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Abstract: We address the problem of constructing a nonlinear model based on

both classified and unclassified data sets for classification. A semi-supervised lo-

gistic model with Gaussian basis expansions along with technique of graph-based

regularization method is presented. Crucial issues in our modeling procedure are

the choices of tuning parameters included in the nonlinear logistic models. In or-

der to select these adjusted parameters, we derive model selection criteria from the

viewpoints of information theory and Bayesian approach. Some numerical examples

are conducted to show the effectiveness of our proposed semi-supervised modeling

strategies.

Key Words and Phrases: Basis expansion, Logistic discrimination, Model selec-

tion, Regularization, Semi-supervised learning.

1 Introduction

The classification or discrimination method plays a key role in various fields of research,

including engineering, artificial intelligence and life science (see, e.g., Bishop, 2006; Hastie

et al., 2009). In practical situations such as medical diagnosis, classifying data sets may
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8612, Japan.
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require expensive tests or tasks that must be performed by a human operator. Therefore,

only small classified data sets may be available, whereas unclassified data sets can be easily

obtained. In addition, for the problem of predicting protein function, we have known the

functions of certain proteins through several biological experiments, whereas the functions

of other proteins remain unclear because the required experimental cost and effort are too

great. Under these situations, a classification procedure that combines both classified

and unclassified data, called semi-supervised learning, has received considerable attention

in the contemporary statistics and machine learning literature (see, e.g., Chapelle et al.,

2006; Liang et al., 2007).

A number of studies have challenged the semi-supervised learning procedures by using

techniques from various fields of research, including statistics, machine learning and graph

theory; e.g., a mixture model approach (Miller and Uyer, 1997; Dean et al., 2006), a

logistic discriminant model approach (Amini and Gallinari, 2002; Vittaut et al., 2002),

a graph-based approach (Kai et al., 2004; Zhou et al., 2004), a support vector machine

approach (Bennett and Demiriz, 1998; Vapnik, 1998), a boosting approach (Bennett et

al., 2002; Chen and Wang, 2007) and so on. For overviews of semi-supervised learning

methods, we refer to Chapelle et al. (2006) and references given therein.

Semi-supervised methods based on the graph-based approach presented by earlier

researchers, including Kai et al. (2004) and Zhou et al. (2004), are well known as powerful

tools for extracting useful information from both classified and unclassified data sets with

the help of graph-based regularization. The semi-supervised methods include some tuning

parameters which should be determined by any objectively methods. In many previous

works of the semi-supervised methods, however, the values of the tuning parameters seems

to be given subjectively, and hence it does not always lead to provide appropriate semi-

supervised models. Crucial points, therefore, are the selection of the tuning parameters

included in semi-supervised models.

In this article, we propose a nonlinear semi-supervised logistic model based on Gaus-

sian basis expansions along with the technique of graph-based regularization method. In

order to select the tuning parameters in the semi-supervised logistic models objectively, we
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give model selection criteria from information theoretic and Bayesian viewpoints for eval-

uating models estimated by the method of graph-based regularization. Several numerical

examples are conducted to examine the effectiveness of our modeling strategies.

The remainder of this article is organized as follows: Section 2 describes a nonlinear

logistic model using Gaussian basis functions. We also provide an estimation procedure

based on a graph-based regularization, which is constructed by both classified and unclas-

sified samples, and discuss a relationship between our proposed modeling procedure and

previously proposed semi-supervised methods based on graph-based approach. Section 3

introduces model selection criteria to select tuning parameters in the logistic models from

information theoretic and Bayesian perspective. Numerical experiments are illustrated to

assess the performances of our proposed semi-supervised logistic discrimination in Section

4. Section 5 presents some concluding remarks.

2 Logistic discrimination for semi-supervised classifi-

cation

2.1 Nonlinear logistic model via Gaussian basis expansions

Suppose we have n1 classified observations {(xα, yα); α = 1, . . . , n1} and (n−n1) unclassi-

fied observations {xα; α = n1 +1, . . . , n}, where x denotes the p-dimensional explanatory

observations and y indicates the group membership coded as 0 or 1. We first consider

the problem of constructing nonlinear logistic models with Gaussian basis functions based

on classified data sets, while unclassified data sets are used in estimating the parameters

included in the nonlinear logistic models.

