag
(
θi

Lui
− v(i)

n,n

)
0≤n≤L−1

+
1

z − ui


0 v(i)

0,1 · · · v(i)
0,L−1

0 . . .
...

. . . v(i)
L−2,L−1

0

 +
z

z − ui


v(i)

0,0 O
v(i)

1,0 v(i)
1,1

...
. . .

v(i)
L−1,0 v(i)

L−1,1 · · · v(i)
L−1,L−1

 ,
where

v(i)
n,n+b =

g(i)
n,−n

L

b∏
a=1

ti f (i)
n+a,−n−a+1 (6.7)

for 0 ≤ n ≤ L − 1 and 1 ≤ b ≤ L. Remark that the suffix of each variable should be suitably
regarded as an element of Z/LZ.

Similarly, we obtain from (6.3) the linear differential equation with respect to z:

∂Φ

∂z
= AΦ =

N+1∑
i=0

Ai

z − ui
Φ, (6.8)

where uN+1 = 0 and the L × L matrices Ai read

Ai = −


0 v(i)

0,1 · · · v(i)
0,L−1

0 . . .
...

. . . v(i)
L−2,L−1

0

 − ui


v(i)

0,0 O
v(i)

1,0 v(i)
1,1

...
. . .

v(i)
L−1,0 v(i)

L−1,1 · · · v(i)
L−1,L−1

 (0 ≤ i ≤ N),

AN+1 =


e0 w0,1 · · · w0,L−1

e1
. . .

...
. . . wL−2,L−1

eL−1


with

en =
dn,−n−1 − dn−1,−n−1 + n

L
and wm,n =

N∑
i=0

v(i)
m,n.

The linear differential equation (6.8) is Fuchsian and has the N+3 regular singularities u0, u1, . . . , uN ,
uN+1 = 0, uN+2 = ∞. Observe that every Ai (0 ≤ i ≤ N) is not full rank unlike AN+1 and
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AN+2 = −
∑N+1

i=0 Ai. To be specific, if we prepare the column vector b(i) and the row vector c(i)

defined by

Tb(i) =

 −g(i)
n,−n

Lti
n ∏n

m=1 f (i)
m,−m+1


0≤n≤L−1

=
−1
L

g(i)
0,0,

g(i)
1,−1

ti f (i)
1,0

,
g(i)

2,−2

ti
2 f (i)

1,0 f (i)
2,−1

, . . . ,
g(i)

L−1,−L+1

ti
L−1 f (i)

1,0 f (i)
2,−1 · · · f (i)

L−1,2

 ,
c(i) =

ti
n

n∏
m=1

f (i)
m,−m+1


0≤n≤L−1

=
(
1, ti f (i)

1,0, ti
2 f (i)

1,0 f (i)
2,−1, . . . , ti

L−1 f (i)
1,0 f (i)

2,−1 · · · f (i)
L−1,2

)
,

then we have indeed

Ai = b(i) · c(i) and c(i) · b(i) = −
L−1∑
n=0

g(i)
n,−n

L
= −θi ∈ C (6.9)

for 0 ≤ i ≤ N. The matrix AN+2 = −
∑N+1

i=0 Ai is lower triangular and its diagonal entries are

N∑
i=0

uiv(i)
n,n − en =

N∑
i=0

g(i)
n,−n

L
− en = κn − en

for 0 ≤ n ≤ L − 1. Here we have used (6.5) and (6.7) and put

κn =
κn,−n

L
=

dn,−n−1 − dn−1,−n +
∑N

i=0 θi

L
=

N∑
i=0

g(i)
n,−n

L
; (6.10)

cf. (4.13). Hence the characteristic exponents of (6.8) at each singularity z = ui, i.e., the eigenval-
ues of each residue matrix Ai, are listed as follows:

Singularity Exponents
ui (0 ≤ i ≤ N) (−θi, 0, . . . , 0)

uN+1 = 0 (e0, e1, . . . , eL−1)
uN+2 = ∞ (κ0 − e0, κ1 − e1, . . . , κL−1 − eL−1)

(6.11)

Note that the relations
L−1∑
n=0

en =
L − 1

2
and

L−1∑
n=0

κn =

N∑
i=0

θi (6.12)

hold among the exponents. The sum of all the exponents certainly equals zero (Fuchs relation).
Compatibility between the above two linear equations, (6.6) and (6.8), is a priori established

because both originate from the same bilinear equation (1.3). The former, (6.6), governs the mon-
odromy preserving deformation of the latter, (6.8), along a deformation parameter ui. The nonlin-
ear system GL,N , (4.12), can be recovered from the integrability condition

[
∂
∂ui
− Bi,

∂
∂z − A

]
= 0 of

the linear system (6.6) and (6.8).

