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1. Formation of grain boundaries

As a liquid solidifies, crystals grow from separate nucleation sites, each with a
random orientation of crystal planes. Eventually these crystals grow and meet at a grain
boundary. These can be observed as shallow grooves on metal surfaces. The density
of grain boundaries affects the appearance of metal surfaces, as well as the strength
of the solid. For example, grain boundaries are used to create a spangled appearance
on the surface of some metal sheet products. Through an electron microscope, grain
boundaries beginning at the nanoscale, can be observed to grow in thickness and depth.
They may be several millimetre in length between triple grain junctions, in comparison
to a thickness of a few micron. Therefore grain boundary evolution may be described as
a two-dimensional cross section profile, y(x, t) in Cartesian coordinates. From Herring
(1951), the surface energy per particle is

(1) Φ(φ) = Ω[γ
s (φ) + γs(φ)]κ,

where Ω is the mean particle volume, γs is surface tension, κ is curvature and φ =
arctan(yx) is the orientation angle of the surface. Mullins’ 1957 theory of surface dif-
fusion applies the Nernst–Einstein relation to express material area flux due to surface
diffusion,

J = −νΩ
Ds(φ)

kT

∂Φ

∂s
,

where ν is areal density of particles, Ds is surface mobility, kT is absolute temperature
multiplied by Boltzmann’s constant, and s is arclength. For an ideal isotropic mate-
rial, Ds and Φ are independent of surface orientation. In that case, the equation of
continuity for conservation of volume, results in the surface diffusion equation
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;B > 0 (constant)(2)
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where θ = yx , f(θ) =
1√
1 + θ2

= cosφ.

This equation is invariant under Euclidean isometries. By way of contrast, the small-
slope approximation f = 1 gives the linear fourth-order diffusion equation

yt = −Byxxxx
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that is not invariant under rotations in the (x,y) plane.

2. Integrable nonlinear models.

A rotation transforms the linear equation to a nonlinear equation of the form (3)
with f(θ) = α/(β+θ). This is a useful integrable nonlinear model, since exact solutions
can be constructed when f(θ) approximates the isotropic version at both small slopes
and large slopes. These solutions are exact solutions for surface diffusion on a non-
isotropic material, which in general leads to a fourth-order nonlinear diffusion equation
of the form

(4) θt = −∂2
x{D(θ)∂x[E(θ)θx]}.

The surface of the recently solidified material is assumed to be horizontal and flat, with
initial condition

(5) θ(x, 0) = 0.

Just as on a material surface, within the disordered region at a grain boundary, atoms
are at a higher energy state than in the crystal lattice. This gives rise to a grain
boundary tension γb, just as for surface tension γs, has the units of energy per unit
area or force per unit length. The groove angle is such that the grain boundary tension
balances surface tension on both arms of the groove. Hence for a symmetric groove
centred at x = 0,

γb = 2γs sin(φ).

This leads to the boundary condition

(6) θ(0, t) = m =


2γs
γb

2

− 1

−1/2

.

For a symmetric groove, there must be zero mass flux in either direction out of the
groove, implying

(7) ∂x[E(θ)θx] = 0, x = 0.

Finally, far from the grain boundary, the initial condition is not disturbed, so

θ(x, t)→ 0, x → 0,(8)

and θx(x, t)→ 0, x → 0.(9)

The balance between grain boundary tension and surface tension is depicted in Figure 1.

The system (4)–(9) is the initial-boundary problem for evolution of a grain bound-
ary by surface diffusion. For a near-isotropic material, this problem was solved exactly
in [4] by approximating f(θ) by a reciprocal linear spline f(θ) = αi/(βi + θ) between
node points θi−1 ≤ θ ≤ θi for i = 1, · · · , N . In practice, increasing the number of
spline segments made little difference to the solution when N was increased from 4
to 16. The spline method can be used for this particular problem because it has a
similarity solution of the form θ = g(xt−1/4). It then follows that the location of the
node value θ = θi is g

−1(θi)t
1/4.