In the logistic model, we assume that

Pr(Yα = 1|xα) = π(xα), Pr(Yα = 0|xα) = 1 − π(xα), (1)

where Yα is regared as a random variable distributed according to the Bernoulli distribu-

tion in the form

f(yα|xα; w) = π(xα)yα{1 − π(xα)}1−yα . (2)
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The nonlinear logistic model further assumes that

log

{
π(xα)

1 − π(xα)

}
= w0 +

m∑
j=1

wjφj(xα) = wT φ(xα), (3)

where w = (w0, w1, . . . , wm)T is an unknown parameter vector, φ(x) = (1, φ1(x), . . . , φm(x))T

is a vector of basis functions and m is the number of basis functions which is selected by

model selection criteia. For basis functions φj(x), we use Gaussian basis functions with

hyperparameter given by

φj(x; µj, h
2
j , ν) = exp

(
−||x − µj||2

2νh2
j

)
, j = 1, . . . , m, (4)

where µj is a p-dimensional vector that determines the center of the basis function, h2
j is

the width parameter of the basis function and ν (> 0) is hyperparameter. In classification

problems, the hyperparameter ν plays a key role in adjusting the smoothness of the

decision boundary (Konishi et al., 2004; Ando and Konishi, 2009).

The centers µj and width parameters h2
j included in Gaussian basis functions in Equa-

tion (4) are generally determined by using any clustering algorithm (Moody and Darken,

1989). In particular, we employ the k-means clustering algorithm (Hartigan and Wong,

1979). Using this algorithm, we assign a set of observations {x1, . . . , xn} into m clusters

{C1, . . . , Cm} corresponding to the number of basis functions. The centers µj and the

width parameters h2
j are, respectively, determined by

µ̂j =
1

nj

∑
xα∈Cj

xα and ĥ2
j =

1

nj

∑
xα∈Cj

||xα − µ̂j||2, (5)

where nj is the number of observations that belongs to the j-th cluster Cj. Replacing µj

and h2
j with µ̂j and ĥ2

j , respectively, we obtain a set of m basis functions given by

φj(x; µ̂j, ĥ
2
j , ν) = exp

−||x − µ̂j||2

2νĥ2
j

 , j = 1, . . . , m. (6)

The hyperparameter ν is determined by model selection criteia given in Section 3.

From the above assumptions, the log-likelihood function of nonlinear logistic models

given in n1 observations is

`(w) =
n1∑

α=1

[yα log π(xα) + (1 − yα) log{1 − π(xα)}]

=
n1∑

α=1

[
yαwT φ(xα) − log{1 + exp(wT φ(xα))}

]
. (7)
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2.2 Estimation

The maximum likelihood estimator of an unknown parameter vector w can be obtained

by a maximization of the log-likelihood function (7). In this article, however, we aim to

construct nonlinear logistic models by using both classified and unclassified data sets. In

order to obtain the modeling procedure, we employ a graph-based regularization method

in estimation procedure.

2.2.1 Graph Laplacian

One of the most important techniques in graph-based regularization methods is the use of

a graph Laplacian in the regularization term. The graph Laplacian is based on a weighted

adjacency matrix and a degree matrix. A weighted matrix W is an n × n matrix in the

following:

Wij = exp

(
−||xi − xj||2

2σ2

)
, i, j = 1, . . . , n, (8)

where σ2 is a width parameter. In our study, we utilize the weighted adjacency matrix

with the parameter σ = h̄ =
∑m

i=1 ĥi/m, where ĥi is the estimated width parameter

included in Gaussian basis functions in Section 2.1. We also define the degree matrix D,

which is the diagonal matrix with (i, i)-th element being Dii :=
∑n

j=1 Wij.