Remark 6.2. In general, we can associate with an L × L Fuchsian system

∂Φ

∂z
= AΦ =

N+1∑
i=0

Ai

z − ui
Φ (6.13)
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having N + 3 regular singularities u0, u1, . . . , uN , uN+1 = 0, uN+2 = ∞ an (N + 3)-tuple

M = {(µ0,1, µ0,2, . . . , µ0,ℓ0), (µ1,1, µ1,2, . . . , µ1,ℓ1), . . . , (µN+2,1, µN+2,2, . . . , µN+2,ℓN+2)}

of partitions of L in such a way that each residue matrix Ai has the eigenvalues of multiplicity µi, j;
we callM the spectral type. The number of accessory parameters of (6.13) is known to be an even
given by

(N + 1)L2 −
N+2∑
i=0

ℓi∑
j=1

µi, j
2 + 2.

We turn now to our case. The spectral type of (6.8) reads the (N + 3)-tuple

(L − 1, 1), . . . , (L − 1, 1)︸                         ︷︷                         ︸
N+1

, (1, 1, . . . , 1), (1, 1, . . . , 1) (6.14)

of partitions of L, according to the table (6.11). Applying the above formula we find the number of
accessory parameters to be 2N(L − 1), which certainly equals the essential dimension of the phase
space of GL,N as was calculated in Sect. 4.

Remark 6.3. Thanks to the algorithm proposed by Oshima [Osh08], Fuchsian systems of the form
(6.13) with a fixed number p of accessory parameters can be classified by the spectral types. Let
us here take our interest in the Fuchsian systems that have four or more singularities because they
admit the monodromy preserving deformations. If p = 2 then we have a single fundamental system
whose spectral type is {(1, 1)4} = {(1, 1), (1, 1), (1, 1), (1, 1)}; and its deformation equation turns out
to be PVI (= G2,1). If p = 4 then the result is the four Fuchsian systems specified by the spectral
types {(1, 1)5}, {(2, 1)2, (1, 1, 1)2}, {(3, 1), (2, 2)2, (1, 1, 1, 1)}, and {(2, 2)3, (2, 1, 1)}. The first one has
two deformation parameters and it corresponds to the Garnier system in two variables. The other
three cases produce nonlinear ordinary differential equations of fourth order, which have been
investigated by Sakai [Sak08] as candidates of the master equations, like PVI, among the family of
fourth-order Painlevé equations; he clarified the polynomial Hamiltonian structure and coalescence
diagram for each. Note that the first and second of the three are equivalent respectively to G3,1 (see
Example 7.3) and to the fourth-order Painlevé equation of type D(1)

6 introduced by Sasano [Sas06]
(see also [FS08]).

7 Polynomial Hamiltonian structure

In this section we present Hamiltonian formalism for the system GL,N such that Hamiltonian func-
tions are polynomials in the canonical variables.

The Schlesinger system is the following system of nonlinear differential equations (see [JMU81,
Sch12]):

∂Ai

∂ui
= −

∑
j,i

[Ai, A j]
ui − u j

,
∂Ai

∂u j
=

[Ai, A j]
ui − u j

(i , j) (7.1)

for L × L matrix-valued unknown functions Ai, which describes the monodromy preserving defor-
mations of a Fuchsian system of the form (6.13). Needless to say, GL,N is equivalent to a particular
case of the Schlesinger systems specified by the spectral type (6.14).
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Recall first that (7.1) can be written as a Hamiltonian system (see, e.g., [Man99])

∂Ai

∂u j
= {Ai,K j}

with the Hamiltonian functions

Ki =
1
2

Res
z=ui

tr A2 =
∑
j,i

tr(AiA j)
ui − u j

, (7.2)

where the Poisson bracket { , } is given in a standard way by

{(Ai)m,n, (A j)m′,n′} = δi, j

(
δm,n′(Ai)m′,n − δm′,n(A j)m,n′

)
. (7.3)

Moreover, a method to construct canonical variables for the above Hamiltonian system has been
established; see [JMMS80, Appendix 5]. Set Ai = B(i)C(i) and define a Poisson bracket { , } over
the space of matrices B(i) and C(i) by{(

B(i)
)

m,n
,
(
C(i)

)
n,m

}
= 1 and {otherwise} = 0.

This Poisson bracket coincides with the previous one (7.3), in fact. Hence the Schlesinger system
is equivalent to the canonical Hamiltonian system attached with the fundamental 2-form

Γ =

N+1∑
i=0

tr
(
dC(i) ∧ dB(i)

)
−

N+1∑
i=0

dKi ∧ dui.

However, the above choice of canonical variables is redundant because it is possible to reduce the
number of canonical variables to that of accessory parameters of the Fuchsian system (6.13).