It is desirable to be able to solve some form of the anisotropic surface diffusion
equation for other useful boundary conditions that are not compatible with the sim-
ilarity reduction. Then the location of the node values can no longer be determined
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Figure 1. Balance between grain boundary tension and surface tension.

by elementary methods, so the spline representation of D(θ) and E(θ) can no longer
be used. Neverheless the integrable model D(θ) = β/(β + θ), E(θ) = E0β

3/(β + θ)3,
still gives a reasonable representation of a near-isotropic material over a wider range
of inclination angles φ, than does the linear model. Since it can be easily transformed
to the linear model, it can be solved exactly for a variety of initial and boundary con-
ditions. The next problem to be solved, has a time dependent slope m(t) prescribed
at x = 0. The dihedral angle of the groove may be controlled by heating or cooling.
As the solid surface cools, surface tension will increase, so that the equilibrium slope
will decrease. In the simplest generalisation, the expression (1 for surface energy has
an extra factor ξ(T ) that depends on temperature T . After defining a new time-like
coordinate

τ =
1

νk

 t

0

ξ(T (t1))

T (t1)
dt1,

the surface diffusion equation is still autonomous, reducing again to (4) but with τ
replacing t. After rotation by angle cot−1 β, the integrable model transforms to the
linear fourth-order diffusion equation ȳτ = −ȳx̄x̄x̄x̄. When m is time dependent, the
solution ȳ(x̄, τ) can no longer be a function of the scaling invariant X = x̄τ−1/2. How-
ever ȳ may be conveniently expanded as a series of separated solutions τ i/4 multiplying
a function of X that is expressed in terms of generalised hypergeometric functions.

ȳ = g0(X) +
∞
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When m(τ) is an analytic function in τ 1/4, the boundary x = 0 can be specified as
x̄ being a power series in τ 1/4,

x̄ = βτ 1/4
∞
i=0

biτ
i/4.
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Figure 2. Groove with slope m = 0.5 + 0.5
√
τ at the root. Output

times are τ = 0.0002, 0.1 and 1.0
.

The coefficients bi and Kij are then uniquely determined by the boundary conditions.
This solution method was completed fully for the steepening groove m = 0.5 + 0.5τ 1/4

by Broadbridge and Goard [5]. This is shown here in Figure 2.

3. Method of lines with central finite differences

Although it solves a very challenging problem, the exact solution method is com-
plicated even after a minor change to the boundary conditions. We need also to have
a back-up numerical method that can easily handle a variety of boundary conditions.
One standard approach that is relatively easy to implement is the method of lines that
constructs a a semi-discrete model by central finite differencing of spatial derivatives.
The resulting system of ordinary differential equations may be run through a numerical
solver for stiff systems. For a uniform grid with spacing h, at x = jh, the approximate
second and fourth derivatives are

∂2θ

∂x2
=

θj−1 − 2θj + θj+1

h2
+O(h2) and

∂4θ

∂x4
=

θj−2 − 4θj−1 + 6θj − 4θj+1 + θj+2

h4
+O(h2).

The boundary at infinity is replaced by a boundary at some moderately large value
x = Nh, where the same boundary conditions are assumed as before. At each of
the boundaries x = 0 and x = Nh, the second-order boundary conditions for θ are
implemented by introducing one fictitious grid point x−1 or xN+1. However the initial
and boundary conditions on an isotropic material for the grain boundary with constant
dihedral angle, together imply a quadratic equation for θ−1(0):

−3mθ2−1 + 4(1 +m2)θ−1 − 8m(1 +m2) = 0.

This does not have a real solution unless m < 1/
√
5. This is despite the finite real

solution of the original continuum model having been constructed for an arbitrary
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groove slope, even for an infinite slope of a cuspoid groove. This problem with finite
differencing [6] arises only for higher-order nonlinear PDEs with initial and boundary
conditions with a corner singularity at (x, t) = (0, 0). The boundary and initial con-
ditions for the integral y of θ do not have such a singularity. The flux condition at
x = 0 is now third-order in y(x, t), for which we incorporate two fictitious grid points
at x = −h,−2h. The boundary and initial conditions now imply a unique solution
for y−1(0) and y−2(0). The real solution can be constructed for all later times, ex-
cept that the zero-flux boundary condition at a finite value of x eventually leads to an
unacceptable errors.
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