Under these notations and terms, we define the unnormalized graph Laplacian L as

follows:

L = D − W. (9)

The normalized graph Laplacian L is obtained by

L = D−1/2LD−1/2 = In − D−1/2WD−1/2, (10)

where In is an n × n identity matrix. In our proposed modeling methodologies, we use

the normalized graph Laplacian. The graph Laplacian has various mathematical and

statistical properties; e.g., a Laplacian operator on discrete data. For more details and

theories of graph Laplacian, we refer to Chung (1997), Chapelle et al. (2006, Chapter 13)

and von Luxburg et al. (2008). Henceforth, we describe the normalized graph Laplacian

as the graph Laplacian for simplicity.
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2.2.2 Estimation via graph Laplacian

By using the graph Laplacian L introduced by Section 2.2.1, we propose to maximize a

following regularized log-likelihood function

`λ(w) = `(w) − λ

2n1

wT ΦT LΦw, (11)

where Φ = (φ(x1), . . . , φ(xn))T and λ (> 0) is a regularization parameter. It is observed

that the first term of the Equation (11) includes only classified data, while the second

term consists of both classified and unclassified data sets.

The first derivative of the regularized log-likelihood function in the Equation (11) is

given by

∂`λ(w)

∂w
=

n1∑
α=1

{yα − π(xα)}φ(xα) − λ

n1

ΦT LΦw. (12)

However, since the likelihood equation ∂`λ(w)/∂w = 0 is nonlinear with respect to the

parameter vector w, any iterative algorithms are used to estimate the parameter vector

w. In our modeling strategies, we employ Newton-Raphson method (see, Green and

Silverman, 1994); that is, starting from an initial value, we numerically obtain a solution

in the following update quantities:

wnew = wold −
{

∂2`λ(w
old)

∂w∂wT

}−1
∂`λ(w

old)

∂w
, (13)

where the required second derivative of the regularized log-likelihood function ∂2`λ(w)/∂w∂wT

is given by

∂2`λ(w)

∂w∂wT
= −

n1∑
α=1

π(xα){1 − π(xα)}φ(xα)φT (xα) − λ

n1

ΦT LΦ. (14)

The (r + 1)th estimator, ŵ(r+1), is then updated by

ŵ(r+1) =

{
ΦT Π(r)(In1 − Π(r))Φ +

λ

n1

ΦT LΦ

}−1

ΦT Π(r)(In1 − Π(r))ξ(r), (15)

where ξ(r) = Φw(r)+{Π(r)(In1−Π(r))}−1(y−Π(r)1n1) and Π(r) is an n1×n1 diagonal matrix

with π(xα) for the rth estimator ŵ(r) in the αth diagonal element. Here, y = (y1, . . . , yn1)
T

and 1n1 is an n1-dimensional vector, the elements of which are all 1.
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We assign a future observation z into class k (k = 1, 2) that has the maximum posterior

probability

Pr(y = 1|z) = π̂(z) =
exp{ŵT φ(z)}

1 + exp{ŵT φ(z)}
,

(16)

Pr(y = 0|z) = 1 − π̂(z) =
1

1 + exp{ŵT φ(z)}
,

where π̂(z) is the estimated conditional probability and ŵ is a regularized maximum

likelihood estimator of w.

Thus, we obtain the statistical model

f(yα|xα; ŵ) = π̂(xα)yα{1 − π̂(xα)}1−yα . (17)

Note that the statistical model is constructed based on the classified and unclassified

observations. The statistical model estimated by maximizing the regularized log-likelihood

function depends on the number of basis functions m and the values of regularization

parameter λ and hyperparameter ν involved in Gaussian basis functions. It is crucial to

choose the tuning parameters in our model building strategies. In order to select the values

of the tuning parameters objectively, we introduce model selection criteria in Section 3

according to information-theoretic and Bayesian viewpoints.

2.3 Relationships to previous studies

Here we observe the relationships between our proposed semi-supervised method and

previously proposed semi-supervised method with graph-based regularization.