Next we shall consider the Hamiltonian formalism ofGL,N and carry out the reduction of canon-
ical variables. In this case the fundamental 2-form reads (see Sect. 6)

Γ =

N∑
i=0

L−1∑
n=0

dc(i)
n ∧ db(i)

n −
N∑

i=1

dKi ∧ dui (7.4)

with

b(i)
n =

−g(i)
n,−n

Lti
n ∏n

m=1 f (i)
m,−m+1

and c(i)
n = ti

n
n∏

m=1

f (i)
m,−m+1

for 0 ≤ i ≤ N and 0 ≤ n ≤ L − 1. Here we have fixed t0 = 1 and thereby u0 = 1. Observe that

b(0)
n c(0)

n = −κn −
N∑

i=1

b(i)
n c(i)

n , (7.5)

which follows from (6.10) by means of b(i)
n c(i)

n = −g(i)
n,−n/L. Accordingly the first term of (7.4) can
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be computed as follows:

N∑
i=0

L−1∑
n=0

dc(i)
n ∧ db(i)

n =

N∑
i=0

L−1∑
n=1

dc(i)
n ∧ db(i)

n , since c(i)
0 = 1,

=

N∑
i=0

L−1∑
n=1

d log c(i)
n ∧ d

(
b(i)

n c(i)
n

)
=

N∑
i=1

L−1∑
n=1

d log
c(i)

n

c(0)
n

∧ d
(
b(i)

n c(i)
n

)
, using (7.5),

=

N∑
i=1

L−1∑
n=1

d
(

c(i)
n

c(0)
n

)
∧ d

(
b(i)

n c(0)
n

)
=

N∑
i=1

L−1∑
n=1

d
(
−b(i)

n c(0)
n

)
∧ d

(
c(i)

n

c(0)
n

)
.

Let us now introduce the canonical variables q(i)
n and p(i)

n (1 ≤ i ≤ N; 1 ≤ n ≤ L − 1) defined by

q(i)
n =

c(i)
n

c(0)
n

, p(i)
n = −b(i)

n c(0)
n , (7.6)

whose number, 2N(L − 1), is just enough for the Hamiltonian system under consideration; see
Remark 6.2. In addition we take the change of independent variables

si =
1
ui
= ti

L

so that the resulting Hamiltonian function

Hi = −
Ki

si
2 = −

tr(AiAN+1)
si

+

N∑
j=0
j,i

s jtr(AiA j)
si(si − s j)

becomes identical with the standard one of PVI when (L,N) = (2, 1); see Example 7.3. The
fundamental 2-form is then rewritten as

Γ =

N∑
i=1

L−1∑
n=1

dp(i)
n ∧ dq(i)

n − dHi ∧ dsi

 .
For convenience we extendedly use the symbols q(i)

n and p(i)
n also for i = 0 or n = 0; namely, we put

q(0)
n = 1, p(0)

n

(
= −b(0)

n c(0)
n

)
= κn −

N∑
i=1

q(i)
n p(i)

n ,

q(i)
0 = 1, p(i)

0

(
= −b(i)

0 c(i)
0

)
= θi −

L−1∑
n=1

q(i)
n p(i)

n , (7.7)

by taking (6.9) and (7.5) into account. We have then the
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Lemma 7.1. It holds that

tr(AiA j) =
L−1∑

m,n=0

q(i)
m p( j)

m q( j)
n p(i)

n , (7.8)

tr(AiAN+1) = −
L−1∑
n=0

enq(i)
n p(i)

n −
N∑

j=0

∑
0≤m<n≤L−1

q(i)
m p( j)

m q( j)
n p(i)

n (7.9)

for i, j = 0, 1, . . . ,N.

Proof. It follows from (Ai)m,n = b(i)
m c(i)

n that tr(AiA j) =
∑L−1

m,n=0(Ai)n,m(A j)m,n =
∑L−1

m,n=0 b(i)
n c(i)

m b( j)
m c( j)

n ,
which thus yields (7.8) via b(i)

n c( j)
n = −p(i)

n q( j)
n . The diagonal entries of AiAN+1 read

(0, 0) :
(
e0b(i)

0 + w0,1b(i)
1 + w0,2b(i)

2 + · · · + w0,L−1b(i)
L−1

)
c(i)

0 ,

(1, 1) :
(
e1b(i)

1 + w1,2b(i)
2 + · · · + w1,L−1b(i)

L−1

)
c(i)

1 ,
...

...

(L − 2, L − 2) :
(
eL−2b(i)

L−2 + wL−2,L−1b(i)
L−1

)
c(i)

L−2,

(L − 1, L − 1) : eL−1b(i)
L−1c(i)

L−1.

Therefore tr(AiAN+1) =
∑L−1

n=0 enb(i)
n c(i)

n +
∑

0≤m<n≤L−1 wm,nb(i)
n c(i)

m . If we remember wm,n =
∑N

j=0 v( j)
m,n =

−∑N
j=0 b( j)

m c( j)
n , then we find tr(AiAN+1) =

∑L−1
n=0 enb(i)

n c(i)
n −

∑N
j=0

∑
0≤m<n≤L−1 b( j)

m c( j)
n b(i)

n c(i)
m ; thus (7.9) is

verified. �

By virtue of Lemma 7.1 together with (7.7), the Hamiltonian function Hi can be explicitly
expressed as a polynomial in the 2N(L − 1) canonical variables q(i)

n and p(i)
n (1 ≤ i ≤ N; 1 ≤ n ≤

L − 1). Finally we arrive at the

Theorem 7.2. The system GL,N is equivalent to the canonical Hamiltonian system

∂q(i)
n

∂s j
=
∂H j

∂p(i)
n

,
∂p(i)

n

∂s j
= −

∂H j

∂q(i)
n

(7.10)

for i, j = 1, 2, . . . ,N and n = 1, 2, . . . , L − 1, where the Hamiltonian function Hi is defined by

siHi =

L−1∑
n=0

enq(i)
n p(i)

n +

N∑
j=0

∑
0≤m<n≤L−1

q(i)
m p( j)

m q( j)
n p(i)

n +

N∑
j=0
j,i

s j

si − s j

L−1∑
m,n=0

q(i)
m p( j)

m q( j)
n p(i)

n (7.11)

with (7.7).

We write the constant parameters contained in (7.10) as

κ⃗ = (e0, e1, . . . , eL−1, κ0, κ1, . . . , κL−1, θ0, θ1, . . . , θN), (7.12)

whose number is essentially 2L + N − 1 according to (6.12). Let HL,N = HL,N (⃗κ) denote the
Hamiltonian system (7.10). Since all the differential equations originate from a single equation
(1.3), the system HL,N is a priori completely integrable (in the Frobenius sense). Or it can be
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shown directly by noticing the following facts: (i) the 1-form ω =
∑N

i=1 Hidsi is closed for an
arbitrary solution of (7.10); (ii) the relation(

∂

∂s j

)
Hi =

(
∂

∂si

)
H j =

1
(si − s j)2

L−1∑
m,n=0

q(i)
m p( j)

m q( j)
n p(i)

n (i , j)

holds, where the symbol (∂/∂si) denotes the differentiation such that q(i)
n and p(i)

n are viewed to be
independent of si. These facts imply the commutativity of the flows induced by H1,H2, . . . ,HN .

The correspondence between the canonical variables q(i)
n and p(i)

n and the dependent variables
given in Sect. 4 is summarized as

q(i)
n =

c(i)
n

c(0)
n

=

(
ti

t0

)n n∏
m=1

f (i)
m,−m+1

f (0)
m,−m+1

=

(
ti

t0

)n
σn,−n(θi + 1)σ0,0(θ0 + 1)
σ0,0(θi + 1)σn,−n(θ0 + 1)

, (7.13a)

q(i)
n p(i)

n = −b(i)
n c(i)

n =
g(i)

n,−n

L
=
θi

L
σn−1,−n−1(θi − 1)σn,−n(θi + 1)

σn,−n−1σn−1,−n
. (7.13b)

Example 7.3 (Case N = 1). Let us restrict ourselves to the case N = 1; thusHL,1 becomes a system
of ordinary differential equations. We begin with the case L = 2, which is the first nontrivial one.
Write (q, p,H, s) = (q(1)

1 , p(1)
1 ,H1, s1) and θ = θ1. Then the Hamiltonian function can be expressed

as
H = HVI(a0, a1, a2, a3, a4; q, p) +

θ(e0(s − 1) + κ0 − θ)
s(s − 1)

under the substitution

a0 = e0 − e1 + κ1 + 1, a1 = −κ1 + θ, a2 = −θ, a3 = −e0 + e1 + κ0, a4 = −κ0 + θ.

Here HVI = HVI(a0, a1, a2, a3, a4; q, p) denotes the Hamiltonian function of PVI and is defined by

s(s − 1)HVI = q(q − 1)(q − s)p2

− ((a0 − 1)q(q − 1) + a3q(q − s) + a4(q − 1)(q − s)) p
+ a2(a1 + a2)q

with ai being constant parameters such that a0 + a1 + 2a2 + a3 + a4 = 1; see [Malm22, Oka87].
Now we turn to the case of general L ≥ 2. Let (qn, pn,H, s) = (q(1)

n , p(1)
n ,H1, s1) and θ = θ1.

Then the Hamiltonian function ofHL,1 takes a coupled form of PVI ones as follows:

H =
L−1∑
n=1

HVI(a0,n, a1,n, a2,n, a3,n, a4,n; qn, pn) +
θ(e0(s − 1) + κ0 − θ)

s(s − 1)

+
∑

1≤m<n≤L−1

(qm − 1)pmqn((qn − s)pn − κn) + (qn − s)pnqm((qm − 1)pm − κm)
s(s − 1)

, (7.14)

where the last term reflects an interaction and the correspondence of constant parameters reads

a0,n = e0 − en + κn + 1, a1,n = −κn + θ, a2,n = −θ, a3,n = −e0 + en + κ0, a4,n = −κ0 + θ.