One of the most useful semi-supervised procedure using graph-based approach is the

learning with local and consistency method proposed by Zhou et al. (2004). This method-

ology is given as follows. For n1 classified observations {(xα, yα); α = 1, . . . , n1} and

(n − n1) unclassified observations {xα; α = n1 + 1, . . . , n}, we redefine a class indicator

vector y given in

yα =


1 if xα belongs to class 1,

−1 if xα belongs to class 2, α = 1, . . . , n,

0 otherwise.

(18)
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Under these notations, Zhou et al. (2004) proposed to minimize the following quantity

with respect to the target function f ;

Q(f) =
n∑

α=1

(fα − yα)2 + γ
n∑

i,j=1

Wij

 1√
Dii

fi −
1√
Djj

fj

2

= (f − y)T (f − y) + γfT (In − D− 1
2 WD− 1

2 )f , (19)

where f = (f1, . . . , fn)T and γ (> 0) is a regularization parameter. Minimizing the

function in the Equation (19), we obtain the solution

f ∗ = (In − tD− 1
2 WD− 1

2 )−1y, (20)

where t = γ/(1 + γ). Based on the solution f ∗ = (f∗
1 , . . . , f∗

n)T , the classification rule is

given by

yα =

 1 if sign(f ∗
α) ≥ 0,

−1 if sign(f ∗
α) < 0

(21)

for α = 1, . . . , n.

Unfortunately, the semi-supervised method proposed by Zhou et al. (2004) predicts

only the class labels of the unclassified data; i.e., the procedure cannot construct a dis-

criminant function which classifies a future observation into one of the groups. For the

problem, we have constructed the classification rule in the Equation (17) to predict a

future data using logistic discrimination.

Another approach to construct a discriminant function to predict a future observation

is the semi-supervised method presented by Kai et al. (2004). Kai et al. (2004) considered

the minimization of the quantity in the form

Q′(f) =
n1∑

α=1

(fα − yα)2 + ξ
n∑

i,j=1

Wij

 1√
Dii

fi −
1√
Djj

fj

2

, (22)

where ξ (> 0) is a regularization parameter. Note that the first term of the right-hand side

in the Equation (22) sums up only classified data, while the first term in the Equation (19)

does both classified and unclassified data. Kai et al. (2004) assumed that the function

fα (α = 1, . . . , n1) is expanded by basis functions as follows:

fα = w0 +
m∑

j=1

wjφj(xα) = wT φ(xα), (23)
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where φ(xα) = (1, φ1(xα), . . . , φm(xα))T is an (m + 1)-dimensional vector of basis func-

tions and w = (w0, w1, . . . , wm)T is an (m+1)-dimensional unknown parameter. As basis

functions, Kai et al. (2004) utilized Gaussian basis functions.

Based on the basis expansion, we can replace the function fα in the Equation (22)

into the form

Q′(w) =
n1∑

α=1

(yα − wT φ(xα))2 + ξwT ΦT (In − D− 1
2 WD− 1

2 )Φw

= (y − Φn1w)T (y − Φn1w) + ξwT ΦT (In − D− 1
2 WD− 1

2 )Φw, (24)

where Φn1 = (φ(x1), . . . , φ(xn1))
T . The estimator of the parameter w can be easily

obtained by setting the derivative of the function Q′(w) with respect to the parameter

vector w to be zero.

While the semi-supervised method proposed by Kai et al. (2004) is a powerful tool for

classification problems, this method has some disadvantages. First, Kai et al. (2004) em-

ploy a squared loss function in the right-hand side of Equation (22) or Equation (24). How-

ever, the squared loss function is not feasible in classification problems, since the response

variable Y for classification is assumed to be discrete variables; e.g., binary or multinomial.

Second, the regularization parameter included in the semi-supervised method in Kai et

al. (2004) is subjectively given. Meanwhile, our proposed semi-supervised model has used

a logistic loss function which is optimal for classification problem compared to squared

loss function. We also select the values of tuning parameters including the regularization

parameter objectively by using model selection criteria given in the next section.