Interestingly enough, as has been pointed out by Fuji and Suzuki (see [FS09]), the coupled Hamil-
tonian (7.14) can be derived alternatively from the deformation of a certain linear system that is
not Fuchsian but has one regular and one irregular singularities; cf. Sect. 6. It is expected to exist
some integral transform (like a Laplace one) between the two kinds of Lax formalism.
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Remark 7.4. We cite the recent result by Dubrovin and Mazzocco [DM07]; they have studied
Hamiltonian formalism of the Schlesinger system associated with the general spectral type (cf.
(6.14)). Their construction is based on a scalar differential equation of higher order that is reduced
from a Fuchsian system of the form (6.13); and the apparent singularities (see [KO83]) produced
by the reduction procedure are adopted as the half of the canonical variables, i.e., the generalized
coordinates. The resulting Hamiltonian system has movable algebraic branch points and thereby,
unlike HL,N , does not enjoy the Painlevé property (see [Malg83, Miw81]). It would be an inter-
esting problem to transform the general Schlesinger system into a Hamiltonian form enjoying the
Painlevé property whose Hamiltonian functions are polynomials in the dependent variables.

8 Birational canonical transformations

This section is devoted to birational symmetries of the Hamiltonian systemHL,N = HL,N (⃗κ). Here,
to be precise, a birational canonical transformation of variables (q(i)

n , p(i)
n , si) is said to be a symmetry

if it keeps the system invariant except changing the constant parameters κ⃗.
First we translate the action of 〈rk〉 discussed in Sect. 3 into birational canonical transformations

of HL,N . Note that 〈rk〉 is isomorphic to an affine Weyl group of type A(1)
L−1, denoted by W(A(1)

L−1).
For each k ∈ Z/LZ, let rk(σk,n) = σ̂k,n and rk(σm,n) = σm,n (m , k). Substitution of (4.1) and t = ti

in (3.5) yields
Diσ̂k,n · σk,n = θiσk−1,n(θi − 1)σk+1,n(θi + 1)

with the aid of (4.2). Therefore we have

N∑
i=0

tiDiσ̂k,n · σk,n =

N∑
i=0

θitiσk−1,n(θi − 1)σk+1,n(θi + 1).

In view of the homogeneity (4.4d) we conclude that

σ̂k,n =
1

αkσk,n

N∑
i=0

θitiσk−1,n(θi − 1)σk+1,n(θi + 1); (8.1)

recall (3.1). Similarly, we deduce from (3.6) that

tiσk−1,n+1(θi − 1)σk+1,n − σ̂k,n+1σk,n(θi − 1) + σ̂k,n(θi − 1)σk,n+1 = 0. (8.2)

Through (4.5) and (4.6), the action of rk on ( f (i)
m,n, g

(i)
m,n) is determined by (8.1) and (8.2) as follows:

rk( f (i)
k,n) = f (i)

k,n

1 + αkti f (i)
k+1,n−1∑N

j=0 t j f ( j)
k+1,n−1g( j)

k,n−1

 ,
rk( f (i)

k+1,n−1) = f (i)
k+1,n−1

1 − αkti f (i)
k+1,n−1

αkti f (i)
k+1,n−1 +

∑N
j=0 t j f ( j)

k+1,n−1g( j)
k,n−1

 ,
rk(g

(i)
k,n) = g(i)

k,n

1 + αkti f (i)
k+1,n∑N

j=0 t j f ( j)
k+1,ng( j)

k,n

 ,
rk(g

(i)
k+1,n−1) = g(i)

k+1,n−1 −
αkti f (i)

k+1,ng(i)
k,n∑N

j=0 t j f ( j)
k+1,ng( j)

k,n

,
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for n ∈ Z/LZ. It is then easy to construct the corresponding transformation of (q(i)
n , p(i)

n ) by virtue
of (7.13). Moreover, as has been mentioned in Sect. 3, the systemHL,N enjoys another action 〈rk

′〉
of W(A(1)

L−1) associated with the root variables βk = −dm,k−1 + 2dm,k − dm,k+1 + 1, which commutes
with the previous one 〈rk〉.

Next we observe that a cyclic permutation of the suffixes π : (σm,n, dm,n) 7→ (σm+1,n−1, dm+1,n−1)
keeps the bilinear expression (4.4) of HL,N invariant, and so does the interchange of suffixes
ρ : (σm,n, dm,n, ti) 7→ (σn,m,−dn,m, 1/ti). These trivial symmetries can be lifted to birational canon-
ical transformations of HL,N . Note that π realizes a Dynkin automorphism which rotates simul-
taneously the two Dynkin diagrams of type A(1)

L−1 and that ρ represents an interchange of the two
diagrams.

For notational simplicity we extend the suffix n of the canonical variables (q(i)
n , p(i)

n ) and param-
eters en and κn for any n ∈ Z by the conditions (cf. (7.13))

q(i)
n+L = siq(i)

n , p(i)
n+L =

p(i)
n

si
, en+L = en + 1, κn+L = κn.

We set
an =

αn

L
= en+1 − en, bn =

βn

L
= eL−n − eL−n−1 − κL−n + κL−n−1 (8.3)

for 0 ≤ n ≤ L − 1. It thus holds that
∑L−1

n=0 an =
∑L−1

n=0 bn = 1.
We now state the result.