3 Model selection criteria

This section introduces two types of model selection criteria from information-theoretic

and Bayesian viewpoints. The model selection criteria derived in this paper can be re-

garded as tailor-made versions of model selection criteria proposed by Konishi and Kita-

gawa (1996) and Konishi et al. (2004). For details of the model selection criteria presented

by these authors, we refer to Konishi and Kitagawa (2008).
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3.1 Generalized information criterion

The generalized information criterion, proposed by Konishi and Kitagawa (1996), is de-

rived for evaluating a statistical model estimated by various methods including the regu-

larization method. According to the result of Konishi and Kitagawa (1996, p. 876), we

obtain a model selection criterion for evaluating the model estimated by the maximum

regularized likelihood method with graph Laplacian given by

GIC = −2
n1∑

α=1

log f(yα|xα; ŵ) + 2tr
{
Q(ŵ)R−1(ŵ)

}
. (25)

Here Q(ŵ) and R(ŵ) are, respectively, an (m + 1) × (m + 1) matrix in the form

Q(ŵ) =
1

n1

{
ΦT Λ̂2Φ − λ

n1

ΦT LΦŵ1T
n1

Λ̂Φ

}
, (26)

R(ŵ) =
1

n1

ΦT Π̂(In1 − Π̂)Φ +
λ

n2
1

ΦT LΦ, (27)

where Λ̂ and Π̂ are given by

Λ̂ = diag[y1 − π̂(x1), . . . , yn1 − π̂(xn1)], (28)

Π̂ = diag[π̂(x1), . . . , π̂(xn1)]. (29)

3.2 Generalized Bayesian information criterion

Consider the prior distribution for the parameter vector w given by

π(w|λ) = (2π)−{(m+1)−k}/2

(
λ

n1

){(m+1)−k}/2

|ΦT LΦ|
1
2
+ exp

(
− λ

2n1

wT ΦT LΦw

)
, (30)

where |ΦT LΦ|+ is the product of the positive eigenvalues of ΦT LΦ with rank k. A mode

of posterior distribution based on this prior distribution is equivalent to the maximization

of the regularized likelihood function in the Equation (11).

We then derive a following model selection criterion using the result of Konishi et al.

(2004, p. 30), which extended Schwarz’s BIC (Schwarz, 1978) for evaluating the model

estimated by the regularization method.

GBIC = −2
n1∑

α=1

logf(yα|xα; ŵ) +
λ

n1

wT ΦT LΦw + log|R(ŵ)|

− log|ΦT LΦ|+ − k logλ − (m + 1 − k) log(2π) + (m + 1 + k) log n1, (31)
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where R(ŵ) is an (m + 1) × (m + 1) matrix given in the Equation (27). We choose

adjusted parameters including the number of basis functions m and values of regularization

parameter λ and hyperparameter ν from the minimizer of the model selection criteria.

4 Numerical examples

In this section, our proposed semi-supervised logistic models with graph-based regular-

ization are applied to several benchmark data sets.

4.1 Toy example

We confirm that models constructed by our semi-supervised procedure contains informa-

tion from both classified and unclassified data by the use of a toy example. We utilized a

two moon data set shown in Figure 1, where the data set {(xα, yα); α = 1, . . . , 110} was

generated from

uα ∼ U(0, 2π), ε1α, ε2α ∼ U(−0.1, 0.1),

yα = 1 : zα = cos(uα) + ε2α, yα = zα1[zα≤0.2] − zα1[zα>0.2], xα = sin(uα) + 0.7 + ε1α,

yα = 0 : zα = cos(uα) + ε2α, yα = zα1[zα≥−0.2] − zα1[zα<−0.2], xα = sin(uα) + ε1α, (32)

where 1[x≥0] denotes a indicator function. In order to perform semi-supervised inference,

we considered the situation such that the data set consists of 110 examples with only 1

classified data for each class (triangle and quadrangle). For details of the data set, we

refer to Zhou et al. (2004).

A classification boundary in the right-hand panel of Figure 1 is generated from a

supervised method presented by Ando and Konishi (2009). The decision boundary fails

to find the underlying data sampling structure, since the supervised logistic model is

estimated by using only two classified data; that is, the supervised logistic model cannot

use unclassified data sets in constructing the models. Meanwhile, the left-hand panel of

Figure 1 shows the decision boundary of our proposed logistic model estimated by semi-

supervised inference, where some tuning parameters included in our models are fixed as

m = 15, λ = 100.3 and ν = 10. As shown in this panel, our semi-supervised modeling

11
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Figure 1: Two moon data set. 110 examples with only 1 labeled data for each class

(triangle and quadrangle). The left panel shows the decision boundary for our proposed

semi-supervised procedure with graph-based regularization. The right panel indicates the

decision boundary generated from supervised logistic discrimination by Ando and Konishi

(2009).

procedure correctly captures the underlying data structure thanks to the regularization

term with the graph Laplacian which is based on both classified and unclassified data.

4.2 Benchmark data analysis

We examine the performances of our modeling procedure using g10 data (Chapelle and

Zien, 2005) and spam data (Hastie et al., 2009). The g10 data set consists of two classes

with 10 predictors, and we prepared 250 sets of training data for each class and 300 sets

of test data. The spam data set, which consists of 500 sets of training data and 500 sets

of test data, represents the binary classification with 53 predictors. In order to implement

a semi-supervised learning, the training data sets were randomly divided into two halves

with classified data sets and unclassified data sets, where classified data sets were assigned

as 5%, 10%, 20%, 30%, 40% and 50% of training data sets, respectively.

Our nonlinear semi-supervised logistic models estimated by graph-based regularization

(SSLDA: Semi-Supervised Logistic Discriminant Analysis) were fitted to the data sets.

We chose the number of basis functions m, the values of regularization parameter λ and

hyperparameter ν that minimize either the GIC or the GBIC given in Section 3. The
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Table 1: Comparisons of prediction error rates with different percentages of classified

data sets for g10 data set. SSLDA (GBIC) or SLDA (GBIC) denotes the SSLDA or

the SLDA evaluated by the GBIC, while SSLDA (GIC) or SLDA (GIC) denotes that

evaluated by the GIC. Figures in parentheses for LLGC and ILLGC indicate the values

of tuning parameters.

Method ＼ % 5 10 20 30 40 50

SSLDA (GBIC) 34.2 24.4 12.8 11.4 8.40 5.83

SSLDA (GIC) 27.3 25.7 13.8 13.0 9.30 7.03

LLGC (0.99) 50.0 48.1 50.8 50.6 51.1 49.1

LLGC (0.7) 47.2 41.3 38.7 41.0 33.0 25.8

LLGC (0.5) 45.1 39.6 33.9 34.2 27.6 19.2

LLGC (0.3) 43.0 37.7 30.0 28.6 24.9 16.6

LLGC (0.1) 40.8 36.0 27.2 25.6 23.1 14.8

ILLGC (100) 50.0 50.0 50.8 50.6 50.7 47.1

ILLGC (10) 50.0 45.7 45.4 45.2 35.1 25.6

ILLGC (1) 45.8 36.9 22.6 16.9 15.8 10.3

ILLGC (0.1) 30.0 26.2 14.1 11.5 11.2 8.00

ILLGC (0.01) 26.7 25.1 14.2 12.2 11.3 7.90

SVM 38.9 25.2 15.2 13.2 13.3 12.5

K-NN 35.5 31.9 27.8 25.1 23.3 23.2

SLDA (GBIC) 43.0 36.4 13.7 9.93 9.50 7.20

SLDA (GIC) 42.7 35.0 15.8 11.9 10.3 7.46
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Table 2: Comparisons of prediction error rates with different percentages of classified

data sets for spam data set. SSLDA (GBIC) or SLDA (GBIC) denotes the SSLDA or

the SLDA evaluated by the GBIC, while SSLDA (GIC) or SLDA (GIC) denotes that

evaluated by the GIC. Figures in parentheses for LLGC and ILLGC indicate the values

of tuning parameters.