Theorem 8.1. The Hamiltonian systemHL,N (⃗κ) is invariant under the birational canonical trans-
formations rn, rn

′, π, and ρ (n = 0, 1, . . . , L − 1) defined as follows:

• Action on the parameters κ⃗.

rn : en 7→ en + an, en+1 7→ en+1 − an, κn 7→ κn + an, κn+1 7→ κn+1 − an.
rn
′ : κL−n 7→ κL−n + bn, κL−n−1 7→ κL−n−1 − bn.

π : en 7→ en+1 −
1
L
, κn 7→ κn+1.

ρ : en 7→ κL−n − eL−n −
∑N

i=0 θi

L
+ 1, κn 7→ κL−n.

• Action on the canonical variables (q(i)
n , p(i)

n ).

rn (n , 0) :



q(i)
n 7→ q(i)

n +
an(q(i)

n+1 − q(i)
n )

an +
∑N

j=0 q( j)
n+1 p( j)

n

,

p(i)
n 7→ p(i)

n

1 + an∑N
j=0 q( j)

n+1 p( j)
n

 ,
p(i)

n+1 7→ p(i)
n+1 −

an p(i)
n∑N

j=0 q( j)
n+1 p( j)

n

.
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r0 :



q(i)
n 7→ q(i)

n

1 − a0(q(i)
1 − 1)

a0q(i)
1 +

∑N
j=0 q( j)

1 p( j)
0

 ,
p(i)

n 7→ p(i)
n

1 + a0(q(i)
1 − 1)

a0 +
∑N

j=0 q( j)
1 p( j)

0

 (n , 1),

p(i)
1 7→

p(i)
1 −

a0 p(i)
0∑N

j=0 q( j)
1 p( j)

0

 1 + a0(q(i)
1 − 1)

a0 +
∑N

j=0 q( j)
1 p( j)

0

 .

rn
′ (n , 0) :



q(i)
L−n 7→ q(i)

L−n +
bn(q(i)

L−n−1 − q(i)
L−n)

bn +
∑N

j=0 q( j)
L−n−1 p( j)

L−n

,

p(i)
L−n 7→ p(i)

L−n

1 + bn∑N
j=0 q( j)

L−n−1 p( j)
L−n

 ,
p(i)

L−n−1 7→ p(i)
L−n−1 −

bn p(i)
L−n∑N

j=0 q( j)
L−n−1 p( j)

L−n

.

r0
′ :



q(i)
n 7→ q(i)

n

1 − b0(q(i)
−1 − 1)

b0q(i)
−1 +

∑N
j=0 q( j)

−1 p( j)
0

 ,
p(i)

n 7→ p(i)
n

1 + b0(q(i)
−1 − 1)

b0 +
∑N

j=0 q( j)
−1 p( j)

0

 (n , L − 1),

p(i)
L−1 7→

1
si

p(i)
−1 −

b0 p(i)
0∑N

j=0 q( j)
−1 p( j)

0

 1 + b0(q(i)
−1 − 1)

b0 +
∑N

j=0 q( j)
−1 p( j)

0

 .
π : q(i)

n 7→
q(i)

n+1

q(i)
1

, p(i)
n 7→ p(i)

n+1q(i)
1 .

ρ : si 7→
1
si
, q(i)

n 7→
q(i)

L−n

si
, p(i)

n 7→ si p
(i)
L−n.

(Here we have omitted to write the action on the variables if it is trivial.) Moreover, these trans-
formations satisfy the relations: rn

2 = (rnrn±1)3 = (rn
′)2 = (rn

′rn±1
′)3 = πL = ρ2 = id, πrn = rn+1π,

πrn
′ = rn−1

′π, and ρrn = rn
′ρ.

Let us explore further symmetries of HL,N besides those in Theorem 8.1. First we consider a
symmetry shifting the parameter θi to θi − 1 at the level of the variables f (i)

m,n and g(i)
m,n. It readily

follows from (4.5) and (4.6) that

f (i)
m,n(θi − 1) =

g(i)
m,n

g(i)
m+1,n−1

f (i)
m+1,n. (8.4)

Combining this with (4.11) shows that

f ( j)
m,n(θi − 1) =

tiU
(i, j)
m,n g(i)

m,n

t jV
(i, j)
m,n g(i)

m+1,n−1

f (i)
m+1,n (i , j). (8.5)

We observe for i , j that

g( j)
m,n(θi − 1) = θ j

σm−1,n−1(θi − 1, θ j − 1)σm,n(θi − 1, θ j + 1)
σm,n−1(θi − 1)σm−1,n(θi − 1)
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=
ti − t j

t j

σm−1,n−1(θi − 1, θ j − 1)σm,n

σm,n−1(θi − 1)σm−1,n(θ j − 1)
×

g( j)
m,n+1

g(i)
m,n+1

U (i, j)
m,n+1

=

(
ti

t j

σm,n−1(θ j − 1)σm−1,n(θi − 1)
σm,n−1(θi − 1)σm−1,n(θ j − 1)