Method ＼ % 5 10 20 30 40 50

SSLDA (GBIC) 36.6 36.3 33.3 31.1 31.6 29.7

SSLDA (GIC) 35.6 33.3 32.8 30.6 31.2 29.3

LLGC (0.99) 36.5 36.1 37.4 36.6 37.2 37.2

LLGC (0.7) 35.6 33.4 35.1 34.5 34.4 34.3

LLGC (0.5) 35.5 33.5 34.8 33.9 34.2 34.0

LLGC (0.3) 35.0 33.6 34.4 33.4 33.8 33.5

LLGC (0.1) 34.6 33.6 34.0 33.1 33.7 33.5

ILLGC (100) 37.9 37.6 38.3 37.0 37.3 38.3

ILLGC (10) 37.0 36.2 36.9 35.7 35.8 35.8

ILLGC (1) 35.8 34.4 34.2 32.1 33.2 31.3

ILLGC (0.1) 34.5 32.3 32.4 30.4 31.6 29.5

ILLGC (0.01) 34.9 32.8 33.3 30.4 31.5 29.5

SVM 41.6 39.6 39.6 37.4 37.5 36.4

K-NN 36.8 34.3 32.3 32.0 32.7 29.2

SLDA (GBIC) 37.9 36.1 33.3 31.5 32.1 30.0

SLDA (GIC) 37.2 35.6 33.4 32.3 32.0 29.6
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results for proposed modeling procedures are denoted as SSLDA(GBIC) and SSLDA(GIC)

in Table 1 and Table 2.

We compared the performances of our proposed method with graph-based regular-

ization with those of various procedures. As for other types of semi-supervised learning,

semi-supervised methods proposed by Kai et al. (2004) (ILLGC: Inductive Learning with

Local and Global Consistency) and Zhou et al. (2004) (LLGC: Learning with Local and

Global Consistency) given in Section 2.3 were used. Since the LLGC and the ILLGC,

respectively, include a tuning parameter, we set the values of the parameter into t =0.99,

0.7, 0.5, 0.3, 0.1 for the LLGC and ξ =100, 10, 1, 0.1, 0.01 for the ILLGC, respectively.

Here t and ξ are defined by the Equation (20) and the Equation (22), respectively. We

also employed a nonlinear logistic discrimination (SLDA: Supervised Logistic Discrimi-

nant Analysis), which is introduced by Ando and Konishi (2009), support vector machine

(SVM) and k-nearest neighborhood method (K-NN). The tuning parameters in the SVM

were optimized by the 5-fold cross validation, while the parameters in the K-NN were

optimized by the leave one out cross validation. Note that these supervised methods are

estimated by using only classified data sets. We repeated 10 times for random splits of

data sets.

A summary of the prediction error rates for the g10 data set is show in Table 1, while

Table 2 shows that for the spam data set. We observe that our modeling procedures using

the GBIC or the GIC give relatively lower prediction errors than other semi-supervised

methods and supervised methods.

5 Concluding remarks

We presented a nonlinear semi-supervised logistic model based on Gaussian basis functions

along with the technique of graph-based regularization. In order to select the values of

some tuning parameters, we introduced model selection criteria from information-theoretic

and Bayesian approaches. Our proposed methodologies estimated by graph Laplacian are

easily applied to analyze complex or high-dimensional data which include both classi-

fied and unclassified data sets. Some numerical examples illustrated that our modeling
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strategies yield lower prediction error rates than previously developed methods.

In practical situations, a multi-class classification problem has attracted a great deal

of attention in the various fields including statistics and machine learning (see, e.g., Lee

et al., 2004; Zhu et al., 2009). It is easy to extent the logistic discrimination for two

class classification into the discriminant model for multi-class classification. The further

research remains to be done in constructing a multi-class semi-supervised discrimination

with Gaussian bases with the help of graph-based regularization.
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