− 1
) g( j)

m,n+1

g(i)
m,n+1

U (i, j)
m,n+1, using (4.4a),

=

 ti f (i)
m,n+1(θi − 1)

t j f ( j)
m,n+1(θ j − 1)

− 1

 g( j)
m,n+1

g(i)
m,n+1

U (i, j)
m,n+1, using (4.5),

=

 ti f (i)
m+1,n+1g( j)

m+1,n

t j f ( j)
m+1,n+1g(i)

m+1,n

−
g( j)

m,n+1

g(i)
m,n+1

 U (i, j)
m,n+1, using (8.4). (8.6)

By (4.13) we have
g(i)

m,n(θi − 1) = κm,n − 1 −
∑
j,i

g( j)
m,n(θi − 1). (8.7)

The transformations (8.4)–(8.7) provide a symmetry of the system GL,N , (4.12), shifting the pa-
rameter θi to θi − 1; however, they do not naively give a symmetry of HL,N . To reach a birational
canonical transformation of HL,N , we need to combine a trivial symmetry of (4.12) shifting the
suffixes: ( f (i)

m,n, g
(i)
m,n, dm,n) 7→ ( f (i)

m−1,n, g
(i)
m−1,n, dm−1,n). As a result we obtain a symmetry ηi of HL,N

which acts on the parameters as θi 7→ θi − 1 and an 7→ an−1; see Theorem 8.2 below. We do not go
into detail of computations.

It is easy to find a group of symmetries 〈ζi j〉(≅ SN+1), which is generated by a permutation of
the singularities z = ui = 1/si (0 ≤ i ≤ N) of the associated Fuchsian system; see Sect. 6.

Finally we deal with a symmetry deduced from the bilinear expression ofHL,N again. Observe
that (4.4) is invariant under the transformation

ι : σm,n = σm,n(θ, t) 7→ σ−m−1,−n−1(−θ, t), dm,n 7→ d−m−1,−n−1, θi 7→ −θi.

Hence we have

ι(q(i)
n ) = ι

((
ti

t0

)n
σn,−n(θi + 1)σ0,0(θ0 + 1)
σ0,0(θi + 1)σn,−n(θ0 + 1)

)
, using (7.13a),

=

(
ti

t0

)n
σ−n−1,n−1(θi − 1)σ−1,−1(θ0 − 1)
σ−1,−1(θi − 1)σ−n−1,n−1(θ0 − 1)

=

(
ti

t0

)n −1∏
m=−n

f (i)
m,−m(θi − 1)

f (0)
m,−m(θ0 − 1)

=

(
ti

t0

)n −1∏
m=−n

g(i)
m,−mg(0)

m+1,−m−1

g(0)
m,−mg(i)

m+1,−m−1

f (i)
m+1,−m

f (0)
m+1,−m

, using (8.4),

=
g(i)
−n,ng(0)

0,0

g(0)
−n,ng(i)

0,0

1

q(i)
−n

=
si p

(i)
L−n p(0)

0

p(0)
L−n p(i)

0

. (8.8)
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Similarly, it follows that

ι(q(i)
n p(i)

n ) = ι
(
θi

L
σn−1,−n−1(θi − 1)σn,−n(θi + 1)

σn,−n−1σn−1,−n

)
, using (7.13b),

=
−θi

L
σ−n,n(θi + 1)σ−n−1,n−1(θi − 1)

σ−n−1,nσ−n,n−1

= −q(i)
L−n p(i)

L−n. (8.9)

These formulae (8.8) and (8.9) define a birational canonical transformation ofHL,N .
The above results are summed up in the

Theorem 8.2. The Hamiltonian systemHL,N (⃗κ) is invariant under the birational canonical trans-
formations ηi, ζi j, and ι (i, j = 0, 1, . . . ,N; i , j) defined as follows:

• Action on the parameters κ⃗.

ηi : en 7→ en−1 +
1
L
, κn 7→ κn − en + en−1, θi 7→ θi − 1.

ζi j : θi ↔ θ j.

ι : en 7→ −eL−n + 1, κn 7→ −κL−n, θi 7→ −θi.

• Action on the canonical variables (q(i)
n , p(i)

n ).

ηi :



q( j)
n 7→ ηi(q( j)

n ) =

(∑L
m=1 p(i)

−m

) (∑L
m=1 p(i)

n−mq( j)
n−m

)(∑L
m=1 p(i)

n−m

) (∑L
m=1 p(i)

−mq( j)
−m

) (for ∀ j),

p( j)
n 7→ ηi(p( j)

n ) =
1

ηi(q
( j)
n )

s j

si − s j

 p( j)
n

p(i)
n

−
p( j)

n−1

p(i)
n−1

 L∑
m=1

p(i)
n−mq( j)

n−m ( j , i),

p(i)
n 7→

1

ηi(q
(i)
n )

κn − en + en−1 −
∑
j,i

ηi(q( j)
n p( j)

n )

 .
ζi j (i, j , 0) : si ↔ s j, q(i)

n ↔ q( j)
n , p(i)

n ↔ p( j)
n .

ζi0 = ζ0i :

 si 7→
1
si
, s j 7→

s j

si
, q(i)

n 7→
1

q(i)
n

, q( j)
n 7→

q( j)
n

q(i)
n

,

p(i)
n 7→ q(i)

n p(0)
n , p( j)

n 7→ q(i)
n p( j)

n ( j , i).

ι : q(i)
n 7→

si p
(i)
L−n p(0)

0

p(0)
L−n p(i)

0

, p(i)
n 7→ −

q(i)
L−n p(i)

0 p(0)
L−n

si p
(0)
0

.

Remark 8.3. We may regard an, bn (1 ≤ n ≤ L − 1) and θi (0 ≤ i ≤ N) as the 2L + N − 1
constant parameters of HL,N instead of κ⃗; see (7.12) and (8.3). For reference we summarize how
the birational symmetries in Theorems 8.1 and 8.2 act on an, bn, and θi below.

rn : an 7→ −an, an±1 7→ an±1 + an.

rn
′ : bn 7→ −bn, bn±1 7→ bn±1 + bn.
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π : an 7→ an+1, bn 7→ bn−1.

ρ : an ↔ bn.
ηi : an 7→ an−1, θi 7→ θi − 1.
ζi j : θi ↔ θ j.

ι : an 7→ aL−n, bn 7→ bL−n, θi 7→ −θi.

Recall that the groups of canonical transformations 〈rn〉 and 〈rn
′〉 mutually commute and each of

them gives a birational realization of W(A(1)
L−1).

Remark 8.4 (Additional symmetry valid for only N = 1). Let us consider the case N = 1. Write
(qn, pn, s) = (q(1)

n , p(1)
n , s1) and θ = θ1. We then find another symmetry given as follows (see also

the appendix):

ϕ :


e0 7→ κ0 − e0 − 1, en 7→ −eL−n (n , 0),
κ0 7→ κ0, κn 7→ −κL−n (n , 0), θ 7→ κ0 − θ,
qn 7→

spL−n

qL−n pL−n − κL−n
, pn 7→

qL−n(κL−n − qL−n pL−n)
s

.

A Case L = 2: the Garnier system

If L = 2 then the canonical Hamiltonian system HL,N is equivalent to the Garnier system in N
variables (see [Gar12]). This fact is guaranteed by the Lax formalism given in Sect. 6. But,
however, our polynomial Hamiltonian function (7.11) is different from that given in [KO84] (see
also [IKSY91]). In this appendix we describe explicitly the canonical transformation between the
two Hamiltonian systems.

First we concerns the general (L,N) case. Define the canonical transformation (q(i)
n , p(i)

n ,Hi, si) 7→
(Q(i)

n , P
(i)
n , H̃i, si) by

Q(i)
n = −si

p(i)
n

p(0)
n

(
= −si

b(i)
n

b(0)
n

)
,

Q(i)
n P(i)

n = −q(i)
n p(i)

n

(
= b(i)

n c(i)
n

)
,

H̃i = Hi −
L−1∑
n=1

q(i)
n p(i)

n

si
.

Clearly the new Hamiltonian function H̃i becomes again a polynomial in Q(i)
n and P(i)

n . This canon-
ical transformation is, in short, derived from an interchange of the roles of b(i)

n and c(i)
n in the defini-

tion (7.6) of the canonical variables. Note that only if N = 1 it keeps the form of the Hamiltonian
function unchanged, thereby giving rise to a birational symmetry; see Remark 8.4.

Next we let L = 2 and write the variables as (Q(i)
1 , P

(i)
1 ) = (qi, pi) for i = 1, 2, . . . ,N. The
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Hamiltonian function H̃i thus takes the following expression:

si(si − 1)H̃i ≡ qi

κ1 +
∑

j

q j p j


κ1 − θ0 +

∑
j

q j p j

 + si pi(qi pi + θi)

−
∑
j(,i)

R ji(q j p j + θ j)qi p j −
∑
j(,i)

S i j(qi pi + θi)q j pi

−
∑
j(,i)

Ri jq j p j(qi pi + θi) −
∑
j(,i)

Ri jqi pi(q j p j + θ j)

− (si + 1)(qi pi + θi)qi pi − (θN+2si + θN+1 + 1)qi pi

modulo some function in only s = (s1, . . . , sN). Here we put Ri j = si(s j − 1)/(s j − si), S i j =

si(si − 1)/(si − s j), θN+1 = d1,0 − d1,1 − 1/2, θN+2 = d1,1 − d0,1 − 1/2, and κ1 =
(∑N+2

i=0 θi + 1
)
/2. The

symbols
∑

j and
∑

j(,i) stand for the summation over j = 1, 2, . . . ,N and over j = 1, . . . , i − 1, i +
1, . . . ,N, respectively. This is exactly the (usual) polynomial Hamiltonian function for the Garnier
system; cf. [KO84, Tsu06].
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Funkcial. Ekvac. (in press)
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